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1 Introduction

One attempted route to a quantum theory of gravity is through the asymptotic safety

programme [1, 2]. Although quantum gravity based on the Einstein-Hilbert action is

plagued by ultraviolet infinities that are perturbatively non-renormalisable (implying the

need for an infinite number of coupling constants), a sensible theory of quantum gravity

might be recovered if there exists a suitable ultraviolet fixed point [1].

An appropriate technique to investigate this proposal is provided by the functional

Renormalisation Group (RG) expressed in terms of the effective average action [3, 4], a

framework that has been applied in a wide variety of contexts, see e.g. the reviews [5–9].

Beginning with ref. [2], there is a wealth of literature investigating asymptotic safety in this

way. For reviews and introductions see [10–14], and for recent advances see for example [15–

24]. In the vast majority of this work the RG flow equation takes the generic form [3]:

∂

∂k
Γ̂k[ϕ] =

1

2
tr

[(
Rk +

δ2Γ̂k
δϕδϕ

)−1∂Rk
∂k

]
. (1.1)

In here tr is a (Euclidean) space-time trace, and for illustrative purposes we have written

the flow equation for a single-component scalar field ϕ. Γ̂k is the effective average action,

which is the Legendre effective action (i.e. generator of one-particle irreducible diagrams)
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but where an infrared (IR) cutoff term 1
2

∫
p ϕ(p)Rk(p

2)ϕ(−p) has been added to suppress

modes with momenta below the IR scale k. By varying k, a non-perturbative RG flow is

generated with the property that for k → 0 the information contained in the full functional

integral is recovered.

Of course to apply this technique to gravity, we need instead to work with some metric

degrees of freedom. Typically this is the gauge-fixed metric gµν , and thus necessarily also

a background metric ḡµν and ghost fields Cµ and C̄µ. Actually, in this paper almost none of

this extra structure plays a rôle. Therefore in the following discussions we will phrase all

arguments in terms of this single-component scalar field ϕ. It is straightforward to adapt

the equations to more fields with indices and/or different statistics as required. We make

more comments on this in the conclusions.

As will be reviewed in section 4, the flow equation (1.1) is derived from the partition

function and therefore strictly speaking should be subject to the same overall ultraviolet

(UV) cutoff Λ that is required to make sense of the functional integral [4]. Providing the

IR cutoff profile Rk(p
2) varies sufficiently fast, the flow (1.1) itself however receives support

only from finite |p|/k and thus is well defined in the limit that the UV cutoff is removed

(Λ→∞). In other words we can solve for the flow equations “directly in the continuum”

(as already emphasised in ref. [4]). In fact in general this is crucial to its use since this

allows everything to be expressed in terms of flowing dimensionless couplings gi(k) with

respect to the single dimensionful parameter k, i.e. to recover the power of the Wilsonian

RG [25]. In particular only in this way can we find fixed points with respect to k (implying

the absence of any other dimensionful parameter), and construct the continuum limit in the

standard way envisaged in asymptotic safety literature, namely via the full renormalised

trajectory, starting from the UV fixed point gi = g∗i at k = ∞ and flowing down to k = 0

where the IR cutoff is finally removed. The renormalised trajectory is then parametrised

by the running renormalised couplings gi∈R(k), where R is the set of (marginally) relevant

directions.1

In this way, we dispense with the need to define a bare action ŜΛ[ϕ] at the overall

cutoff scale Λ and concomitant tuning required to reach the continuum limit. However

as emphasised by Manrique and Reuter [26, 27] this leaves us with a problem, dubbed by

them “the reconstruction problem”,2 since potentially we need access to some bare action

to obtain the microscopic degrees of freedom, and from there study possible Hamiltonian

formulations, understand more directly properties of the constructed quantum field theory

such as constraints and local symmetries, make more direct contact with perturbative

approaches, and finally more directly compare this to other approaches that are formulated

at the microscopic level, such as canonical quantisation, loop quantum gravity or Monte

Carlo simulations [29–35].

In order to make the issue more concrete, Manrique and Reuter consider the following

situation [26, 27]. They regulate the functional integral by using a sharp cutoff Λ, such

1Throughout this Introduction we will rely on such standard Wilsonian concepts, also including Wilso-

nian effective actions, perfect actions, and tuning general bare actions to a continuum limit. For a review

see e.g. [5].
2See also ref. [28].
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that the integration is restricted to only those modes propagating with momentum |p| ≡√
p2 ≤ Λ, and consider either a generic IR cutoff profile Rk or the optimised cutoff profile

defined as Rk(p) = (k2 − p2)θ(k2 − p2) [36–38]. Now there are actually two problems to

confront. Firstly the resulting UV regulated flow equation is not that of (1.1): it depends

on two cutoffs now, namely the IR cutoff k and the UV cutoff Λ. Any solution Γ̂Λ
k to

this flow equation,3 therefore also depends on these two cutoffs.4 This is a severe issue

because, as explained above, it is crucial in practice that the flow equations are solved

directly in the continuum where only one cutoff scale is operating. There is also a second

severe issue. Even when k = Λ, there is still a functional integral to do, albeit threshold-

like, being only over modes with an effective mass of order the overall cutoff Λ. Thus the

effective action Γ̂Λ
k=Λ is related to a bare action ŜΛ[ϕ] in a way which cannot in practice

be calculated exactly, and moreover we then need to invert this relation in order to find

ŜΛ[ϕ] in terms of Γ̂Λ
k=Λ. At the one-loop level, the partition function can be evaluated by

steepest descents [26]:5

Γ̂Λ
k=Λ[ϕ]− ŜΛ[ϕ] =

1

2
tr ln

{
ŜΛ(2)[ϕ] +RΛ

}
, (1.2)

where ŜΛ(2) = δ2ŜΛ/δϕδϕ is the Hessian of the bare action. Unfortunately in the inter-

esting case of asymptotic safety the theory is strongly interacting at these scales, with all

couplings O(1) times the appropriate power of Λ, and thus one loop is not a good approx-

imation. Furthermore even with this approximation it is not straightforward to invert the

relation to find ŜΛ[ϕ] in terms of Γ̂Λ
k=Λ. This then is the reconstruction problem.

Actually a practical prescription for reconstructing the bare action can be given, closely

based on results from ref. [4]. (Aspects of reconstruction were already treated there at the

end of section 3 and in the Conclusions.) As we will see, this prescription solves both of

the above issues for a wide range of cutoffs by utilising a kind of duality relation between

a Wilsonian effective action Ŝk and the effective average action Γ̂k. In particular it also

provides a map between an effective multiplicative UV cutoff Ck(p2) and the IR cutoff

Rk(p
2). If an overall UV cutoff at Λ is in place (of some form, not necessarily the sharp

cutoff considered in ref. [26]), then this is also involved in the map. Although such an

overall UV cutoff necessarily modifies the flow equation (1.1), it is possible and natural to

choose that the effective UV cutoff Ck depends only on k. The central point is that since

the Wilsonian effective action is already an action which is fully regularised in the UV by

Ck, it can be used as a bare action.

Since Ŝk depends on only one scale, namely k, it can also display all the required RG

properties. In particular in the continuum limit the full trajectory Ŝk is then again the

3Notice that we denote an UV cutoff parameter with a superscript and an IR cutoff parameter with a

subscript. We will use this pictorial guide throughout the paper.
4In ref. [26] it is claimed that for the optimised cutoff this dependence disappears in the sense that

providing we restrict flows to k ≤ Λ, we can consistently set Γ̂Λ
k [ϕ] = Γ̂k[ϕ]. In fact this is not correct, as

explained in appendix A.
5All momenta should be understood to be cutoff from above by Λ, including that in the momentum

integral implied by the space-time trace. The mass parameter M introduced in ref. [26] will play no

significant rôle here so will be neglected. Also in contrast to ref. [26], we will not make the momenta

discrete by compactifying on a torus.
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renormalised trajectory, but couched in this language, starting from the UV fixed point6

Ŝ∗ in the far UV (k → ∞) and extending down to k → 0. It follows that such an Ŝk is a

continuum version of the perfect bare actions explored e.g. in ref. [39] since, as we review in

section 4, setting ŜΛ = Ŝk=Λ to be the bare action (together with UV cutoff Ck=Λ) results

in a partition function that is actually independent of Λ and thus in particular equal to

the partition function obtained in the continuum limit Λ →∞.

Unlike the map described in (1.2), the map between Ŝk and Γ̂k is exact. Unlike the

map (1.2), it is straightforward to explicitly construct it in either direction, via a tree-

diagram expansion which can be developed vertex by vertex, as we will see in section 5.

It is also possible to solve the relation explicitly in approximations that go beyond an

expansion in vertices. For example the duality relation remains exact in the Local Poten-

tial Approximation and thus at this level can be analysed exactly, both analytically and

numerically [40, 41].

It should thus be clear that constructing ŜΛ = ŜΛ in this way, already provides a prac-

tical solution to the reconstruction problem, since it furnishes a bare action that expresses

the same asymptotically safe renormalised trajectory as Γ̂k.

This still leaves a puzzle however, since it is not immediately clear how this solution

should be related to the one-loop expression (1.2). Actually, as already emphasised, and

proved in appendix A, a partition function regularised by some finite UV cutoff Λ cannot

through the standard Legendre transform relations yield the continuum Legendre effective

action Γ̂k. Instead it must give an effective average action Γ̂Λ
k that now also depends

explicitly on Λ. Therefore Γ̂k does not result from computing the partition function defined

by using ŜΛ = ŜΛ together with the infrared cutoff Rk. If we want ŜΛ to be associated to

Γ̂k in this sense, then the best we can hope to achieve is to find a map from the continuum

Γ̂k to a pair {ŜΛ, Γ̂Λ
k } consisting of a bare action and the resulting effective average action,

such that Γ̂Λ
k → Γ̂k as Λ → ∞. In this paper we set out exactly such a map, again

explicitly constructable vertex by vertex, and show how it is consistent with the one-loop

formula (1.2).

This alternative prescription for reconstruction is set out precisely and in more de-

tail in sections 2 and 6. Here we briefly sketch the main steps. Assume we have found

the appropriate renormalised trajectory Γ̂k ≡ Γ̂∞k of (1.1), where we emphasise that this

solution corresponds to the case where the overall UV cutoff has been removed. Using

the duality relation we construct the corresponding Wilson effective action Ŝk together

with its associated effective UV cutoff Ck. We set this to be a bare action at k = Λ, i.e.

ŜΛ = Ŝk=Λ. However we replace the multiplicative cutoff CΛ with CΛ
k = CΛ − Ck. As we

will see, this cutoff has the property that it regularises both in the IR and the UV. It also

has the properties that it is CΛ in the limit k → 0, and provides exactly Rk in the limit

Λ→∞. In the standard way the partition function now yields an effective average action

Γ̂Λ
k . Γ̂Λ

k satisfies a UV regularised version of the flow equation (1.1) with the property that

as Λ→∞ it goes back to the original flow equation (1.1). However we do not need to solve

this new flow equation, or do the functional integral, in order to construct Γ̂Λ
k . It turns out

6Here we commit a slight abuse of notation. Strictly in order for the action to reach a fixed point, we

should change to the appropriate dimensionless variables. By Ŝ∗ we actually mean the action such that it

takes the fixed point form after such a transformation.
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that essentially the same duality relation allows us to construct Γ̂Λ
k exactly from Γ̂k, again

vertex by vertex or by other methods, as before [4].

Thus we have constructed an exact, explicit and calculable map from any continuum

solution Γ̂k ≡ Γ̂∞k with its associated IR cutoff Rk, to the pair, ŜΛ and Γ̂Λ
k , related in

the standard way through a functional integral regularised in the UV and IR by CΛ
k . As

advertised, this pair has the property that as Λ → ∞, the regularised solution Γ̂Λ
k → Γ̂k.

Since, given Γ̂k, everything is explicitly calculable, we see that this provides an alternative

solution to the reconstruction problem.

The relation between the bare action ŜΛ and the ‘initial’ UV value Γ̂Λ
k=Λ of this

regularised effective average action, is particularly simple. They are simply equal. To-

gether with the associated Wilsonian effective action we thus have the triple equality:

Γ̂Λ
Λ = ŜΛ = ŜΛ, which moreover is dual to the original continuum solution Γ̂k evaluated

at k = Λ.

In section 6 we show how this solution is consistent with the one-loop formula (1.2).

On the one hand by construction the multiplicative cutoff CΛ
k vanishes at k = Λ, which

means effectively that the modified Rk diverges at k = Λ. In this case we say that the UV

and IR cutoffs are compatible. As a consequence, apart from a field independent piece, (1.2)

implies that Γ̂Λ
Λ = ŜΛ, recovering our result. On the other hand if the UV and IR cutoffs are

not compatible, there is still a functional integral to do at k = Λ. Then the formula (1.2)

supplies the approximate relation, valid to one loop. As we review in sections 4 and 6, the

Wilsonian effective action Ŝk can also be derived from the bare action ŜΛ via a functional

integral. In section 6, we show directly by the method of steepest descents that in the

non-compatible case this functional integral yields at one loop an ŜΛ which is precisely the

one which is dual to the effective action given by the formula (1.2), proving consistency

also in the non-compatible case.

We have thus provided two solutions to the reconstruction problem. In the Conclusions,

we emphasise that there are in fact infinitely many solutions, and sketch how some of these

can be constructed starting with the explicit solutions given here.

The structure of the paper is then as follows. In the next section we give the definitions

in order to set out precisely our two prescriptions for reconstructing a bare action. For

the second prescription we use a special case of a remarkable relation proved in section 3.

There we prove another Legendre transform (a.k.a. duality) relation between two effective

average actions, or simply two Legendre effective actions, with different overall UV cutoff

profiles but the same associated Wilsonian effective action. In section 4 we derive the

main Legendre transform relation between Wilsonian effective actions and effective average

actions, and show how these are in turn derived from the partition function, extending the

results of ref. [4] to more general cutoff profiles. In section 5 we compute the vertices

of the Wilsonian effective action Ŝk from Γ̂k through the tree-level expansion implied by

the duality relation. This expansion can also be used in the other direction and for the

other duality relations simply by renaming propagators and vertices. In section 6 we

provide more detail on our second solution to the reconstruction problem and show how it

is related to (1.2). In section 7 we give some examples of compatible cutoff profiles, and

finally in section 8 we summarise and draw our conclusions.

– 5 –



J
H
E
P
1
1
(
2
0
1
5
)
0
9
4

2 Detailed prescription for reconstruction

Here we set out in detail the definitions of the quantities we need in order to set out precisely

our two prescriptions for reconstructing a bare action, as sketched in the Introduction. We

will use a dot notation to denote integration over position or momentum space:

J · φ ≡ Jxφx ≡
∫
ddxJ(x)φ(x) =

∫
ddp

(2π)d
J(p)φ(−p) . (2.1)

For bilinear terms we regard the kernel as a matrix, thus the following forms are equivalent:

φ ·∆−1· φ ≡ φx∆−1
xyφy ≡

∫
ddxddy φ(x)∆−1(x, y)φ(y) =

∫
ddp

(2π)d
φ(p)∆−1(p2)φ(−p) . (2.2)

Note that when transforming to momentum space, Green’s functions G(p1, · · · , pn)

come with momentum conserving delta functions such that they are only defined for

p1 + · · ·+ pn = 0. Thus two-point functions are functions of just a single momentum

p = p1 = −p2.

Let us choose to define the interaction part of the effective average action to be the

part obtained by splitting off a normalised massless kinetic term:

Γ̂k[ϕ] =
1

2
ϕ · p2 · ϕ+ Γk[ϕ] . (2.3)

Note that for the purposes of this accounting we regard a mass term 1
2m

2ϕ2 as contained

within the interactions. The total effective action contains also the additive infrared cutoff:

Γtot
k [ϕ] = Γ̂k[ϕ] +

1

2
ϕ ·Rk · ϕ , (2.4)

= Γk[ϕ] +
1

2
ϕ · (∆k)

−1· ϕ , (2.5)

where in the second line we have combined the massless kinetic term with the additive

cutoff to form a propagator with a multiplicative cutoff:

∆k =
Ck(p)

p2
, (2.6)

such that

Ck(p) =
p2

p2 +Rk(p)
. (2.7)

This provides the translation between multiplicative IR cutoff profiles and additive IR

cutoff profiles, but explicitly uses the fact that the UV cutoff has been removed. Note that

Ck inherits from Rk the properties that for |p| < k it suppresses modes, and in particular

Ck(p) → 0 as |p|/k → 0, while for |p| > k, Ck(p) ≈ 1 and mostly leaves the modes

unaffected and in particular Ck(p)→ 1 as |p|/k →∞.

As already mentioned in the Introduction, Manrique and Reuter choose to regularise

the functional integral in the UV with an overall sharp cutoff such that all momenta

|p| ≤ Λ [26]. This is equivalent to ensuring that the internal momentum running through

– 6 –
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any propagator is cut off so that this propagator vanishes for |p| > Λ. Both the ultraviolet

regularisation and the infrared regularisation can therefore be carried by a multiplicative

cutoff

CΛ
k (p) =

p2θ(Λ− |p|)
p2 +Rk(p)

, (2.8)

which appears in the resulting effective action like so:

Γtot,Λ
k [ϕ] = ΓΛ

k [ϕ] +
1

2
ϕ ·
(
∆Λ
k

)−1· ϕ , (2.9)

where

∆Λ
k =

CΛ
k (p)

p2
. (2.10)

We have noted that the effective average action now depends also on the overall UV cutoff

Λ. We recover the previous case when the UV cutoff is removed: Ck(p) ≡ C∞k (p).

As already emphasised in the Introduction, our constructions go through for much

more general UV cutoffs, providing that the UV and IR cutoffs are always implemented

together, multiplicatively, as defined via the above relations (2.9) and (2.10). As we recall

in section 4, the flow equation for the interactions then takes the general form

∂

∂k
ΓΛ
k [ϕ] = −1

2
tr

[(
1 + ∆Λ

k ·
δ2ΓΛ

k

δϕδϕ

)−1 1

∆Λ
k

∂∆Λ
k

∂k

]
. (2.11)

By recasting the right hand side in terms of
(
∆Λ
k

)−1
, and using 1/(2.6), 1/(2.7), and (2.3),

it is easy to see that in the limit Λ→∞ this flow equation gives back (1.1).

Now we define in precisely the same way both the bare interactions SΛ[φ] and Wilsonian

interactions Sk[Φ]:

ŜΛ[φ] =
1

2
φ · p2 · φ+ SΛ[φ] , Ŝk[Φ] =

1

2
Φ · p2 · Φ + Sk[Φ] . (2.12)

(We choose different symbols for the fields in each case, for convenience as will become

clear later.) We define the total bare action to include also the UV cutoff profile and thus

Stot,Λ[φ] = SΛ[φ] +
1

2
φ ·
(

∆̃Λ
)−1
· φ , (2.13)

where

∆̃Λ =
C̃Λ(p)

p2
. (2.14)

For the sharp cutoff case

C̃Λ(p) = θ(Λ− |p|) , (2.15)

but again we emphasise that the UV cutoff profile can be more general and we will in

general take it to be so. All we then require is that for |p| < Λ, C̃Λ(p) ≈ 1 and mostly

leaves the modes unaffected and in particular C̃Λ(p)→ 1 for |p|/Λ→ 0, while for |p| > Λ it

suppresses modes, and in particular for |p|/Λ → ∞, C̃Λ(p) → 0 sufficiently fast to ensure

– 7 –
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that all momentum integrals are regulated in the ultraviolet. Finally, the total Wilsonian

effective action can be written

Stot,k[Φ] = Sk[Φ] +
1

2
Φ · (∆k)−1· Φ , (2.16)

where

∆k =
Ck(p)

p2
, (2.17)

and Ck(p) is an ultraviolet cutoff profile for this effective action and effective partition

function, which regularises at scale k. Ck(p) has to satisfy the same conditions as C̃Λ(p)

above (with the replacement Λ 7→ k of course). Since the functional integral with this

action Stot,k is therefore already completely regularised in the ultraviolet, there is no need

for any dependence on the overall UV cutoff Λ. We will therefore choose Ck(p) to depend

only on the one cutoff scale k as already indicated, and indeed apart from obeying the

same general conditions, the profiles Ck and C̃Λ will otherwise be unrelated. However we

will require one ‘sum rule’ relation between these three profiles:7

CΛ
k (p) + Ck(p) = C̃Λ(p) . (2.18)

For example, from (2.8), (2.15), and (2.18), we can deduce the UV cutoff profile for the

Wilsonian effective action which is implied by the regularisation used in ref. [26]:

Ck(p) =

(
1− p2

k2

)
θ(k − |p|) (2.19)

(where k < Λ). We see that it behaves sensibly as a UV cutoff profile and actually depends

only on the one cutoff scale as required.

Thus (2.8), (2.15) and (2.19) provide an example of a consistent set of cutoffs satisfying

the sum rule (2.18). However as noted in the Introduction, they are not compatible, in

the sense that when the IR and UV cutoffs meet, CΛ
Λ does not vanish. Examples of

cutoff profiles satisfying (2.18) that do also satisfy this compatibility condition are given

in section 7.

In general we can use (2.18) to define CΛ
k (p) = C̃Λ(p)−Ck(p). Since Λ > k, the general

properties given above for Ck and C̃Λ ensure that it behaves as a multiplicative UV cutoff

at Λ and multiplicative IR cutoff at k, as required. Thus for |p| > Λ modes are suppressed

such that as |p|/Λ→∞, CΛ
k (p)→ 0 sufficiently fast that all momentum integrals are UV

regulated. For k < |p| < Λ, Ck(p) is small (vanishingly so for |p| � k) while C̃Λ(p) ≈ 1,

and thus CΛ
k (p) ≈ 1 and mostly leaves modes unaffected. For k � |p| � Λ, CΛ

k (p) will be

very close to one. Finally for |p| < k, Ck(p) ≈ 1 and C̃Λ(p) is close to one (very close for

k � Λ) and thus CΛ
k (p) ≈ 0 suppresses modes, while for |p|/k → 0, since both Ck(p)→ 1

and C̃Λ(p)→ 1, we have that CΛ
k (p)→ 0 thus providing the expected IR cutoff k.

7This goes beyond the sum rule introduced in ref. [4] since we now allow C̃Λ to be unrelated to Ck.

– 8 –
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By adding the infrared cutoff profile to the bare action in order to generate the effective

average action in the usual way, we equivalently change the multiplicative cutoff profile C̃Λ

into one that depends on both Λ and k. We have already anticipated in our discussion of

ΓΛ
k that the new multiplicative cutoff profile is CΛ

k . Thus the bare action becomes

Stot,Λ
k [φ] = SΛ[φ] +

1

2
φ ·
(
∆Λ
k

)−1· φ . (2.20)

It is this bare action that generates (2.9) in the usual way and leads to the UV modified flow

equation (2.11). (Note that the total bare action then necessarily depends on both cutoffs.

The bare interactions SΛ however do not, and indeed consistent with the usual philosophy

of renormalisation they should be taken to depend only on the UV modification.)

Now we can state the duality in its general form:

Sk[Φ] = ΓΛ
k [ϕ] +

1

2
(ϕ− Φ) ·

(
∆Λ
k

)−1· (ϕ− Φ) . (2.21)

This is a Legendre transform relation that maps between two apparently very different

pictures of the exact RG [4]. On the one hand we have the effective average action which

flows with respect to an IR cutoff k as in (2.11) (or in the limit Λ→∞, as in (1.1)) and on

the other hand we have a Wilsonian effective action whose interactions flow with respect

to an effective UV cutoff k:

∂

∂k
Sk[Φ] =

1

2

δSk

δΦ
· ∂∆k

∂k
· δS

k

δΦ
− 1

2
tr

(
∂∆k

∂k
· δ

2Sk

δΦδΦ

)
, (2.22)

this being the Polchinski flow equation [42], which can also be regarded as equivalent to

Wilson’s original equation. See section 4 and refs. [4, 5].8 As we also review in section 4,

and outlined in the Introduction, the original partition function with bare action (2.13)

can be exactly re-expressed as a partition function with the bare action replaced with the

Wilsonian one (2.16), which is thus a so-called “perfect action”.

In particular if we have an effective average action solution Γk to the continuum flow

equation (1.1) such that it exists for all 0 < k < ∞, we can construct Sk by using (2.21)

with the identifications Γk ≡ Γ∞k , and ∆k ≡ ∆∞k as in (2.6) and (2.7):

Sk[Φ] = Γk[ϕ] +
1

2
(ϕ− Φ) · (∆k)

−1· (ϕ− Φ) . (2.23)

Sk can then be constructed from this for example vertex by vertex as in section 5.

We can then reconstruct the partition function Z even in this continuum limit, by

using the “perfect” bare action (2.16) with k set to some ‘initial’ upper scale of our choice,

k = Λ for example. Note that as required such an action has the same structure as the

general form of the bare action (2.13), and indeed just involves the replacements C̃Λ 7→ CΛ,

and SΛ 7→ SΛ. The new UV cutoff profile Ck(p) = 1 − Ck(p) as follows from (2.18) with

C̃∞ 7→ 1. This then provides our first solution to the reconstruction problem.

8For a more careful comparison between Wilson’s and Polchinski’s versions see ref. [43].
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Note that such a bare action, and thus partition function, does not incorporate an

infrared cutoff Rk and thus there is no connection to the effective average action Γk through

the standard route of taking a Legendre transform of lnZ. If we add the infrared cutoff term

to this bare action, we still do not recover Γk this way. As emphasised in the Introduction

and appendix A, it is impossible to recover the continuum effective average action this way

since the result is a ΓΛ
k that necessarily now depends on both cutoffs. It is possible however

to construct a map from the continuum solution Γk to a pair {SΛ,ΓΛ
k }, where ΓΛ

k is related

to SΛ in the usual way, and such that as Λ → ∞ we have ΓΛ
k → Γk. This is our second

solution to the reconstruction problem.

To construct this solution we specialise to cutoffs that are compatible, as defined in the

Introduction. This means that the overall UV cutoff C̃Λ = Ck=Λ is identical to the effective

UV cutoff set at scale k = Λ. We again take the bare interactions to be the Wilsonian

interactions SΛ = Sk=Λ computed as above. The total bare action Stot,Λ
k , now with the

infrared cutoff in place, is given as it should be, by (2.20), i.e. regularised by CΛ
k . The

corresponding partition function yields by the standard construction a ΓΛ
k which satisfies

the UV modified flow equation (2.11).

This provides the map we required. Note that CΛ
Λ (p) vanishes for all p, by the sum

rule formula (2.18). Thus (2.21) implies that

ΓΛ
Λ[ϕ] = SΛ[ϕ] (2.24)

(and ϕ = Φ) as can be seen either directly from the fact that 1/∆Λ
Λ(p) is infinite for

all p, or more carefully by first solving the Legendre transform relation as done for the

continuum version in (5.3). The UV boundary condition (2.24) for the flow (2.11) is

therefore particularly simple, and is a triple equality since the right hand side is also the

bare interactions. More details are given in section 6.

We do not need to compute the functional integral or solve the flow (2.11) to find ΓΛ
k

however. This can also be constructed vertex by vertex from the original continuum Γk
using the same recipe as in section 5. The clue is hidden in a remarkable property of the

duality relation (2.21). Note that by construction Sk need have no dependence on Λ. (It

is just a solution to (2.22) which also has no dependence on Λ.) Therefore if we choose

to keep Sk fixed, the duality relation (2.21) actually implies that the right hand side is

independent of the choice of overall UV cutoff C̃Λ, and in particular that it is independent

of Λ. As we show in the next section, this implies that the two Γs are related by

ΓΛ
k [Φ] = Γk[ϕ] +

1

2
(ϕ− Φ) · (∆Λ)−1· (ϕ− Φ) , (2.25)

where the notation for the inverse propagator on the right hand side indicates that it is

regularised in the infrared by CΛ := Ck=Λ. Comparing (2.25) to (2.23), we see that the

vertices of ΓΛ
k [Φ] are thus given by those of Sk in the recipe set out in section 5, providing

we make the replacement ∆k 7→ ∆Λ. Of course it then follows that the same tree-diagram

expansion illustrated in figure 1 is also correct for ΓΛ
k [Φ] after this replacement.
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3 Proof of a duality relation between effective actions with different UV

regularisations

We will consider a more general case and then specialise to (2.25), since the proof is

just as simple. We thus go back to the UV regularised form (2.21) of the duality relation

between the Wilsonian interactions Sk and the effective average action ΓΛ
k . Now consider an

alternative overall UV cutoff C̊Λ̊(p) in place of C̃Λ(p), where for generality we change both

the profile form C̊ and the magnitude Λ̊. Without loss of generality we can assume Λ̊ > Λ

however. We choose to keep the same effective UV cutoff Ck and therefore through the sum

rule relation (2.18) we define an alternative joint regulator profile CΛ̊
k = C̊Λ̊ − Ck. Again,

providing C̊Λ̊ is chosen to behave sensibly as a UV cutoff, as discussed below (2.15), CΛ̊
k

will behave correctly in the UV and infrared, as discussed below (2.19). Relabelling (2.21)

in the obvious way, we evidently therefore have the alternative duality relation:

Sk[Φ] = ΓΛ̊
k [ϕ̊] +

1

2
(ϕ̊− Φ) ·

(
∆Λ̊
k

)−1
· (ϕ̊− Φ) . (3.1)

As observed in the previous section, Sk is not forced to have any dependence on these

overall cutoffs. Since Sk satisfies a flow equation (2.22) which itself is independent of these

cutoffs we can choose to keep the same solution Sk after these changes. Eliminating the

left hand side we thus have the relation

ΓΛ
k [ϕ] +

1

2
(ϕ− Φ) ·

(
∆Λ
k

)−1· (ϕ− Φ) = ΓΛ̊
k [ϕ̊] +

1

2
(ϕ̊− Φ) ·

(
∆Λ̊
k

)−1
· (ϕ̊− Φ) . (3.2)

This is a Legendre transform relation in which all three fields can be varied independently.

Varying Φ we thus have[(
∆Λ̊
k

)−1
−
(
∆Λ
k

)−1
]

Φ =
(

∆Λ̊
k

)−1
ϕ̊−

(
∆Λ
k

)−1
ϕ . (3.3)

Define CΛ̊
Λ = C̊Λ̊ − C̃Λ = CΛ̊

k − CΛ
k , where the second equality follows from the sum

rule (2.18). Given the general behaviour of its component parts, CΛ̊
Λ is a multiplicative

cutoff profile that is cutoff in the UV by Λ̊ and in the IR by Λ, with properties discussed

below (2.19). Thus also define ∆Λ̊
Λ(p) = CΛ̊

Λ (p)/p2. Then (3.3) can be rearranged to give

ϕ− Φ =
∆Λ
k

∆Λ̊
Λ

· (ϕ̊− ϕ) , (3.4)

ϕ̊− Φ =
∆Λ̊
k

∆Λ̊
Λ

· (ϕ̊− ϕ) . (3.5)

Substituting these back into (3.2) gives us the desired general duality relation between

effective average actions with different UV cutoffs:

ΓΛ
k [ϕ] = ΓΛ̊

k [ϕ̊] +
1

2
(ϕ− ϕ̊) ·

(
∆Λ̊

Λ

)−1
· (ϕ− ϕ̊) . (3.6)

An alternative proof of this relation is given in ref. [4], by demonstrating directly that

this transformation turns the flow equation (2.11) into the equivalent one for ΓΛ̊
k . Ref. [4]
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however specialised to the case where only the scale Λ 7→ Λ̊ changes. As we see here the

relation is more general including also the option to change the form of the cutoff profile.

It is remarkable that such a generalised Legendre transformation relationship exists

between two effective average actions regularised in the UV with different cutoff profiles,

C̃Λ versus C̊Λ̊. To drive the point home, note that we can take the limit k → 0 and

then this is a Legendre transform relation between two standard Legendre effective actions

regularised in different ways in UV of our choosing. This latter result is therefore significant

in general, not just within the context of functional RG. As we see explicitly in section 5,

it implies that the vertices of two effective actions are related by tree diagram expansions

which can be constructed exactly.

Since a change in regularisation obviously affects the loop integrals in the quantum

corrections, this result looks surprising at first sight. However note that the key to the re-

lation is that the Wilsonian effective action (2.16) is unchanged. Since Stot,k is ultimately

derived from a functional integral that depends on the bare action (2.20) (see (6.3)), which

most certainly does depend on the form of the overall UV cutoff, the change from C̃Λ to

C̊Λ̊ implies a change of bare interactions SΛ 7→ S̊Λ̊ sufficient to completely compensate for

this when computing Stot,k. We make further comments on this map in the conclusions.

Although it makes no change to the Wilsonian effective action computed with these meth-

ods it leaves a remnant change to the Legendre effective action (with or without an IR

cutoff k) which is summarised in the duality relation (3.6).

In the special case where C̃Λ = Ck=Λ and C̊Λ̊ = Ck=Λ̊, i.e. where the UV scale changes

but not the form of the cutoff, which is furthermore fixed to be the Wilsonian one, we have

the situation already analysed in ref. [4]. Then the bare interactions change only trivially

in that in each case (k = Λ, Λ̊) the bare interactions are just equal to the Wilsonian

interactions at that scale Sk = Sk as determined through the flow equation (2.22).

Finally, let us choose C̃Λ = Ck=Λ and send Λ̊ → ∞. Then ΓΛ̊
k → Γk and CΛ̊

Λ →
1 − CΛ = CΛ, where we have used C̊Λ̊ → 1 and (2.18). Thus with these changes, (3.6)

becomes the equation (2.25) we set out to prove.

4 The Wilsonian effective action versus the Legendre effective action

In this section we recall most of the steps that give rise to the exact relationship (2.21)

between the Wilsonian effective action and the Legendre effective action. They are adapted

here from ref. [4] both because the relationship goes marginally beyond what was proven

there and also because they underpin the claims in the rest of the paper.

We consider the functional integral for a scalar field φ(x) in a d-dimensional Euclidean

spacetime:

ZΛ[J ] =

∫
Dφ e−S

tot,Λ[φ]+J ·φ =

∫
Dφ e−

1
2
φ·(∆̃Λ)

−1·φ−SΛ[φ]+J ·φ , (4.1)

where the UV regulated bare action was introduced in (2.13). We introduce an intermediate

cutoff scale k by re-expressing the propagator as:

∆̃Λ = ∆Λ
k + ∆k , (4.2)
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where ∆̃Λ, ∆Λ
k and ∆k are defined in (2.14), (2.10) and (2.17) respectively, and the split

above follows from the sum rule relation (2.18). The partition function can identically be

rewritten as9

ZΛ[J ] =

∫
Dφ>Dφ< e−

1
2
φ>·(∆Λ

k )
−1·φ>− 1

2
φ<·(∆k)

−1·φ<−SΛ[φ>+φ<]+J ·(φ>+φ<) . (4.3)

To see that this is true perturbatively, note that as a consequence of the sum form of

the interactions, every Feynman diagram constructed from (4.3) now appears twice for

every internal propagator it contains: once with ∆̃Λ replaced by ∆Λ
k and once with ∆̃Λ

replaced by ∆k. Thus for every propagator line, what actually counts is the sum, which

however is just ∆̃Λ again by (4.2) [5]. To prove the identity non-perturbatively, make the

change of variables to φ = φ> +φ<, for example by eliminating φ>. Evidently in (4.3), the

action then has only up to quadratic dependence on φ<. Making the change of variables

φ< = φ′< + (∆k/∆̃Λ
k ) · φ, and using (4.2), results in the partition function factorising

into a decoupled Gaussian integral over φ′< (the constant of proportionality) and (4.1), as

required [4].

Clearly, φ> and φ< beg to be regarded as the modes with momenta above and below k

respectively. This distinction is however only precise in the limit that the cutoff functions

CΛ
k and Ck become sharp. In general, modes in φ> with |p| < k and those in φ< with

|p| > k will only be damped by the relevant cutoff functions. Even so, from now on we

refer to φ> (φ<) as high (low) momentum modes.

Consider computing the integral over the high momentum modes only in (4.3):

ZΛ
k [J, φ<] ≡

∫
Dφ> e−

1
2
φ>·(∆Λ

k )
−1·φ>−SΛ[φ>+φ<]+J ·(φ>+φ<) (4.4)

where φ< now plays the rôle of a background field. Indeed, setting φ< = 0 gives back

the standard construction from which we can define the (UV and IR regulated) Legendre

effective action, a.k.a. effective average action, as we will recall later:

ZΛ
k [J ] := ZΛ

k [J, 0] ≡
∫
Dφ> e−

1
2
φ>·(∆Λ

k )
−1·φ>−SΛ[φ>]+J ·φ> . (4.5)

From (4.4), performing again the linear shift φ> = φ − φ< and rewriting the interaction

SΛ as a function of δ/δJ gives

ZΛ
k [J, φ<] = e−

1
2
φ<·(∆Λ

k )
−1·φ< e−S

Λ[ δ
δJ

]

∫
Dφ e−

1
2
φ·(∆Λ

k )
−1·φ+φ·(J+(∆Λ

k )
−1·φ<) . (4.6)

Following another change of variables φ′ = φ − ∆Λ
k · J − φ<, the remaining integral is a

decoupled Gaussian in φ′ and, after some rearranging, we obtain

ZΛ
k [J, φ<] = e

1
2
J ·∆Λ

k ·J+J ·φ< e−
1
2

(J+(∆Λ
k )
−1·φ<)·∆Λ

k ·(J+(∆Λ
k )
−1·φ<)×

e−S
Λ[ δ
δJ

] e
1
2

(J+(∆Λ
k )
−1·φ<)·∆Λ

k ·(J+(∆Λ
k )
−1·φ<) . (4.7)

9Up to a constant of proportionality. We ignore these from now on.
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Performing all derivatives in SΛ[δ/δJ ], we find

ZΛ
k [J, φ<] = e

1
2
J ·∆Λ

k ·J+J ·φ<−Sk[∆Λ
k ·J+φ<] (4.8)

for some functional Sk. Substituting the above expression into (4.3), we have another

identity [4] for the original partition function (4.1):

ZΛ[J ] =

∫
Dφ< e−

1
2
φ<·(∆k)

−1·φ<+ 1
2
J ·∆Λ

k ·J+J ·φ<−Sk[∆Λ
k ·J+φ<] . (4.9)

All the high modes have been integrated out. Consider for the moment the case where J

couples only to low energy modes i.e. so that ∆Λ
k ·J = 0. Such is the case for example if the

cutoff is of compact support so that CΛ
k (p) = 0 for |p| < k, and we choose J to vanish for

high energy modes, i.e. J(p) = 0 for |p| > k. Choosing J(p) = 0 for |p| > k of course just

means not considering Green’s functions with momenta greater than this effective cutoff.

Then ZΛ[J ] simplifies to

ZΛ[J ] =

∫
Dφ< e−

1
2
φ<·(∆k)

−1·φ<−Sk[φ<]+J ·φ< . (4.10)

It is now straightforward to recognize the functional Sk as the interaction part of the total

Wilsonian effective action (2.16) regulated in the UV at k.

Since (4.9) is nothing but the original partition function (4.1), it gives Green’s functions

which are all actually independent of k, despite appearances to the contrary. Therefore, as

advertised, Sk plays the rôle of (the interactions in) a perfect action [39]. Note also that

from (4.8) and (4.4), we obtain a prescription for computing the Wilsonian effective action

from the bare action via a functional integral. We will return to this in section 6.

The identification as a Wilsonian (perfect) action, is still valid if we let J couple to

all modes. We just have to recognise that it then also enters non-linearly with the precise

prescription given in (4.9), i.e. as well as being the source it also plays the part of a space-

time dependent coupling. Alternatively, we can use (4.10) even if ∆Λ
k · J 6= 0. In this case

it is no longer true that (4.10) is independent of k, since we are missing the terms in (4.9)

that contribute to making ZΛ[J ] and thus all Green’s functions independent of k. However

for Green’s functions all of whose (external) momenta |p| � k, we have ∆Λ
k (p) = 0 to

very good approximation. Furthermore ∆Λ
k (p) → 0 as |p|/k → 0, implying that in this

limit (4.10) becomes exactly independent of k.

The flow equation for Sk is found by first differentiating (4.4) with respect to k to

obtain the flow equation for ZΛ
k [J, φ<]:

∂

∂k
ZΛ
k [J, φ<] = −1

2

(
δ

δJ
− φ<

)
·
(
∂

∂k

(
∆Λ
k

)−1
)
·
(
δ

δJ
− φ<

)
ZΛ
k [J, φ<] . (4.11)

Then by inserting (4.8) into the above expression and defining Φ ≡ ∆Λ
k · J +φ<, we obtain

exactly the already advertised Polchinski flow equation (2.22).

Turning our attention to (4.8) once more, we can recognise it as being related to the

generator of connected Green’s functions WΛ
k with IR cutoff k:

eW
Λ
k [J,φ<] ≡ ZΛ

k [J, φ<] = e
1
2
J ·∆Λ

k ·J+J ·φ<−Sk[∆Λ
k ·J+φ<] (4.12)
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and in taking the limit k → 0, we recover the standard Green’s functions (regulated in the

UV through ∆̃Λ). The Legendre transform of WΛ
k gives the Legendre effective action Γtot

k :

Γtot,Λ
k [ϕ, φ<] = −WΛ

k [J, φ<] + J · ϕ (4.13)

=
1

2
(ϕ− φ<) ·

(
∆Λ
k

)−1· (ϕ− φ<) + ΓΛ
k [ϕ] (4.14)

where ϕ ≡ δWΛ
k /δJ is the classical field and ΓΛ

k is the interaction part which carries no φ<
dependence [4], as follows from

δ

δφ<
Γtot,Λ
k [ϕ, φ<] = − δ

δφ<
WΛ
k [J, φ<] = −

(
∆Λ
k

)−1·
(
δWΛ

k

δJ
− φ<

)
=
(
∆Λ
k

)−1· (φ< − ϕ) ,

(4.15)

where we have used (4.13) and then (4.12).

Notice that when φ< = 0, we have the standard definition of the partition function (4.5)

and from it the standard definition of WΛ
k [J ] in (4.12) and thus from (4.13) the standard

definition of the (IR and UV regulated) Legendre effective action. Thus from (4.14) with

φ< = 0, it follows that ΓΛ
k [ϕ] is the same interactions part of the effective average action

as defined in (2.9). See also the discussion in section 2 leading up to (2.9). Recall that

ΓΛ
k [ϕ] is thus equivalently the interactions part of the generator of one particle irreducible

(1PI) Green’s functions, cutoff in the IR at k, and coincides with the interactions part of

the standard effective action Γ in the limit k → 0.

Substituting the Legendre transform equation (4.13) into (4.11), we obtain the already

advertised flow equation (2.11) for ΓΛ
k . From equation (4.13) follows the well known fact

that connected Green’s functions can be expressed as a tree level sum of 1PI vertices

(in this case connected by IR cutoff propagators). Thus equation (4.12) implies that the

vertices of Sk will also have a similar expansion (see section 5). Indeed, we can find a

direct relationship between Sk and ΓΛ
k by substituting (4.12) into (4.13), using (4.14) and

recalling that Φ = ∆Λ
k · J + φ<. The result is the duality equation (2.21) we have been

aiming for.

To reiterate, (2.21) is an exact relationship between the interaction part of the Wilso-

nian effective action, Sk, regulated in the UV at k and the interaction part of the Legendre

effective action, ΓΛ
k regulated in the UV at Λ and regulated in the IR at k (a.k.a. effective

average action). It gives rise to a duality between the flow equations (2.22) and (2.11). If

we have a complete RG trajectory for Γk, that is a solution of (1.1) where the UV cutoff Λ

has been removed, and where by complete we mean that it extends from a UV fixed point

as k →∞ down to k → 0, then we can take the continuum limit of the key equations given

in this section simply by replacing ∆Λ
k with ∆k. In this way we equivalently have a solution

to (2.11), the duality relation now reads (2.23), which allows us to compute the equivalent

RG trajectory for Sk with the equivalent fixed point solution, and the continuum limit of

the effective partition functions can then be computed directly from (4.9) and (4.10).

5 Vertices of the Wilsonian effective action

In this section we use result (2.23) to derive explicit expressions for the vertices of Sk in

terms of those of Γk. Clearly (2.23) is symmetric under the map: Sk ↔ Γk with ∆k 7→ −∆k,
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so by relabelling in this way we can also use the expressions below to derive the vertices of

Γk from Sk. Clearly these expressions can therefore also be used after some renaming to

give the vertices of one action in terms of another for any of the alternative expressions of

duality, namely (2.21), (2.25), (3.1) and (3.6). For example to obtain the vertices of ΓΛ
k in

terms of those of Γk using (2.25) (part of our second solution to the reconstruction problem)

it is only necessary to replace Sk with ΓΛ
k and ∆k with ∆Λ in the following expressions.

Extracting the momentum conserving Dirac delta-function in what follows, vertices of

Sk will be denoted by

(2π)dδ(p1 + · · ·+ pn)S(n)(p1, · · · , pn; k) ≡ δnSk[Φ]

δΦ(p1) · · · δΦ(pn)

∣∣∣∣
Φ=0

(5.1)

and the vertices of Γk by

(2π)dδ(p1 + · · ·+ pn) Γ(n)(p1, · · · , pn; k) ≡ δnΓk[Φ]

δΦ(p1) · · · δΦ(pn)

∣∣∣∣
Φ=0

(5.2)

with the exception of its 2-point function which we write as Σ(p2; k). We often omit the

momentum arguments of the vertices for neatness. For simplicity we impose a Z2 symmetry

φ↔ −φ on SΛ so that it only contains even powers of φ and hence S(n)(p1, · · · , pn; k) and

Γ(n)(p1, · · · , pn; k) vanish for odd n.

We start by writing (2.23) more conveniently as

Sk[Φ] = Γk

[
Φ−∆k ·

δSk

δΦ

]
+

1

2

δSk

δΦ
·∆k ·

δSk

δΦ
(5.3)

by recognising that ϕ = Φ−∆k · (δSk/δΦ). Taylor expanding the right hand side, keeping

only bilinear terms in Φ and rearranging, we find the following expression for the 2-point

function:

S(2)(p2; k) = Σ(p2; k)
(
1 + ∆k(p)Σ(p2; k)

)−1
. (5.4)

Expanding the r.h.s. perturbatively in Σ gives the expected expansion of S(2) in terms of

1PI vertices, connected by IR cutoff propagators. Note that in obtaining this result, it is

only necessary to expand to second order in the Taylor series as the Z2 symmetry kills the

cross-terms from one-point and three-point vertices that would otherwise appear.

To compute expressions for vertices for n > 2, we need to isolate the 2-point pieces

from Sk and Γk, like so

Sk[Φ] =
1

2
Φ · S(2) · Φ + S′k[Φ] Γk[ϕ] =

1

2
ϕ · Σ · ϕ+ Γ′k[ϕ] (5.5)

such that all terms but those quadratic in the fields are contained in S′k and Γ′k. Upon

substituting the above into (5.3) and using (5.4), we have

S′k[Φ] = Γ′k

[
S(2)

Σ
· Φ−∆k ·

δS′k

δΦ

]
+

1

2

δS′k

δΦ
· ∆kΣ

S(2)
· δS

′k

δΦ
. (5.6)

Again, by Taylor expanding the right-hand side to the desired order, we obtain our vertex

of choice. In general, for an n-point function, we only have to keep terms in the Taylor
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vertex of Γk
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Σ

1
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1
2

Figure 1. Vertices of the Wilsonian effective interaction Sk for n = 4, 6 and 8 respectively.

Each diagram containing more than one vertex represents a sum over disjoint subsets of momenta

corresponding to the number and type of vertices in each diagram e.g. the final diagram in the

expansion of S(8) stands for a sum over partitions of {p1, · · · , p8} into 2 sets of 3 momenta and 1

set of 2 momenta.

series up to and including the nth order: higher order terms vanish either from the Z2

symmetry or because they then contain too many Φs. For the 4-point function we have

S(4)(p1, p2, p3, p4; k) = Γ(4)(p1, p2, p3, p4; k)

4∏
i=1

S(2)(p2
i ; k)

Σ(p2
i ; k)

. (5.7)

Likewise, the 6-point function is given by

S(6)(p1, · · · , p6; k) = Γ(6)(p1, · · · , p6; k)

6∏
i=1

S(2)(p2
i ; k)

Σ(p2
i ; k)

− 1

2

∑
{I1,I2}

Γ(4)(I1, q; k)
∏
pi∈I1

S(2)(p2
i ; k)

Σ(p2
i ; k)

×∆k(q
2)
S(2)(q2; k)

Σ(q2; k)
Γ(4)(−q, I2; k)

∏
pj∈I2

S(2)(p2
j ; k)

Σ(p2
j ; k)

 (5.8)

where I1 and I2 are disjoint subsets of 3 momenta such that I1∪I2 = {p1, · · · , p6}. The sum

over {I1, I2} means sum over all such subsets. By momentum conservation, the momentum

q carried by certain 2-point functions is equivalent to a partial sum i.e. q =
∑

pi∈I pi where

I is a subset of the total set of external momenta. Graphical representations of these

expressions, as well as one for the 8-point function, are given in figure 1 and are much

easier to interpret. Of course the expansion can be continued to higher orders.
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6 Second solution to the reconstruction problem

In this section we provide more detail on our second solution to the reconstruction prob-

lem and show how it is related to the one-loop approximate solution (1.2) provided in

ref. [26]. As explained in the Introduction and section 2, given a complete RG trajectory

for Γk[ϕ], (2.23) then provides us with Sk[Φ] which is the interaction part of a perfect bare

action. This already provides us with an acceptable solution to the reconstruction prob-

lem, but as we emphasised in appendix A it cannot give us back Γk via the standard path

integral route (4.5) since such a UV regulated path integral necessarily leaves its imprint on

the Legendre effective action such that it now depends on both cutoffs: Γ ≡ ΓΛ
k . However

what can be done is to use Γk[ϕ] to construct a pair {SΛ,ΓΛ
k }, where ΓΛ

k is related to SΛ

in the usual way, and such that as Λ→∞ we have ΓΛ
k → Γk. This is our second solution.

The question then is how this solution is to be compared with the one-loop approximate

relation (1.2).

Let us first note that in (1.2) we can split off the bare interactions and effective average

action interactions as defined in (2.12) and (2.3) respectively. For the left hand side of (1.2)

that just means dropping the hats, but in the right hand side we recognise that as in the

shift from (2.4) to (2.5) we can incorporate the infrared cutoff through a multiplicative

profile (2.7) and then make explicit the UV sharp cutoff by replacing this by (2.8). The

net result is that we re-express equation (1.2) as

ΓΛ
k=Λ[ϕ] = SΛ[ϕ] +

1

2
tr ln

{
SΛ(2)[ϕ] +

(
∆Λ

Λ

)−1
}
. (6.1)

This has two advantages. Firstly it makes the overall UV sharp cutoff explicit, and secondly

actually this formula is valid as a one-loop approximation in general, whatever the precise

profile of IR and UV cutoff we implement via CΛ
k (p). The total effective average action is

then in general given as in (2.9) and the total bare action as in (2.20). As already reviewed

below (4.15), the standard construction using the partition function (4.5) yields of course

this ΓΛ
k [ϕ].

Our second solution to the reconstruction problem follows from employing compatible

cutoffs. As defined in the Introduction, by compatible cutoffs we mean that CΛ
Λ (p) = 0

for all p, i.e. such that when the IR cutoff meets the UV cutoff the result completely

kills the propagator: ∆Λ
Λ ≡ 0. Up to a (divergent but irrelevant) constant we then have

ΓΛ
k=Λ[ϕ] = SΛ[ϕ] as is clear from (6.1) if we note that

tr ln
{
SΛ(2)[ϕ] +

(
∆Λ

Λ

)−1
}

= −tr ln
{

∆Λ
Λ

}
+ tr ln

{
1 + ∆Λ

Λ · SΛ(2)[ϕ]
}
. (6.2)

Indeed the fact that in (4.5),
(
∆Λ
k

)−1 → ∞ as k → Λ, turns the steepest descents cal-

culation that gives (6.1) into an exact statement. For the same reason, from the most

direct expression relating the Wilsonian interactions Sk to the bare interactions, obtained

by setting J = 0 in (4.4) and (4.8):

ZΛ
k [0, φ<] = e−S

k[φ<] =

∫
Dφ> e−

1
2
φ>·(∆Λ

k )
−1·φ>−SΛ[φ>+φ<] , (6.3)
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we see that we have no choice but to have the equality SΛ[ϕ] = SΛ[ϕ]. To make the map

from the continuum solution Γk to this system, we insist that the Wilsonian interactions

Sk and thus also the effective Wilsonian cutoff Ck(p), are still the continuum ones. Then

this fixes via (2.18) the overall bare cutoff to be the continuum Wilsonian one: C̃Λ = CΛ,

and as we see already the bare interactions must taken to be SΛ[ϕ] = SΛ[ϕ]. Then the

map (2.25) from Γk to ΓΛ
k follows, as proved in section 3, and worked out in detail in

section 5. We thus have all the elements of our second solution.

If the UV and IR cutoff imposed by ∆Λ
k are not compatible, then ∆Λ

Λ 6= 0 and in

both (4.5) and (6.3) there is still a non-trivial functional integral to compute in the limit

k → Λ. To one loop, the result for ΓΛ
Λ is the one given in (6.1). In analogy with [26], let us

also compute the integral in (6.3) to one loop, using the method of steepest descents. The

exponent is at a minimum when

φ> = −∆Λ
k ·

δSΛ[φ> + φ<]

δφ>
≡ φ0

> . (6.4)

We define φ> ≡ φ0
> + φ̃> and expand about φ̃> = 0, keeping only up to second derivatives

of SΛ:

e−S
k[φ<] = e−

1
2
φ0
>·(∆Λ

k )
−1·φ0

> e−S
Λ[φ0

>+φ<]

∫
Dφ̃> e

− 1
2
φ̃>·(∆Λ

k )
−1·φ̃>− 1

2
φ̃>· δ2SΛ

δφ>δφ>
·φ̃> . (6.5)

The terms linear in φ̃> cancel by (6.4). Performing the Gaussian integral over φ̃>, we find

Sk[φ<]− 1

2
φ0
> ·
(
∆Λ
k

)−1· φ0
> = SΛ[φ0

>+φ<] +
1

2
tr ln

{
δ2SΛ[φ0

>+φ<]

δφ>δφ>
+
(
∆Λ
k

)−1
}
. (6.6)

Introducing ϕ ≡ φ0
> + φ<, we thus have

Sk[φ<]− 1

2
(ϕ− φ<) ·

(
∆Λ
k

)−1· (ϕ− φ<) = SΛ[ϕ] +
1

2
tr ln

{
SΛ(2)[ϕ] +

(
∆Λ
k

)−1
}
. (6.7)

Comparing (6.1) we recognise that the right hand side is nothing but the one-loop approx-

imation to the effective average action at a general value of k:

ΓΛ
k [ϕ] = SΛ[ϕ] +

1

2
tr ln

{
SΛ(2)[ϕ] +

(
∆Λ
k

)−1
}
. (6.8)

Finally comparing (6.8) and (6.7), we see that we recover the duality relation (2.21) in

section 4.10 We have therefore explicitly confirmed the duality relation to one loop via the

steepest descents method. Through the above demonstration and also our discussion of

the compatible case, cf. (6.2), we have also comprehensively explored how our solution is

related to the one-loop result (1.2).

7 Some compatible cutoffs

In this section we briefly explore some possible forms of compatible cutoffs, i.e. such that

CΛ
k (p) vanishes identically when k → Λ. We also insist that the effective Wilsonian UV cut-

off Ck(p) depends only on the one cutoff scale k as indicated. Through the sum rule (2.18) it

follows that we take the overall UV cutoff to be the Wilsonian one at scale Λ: C̃Λ = Ck=Λ.
10It can also be shown that this is consistent to one loop with the solution (6.4).
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There are various possibilities for compatible cutoffs. One straightforward option is to

make all the cutoff functions sharp:

CΛ =

{
0 |p| ≥ Λ

1 |p| < Λ
, Ck =

{
0 |p| > k

1 |p| ≤ k
, CΛ

k =


0 |p| ≥ Λ

1 k < |p| < Λ

0 |p| ≤ k
. (7.1)

Another choice of compatible cutoffs is:

CΛ =

{
0 |p| ≥ Λ

1− p2

Λ2 |p| < Λ
, Ck =

{
0 |p| ≥ k
1− p2

k2 |p| < k
, CΛ

k =


0 |p| ≥ Λ

1− p2

Λ2 k ≤ |p| < Λ
p2

k2− p2

Λ2 |p| < k

. (7.2)

It can be easily checked that all cutoff functions have the desired regulating behaviour.

Again, for k = Λ, we have ∆Λ
k = 0. These cutoff functions have been obtained by, first

of all, using (2.7) to find the multiplicative IR cutoff function Ck corresponding to the

optimized cutoff. In order to ensure that the effective Wilsonian UV cutoff depends only

on the one cutoff scale k, we define it as Ck = 1 − Ck, i.e. via (2.18) but with the overall

cutoff Λ → ∞, and thus C̃Λ → 1. (The result agrees with (2.19) since we already found

that cutoff Ck to be dual to the optimised IR cutoff and also to be independent of Λ.) As

we have seen, compatibility for finite overall cutoff then requires C̃Λ ≡ CΛ. This however

forces us to change the IR profile via (2.18) to one, CΛ
k = CΛ − Ck, that includes both

cutoffs. The resulting choices (7.2) thus also have the property that as Λ→∞, CΛ
k returns

to the (multiplicative form (2.7) of the) optimised cutoff.

Another choice of additive IR regulator from which we can define compatible cutoff

functions following these steps is

R̃k(p
2) =

1

e
p2

k2 − 1
. (7.3)

This corresponds to the following choice of cutoffs:

Ck =
1

1 + p2
(
e
p2

k2 − 1
) , (7.4)

again the overall UV cutoff is just CΛ, and

CΛ
k =

p2

(
e
p2

k2 − e
p2

Λ2

)
(

1 + p2

(
e
p2

Λ2 − 1

))(
1 + p2

(
e
p2

k2 − 1

)) . (7.5)

These cutoffs regulate as required, exhibiting the behaviour described below (2.7), be-

low (2.15) and below (2.19) respectively. Again we have defined the cutoffs so that ∆Λ
k = 0

when k = Λ, whilst as Λ → ∞, CΛ
k returns to the multiplicative version of (7.3). In

summary, we have seen how we can formulate compatible cutoff functions using a sharp

cutoff, or based closely on the optimised cutoff Rk or R̃k.
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8 Conclusions

Let us start by briefly summarising our main conclusions. We set out two solutions to

the reconstruction problem, giving the recipes in detail in section 2. Starting from a full

renormalised trajectory for the effective average action (2.3), whose interactions are given

by Γk[ϕ], we can reconstruct a suitable bare action by using the corresponding Wilsonian

interactions Sk[Φ]. This also describes the full renormalised trajectory, but in the Wilso-

nian language. Sk[Φ] is computed through the continuum duality relation (2.23). The

vertices are then related via a tree expansion to the vertices of Γk and these are worked

out in detail in section 5. The full Wilsonian effective action Stot,k[Φ] is given by (2.16),

where the effective multiplicative UV cutoff profile Ck(p) = 1−Ck(p), and Ck is the multi-

plicative version of the additive IR cutoff via the translation (2.7). The partition function

constructed using Stot,k[Φ] is actually independent of k, and thus this bare action is an

example of a perfect bare action. Written in the form (4.10) (where the superscript Λ =∞
since we have taken the continuum limit), the independence with respect to k is only ap-

proximate, becoming exact when we compute Green’s functions with momenta |p| � k,

unless the source J obeys some restrictions, as discussed around (4.10). Alternatively we

can embed the source inside the action as well, as in (4.9), and then the independence with

respect to k is indeed exact.

A potential problem with this first solution to the reconstruction problem is that we

have only the one cutoff k involved which now plays the rôle of a UV cutoff for this perfect

bare action. For some purposes we may want to investigate a system where a suitable

bare action with UV regularisation set at some scale Λ gives back the effective average

action through the usual procedure. In other words, we insert an infrared cutoff k into the

bare action to give (2.20), where the overall multiplicative UV cutoff has been replaced

by CΛ
k incorporating also the IR cutoff, and then form the partition function (4.5). As

we emphasised in appendix A, we cannot get the continuum Γk in such a way, since it is

then guaranteed that the effective average action Γ̂Λ
k , bilinear part and interactions, now

depends on both cutoffs, as displayed in (2.9). What we can do however is again to take

the bare interactions to be the perfect Wilsonian ones computed from Γk, thus SΛ = Sk=Λ,

and then the above procedure gives us a ΓΛ
k [ϕ], such that as Λ → ∞, ΓΛ

k → Γk. The UV

boundary conditions on the flow equation (2.11) for this effective average action are just

ΓΛ
k=Λ = SΛ = SΛ. We do not need to compute the functional integral, or the flow equation,

to find ΓΛ
k [ϕ] however, since it is also directly related to the original continuum Γk via a

duality relation (2.25), which may also be solved vertex by vertex as in section 5. This is

our second solution to the reconstruction problem.

We proved the latter duality relation by first proving an even more remarkable duality

relation in section 3, namely (3.6). This is a tree-level relation between two effective average

actions computed with different overall cutoff profiles C̃Λ and C̊Λ̊, but whose corresponding

effective Wilsonian actions Stot,k actually coincide. As we explain in section 3, this assumes

that the bare interactions SΛ and S̊Λ̊ can be chosen precisely to ensure this. If we choose

a solution Sk of its flow equation (2.22) that does not correspond to a full renormalised

trajectory, then clearly this is not always possible, for example it is then not possible
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to raise the overall cutoff Λ or Λ̊ all the way to infinity. Even if we choose Sk to be a

renormalised trajectory, it still may not be possible to change the bare cutoff arbitrarily in

such a way. The ability to do this is a statement of universality, but universal behaviour

typically has a basin of attraction, so it should be expected that C̃Λ cannot be changed

completely arbitrarily. However these limitations do not apply to the required duality

relation (2.25) since as we saw in section 3, this corresponds to the special case where

the form of the overall cutoff profile CΛ does not change, only the overall scale Λ 7→ Λ̊,

and furthermore the bare interactions are perfect Wilsonian ones corresponding to a full

renormalised trajectory, and thus exist at any scale.

In section 6 we explored fully how our solutions to the reconstruction problem are

related to the one-loop formula (1.2) derived in ref. [26]. The key was to recognise that in

our second solution we employed compatible cutoffs such that when the IR cutoff meets

the UV cutoff, k → Λ, the propagator is forced to vanish identically. In section 7 we set

out a recipe for constructing such cutoff combinations.

Although we phrased all relations in terms of a single scalar field, it is a straightforward

generalisation to write the relations for multiple fields including fields with indices and

those with fermionic statistics. It is therefore straightforward to generalise these relations

to the case of full quantum gravity for instance. At various stages we discarded additive

constant terms, but these would become background dependent. Their functional form can

be determined however, and thus this would be a useful extension of this work. However,

it should be borne in mind that the physical Green’s functions are in any case determined

by the quantum fields.

Finally, since SΛ are perfect bare interactions, or equivalently since they are made via a

tree-diagram expansion using the vertices of Γk=Λ, we can expect them to be as complicated

as Γ̂k, arguably more so. For any large but finite Λ, we can however use SΛ as the starting

point for constructing equally valid alternative bare actions based on either of our solutions

of the reconstruction problem. We have already seen a small example of this in that using

SΛ together with the standard coupling between source and fields as in (4.10) only yields

a perfect action lying on a renormalised trajectory in the limit of infinite Λ, unless we

impose restrictions on the source (cf. section 4). In fact we have an infinite dimensional

space of possible bare actions to choose from (a reflection of universality). In general we can

choose ŜΛ to be any action close to any point on the (infinite dimensional) critical surface

containing the UV (asymptotically safe) fixed point Ŝ∗, such that after appropriate tuning

back into the critical surface in the limit Λ → ∞, we again construct the renormalised

trajectory (see e.g. [5]). In practice for example we can choose ŜΛ = ŜΛ +
∑

i/∈R αi(Λ)Oi,
where the sum is over the integrated irrelevant operators and αi(Λ) are arbitrary functions

of Λ providing they remain small enough for the linearised approximation to be valid as

Λ→∞.
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A Why a UV regulated effective average action must depend on the UV

regulator

It is clear that at least for a general form of UV cutoff, the effective average action Γ̂Λ
k [ϕ]

must depend on the UV regulator Λ as indicated. Indeed if we embed the UV cutoff in

the free propagator as done in (2.11) then the Feynman diagrams that follow from its

perturbative expansion will evidently have all free propagators 1/p2 replaced by ∆Λ
k (p).

The fact that Γ̂Λ
k [ϕ] thus depends on two scales, means that a bare action cannot be

reconstructed which would directly give the continuum version Γ̂k in the usual way. This

is the first “severe issue” outlined above (1.2).

Following ref. [26], a sharp UV cutoff and infrared optimised cutoff would appear to

provide an exception however. With a sharp UV cutoff in place, (1.1) can alternatively be

written

∂

∂k
Γ̂Λ
k [ϕ] =

1

2
tr

[(
Rk +

δ2Γ̂Λ
k

δϕδϕ

)−1∂Rk
∂k

]
− 1

2
tr

[
θ(|p| − Λ)

(
Rk +

δ2Γ̂Λ
k

δϕδϕ

)−1∂Rk
∂k

]
, (A.1)

where the first space-time trace leads to an unrestricted momentum integral∫
ddp

(2π)d

(
Rk +

δ2Γ̂Λ
k

δϕδϕ

)−1

(p,−p) ∂Rk(p)
∂k

, (A.2)

and we mean that the second term, the “remainder term”, has the momentum integral

defining the trace restricted to |p| > Λ as indicated. With the optimised IR cutoff profile

we have ∂Rk(p)/∂k = 2kθ(k2 − p2) and thus, since k ≤ Λ, the remainder term vanishes in

this case. At first sight this would appear then to allow us to consistently set Γ̂Λ
k [ϕ] = Γ̂k[ϕ]

in (A.1) (providing only that we restrict flows to k ≤ Λ), meaning that for these choice

of cutoffs, the dependence of the effective average action on Λ disappears. This is not

correct however as can be seen by expanding the inverse kernel. Define the full inverse

propagator as

∆̂−1(p) := Rk(p) +
δ2Γ̂Λ

k

δϕ(p)δϕ(−p)

∣∣∣∣
ϕ=0

, (A.3)

(temporarily suppressing the k and Λ dependence) and similarly define Γ′[ϕ] to be the

remainder after the term quadratic in the fields is removed (which thus starts at O(ϕ3) in

a field expansion). Then(
Rk +

δ2Γ̂Λ
k

δϕδϕ

)−1

(p,−p) (A.4)

=

(
∆̂−1 +

δ2Γ′

δϕδϕ

)−1

(p,−p)

= ∆̂(p)− ∆̂(p)
δ2Γ′

δϕ(p)δϕ(−p)
∆̂(p)

+

∫ Λddq

(2π)d
∆̂(p)

δ2Γ′

δϕ(p)δϕ(−p− q)
∆̂(p+ q)

δ2Γ′

δϕ(p+ q)δϕ(−p)
∆̂(p)− · · · .
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The momentum q is the external momentum injected by the fields remaining in Γ′:

δ2Γ′

δϕ(p)δϕ(−p− q)
= Γ(3)(p,−p− q, q; k,Λ)ϕ(−q) +O(ϕ2) , (A.5)

where we have displayed as a simple example the 1PI three-point vertex defined as in (5.2).

(The higher point vertices will have an integral over the field momenta with a delta-function

restricting the sum to −q.) With a sharp UV cutoff in place, not only are the external

momenta |q| ≤ Λ restricted, but the momentum running through any internal line is also

restricted, thus here we also have |p + q| ≤ Λ. This is because ultimately all the free

propagators come (via Wick’s theorem) from a Gaussian integral over the fields φ(r) in

the path integral whose momenta |r| ≤ Λ have been restricted by the sharp UV cutoff.

Although the momentum p already has a sharp UV cutoff k provided by ∂Rk(p)/∂k which

means the overall UV cutoff Λ is invisible for it, this invisibility does not work for the

other internal momenta, such as p + q, hidden in the construction of the inverse kernel.

In other words even if the argument p above is freed from its UV cutoff at Λ, this cutoff

remains inside the construction in all the internal propagators, such as displayed in (A.4),

and thus despite appearances the first term on the right hand side of (A.1) actually still

does depend non-trivially on Λ, implying also that Γ̂Λ
k [ϕ] is a non-trivial function of Λ.
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