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Abstract: The two-point function and the vacuum expectation value (VEV) of the current

density are investigated for a massive charged scalar field with arbitrary curvature coupling

in the geometry of a brane on the background of AdS spacetime with partial toroidal

compactification. The presence of a gauge field flux, enclosed by compact dimensions,

is assumed. On the brane the field obeys Robin boundary condition and along compact

dimensions periodicity conditions with general phases are imposed. There is a range in the

space of the values for the coefficient in the boundary condition where the Poincaré vacuum

is unstable. This range depends on the location of the brane and is different for the regions

between the brane and AdS boundary and between the brane and the horizon. In models

with compact dimensions the stability condition is less restrictive than that for the AdS

bulk with trivial topology. The vacuum charge density and the components of the current

along non-compact dimensions vanish. The VEV of the current density along compact

dimensions is a periodic function of the gauge field flux with the period equal to the flux

quantum. It is decomposed into the boundary-free and brane-induced contributions. The

asymptotic behavior of the latter is investigated near the brane, near the AdS boundary

and near the horizon. It is shown that, in contrast to the VEVs of the field squared and

energy-momentum tensor, the current density is finite on the brane and vanishes for the

special case of Dirichlet boundary condition. Both the boundary-free and brane-induced

contributions vanish on the AdS boundary. The brane-induced contribution vanishes on

the horizon and for points near the horizon the current is dominated by the boundary-free

part. In the near-horizon limit, the latter is connected to the corresponding quantity for

a massless field in the Minkowski bulk by a simple conformal relation. Depending on the

value of the Robin coefficient, the presence of the brane can either increase or decrease the
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1 Introduction

Anti-de Sitter (AdS) spacetime is one of the simplest and most interesting spacetimes

allowed by general relativity. It is the unique maximally symmetric solution of the vacuum

Einstein equations with a negative cosmological constant (for geometrical properties of

AdS space and its uses see, e.g., [1, 2]). Quantum field theory in AdS background has long

been an active field of research for a variety of reasons. First of all, AdS spacetime has

a high degree of symmetry and, because of this, numerous physical problems are exactly

solvable in this geometry. The maximal symmetry of AdS simplifies many aspects of

the study of quantum fields and the investigations of the corresponding field-theoretical

effects may help to develop the research tools and insights to deal with more complicated

geometries. Much of early interest to quantum field theory on AdS bulk was motivated by

principal questions of the quantization of fields on curved backgrounds. The lack of global

hyperbolicity and the presence of both regular and irregular modes give rise to a number

of new features which have no analogues in quantum field theory on the Minkowski bulk.

Being a constant negative curvature manifold, AdS space provides a convenient infrared

regulator in interacting quantum field theories [3]. Its natural length scale can be used to

regularize infrared divergences without reducing the symmetries. The importance of this

theoretical research was increased by the natural appearance of AdS spacetime as a ground

state in supergravity and Kaluza-Klein theories and also as the near horizon geometry of

the extremal black holes and domain walls.

A further increase of interest is related to the crucial role of the AdS geometry in two

exciting developments of the past decade such as the AdS/CFT correspondence and the
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braneworld scenario with large extra dimensions. The AdS/CFT correspondence [4–6] (see

also [7]) represents a realization of the holographic principle and relates string theories or

supergravity in the AdS bulk with a conformal field theory living on its boundary. It has

many interesting consequences and provides a powerful tool for the investigation of gauge

field theories. Among the recent developments of the AdS/CFT correspondence is the

application to strong-coupling problems in condensed matter physics (familiar examples

include holographic superconductors, quantum phase transitions and topological insula-

tors). Moreover, the correspondence between the theories on AdS and Minkowski bulks

may be used to derive new results in mathematical physics, in particular, in the theory of

special functions (see, for instance, [8] and references therein). The braneworld scenario

(for reviews see [9–12]) offers a new perspective on the hierarchy problem between the

gravitational and electroweak mass scales. The main idea to resolve the large hierarchy

is that the small coupling of four-dimensional gravity is generated by the large physical

volume of extra dimensions. Braneworlds naturally appear in string/M-theory context and

present intriguing possibilities to solve or to address from a different point of view various

problems in particle physics and cosmology.

An inherent feature of all these models is that the boundary conditions on the fields

should be specified in order to completely determine the dynamics. First of all the AdS

spacetime is not globally hyperbolic and has a time-like future null infinity. As a conse-

quence of this, the information may be lost to, or gained from, spatial infinity in finite

coordinate time. In order to define a consistent quantum field theory, appropriate bound-

ary conditions must be imposed [13–16]. The general class of allowed boundary conditions

on the AdS boundary has been discussed in [17], based on the analysis of [18]. Different

boundary conditions lead to different theories, in particular to different conformal field

theory duals. In braneworld models on AdS bulk, the presence of branes gives rise to ad-

ditional boundary conditions on the operator of a quantum field. These conditions depend

on the specific geometry of the brane and have been discussed in [19–21] for models with

Z2 symmetry. Another type of boundary conditions is induced by the presence of compact

spatial dimensions. The extra compact dimensions are an inherent feature of braneworld

models arising from string and M-theories. In these models one needs also to specify the

periodicity conditions along compact dimensions. Different conditions correspond to topo-

logically inequivalent field configurations [22, 23]. The nontrivial periodicity conditions

lead to a number of interesting quantum field-theoretical effects, which include instabilities

in interacting field theories, topological mass generation, and symmetry breaking.

All these types of boundary conditions, imposed on the field operator, modify the

spectrum of the zero-point fluctuations of a quantum field. As a consequence, the vacuum

expectation values (VEVs) of physical observables are shifted by an amount depending on

the geometry of the boundary and on the type of the boundary condition. This general

phenomena is known as the Casimir effect. It has important implications on all scales,

from mesoscopic condensed matter physics to cosmology. Since the original research by

Casimir [24], for the electromagnetic field in the geometry of two parallel conducting plates,

many theoretical and experimental works have been done in this direction (for reviews

see [25–30]). In braneworlds, the boundary conditions imposed on the bulk fields will give
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Casimir-type contributions to the vacuum energy and to the vacuum forces acting on the

branes. The latter provide a natural mechanism for stabilizing the interbrane distance (ra-

dion) in Randall-Sundrum-type models. The Casimir energy gives a contribution to both

the brane and the bulk cosmological constants and should be taken into account in the

self-consistent formulation of the scenario. Motivated by these issues, the investigations of

the Casimir energy and related forces on AdS bulk have attracted a great deal of attention

(see, for instance, the references in [31]). The Casimir effect in higher-dimensional general-

izations of the AdS spacetime with compact internal spaces has been discussed in [32–39].

An important physical characteristic of the vacuum state for charged fields is the

expectation value of the current density. It carries information about the geometry and

topology of the background space and is responsible for the backreaction of the quantum

field, as a source in semiclassical Maxwell’s equations. In the present paper we investigate

the VEV of the current density for a charged scalar field in background of locally AdS

spacetime with an arbitrary number of toroidally compactified spatial dimensions, in the

presence of a brane parallel to the AdS boundary. The corresponding problem in the

absence of the brane has been considered recently in [40] and here we shall be mainly

concerned with the brane-induced effects. Both the zero and finite temperature expectation

values of the current density for charged scalar and fermionic fields in background of flat

spacetime with toral dimensions were investigated in [41–43]. Applications were given to

the electronic subsystem of cylindrical and toroidal carbon nanotubes described in terms of

a (2+1)-dimensional effective field theory. The vacuum current densities for charged scalar

and Dirac spinor fields in de Sitter spacetime with toroidally compact spatial dimensions

are considered in [44]. The influence of boundaries on the vacuum currents in topologically

nontrivial spaces are studied in [45, 46] for scalar and fermionic fields. The effects of

nontrivial topology induced by the compactification of a cosmic string along its axis have

been discussed in [47–49].

The organization of the paper is as follows. In the next section we specify the bulk

and boundary geometries under consideration and evaluate the Hadamard function for a

charged massive scalar field in both regions on the right and on the left to the brane (referred

to as R- and L-regions, respectively). The brane-induced contributions are manifestly

extracted and they are presented in the form well suited for the investigation of the VEVs

of local physical observables bilinear in the field. As such an observable, in section 3, we

consider the current density. The corresponding VEVs are decomposed into boundary-

free and brane-induced contributions for both R- and L-regions. The asymptotic behavior

of the brane-induced contributions is considered near the brane, near the AdS boundary

and near the horizon. Limiting expressions are derived for small and large proper lengths

of compact dimensions. The main results are summarized in section 4. In appendix we

provide alternative representations for the Hadamard functions in the R- and L-regions.

The expressions for the current densities obtained from these representations are used for

the investigation of the near brane asymptotic.

– 3 –
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2 Geometry of the problem and two-point functions

2.1 Set-up

We consider a charged quantum scalar field ϕ(x) with the mass m and with the curva-

ture coupling parameter ξ. In the presence of an external classical gauge field Aµ, the

corresponding field equation reads

(

gµνDµDν +m2 + ξR
)

ϕ(x) = 0, (2.1)

where Dµ = ∇µ + ieAµ, e is the charge of the field quanta, ∇µ is the operator of the

covariant derivative associated with the metric tensor gµν , and R is the Ricci scalar for

the background spacetime. The background geometry in the present paper is given by

the interval

ds2 = gµνdx
µdxν = e−2y/aηikdx

idxk − dy2, (2.2)

where ηik = diag(1,−1, . . . ,−1) is the metric tensor for D-dimensional Minkowski space-

time, i, k = 0, . . . , D− 1, and µ, ν run from 0 to D. The local geometry described by (2.2)

coincides with that for (D + 1)-dimensional AdS spacetime of the radius a, expressed in

Poincaré coordinates. The corresponding metric tensor is a solution of the Einstein equa-

tions with a negative cosmological constant Λ = −D(D− 1)a−2/2 and for the Ricci scalar

one has R = −D(D + 1)/a2.

The spatial topology considered here will be different from that for AdS. Namely, we

assume that the subspace with the coordinates xl, l = p+1, . . . , D−1, is compactified to a

q-dimensional torus T q with q = D−p−1 (for a recent review of quantum filed-theoretical

effects in toroidal topology see [50]). We shall denote by Ll the length of the lth compact

dimension, 0 6 xl 6 Ll. The ranges of the remaining coordinates are −∞ < xl < +∞,

l = 1, 2, . . . , p, and −∞ < y < +∞. Consequently, for the subspace perpendicular to the

y-axis we take the topology Rp ×T q. Note that Ll is the coordinate length of the compact

dimension. For a fixed y, the proper length of the lth compact dimension is given by

L(p)l = e−y/aLl and it decreases with increasing y. The coordinate tarnsformation

z = aey/a, 0 6 z < ∞, (2.3)

brings the interval (2.2) into manifestly conformally flat form with the conformal factor

(a/z)2:

ds2 = (a/z)2(ηikdx
idxk − dz2). (2.4)

In terms of the new coordinate z, the AdS boundary and horizon are presented by the

hypersurfaces z = 0 and z = ∞, respectively. For the proper length, measured by an

observer with a fixed coordinate z, one gets L(p)l = aLl/z.

We consider a field theory in a non-simply connected spacetime and for the complete

formulation of the problem the periodicity conditions along compact dimensions should be

specified. Here we impose the conditions

ϕ(t, x1, . . . , xl + Ll, . . . , y) = eiαlϕ(t, x1, . . . , xl, . . . , y), (2.5)

– 4 –
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for l = p + 1, . . . , D − 1 with constant phases αl. In the literature, the most frequently

considered special cases correspond to αl = 0 (untwisted scalar) and αl = π (twisted scalar).

As we will see below, the nontrivial phases in the periodicity conditions give rise to the

vacuum currents along compact dimensions. In the discussion below we shall assume that

the gauge field Aµ is constant. Though the corresponding field strength vanishes, because

of the nontrivial topology of the background spacetime, the VEVs of physical observables

will be influenced by this sort of field configuration. This is an Aharonov-Bohm like effect

of a constant gauge field. Let us consider two sets of the fields (ϕ(x), Aµ) and (ϕ′(x), A′
µ)

connected by the gauge transformation ϕ(x) = e−ieχ(x)ϕ′(x), Aµ = A′
µ + ∂µχ(x). For a

constant gauge field, taking the function χ(x) = Aµx
µ, we see that in the new gauge the

vector potential vanishes, A′
µ = 0. But, after the gauge transformation the vector potential

of the former gauge appears in the periodicity conditions for the new field operator:

ϕ′(t, x1, . . . , xl + Ll, . . . , y) = eiα̃lϕ′(t, x1, . . . , xl, . . . , y), (2.6)

with l = p+ 1, . . . , D − 1, and with the new phases

α̃l = αl + eAlLl. (2.7)

In particular, nontrivial phases are generated for untwisted and twisted scalars. The phase

shift in (2.6) is related to the magnetic flux Φl enclosed by the lth compact dimension:

eAlLl = −2πΦl/Φ0, where Φ0 = 2π/e is the flux quantum. Note that the gauge field fluxes

play an important role in recent developments of string theory compactifications (for a

review see [51]).

In the problem under consideration, the second type of boundary condition imposed on

the field operator is induced by a brane parallel to the AdS boundary and located at y = y0.

The corresponding value for the conformal coordinate z we shall denote by z0 = aey0/a.

On the brane we assume a gauge invariant boundary condition of the Robin type:

(1 + βnµDµ)ϕ(x) = 0, y = y0, (2.8)

where β is a constant and nµ is the inward pointing normal to the brane. For the latter

one has nµ = δµD in the region y > y0 and nµ = −δµD in the region y < y0. Note

that, in general, the value of the coefficient β for these regions could be different. The

Robin boundary condition is a generalization of Dirichlet and Neumann conditions and

naturally appears in a number of physical problems, including those in branworld scenario

(see below). The spatial geometry under consideration for D = 2, embedded into the 3-

dimensional Euclidean space, is displayed in figure 1. The compact dimension is presented

by the circles and the thick circle corresponds to the location of the brane. We have also

depicted the gauge field flux tube enclosed by the compact dimension. The proper length

of the compact dimension decreases with increasing y.

The physical quantity we are interested in is the VEV of the current density,

〈0|jµ(x)|0〉 ≡ 〈jµ(x)〉, for the field ϕ(x), where |0〉 stands for the vacuum state. In quan-

tum field theory on curved backgrounds the choice of the vacuum state is among the basic

points. In what follows it will be assumed that the field is prepared in the Poincaré vacuum

– 5 –
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Figure 1. The spatial section of the geometry for D = 2 embedded into a 3-dimensional Euclidean

space. The thick circle corresponds to the brane.

state. The latter is relaized by the mode functions of the field which are obtained by solving

the field equation in Poincaré coordinates (for the discussion of the relation between the

Poincaré and global vacua see, for instance, [52]). The operator of the current density for

a charged scalar field is defined by the expression

jµ(x) = ie[ϕ+(x)Dµϕ(x)− (Dµϕ
+(x))ϕ(x)]. (2.9)

Its VEV is among the most important characteristics of the vacuum state. The procedure

we shall use here for the evaluation of the expectation value is based on the formula

〈jµ(x)〉 =
i

2
e lim
x′→x

(∂µ − ∂′
µ + 2ieAµ)G(x, x′), (2.10)

where

G(x, x′) = 〈0|ϕ(x)ϕ+(x′) + ϕ+(x′)ϕ(x)|0〉
=

∑

σ

∑

s=±

ϕ(s)
σ (x)ϕ(s)∗

σ (x′). (2.11)

is the Hadamard function for the vacuum state under consideration. In (2.11), the summa-

tion goes over a complete orthonormal set of positive- and negative-energy mode functions

ϕ
(±)
σ (x) specified by a collective index σ involving the corresponding quantum numbers.

The mode functions obey the quasiperiodicity conditions (2.5) and the condition (2.8) on

the brane.

So, as the first step, we shall evaluate the Hadamard function. Though the background

AdS spacetime is homogeneous, the brane at y = y0 has nonzero extrinsic curvature tensor

and its sides are not equivalent. In particular, the VEVs differ in the regions on the right

and on the left of the brane. The consideration requires different procedures for these

regions and we discuss them separately. In what follows the regions y > y0 and y < y0 will

be referred to as R-region (right region) and L-region (left region), respectively.

2.2 Hadamard function in the R-region

We shall work in the gauge with the fields (ϕ′(x), A′
µ = 0), omitting the prime. In accor-

dance with the problem symmetry, the mode functions can be factorized as

ϕ(±)
σ (x) = zD/2Zν(λz)e

ikrxr∓iωt, (2.12)

– 6 –
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where the summation over r in the exponent goes for r = 1, . . . , D− 1, Zν(x) is a cylinder

function of the order

ν =
√

D2/4−D(D + 1)ξ +m2a2, (2.13)

and

ω =
√

λ2 + k2, k2 =
D−1
∑

l=1

k2l . (2.14)

For imaginary values of the order ν the vacuum state becomes unstable [14–16] and in

what follows we shall assume the values of the parameters for which ν > 0. In the cases

of conformally and minimally coupled massless fields one has ν = 1/2 and ν = D/2,

respectively. In the former case, we have the standard conformal relation with the modes

in the problem on Minkowski bulk with toral dimensions. In (2.12), for the components of

the momentum one has −∞ < kl < +∞, l = 1, . . . , p, and

kl = (2πnl + α̃l)/Ll, l = p+ 1, . . . , D − 1, (2.15)

with nl = 0,±1,±2, . . .. The eigenvalues (2.15) for the components along compact dimen-

sions are directly obtained from the quasiperiodicity conditions (2.6).

In the R-region, the function Zν(λz) is a linear combination of the Bessel and Neumann

functions, Jν(λz) and Yν(λz). First we consider the case when for all the modes λ is real.

The changes in the evaluation procedure in the case when the modes with purely imaginary

values of λ are allowed (bound states) will be discussed below. The relative coefficient in

the combination of the Bessel and Neumann functions is determined from the boundary

condition (2.8) on the brane (with Dµ = ∂µ) and one gets

Zν(λz) = Cσgν(λz0, λz), (2.16)

where, for the further convenience, we have introduced the function

gν(u, v) = Jν(v)Ȳν(u)− J̄ν(u)Yν(v). (2.17)

Here, for a given function F (x), we use the notation

F̄ (x) = A0F (x) +B0xF
′(x), (2.18)

with the coefficients

A0 = 1 +
D

2
δyβ/a, B0 = δyβ/a. (2.19)

In (2.19) and in what follows, δy = 1 in the R-region and δy = −1 in the L-region.

Now, the set of quantum numbers σ is specified by σ = (λ,kp,nq), where kp =

(k1, . . . , kp) is the momentum in non-compact space and nq = (np+1, . . . , nD−1). The

coefficient Cσ is determined from the normalization condition

∫

dDx g00
√

|g|ϕ(s)
σ (x)ϕ

(s′)∗
σ′ (x) =

δss′

2ω
δ(λ− λ′)δ(kp − k′

p)δnq ,n′

q
, (2.20)

– 7 –
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where the y-integration goes over [y0,∞). By using the mode functions (2.12) with the

radial function from (2.16), we find

|Cσ|2 =
a1−Dλ

2 (2π)p ωVq

[

J̄2
ν (λz0) + Ȳ 2

ν (λz0)
]−1

, (2.21)

with Vq = Lp+1 · · ·LD−1 being the volume of the compact subspace.

Having determined the complete set of normalized modes, from the mode-sum in (2.11),

for the Hadamard function one obtains the representation

G(x, x′) =
(zz′)D/2

(2π)p aD−1Vq

∑

nq

∫

dkp e
ikr∆xr

∫ ∞

0
dλλ

×cos(∆t
√
λ2 + k2)√

λ2 + k2
gν(λz0, λz)gν(λz0, λz

′)

J̄2
ν (λz0) + Ȳ 2

ν (λz0)
. (2.22)

In order to extract explicitly the brane-induced contribution, we subtract from (2.22) the

corresponding Hadamard function in the boundary-free AdS background which will be

denoted by G0(x, x
′). The latter is obtained from (2.22) replacing the last fraction in the

right-hand side by the product Jν(λz)Jν(λz
′). By using the identity

gν(λz0, λz)gν(λz0, λz
′)

J̄2
ν (λz0) + Ȳ 2

ν (λz0)
= Jν(λz)Jν(λz

′)− 1

2

∑

j=1,2

J̄ν(λz0)

H̄
(j)
ν (λz0)

H(j)
ν (λz)H(j)

ν (λz′), (2.23)

with H
(1,2)
ν (x) being the Hankel functions, the following decomposition is obtained

G(x, x′) = G0(x, x
′)− a1−D (zz′)D/2

2 (2π)p Vq

∑

nq

∫

dkp e
ikr∆xr

∫ ∞

0
dλ

×λ
cos(∆t

√
λ2 + k2)√

λ2 + k2

∑

j=1,2

J̄ν(λz0)

H̄
(j)
ν (λz0)

H(j)
ν (λz)H(j)

ν (λz′). (2.24)

Now, assuming that z > z0, we rotate the integration contour of the last integral by the

angle π/2 for j = 1 and by −π/2 for j = 2. Introducing the modified Bessel functions

Iν(x) and Kν(x), the following final expression is obtained:

G(x, x′) = G0(x, x
′)− 4 (zz′)D/2

(2π)p+1 aD−1Vq

∑

nq

∫

dkp e
ikr∆xr

×
∫ ∞

k
duu

cosh(∆t
√
u2 − k2)√

u2 − k2
Īν(uz0)

K̄ν(uz0)
Kν(uz)Kν(uz

′), (2.25)

where the notation with overbar is defined by (2.18), (2.19) with δy = 1.

In deriving (2.25) we have assumed that for all the modes of the field λ is real. In

addition to these modes, bound states can be present. For them λ is purely imaginary,

λ = iη, η > 0, and the mode functions have the form

ϕ(±)
σ (x) = C(b)

σ zD/2Kν(ηz)e
ikrxr∓iω(η)t, (2.26)

– 8 –
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where ω(η) =
√

k2 − η2 (note that, in order to have normalizeability, we impose the

regularity condition at the AdS horizon that excludes the solution with the modified Bessel

function Iν(ηz) in the radial part). Let us denote by k
(0)
(q) the lowest value of the momentum

in the compact subspace. Assuming that |α̃i| 6 π, one has

k
(0)2
(q) =

D−1
∑

i=p+1

α̃2
i /L

2
i . (2.27)

If η > k
(0)
(q) , then there are modes for which the energy is purely imaginary and the vacuum

state is unstable. In order to have a stable vacuum, in what follows we assume that η < k
(0)
(q) .

From the boundary condition (2.8) it follows that for bound states the possible values of η

are roots of the equation

K̄ν(ηz0) = 0. (2.28)

By using the recurrence relation for the Macdonald function, this equation can be rewrit-

ten as

(ν −D/2− a/β)Kν(u) + uKν−1(u) = 0, (2.29)

with u = ηz0. From here it follows that there are no bound states for a/β < ν − D/2

(for the special mode in the case a/β = ν −D/2 see below). For a/β > ν −D/2 a single

bound state λ = iη appears. The corresponding root η increases with increasing a/β and

for some critical value β = βR = βR(k
(0)
(q)) one gets η = k

(0)
(q) . Here, βR is the value of the

Robin coefficient for which the root of the equation is equal to k
(0)
(q) . The stability of the

vacuum state requires the condition 1/β < 1/βR. The critical value for the Robin coefficient

depends on the lengths of the compact dimensions, on the phases in periodicity conditions

and on the mass of the field through the parameter ν. Note that for a brane on AdS bulk

with all dimensions being non-compact one has k
(0)
(q) = 0 and all the modes with λ = iη,

η > 0, lead to the instability. Hence, in models with compact dimensions the stability

condition, in general, is less restrictive. Assuming that a/β > ν − D/2, let us denote by

u = u
(R)
ν (a/β) the root of the equation (2.29). This root increases with increasing a/β and

does not depend on the location of the brane. The stability condition for the vacuum state

is written as u
(R)
ν (a/β) < k

(0)
(q)z0. From here it follows that, for fixed values of the other

parameters, when the brane approaches the AdS boundary (z0 decreases), started from the

critical value z0 = u
(R)
ν (a/β)/k

(0)
(q) , the vacuum in the R-region becomes unstable.

The coefficient C
(b)
σ in (2.26) is found from the normalization condition (2.20) making

the replacement δ(λ− λ′) → δηη′ . By using the result for the integral involving the square

of the Macdonald function [53], one gets

|C(b)
σ |2 = −(2π)−p a1−DηĪν(ηz0)

Vqω(η)z0K̄ ′
ν(ηz0)

. (2.30)

In deriving this expression we have used the relations

Kν(x) =
B0

Īν(x)
, B2

0(x
2 + ν2)−A2

0 = B0x
K̄ ′

ν(x)

Kν(x)
, (2.31)
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valid for x = ηz0, with ηz0 being the solution of (2.28). These relations are obtained by

making use of (2.28) and the Wronskian relation for the modified Bessel functions.

Now, in the presence of the bound state, the mode sum for the Hadamard function

has two contributions. The first one comes from the modes with real λ and is given by

the expression (2.22). The second contribution comes from the bound state. For the

latter, by using the corresponding mode functions (2.26) and the normalization coefficient

from (2.30), one finds

G(b)(x, x′) = −2α1−D(zz′)
D
2

(2π)p Vqz0

∑

nq

∫

dkp e
ikr∆xr

η

× Īν(ηz0)

K̄ ′
ν(ηz0)

cos(ω(η)∆t)

ω(η)
Kν(ηz)Kν(ηz

′). (2.32)

The evaluation of the part coming from the modes with real λ is similar to that we have

described above. The difference arises in the step when we rotate the integration contour

in (2.24). Now, the integrand in this expression has poles λ = ±iη on the imaginary axis,

where η is the root of (2.28). After the rotation, the integration contour has to pass round

these poles on the right by small semicircles. The integrals over the semicircles around

λ = iη and λ = −iη give the residue at λ = iη multiplied by 2πi. It can be seen that

this residue term exactly cancels the contribution of the bound state in (2.32). Hence, we

conclude that the expression (2.25) for the Hadamard function is valid in the case of the

presence of bound states as well.

In addition to the modes discussed above, a mode may be present for which λ = 0 and

ω = k. For this mode the function Zν in (2.12) is a linear combination of zν and z−ν .

The part with zν is excluded by the normalizability condition and the mode functions have

the form

ϕ
(±)
(R)σ(x) = C(R)z

D/2−νeikrx
r∓ikt. (2.33)

These modes are normalizable under the condition ν > 1 and for the coefficient one finds

C2
(R) =

(ν − 1) z2ν−2
0

(2π)p VqaD−1k
. (2.34)

From the boundary condition on the brane it follows that the mode is allowed for the

special value of the Robin coefficient determined from

β/a = 1/(ν −D/2). (2.35)

For ν = D/2 this value corresponds to Neumann boundary condition and in this case the

mode function does not depend on the coordinate z. An example of this special case is

realized by a minimally coupled massless scalar field. Note that this special mode for a

scalar field is the analog of the zero mode of the graviton in Randall-Sundrum 1-brane

model [54].

For ν > 1 and in the case of Robin boundary condition with (2.35), the contribution

of the special mode (2.33) should be separately added to the Hadamard function in for-

mulas (2.22) and (2.24) (but not to (2.25), see below). Note that the mode function (2.33)
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can be written as ϕ
(±)
(R)σ(x) = Ω(R)(z)ϕ

(±)
(M)σ(x), where

Ω(R)(z) =
√

2 (ν − 1)zν−1
0

zD/2−ν

a(D−1)/2
, (2.36)

and ϕ
(±)
(M)σ(x) are the mode functions for a massless scalar field in D-dimensional Minkowski

spacetime with the spatial topology Rp × T q. From here it follows that the contri-

bution of the mode (2.33) to the Hadamard function is expressed as G(R)(x, x
′) =

Ω(R)(z)Ω(R)(z
′)G

(M)
Rp×T q(x, x′), where G

(M)
Rp×T q(x, x′) is the corresponding function for a

massless scalar field in D-dimensional Minkowski spacetime with the spatial topology

Rp × T q. By using the expression for the latter one gets

G(R)(x, x
′) =

2Ω(R)(z)Ω(R)(z
′)

(2π)p+1/2 Vq

∑

nq

eikl∆xl K(p−1)/2(k(q)sp)

(sp/k(q))(p−1)/2
. (2.37)

where the summation in the exponent goes over l = p+1, . . . , D− 1. In this expression we

have defined sp =
√

|∆xp|2 − (∆t)2 and

k2(q) =
D−1
∑

l=p+1

k2l =
D−1
∑

l=p+1

(2πnl + α̃l)
2/L2

l , (2.38)

is the squared momentum in the compact subspace.

It can be seen that the expression (2.25) for the Hadamard function is not changed by

the presence of the mode (2.33). Indeed, under the condition (2.35), the contribution (2.37)

of this mode is separately added to the right-hand sides of (2.22) and (2.24). Now we should

take into account that the integrand in (2.24) with separate j has a simple pole at λ = 0

and in the rotation of the integration contour this pole should be avoided by arcs of a circle

of small radius. The contributions of the integrals over these arcs exactly cancel the contri-

bution (2.37) of the special mode and, as a consequence of this, the representation (2.25)

is not changed.

2.3 Hadamard function in the L-region

In the region between the brane and AdS boundary, y < y0, the mode functions still have

the form (2.12). From the normalizability condition it follows that for ν > 1 we should take

Zν(λz) = CσJν(λz). (2.39)

For the part of the solution with the Neumann function, the normalization integral di-

verges on the AdS boundary z = 0. In AdS/CFT correspondence normalizable and non-

normalizable modes are dual to states and sources, respectively. The key feature of AdS

spacetime is the presence of a timelike boundary at infinity where appropriate boundary

conditions should be imposed in order to have well-defined dynamics [13–16]. In the prob-

lem at hand, for the unique quantization procedure, in the range 0 6 ν < 1, we need

to specify the boundary condition on the AdS boundary. For a scalar field, the Dirichlet
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and Neumann boundary conditions are the most frequently used ones. The general class

of allowed boundary conditions of the Robin type, has been discussed in [17]. Boundary

conditions, that include tangential derivatives of the field on the AdS boundary, have been

investigated in [55, 56]. In these papers the boundary condition is implemented by adding

to the action for a scalar field a part located on the boundary (surface term) which contains

a boundary kinetic term. The presence of the latter modifies the standard Klein-Gordon

inner product by adding a boundary term. As a result of this, by an appropriate choice of

the surface action, the modes with non-Dirichlet boundary conditions on the AdS bound-

ary can be made normalizable in the region ν > 1. However, the lack of manifestly positive

inner product may give rise to ghosts in the bulk theory [55, 56]. Here, we choose (2.39)

for all values of ν > 0 that corresponds to Dirichlet condition on the AdS boundary in the

case 0 6 ν < 1 (note that the analytic continuation to the Euclidean section automatically

selects this boundary condition [57, 58]).

From the boundary condition on the brane at y = y0 it follows that the eigenvalues of

λ are roots of the equation

J̄ν(λz0) = 0, (2.40)

where the notation with overbar is defined in accordance with (2.18) where now in (2.19)

δy = −1. Hence, in the L-region the spectrum for λ is discrete. First we consider the case

when all the roots of (2.40) are real. Let us denote by x = γn, n = 1, 2, . . ., the positive zeros

of the functions J̄ν(x). Then, for the eigenvalues of λ one has λ = γn/z0 (for a mode with

purely imaginary λ see below). The normalization coefficient is determined from (2.20),

with the replacement δ(λ− λ′) → δnn′ and with the y-integration over (−∞, y0]. By using

the standard result for the integral involving the square of the Bessel function [53], we find

|Cσ|2 =
λz0Tν(λz0)

(2π)p aD−1Vqz20ω
, (2.41)

with the notation

Tν(x) = x[x2J ′2
ν (x) + (x2 − ν2)J2

ν (x)]
−1. (2.42)

Note that in the latter expression we could substitute xJ ′
ν(x) = −A0Jν(x)/B0.

Plugging the mode functions into the mode-sum (2.11), for the Hadamard function we

get the expression

G(x, x′) =
2a1−D (zz′)D/2

(2π)p Vqz20

∑

nq

∫

dkp e
ikr∆xr

∑

n

γn

×cos(∆t
√

γ2n/z
2
0 + k2)

√

γ2n/z
2
0 + k2

Tν(γn)Jν(γnz/z0)Jν(γnz
′/z0). (2.43)

This expression involves the roots γn which are given implicitly and is not convenient for

the further evaluation of the current density. In order to obtain more workable expression

we apply to the series over n the summation formula [59–62]

∞
∑

n=1

Tν(γn)f(γn) =
1

2

∫ ∞

0
du f(u)− 1

2π

∫ ∞

0
du

K̄ν(u)

Īν(u)

×
[

e−νπif(iu) + eνπif(−iu)
]

. (2.44)
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The part in the Hadamard function coming from the first term in the right-hand side

of (2.44) gives the corresponding function in the geometry without the brane. As a result,

we get the following decomposed representation

G(x, x′) = G0(x, x
′)− 4a1−D (zz′)D/2

(2π)p+1 Vq

∑

nq

∫

dkp e
ikr∆xr

∫ ∞

k
du

×λ
cosh(∆t

√
u2 − k2)√

u2 − k2
K̄ν(uz0)

Īν(uz0)
Iν(uz)Iν(uz

′). (2.45)

Comparing with (2.25), we see that the expressions for the brane-induced parts in the

Hadamard function in the R- and L-regions are obtained from each other by the replace-

ments Iν(x) ⇄ Kν(x) and with the replacement β → −β in the notations with overbars.

Comparing with (2.43), we see the important advantages of the representation (2.45): (i)

the contribution of the brane is manifestly separated, (ii) the explicit knowledge of the

zeros γn is not required, (iii) the integrand in (2.45) is monotonic instead of the oscillatory

behavior in (2.43) and (iv) the representation (2.45) holds in the presence of the bound

state and of the special mode (see below) as well. In particular, the second and third points

are important in the numerical evaluation of the vacuum currents.

Depending on the value of the Robin coefficient β, the equation (2.40) can have purely

imaginary roots λ = iη, η > 0. In this case, for the stability of the vacuum state we should

assume that η < k
(0)
(q) . From the boundary condition on the brane it follows that the allowed

values for η are roots of the equation Īν(ηz0) = 0 which is written in the explicit form as

(D/2 + ν − a/β) Iν(u) + uIν+1(u) = 0, (2.46)

where u = ηz0. From here we conclude that the modes under consideration are absent in

the case a/β < D/2+ ν (the special mode for the case a/β = D/2+ ν is discussed below).

For a/β > D/2+ν, the equation (2.46) has a single positive solution, u = u
(L)
ν (a/β), which

increases with increasing a/β. Started from the critical value of a/β, denoted here by a/βL
and determined from the condition u

(L)
ν (a/βL) = k

(0)
(q)z0, the vacuum becomes unstable.

Note that the critical values βR and βL of the coefficient in Robin boundary condition

are different for the R- and L-region. As a result of this, there are values of β for which

the vacuum is stable in the one region and unstable in the other. We see that, under the

condition a/β > D/2 + ν, when the location of the brane approaches the AdS boundary,

started from the critical value z0 = u
(L)
ν (a/β)/k

(0)
(q) , the vacuum state becomes unstable.

The summation formula (2.44) is valid also in the presence of purely imaginary roots if we

add to the left-hand side the contribution from the corresponding modes. This contribution

has the form (2.43) with the replacement γn → iηz0 and omitting the summation over n.

As a result, the representation (2.45) is valid in the presence of purely imaginary roots

as well.

Similar to the case of the R-region, under the condition

β/a = 1/ (D/2 + ν) , (2.47)
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there is a λ = 0 mode with the mode function

ϕ
(±)
(L)σ(x) = C(L)z

D/2+νeikrx
r∓ikt, (2.48)

where

C2
(L) =

(ν + 1)a1−D

(2π)p Vqz
2ν+2
0 k

. (2.49)

The contribution of this mode to the Hadamard function is obtained by taking into account

that ϕ
(±)
(L)σ(x) = Ω(L)(z)ϕ

(±)
(M)σ(x), with

Ω(L)(z) =
√

2 (ν + 1)a(1−D)/2 z
D/2+ν

zν+1
0

, (2.50)

and is obtained from (2.37) by the replacement Ω(R)(z) → Ω(L)(z). This contribution

should be added to the right-hand side of (2.43). The representation (2.45) is not changed.

As it has been discussed in [56], the presence of the brane with sufficiently large z0
can serve as a mechanism to banish the ghosts in the region z > z0 for the models with

ν > 1 and with deformed surface term in the action of a scalar field. For fixed z0 and ν,

the corresponding boundary condition contains two parameters that are coefficients in the

kinetic and potential terms of the boundary action. The detailed analysis of the boundary

condition, in the space of these parameters, for the presence of tachionic modes is given

in [56]. These tachionic modes correspond to the modes with η > k
(0)
(q) we have discussed

above. Recall that, in the present paper, on the AdS boundary we have imposed Dirichlet

boundary condition and the bulk theory contains no ghosts.

3 Vacuum currents

By using the expressions for the Hadamard function, from formula (2.10) we can see that

the VEVs of the charge density and of the components of the current density along non-

compact dimensions vanish:

〈jl〉 = 0, l = 0, 1, . . . , p. (3.1)

Of course, the latter property for the spatial components is a direct consequence of the

problem symmetry under the reflections xl → −xl. For the component along the lth

compact dimension one finds the decomposition

〈jl〉 = 〈jl〉0 + 〈jl〉b, l = p+ 1, . . . , D − 1, (3.2)

where 〈jl〉0 is the corresponding VEV in the absence of the brane and the part 〈jl〉b is

induced by the brane.

The contribution 〈jl〉0 is investigated in [40] and is given by the expression

〈jl〉0 =
4ea−1−DLl

(2π)(D+1)/2

∞
∑

nl=1

nl sin(α̃lnl)
∑

nq−1

cos

(

∑

i 6=l

α̃ini

)

×q
(D+1)/2
ν−1/2

(

1 +
∑

i

n2
iL

2
i /(2z

2)

)

, (3.3)
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where nq−1 = (np+1, . . . , nl−1, nl+1, . . . , nD−1), and

qµα(x) =
e−iπµQµ

α(x)

(x2 − 1)µ/2
, (3.4)

with Qµ
α(x) being the the associated Legendre function of the second kind. Near the AdS

boundary, z → 0, the current density (3.3) behaves as zD+2ν+2 and near the horizon the

leading term in the asymptotic expansion is given by 〈jl〉0 ≈ (z/a)D+1〈jl〉(M)
Rp+1×T q . Here,

〈jl〉(M)
Rp+1×T q = 2eLl

Γ((D + 1)/2)

π(D+1)/2

∞
∑

nl=1

nl sin(α̃lnl)
∑

nq−1

cos(
∑

i 6=l α̃ini)

(
∑

i n
2
iL

2
i )

(D+1)/2
, (3.5)

is the VEV of the current density for a massless scalar field in Minkowski spacetime with

spatial topology Rp+1 × T q.

Similar to the case of the Hadamard function, we shall consider the brane-induced

contribution in the VEVs of the current density for the R- and L-regions separately.

3.1 R-region

In the R-region the brane-induced contribution in (3.2) is obtained from the corresponding

part of the Hadamard function in (2.25). By using the relation

∫ ∞

0
d|kp||kp|p−1

∫ ∞

k

uf(u)du√
u2 − k2

=

√
πΓ (p/2)

2Γ ((p+ 1)/2)

∫ ∞

0
duupf(

√

u2 + k2(q)), (3.6)

we find the expression

〈jl〉b = − eCpz
D+2

2p−1aD+1Vq

∑

nq

kl

∫ ∞

k(q)

dxx(x2 − k2(q))
p−1
2

Īν(z0x)

K̄ν(z0x)
K2

ν (zx), (3.7)

with the notation

Cp =
π−(p+1)/2

Γ ((p+ 1)/2)
. (3.8)

From (3.7) we see that the brane-induced contribution to the current density along the

lth compact dimension is an odd periodic function of the phase α̃l with the period 2π and

an even periodic function of the remaining phases α̃i, i 6= l, with the same period. By

taking into account the relation (2.7), we conclude that the VEV of the current density is

a periodic function of the magnetic flux with the period equal to the flux quantum.

The charge flux through the (D − 1)-dimensional spatial hypersurface xl = const,

having the normal nl = a/z, is given by the quantity nl〈jl〉. From (3.7) it follows that

the corresponding brane-induced contribution, nl〈jl〉b, depends on the lengths of compact

dimensions and on the coordinate z in the form of the ratios Li/z0 and z/z0. The latter is

expressed in terms of the proper distance from the brane, y − y0, as z/z0 = e(y−y0)/a.

Let us first consider the flat spacetime limit of (3.7), corresponding to the limiting

transition a → ∞ for fixed values of y and y0. In this limit, the order of the modified

Bessel functions in (3.7) is large. Changing the integration variable to x → νx, we use

the corresponding uniform asymptotic expansions (see, for instance, [63]). By taking into
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account that in the limit under consideration z ≈ a + y and z0 ≈ a + y0, to the leading

order we get

〈jl〉b ≈
eCp

2pVq

∑

nq

kl

∫ ∞

√

k2
(q)

+m2

dx (x2 − k2(q) −m2)
p−1
2 e−2x(y−y0)

βx+ 1

βx− 1
. (3.9)

The expression in the right-hand side coincides with the boundary-induced part of the

current density for the geometry of a single Robin plate in (D+1)-dimensional Minkowski

spacetime with spatial topology Rp+1 × T q (see [46]).

For a conformally coupled massless field one has ν = 1/2 and the modified Bessel

functions in (3.7) are expressed in terms of the elementary functions. In this case the

expression for the total current density takes the form

〈jl〉 = (z/a)D+1



〈jl〉(M)
Rp+1×T q +

eCp

2pVq

∑

nq

kl

∫ ∞

k(q)

dx (x2 − k2(q))
p−1
2 e−2x(z−z0)

β+
Mx+ 1

β+
Mx− 1



 ,

(3.10)

where (the notation with the lower sign is employed below)

β±
M =

βz0/a

1± (D − 1)β/(2a)
. (3.11)

The right-hand side of (3.10), divided by the conformal factor (z/a)D+1, coincides with the

current density in the corresponding problem on Minkowski bulk with the plate at z = z0
(compare with (3.9)) on which the field obeys the Robin boundary condition (2.8) with

the replacement β → β+
M. The difference of the Robin coefficients in the two conformally

coupled problems is related to the fact that this coefficient is not conformally invariant.

At large distances from the brane compared with the AdS curvature radius, y−y0 ≫ a,

one has z ≫ z0. In addition, assuming that z ≫ Li, we can see that the dominant

contribution to the integral in (3.7) comes from the region near the lower limit and the

contribution of the mode with a given nq is suppressed by the factor e−2zk(q) . Under

the condition |α̃i| < π, assuming that all the lengths Li are of the same order, the main

contribution comes from the term with ni = 0, i = p + 1, . . . , D − 1, and to the leading

order we find

〈jl〉b ≈ −
ezD−(p−1)/2α̃lk

(0)(p−1)/2
(q)

2p+1π(p−1)/2aD+1VqLl

Īν(z0k
(0)
(q))

K̄ν(z0k
(0)
(q))

e
−2zk

(0)
(q) . (3.12)

This asymptotic corresponds to points near the AdS horizon. As we have already men-

tioned, in this limit, for the boundary-free part one has 〈jl〉0 ≈ (z/a)D+1〈jl〉(M)
Rp+1×T q ,

where 〈jl〉(M)
Rp+1×T q is the current density for a massless scalar field in (D + 1)-dimensional

Minkowski spacetime with spatial topology Rp+1 × T q (see (3.5)) and with the lengths of

the compact dimensions Li, i = p + 1, . . . , D − 1. From here we conclude that near the

horizon the boundary-free part dominates in the total VEV.
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For fixed values of z and Li, when the location of the brane tends to the AdS boundary,

z0 → 0, to the leading order, from (3.7) one finds

〈jl〉b ≈ − 4eCpz
D+2z2ν0

22ν+pνΓ2(ν)aD+1Vq

A0 + νB0

A0 − νB0

∑

nq

klk
2ν+p+1
(q)

×
∫ ∞

1
dxx2ν+1(x2 − 1)(p−1)/2K2

ν (zk(q)x), (3.13)

and the VEV vanishes as z2ν0 .

Now, let us consider the limit when the length of the lth dimension is much smaller

than the lengths of the other compact dimensions, Ll ≪ Li. In this case, in (3.7) the

dominant contribution to the sum over ni, i = p + 1, . . . , D − 1, i 6= l, comes from large

values of |ni| and we can replace the summation by the integration in accordance with

∑

nq−1

f(k(q−1)) →
22−qπ−(q−1)/2Vq

LlΓ((q − 1)/2)

∫ ∞

0
duuq−2f(u), (3.14)

where k2(q−1) = k2(q) − k2l . By making this replacement in (3.7), instead of x we introduce

a new integration variable w according to x =
√

w2 + u2 + k2l . Then, introducing polar

coordinates in the plane (u,w), the integral over the angular variable is expressed in terms

of the gamma function. As a result, to the leading order we get

〈jl〉b ≈ − eCD−2z
D+2

2D−3aD+1Ll

+∞
∑

nl=−∞

kl

∫ ∞

|kl|
dxx(x2 − k2l )

D−3
2

Īν(z0x)

K̄ν(z0x)
K2

ν (zx). (3.15)

The expression in the right-hand side coincides with the brane-induced contribution in the

model with a single compact dimension of the length Ll (q = 1, p = D − 2).

If in addition to Ll ≪ Li one has Ll ≪ z0, the arguments z0x of the modified Bessel

functions in (3.15) are large. By using the corresponding asymptotic expressions [63], after

the integration over x we find

〈jl〉b ≈
(1− 2δ0B0) e(z/a)

D+1

2D−2πD/2Ll (z − z0)
D/2−1

+∞
∑

nl=−∞

kl|kl|D/2−1KD/2−1(2 (z − z0) |kl|). (3.16)

Here, for non-Dirichlet boundary conditions we have assumed that |β|/a ≫ Ll/z0.

From (3.16) it follows that the brane-induced contribution is located near the brane within

the region z − z0 . Ll and has opposite signs for Dirichlet and non-Dirichlet boundary

conditions. At distances z − z0 ≫ Ll it is suppressed by the factor e−2(z−z0)α̃l/Ll . Note

that, in the limit Ll ≪ Li, z, for the boundary-free part one has the asymptotic

〈jl〉0 ≈
2eΓ((D + 1)/2)

π(D+1)/2(a/z)D+1LD
l

∞
∑

n=1

sin(α̃ln)

nD
. (3.17)

The expression (3.7) is not convenient for the investigation of the current density

behavior near the brane. To this aim, a more convenient expression for the VEV of the
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current density is obtained by using the representation (A.3) for the Hadamard function.

After the integrations over w and kp, we get the following result

〈jl〉 =
4ea−D−1zD+2

(2π)p/2+1VqL
p
l

∞
∑

n=1

sin (nα̃l)

np+1

∑

nq−1

∫ ∞

0
dλλ

× g2ν(λz0, λz)

J̄2
ν (λz0) + Ȳ 2

ν (λz0)
gp/2+1(nLl

√

λ2 + k2(q−1)), (3.18)

where we have defined the function

gν(x) = xνKν(x). (3.19)

In the presence of a bound state, its contribution should be added to (3.18) separately.

In the model with a single compact dimension xl of the length L and with the phase α̃,

from (3.18) one finds

〈jl〉 =
4ea−D−1zD+2

(2π)D/2LD−1

∞
∑

n=1

sin (nα̃)

nD−1

∫ ∞

0
dλ

×λ
g2ν(λz0, λz)gD/2(nLλ)

J̄2
ν (λz0) + Ȳ 2

ν (λz0)
, (3.20)

where we have substituted p = D − 2.

An important result which follows from (3.18) is that the VEV of the current density

is finite on the brane. The corresponding value is directly obtained from (3.18) putting

z = z0 and by taking into account that gν(u, u) = 2B0/π. For Dirichlet boundary condition

both the current density and its normal derivative vanish on the brane. The finiteness of

the current density is in clear contrast to the behavior of the VEVs for the field squared

and the energy-momentum tensor which suffer surface divergences. For example, the VEV

of the field squared diverges as 1/(z − z0)
D−1. The feature that the VEV of the current

density is finite on the brane could be argued on the base of general arguments. In quantum

field theory the ultraviolet divergences in the VEVs of physical observables bilinear in the

field are determined by the local geometrical characteristics of the bulk and boundary.

On the background of standard AdS geometry with non-compact dimensions the VEV of

the current density in the problem under consideration vanishes by the symmetry. The

compactification of the part of spatial dimensions to q-dimensional torus does not change

the local bulk and boundary geometries and, consequently, does not add new divergences

to the expectation values compared with the case of trivial topology.

Under the condition (2.35), the contribution of the special mode (2.33) has to be added

to the right-hand side of (3.18) (representation (3.7) is not changed). This contribution is

obtained from the corresponding part (2.37) in the Hadamard function and is related to

the current density for a massless scalar field in D-dimensional Minkowski spacetime with

the spatial topology Rp × T q by the formula 〈jl〉(R) = Ω2
(R)(z)〈jl〉

(M)
Rp×T q , where the factor

Ω2
(R)(z) is given by the expression (2.36). By using the expression for 〈jl〉(M)

Rp×T q from [41],
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one gets

〈jl〉(R) =
8e (ν − 1) z2ν−2

0 zD−2ν

(2π)(p+3)/2aD−1VqL
p
l

∞
∑

n=1

sin (nα̃l)

np+1

∑

nq−1

gp/2+1(nLlk(q−1)). (3.21)

Recall that, as the necessary condition for the presence of this contribution we have ν > 1.

In the model with a single compact dimension this gives

〈jl〉(R) =
4e (ν − 1) Γ(D/2)

πD/2aD−1LD−1
z2ν−2
0 zD−2ν

∞
∑

n=1

sin (nα̃l)

nD−1
. (3.22)

Note that in the case ν = D/2, the current density from the special mode does not depend

on z.

Let us consider the behavior of the current density in the limit when both the location

of the brane and the point of observation are close to the AdS boundary, z0, z ≪ Li. Under

this condition, the arguments of the Bessel functions Jν(x) and Yν(x) in (3.18) are small

and we use the corresponding asymptotic expressions. To the leading order, the integral

over λ is expressed in terms of the Macdonald function and we get the expression

〈jl〉 ≈ ea−D−1zD−2ν+2L−p−2ν−2
l

2p/2+ν−1πp/2+1Γ(ν + 1)Vq

(

z2ν − A0 + νB0

A0 − νB0
z2ν0

)2

×
∞
∑

n=1

sin (nα̃l)

np+2ν+3

∑

nq−1

gp/2+ν+2(nLlk(q−1)). (3.23)

The part with the term z2ν in the brackets gives the asymptotic for the VEV in the absence

of the brane.

The representation (3.18) is also well-suited for the investigation of the asymptotic

behavior in the limit of large Ll compared with the other length scales of the model. In

this limit the argument of the function gµ(x) in (3.18) is large and we can use the asymptotic

expression gµ(x) ≈
√

π/2xµ−1/2e−x, for x ≫ 1. The dominant contribution to the integral

comes from the region near the lower limit. Let us denote by k
(0)
(q−1) the lowest value of

k(q−1), k
(0)
(q−1) = min(k(q−1)). For |α̃i| < π this value is realized by the mode with ni = 0,

i 6= l, and we have

k
(0)2
(q−1) =

D−1
∑

i=p+1,6=l

α̃2
i /L

2
i . (3.24)

Two cases should be considered separately. For k
(0)
(q−1) 6= 0, in the series over n the leading

contribution comes from the n = 1 term and we get

〈jl〉 ≈
2ea−D−1zD−2ν+2k

(0)(p+3)/2+ν
(q−1)

π(p+1)/2Γ(ν + 1)Vq(2Ll)(p+1)/2+ν

×
(

z2ν − A0 + νB0

A0 − νB0
z2ν0

)2 sin α̃l

e
Llk

(0)
(q−1)

. (3.25)
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In this case the current density is exponentially small. Note that (3.25) is also obtained

from (3.23) in the limit of large Ll. For k
(0)
(q−1) = 0, by using the standard integral involving

the Macdonald function [53], for the leading term in the asymptotic expansion one finds

the expression

〈jl〉 ≈ 4eΓ (p/2 + ν + 2) a−D−1zD−2ν+2

πp/2+1Γ(ν + 1)VqL
p+2ν+2
l

×
(

z2ν − A0 + νB0

A0 − νB0
z2ν0

)2 ∞
∑

n=1

sin (nα̃l)

np+2ν+3
. (3.26)

Now the decay of the current density with increasing Ll is power law for both massless and

massive fields. This result for massive fields is in contrast to the corresponding behavior

of the current density in Minkowski bulk. In the latter geometry the decay of the current

density is exponential with the factor e−mLl .

For points outside the brane, z > z0, another expression for the current density is

obtained from the representation (A.5). After evaluating the integrals, one finds the fol-

lowing result

〈jl〉 = 〈jl〉0 −
4ea−1−DL−p

l zD+2

(2π)p/2+1Vq

∞
∑

n=1

sin (nα̃l)

np+1

∑

nq−1

∫ ∞

k(q−1)

dx

×x
Īν(xz0)

K̄ν(xz0)
K2

ν (xz)wp/2+1(nLl

√

x2 − k2(q−1)). (3.27)

with the function

wν(x) = xνJν(x). (3.28)

In the absence of the bound states, the equivalence of the representations (3.7) and (3.27)

for the brane-induced contribution is directly seen by using the formula

+∞
∑

nl=−∞

klg(|kl|) =
2Ll

π

∞
∑

n=1

sin(nα̃l)

∫ ∞

0
dxx sin(nLlx)g(x). (3.29)

The latter relation follows from the Poisson’s resummation formula (see also [46]).

In what follows, all the graphs are plotted in the D = 4 model with a single compact

dimension of the coordinate length L and with the phase α̃, for a minimally coupled (ξ = 0)

massless scalar field. For the corresponding value of the parameter ν one has ν = D/2 = 2.

On the left panel of figure 2 we have depicted the current density as a function of the

phase α̃ for fixed values of the parameters z0/L = 1, z/z0 = 1.2. The graphs are plotted for

Dirichlet (D), Neumann (N) and for Robin (with β/a = −1, the number near the curve)

boundary conditions. The dashed curve presents the current density in the same model

when the brane is absent. As is seen, depending on the boundary condition, the presence of

the brane leads to the increase or decrease of the current density. Note that for the example

considered one has ν − D/2 = 0 and, in accordance with (2.35), for Neumann boundary

condition there is a special mode (2.33) the contribution of which is given by (3.21). This

contribution should be added to (3.20). Alternatively, in the numerical evaluation we may
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Figure 2. The VEV of the current density as a function of the phase in the periodicity condition

(left panel) for D = 4 AdS space with a single compact dimension and for Dirichlet, Neumann

and Robin (β/a = −1) boundary conditions. The graphs are plotted for z0/L = 1, z/z0 = 1.2.

The right panel displays the ratio nl〈jl〉/〈jl〉M as a function of the coefficient in Robin boundary

condition for fixed values α̃ = π/2, z/z0 = 1.2, z0/L = 1.

use the representation (3.7) which holds in the presence of the special mode as well. We

have numerically checked that both these ways of the evaluation give the same result.

The right panel of figure 2 presents the ratio nl〈jl〉/〈jl〉M as a function of the coefficient

in Robin boundary condition, measured in units of AdS curvature radius. Here,

〈jl〉M =
2eΓ((D + 1)/2)

π(D+1)/2(aL/z)D

∞
∑

n=1

sin(α̃n)

nD
, (3.30)

is the current density for a massless scalar field in (D+1)-dimensional Minkowski spacetime

with topology RD−1 × S1 and with the length of the compact dimension aL/z. Note that

the latter is the proper length of the compact dimension in AdS spacetime measured by

an observer with a given z. The graph is plotted for fixed values α̃ = π/2, z/z0 = 1.2,

z0/L = 1. The vertical dotted curve corresponds to the critical value βR/a ≈ 1.31. In

the region 0 < β < βR the vacuum is unstable. The horizontal dashed curves correspond

to Dirichlet and Neumann boundary conditions. As expected, in the limits β → 0 and

β → ∞ the results for Dirichlet and Neumann conditions are obtained. For Dirichlet

boundary condition the current density takes its minimal value (the minimal absolute

value for negative α̃).

In figure 3 we have plotted the ratio nl〈jl〉/〈jl〉M as a function of z/z0 for Dirichlet

(left panel) and Neumann (right panel) boundary conditions on the brane. The numbers

near the curves are the values of z0/L. For the phase we have taken the value α̃ = π/2.

As it has been already mentioned, for Dirichlet boundary condition the current density

vanishes on the brane. From the asymptotic analysis given above it follows that on the

horizon, z/z0 → ∞, one has nl〈jl〉/〈jl〉M → 1. This behavior is seen from the graphs.

Figure 4 displays the dependence of nl〈jl〉/〈jl〉M on z/z0 in the case of Robin boundary

condition for several values of β/a (numbers near the curves). For β/a = −2/(D − 1) the
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Figure 3. The dependence of the quantity nl〈jl〉/〈jl〉M on z/z0 for Dirichlet (left panel) and

Neumann (right panel) boundary conditions. The graphs are plotted for fixed values of z0/L

(figures near the curves) and for α̃ = π/2.

Figure 4. The same as in figure 3 for Robin boundary condition. The graphs are plotted for

z0/L = 1 and the numbers near the curves correspond to the values of β/a.

normal derivative ∂z
(

nl〈jl〉/〈jl〉M
)

vanishes on the brane. This can also be directly seen

from the analytic expression by taking into account that v∂vgν(u, v)|v=u = −2A0/π.

From the results derived in this section we can obtain the current density in Z2-

symmetric braneworld models of the Randall-Sundrum type with a single brane. In the

original Randall-Sundrum 1-brane model [54] the universe is realized as a Z2-symmetric

positive tension brane in 5-dimensional AdS spacetime. In this simplest variant the only

contribution to the curvature comes from the negative cosmological constant in the bulk.

However, most scenarios motivated from string theories predict the presence of other bulk

fields, such as scalar fields. In addition, they predict also small compact dimensions origi-

nating from 10D string backgrounds. In a generalized (D + 1)-dimensional version of the

Randall-Sundrum 1-brane model the line element is given by (2.2) with the warp factor

e−|y−y0|/a where y0 is the location of the brane. The background geometry contains two
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Figure 5. D = 2 spatial geometry corresponding to the Randall-Sundrum 1-brane model with a

compactified dimension.

patches y > y0 of the AdS glued by the brane and related by the Z2-symmetry identifica-

tion y − y0 ←→ y0 − y. The corresponding spatial geometry in the case D = 2, embedded

into a 3D Euclidean space is depicted in figure 5.

Because of the absolute value sign in the exponent of the warp factor, the Ricci scalar

contains a contribution located on the brane,

R = 4Dδ(y − y0)/a−D(D + 1)/a2. (3.31)

For non-minimally coupled scalar fields, this leads to delta-type terms in the field equation.

An additional delta-type term may come from the boundary action of a scalar field of the

form Sb = c
∫

dDxdy
√

|g|ϕ2δ(y − y0), where c is the so-called brane mass term. The

boundary condition for the mode functions is obtained by integrating the field equation

near the brane. In a way similar to that used in [19–21], it can be seen that for fields

even under the reflection with respect to the brane (untwisted scalar field) the boundary

condition is of the Robin type with

β = −1/(c+ 2Dξ/a). (3.32)

In particular, for a minimally coupled field with the zero brane mass term the boundary

condition is the Neumann one. For fields odd with respect to the reflection (twisted fields)

the boundary condition is reduced to the Dirichlet one. Now, in the Z2-symmetric model

the integration over y in the normalization integral (2.20) goes over the interval (−∞,+∞).

As a result the square of the normalization coefficient contains an additional factor 1/2

compared to the one we have obtained for the R-region. Hence, the expressions for the VEV

of the current density in the generalized Randall-Sundrum 1-brane model with compact

dimensions are obtained from those given above in this section with an additional factor 1/2

and with the Robin coefficient (3.32) for untwisted fields and with β = 0 for twisted fields.

3.2 L-region

Now we turn to the current density in the L-region. By using the expression (2.45) for

the Hadamard function, the current density in this region is decomposed as (3.2) with the
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brane-induced part

〈jl〉b = − eCpz
D+2

2p−1aD+1Vq

∑

nq

kl

∫ ∞

k(q)

dxx(x2 − k2(q))
p−1
2

K̄ν(z0x)

Īν(z0x)
I2ν (zx). (3.33)

Under the condition η < k
(0)
(q) , this representation is valid in the presence of the mode with

λ = iη, where η is the zero of the function Īν(z0η), and also in the presence of the special

mode (2.48). For large values of AdS radius a, in a way similar to that for the R-region,

we can see the limiting transition of the expression (3.33) to the corresponding formula for

a plate in Minkowski bulk.

For a conformally coupled massless field, the expression of the total current density

takes the form

〈jl〉 = (z/a)D+1

{

〈jl〉(M)
Rp+1×T q −

eCp

2pVq

∑

nq

kl

∫ ∞

k(q)

dx

×(x2 − k2(q))
p−1
2

[

e−2zx +
4 sinh2(zx)

1−β−

Mx

1+β−

Mx
e2z0x − 1

]}

, (3.34)

with β−
M defined by (3.11). Here, the first term in the figure braces and the part with the

first term in the square brackets come from 〈jl〉0. The expression on the right of (3.34),

divided by the conformal factor (z/a)D+1, coincides with the current density in the region

between two plates on Minkowski bulk with Dirichlet boundary condition on the left plate

and Robin condition (2.8), with β → β−
M, on the right one (see [46] for the problem with

Robin boundary conditions on both plates). The fact that the problem with a single

brane in AdS bulk in the L-region is conformaly related to the problem with two plates

in Minkowski bulk is a consequence of the boundary condition we have imposed on the

AdS boundary.

The asymptotic behavior of the VEV near the AdS boundary, z → 0, is directly

obtained from (3.33), by using the expression of the modified Bessel function for small

arguments. To the leading order we get

〈jl〉b ≈ −21−2ν−peCpz
D+2ν+2

aD+1VqΓ2(ν + 1)

∑

nq

klk
2ν+p+1
(q)

×
∫ ∞

1
dxx2ν+1(x2 − 1)(p−1)/2 K̄ν(z0k(q)x)

Īν(z0k(q)x)
, (3.35)

and the brane-induced contribution vanishes as zD+2ν+2. Recall that near the AdS bound-

ary the part 〈jl〉0 in the VEV of the current density behaves in a similar way and, hence,

on the AdS boundary the ratio of the brane-induced and boundary-free contributions tend

to a finite limiting value.

In the limit when the brane tends to the AdS horizon, z0 → ∞, the argument z0x

of the modified Bessel functions is large. By using the corresponding asymptotics and by

taking into account that the dominant contribution to the integral in (3.33) comes from
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the region near the lower limit, we can see that the leading order term is given by

〈jl〉b ≈
(1− 2δ0B0)eα̃lz

D+2e
−2z0k

(0)
(q)

2pπ(p−1)/2aD+1VqLlz
(p+1)/2
0

k
(0)(p+1)/2
(q) I2ν (zk

(0)
(q)). (3.36)

Hence, for a fixed value of z, when the brane location tends to the AdS horizon, the

brane-induced contribution is exponentially suppressed.

If the length of the lth dimension is much smaller than the lengths of the remaining

compact dimensions, Ll ≪ Li, in a way similar to that for the R-region, we can see that, to

the leading order, the brane-induced contribution coincides with the corresponding quantity

in the model with a single compact dimension of the length Ll. The expression for the

latter is obtained from the right-hand side of (3.15) by the replacements Iν ⇄ Kν . If in

addition Ll ≪ z, the corresponding asymptotic expression is given by the right-hand side

of (3.16) with z0 − z instead of z − z0, and the brane-induced contribution is concentrated

near the brane in the region z0 − z . Ll.

The representation (3.33) is not well adapted for the investigation of the asymptotic

near the brane. A more suitable representation is obtained by using the formula (A.6) for

the Hadamard function:

〈jl〉 =
16ea−1−DzD+2

(2π)p/2+1 VqL
p
l z

2
0

∞
∑

n=1

sin (nα̃l)

np+1

∑

nq−1

∑

i

γi

×Tν(γi)J
2
ν (γiz/z0)gp/2+1(nLl

√

γ2i /z
2
0 + k2(q−1)). (3.37)

Unlike to the representation (3.33), in the presence of a bound state, its contribution must

be additionally added to (3.37). The latter is obtained from the right-hand side of (3.37)

by the replacement γi → iηz0 and omitting the summation over i. The corresponding

representation is valid under the condition η < k
(0)
(q−1). From (3.37) we conclude that the

VEV of the current density is finite on the brane. Similar to the VEV in the R-region,

the current density and its normal derivative vanish on the brane for Dirichlet boundary

condition. Another representation is obtained from (3.27) by the replacements Iν ⇄ Kν

and with the replacement β → −β in the notations with overbars.

For the value of the Robin coefficient (2.47) there is a special mode (2.48). As we

have seen above, the corresponding contribution to the Hadamard function is expressed

in terms of the Hadamard function for a massless scalar field in D-dimensional Minkowski

spacetime with the spatial topology Rp × T q. By using this relation, for the contribution

of the special mode to the current density in the L-region we find

〈jl〉(L) =
8e (ν + 1) z−2ν−2

0 zD+2ν

(2π)(p+3)/2aD−1VqL
p
l

∞
∑

n=1

sin (nα̃l)

np+1

∑

nq−1

gp/2+1(nLlk(q−1)). (3.38)

In the case of a single compact dimension this simplifies to

〈jl〉(L) =
4e (ν + 1)Γ(D/2)zD+2ν

πD/2aD−1LD−1z2ν+2
0

∞
∑

n=1

sin (nα̃l)

nD−1
. (3.39)
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Under the condition (2.47), the contribution (3.38) should be added to the right-hand side

of (3.37).

For the investigation of the asymptotic behavior for the contribution of the modes

with λ = γn/a in the limit of large values of Ll, compared with the other length scales, it

is convenient to use the representation (3.37). By using the asymptotic expression of the

function gµ(x) for large values of the argument, we can see that the dominant contribution

comes from the lowest mode with i = 1 and to the leading order one finds

〈jl〉 = 8ezD+2γ1Tν(γ1) sin α̃l

(2π)(p+1)/2 VqL
p
l z

2
0a

D+1

x(p+1)/2

e−x
J2
ν (γ1z/z0), (3.40)

with x = Ll

√

γ21/z
2
0 + k

(0)2
(q−1). Hence, unlike to the R-region, the decay of the current

density is exponential for both cases k
(0)
(q−1) = 0 and k

(0)
(q−1) 6= 0. Under the condition (2.47)

one has the additional contribution (3.38) from the mode with λ = 0. For k
(0)
(q−1) 6= 0,

in the limit of large Ll, this contribution decays exponentially, as e
−Llk

(0)
(q−1) . In the case

k
(0)
(q−1) = 0 the decay is power law, like 1/Lp+1

l . In both cases the contribution of the special

mode dominates in the total VEV.

Now let us consider the asymptotic of the current density (3.37) when the brane is

close to AdS boundary, z0 ≪ Li. The dominant contribution comes from large values of

|nj |, j 6= l, and we can replace the summation over nq−1 by the integration in accordance

with (3.14). After the integration over k(q−1) we get

〈jl〉 ≈ 16ea−1−DzD+2

(2π)D/2LD−1
l z20

∞
∑

n=1

sin (nα̃l)

nD−1

∑

i

γiTν(γi)J
2
ν (γiz/z0)gD/2(nLlγi/z0). (3.41)

The right-hand side presents the brane-induced contribution in the model with a single

compact dimension of the length Ll. In the limit under consideration the argument of the

function gD/2(x) is large. By using the corresponding asymptotic expression, we see that

the main contribution comes from the term with n = 1, i = 1 with the result

〈jl〉 ≈ 8ea−1−DzD+2 sin α̃l

(2π)(D−1)/2LD+1
l

(γ1Ll/z0)
(D+3)/2

γ1eγ1Ll/z0
Tν(γ1)J

2
ν (γ1z/z0). (3.42)

For the Robin boundary condition with (2.47), the asymptotic for the contribution

from the special mode is directly obtained from (3.38). This contribution behaves as

(z0/Ll)
D−2(z/z0)

D+2ν and the corresponding decay, as a function of z0 (for a fixed z/z0)

is power law.

The left panel of figure 6 displays the vacuum current density in the L-region for

Dirichlet, Neumann and Robin (with β/a = −1/2) boundary conditions as a function of

the phase in the quasiperiodicity condition along the compact dimensions. Recall that in

the numerical evaluations we consider a D = 4 minimally coupled massless field. In this

case ν = 2 and the modes with purely imaginary λ and the special mode with λ = 0

are absent for a/β < 4. The graphs are plotted for z0/L = 1, z/z0 = 0.8. The dashed

curve corresponds to the current density in the absence of the brane. The right panel of
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Figure 6. The current density in the L-region as a function of α̃ for Dirichlet, Neumann and Robin

(with β/a = −1/2) boundary conditions (left panel) and as a function of the coefficient in Robin

boundary condition (right panel). The graphs are plotted for z0/L = 1, z/z0 = 0.8. On the left

panel the dashed curve corresponds to the current density in the geometry without the brane. The

vertical dotted line on the right panel corresponds to the critical value βc/a ≈ 0.228.

figure 6 presents the dependence of the ratio nl〈jl〉/〈jl〉M on β/a. The horizontal dashed

lines correspond to Dirichlet and Neumann boundary conditions. The vertical dotted line

corresponds to the critical value βc/a ≈ 0.228. In the region 0 < β < βc the vacuum is

unstable.

In figure 7, for α̃ = π/2, we show the dependence of the ratio nl〈jl〉/〈jl〉M on z/z0 for

Dirichlet (left panel) and Neumann (right panel) boundary conditions for separate values

of z0/L (numbers near the curves). For Dirichlet condition the current density vanishes on

the AdS boundary and on the brane. As it follows from the asymptotic (3.35), near the

AdS boundary the charge flux density nl〈jl〉 behaves as zD+2ν+1. For the Minkowskian

VEV with the length of the compact dimension aL/z, equal to the proper length on the

AdS bulk, one has 〈jl〉M ∝ zD+1. Hence, the ratio plotted in figuire 7 vanishes on the AdS

boundary as z2ν . Similar graphs in the case of Robin boundary condition are presented in

figure 8 for several values of β/a (numbers near the curves). Note that for all the examples

in the L-region there are no modes with purely imaginary λ.

4 Conclusion

We have studied the effects induced by a brane, parallel to the AdS boundary, on the

VEV of the current density for a massive charged scalar field with an arbitrary curvature

coupling parameter. The background geometry under consideration is obtained from the

(D+1)-dimensional AdS one, described in Poincaré coordinates, by a toroidal compactifi-

cation of a part of spatial dimensions. Along compact dimensions the field operator obeys

quasiperiodicity conditions with general constant phases. We have also assumed the pres-

ence of a constant gauge field. By the gauge transformation the problem is reduced to the

one with a zero gauge field. In the new gauge the phases in the periodicity conditions are
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Figure 7. The ratio nl〈jl〉/〈jl〉M versus z/z0 for Dirichlet (left panel) and Neumann (right panel)

boundary conditions. The figures near the curves correspond to the values of z0/L and for the

phase we have taken α̃ = π/2.

Figure 8. The same as in figure 6 for the fixed value z/z0 = 1 in the case of Robin boundary

condition. The numbers near the curves correspond to the values of β/a.

shifted by an amount determined by the ratio of the magnetic flux, enclosed by a compact

dimension, to the flux quantum. On the brane and on the AdS boundary the field operator

is constrained by Robin and Dirichlet boundary conditions, respectively. We consider a

non-interacting quantum field and the Hadamard two-point function contains all the in-

formation about the properties of the vacuum state. Though the background geometry is

homogeneous, the extrinsic curvature tensor of the brane is nonzero and, as a consequence

of this, the regions on the right (R-region) and on the left (L-region) of the brane are not

physically equivalent.

In the R-region the spectrum of the quantum number λ is continuous and the mode

functions obeying the boundary condition on the brane have the form (2.12) with the radial

function (2.16). In addition to these modes, under the condition a/β > ν −D/2, one can

have a bound state with the mode function (2.26) and with the eigenvalue for η being the
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root of the equation (2.28). The root should be constrained by η < k
(0)
(q) , where k

(0)
(q) is

defined as (2.27). For the modes with η > k
(0)
(q) the energy becomes imaginary and they

lead to the instability of the Poincaré vacuum state. In addition to the parameters ν and

k
(0)
(q) , the stability of the vacuum depends on the location of the brane. Depending on the

value of the Robin coefficient, the approaching of the brane to AdS boundary can lead

to the instability. For the value of the Robin coefficient given by (2.35) there is a special

mode (2.33) for which λ = 0. For a minimally coupled massless scalar field the special

value of the Robin coefficient corresponds to Neumann boundary condition and the mode

function does not depend on the radial coordinate z. This is an analog of the graviton

zero mode in Randall-Sundrum 1-brane model. The Hadamard function in the R-region

is given by the expression (2.25) with the second term in the right-hand side being the

brane-induced contribution. We have shown that this expression holds in the presence

of bound states as well. Alternative representations for the Hadamard function in the

R-region, (A.3) and (A.5), are derived in appendix, by using the summation formula (A.1).

In the L-region the spectrum for λ is discrete and its eigenvalues are roots of the

equation (2.40). The corresponding expression for the Hadamard function contains series

over these roots. Another expression, in which the explicit knowledge of the eigenvalues for

λ is not required is obtained by making use of the generalized Abel-Plana formula (2.44).

This allows to extract manifestly the brane-induced contribution, given by the second term

in the right-hand side of (2.45). For a/β > D/2+ ν there is a mode with purely imaginary

λ = iη which is the root of the equation (2.46) with x = ηz0. For the stability of the

vacuum state one needs to have η < k
(0)
(q) . The stability condition depends also on the

position of the brane. The shift of the brane to the direction of the AdS boundary gives

rise to the instability in the initially stable vacuum state. An alternative expression for the

Hadamard function in the L-region is given by (A.6).

In both the R- and L-regions the VEV of the current density is decomposed into the

boundary-free and brane-induced contributions. For both these contributions, the compo-

nent of the current density along the lth compact dimension is an odd periodic function of

the phase α̃l and an even periodic function of the phases α̃i, i 6= l, with the period equal

to 2π. In the R-region the brane-induced contribution is given by (3.7). We have checked

that for large values of the AdS curvature radius the leading term in the corresponding

asymptotic expansion coincides with the boundary-induced part of the current density in

Minkowski spacetime with topology Rp+1 × T q in the presence of a single Robin plate. In

the case of a conformally coupled massless field the current density coincides, up to the con-

formal factor (z/a)D+1, with the corresponding quantity in Minkowski bulk with the plate

at z = z0 on which the field obeys the Robin boundary condition with the coefficient β
(+)
M

given by (3.11). For points near the AdS horizon (z is large compared with the other length

scales), the brane-induced contribution is suppressed by the factor e
−2zk

(0)
(q) . In the same

limit the boundary-free part behaves as (z/a)D+1 and it dominates in the total VEV. In

the limit when the brane approaches to the AdS boundary, for fixed values of z and Li, the

brane-induced contribution tends to zero like z2ν0 . For the investigation of the near brane

asymptotic of the vacuum current it is more convenient to use the representation (3.18). In
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the presence of a bound state its contribution should be added separately to the right-hand

side. For Robin boundary condition with (2.35) an additional contribution, given by (3.21),

comes from the special mode (2.33). An important conclusion which follows from the rep-

resentation (3.18) is that the current density is finite on the brane. This behavior is in

clear contrast with that for the VEVs of the field squared and of the energy-momentum

tensor which diverge on the brane. For Dirichlet boundary condition the current density

and its normal derivative vanish for points on the brane. The asymptotic behavior of the

current density along lth compact dimension for large values of the corresponding length

Ll crucially depends whether the parameter k
(0)
(q−1), defined by (3.24), is zero or not. For

k
(0)
(q−1) 6= 0 the current density decays exponentially like e

−Llk
(0)
(q−1) . In the case k

(0)
(q−1) = 0

the decay is power law, as 1/Lp+2ν+2
l , for both massless and massive fields. This behavior

for massive fields is essentially different from that for Minkowski bulk where the current is

suppressed exponentially, by the factor e−mLl . The expression for the current density in

the generalized Randall-Sundrum 1-brane model with compact dimensions is obtained from

the formulas in section 3 with an additional factor 1/2 and with the Robin coefficient (3.32)

for untwisted fields and with β = 0 for twisted fields.

The current density in the L-region is given by the expression (3.33). For a conformally

coupled massless field, this expression is reduced to the one in Minkowski spacetime with

two parallel plates, multiplied by the conformal factor (z/a)D+1, with Dirichlet boundary

condition on the left plate and Robin condition on the right one. On the AdS boundary the

brane-induced contribution vanishes as zD+2ν+2. For a fixed observation point, when the

location of the brane tends to the AdS horizon, the brane-induced effects are suppressed

by the factor e
−2z0k

(0)
(q) . Similar behavior is exhibited by the boundary-free part. From an

alternative representation (3.37) it follows that the current density on the brane is finite

and vanishes for Dirichlet boundary condition. For large values of the length Ll, unlike to

the R-region, the decay of the current density in the L-region is exponential for both cases

k
(0)
(q−1) = 0 and k

(0)
(q−1) 6= 0. This feature is related to the discreteness of the spectrum for λ.

For the value (2.47) of the Robin coefficient the contribution (3.39) from the special mode

has to be added to the right-hand side of (3.37). For large values of Ll, this contribution

dominates in the VEV of the total current density. In particular, in the model with a single

compact dimension its decay, as a function of Ll, is power law, as 1/L
D−1
l . For the brane

location near the AdS boundary, the asymptotic of the current density is given by (3.42)

and it is suppressed by the factor e−γ1Ll/z0 . In the presence of the special mode, for a

given value of z/z0 (fixed distance from the brane), the corresponding contribution to the

current density behaves as (z0/Ll)
D−2 and, hence, it dominates in the total VEV.

The numerical results have been presented for the D = 4 model with a single compact

dimension and for a minimally coupled massless scalar field. These results show that,

depending on the value of the Robin coefficient, the presence of the brane can either

increase or decrease the current density. In particular, in the example considered, the

modulus of the current density takes its minimal value for Dirichlet boundary condition.
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A Other representations of the two-point function

Here we provide representations for the Hadamard function convenient in the investigation

of near brane asymptoics for the VEV of the current density. First we consider the R-

region. In the representation (2.22) we separate the series over nl and for the summation

use the Abel-Plana type formula [42, 43, 64]

2π

Ll

∞
∑

nl=−∞

g(kl)f(|kl|) =

∫ ∞

0
du[g(u) + g(−u)]f(u)

+i

∫ ∞

0
du [f(iu)− f(−iu)]

∑

s=±1

g(isu)

euLl+isα̃l − 1
, (A.1)

with kl defined in (2.15) (formula (A.1) is reduced to the standard Abel-Plana formula in

the special case g(x) = 1, α̃l = 0). After the application (A.1) with g(kl) = eikl∆xl

, the

Hadamard function is presented in the form

G(x, x′) = GRp+2×T q−1(x, x′) +Gl(x, x
′). (A.2)

Here the part GRp+2×T q−1(x, x′) comes from the first term in the right-hand side of (A.1)

and is the Hadamard function for the geometry with a single brane in (D + 1)-

dimensional AdS spacetime with spatial topology Rp+2 × T q−1 for which the lth dimen-

sion is decompactified. The lengths of the remaining compact dimensions are the same:

(Lp+1, . . . , Ll−1, Ll+1, . . . , LD−1). The second term on the right of (A.2) is induced by the

compactification of the lth dimension and is given by the expression

Gl(x, x
′) =

4 (zz′)D/2 Ll

(2π)p+1 aD−1Vq

∞
∑

n=1

∑

nq−1

∫

dkp e
ikr∆xr

∫ ∞

0
dλλ

×gν(λz0, λz)gν(λz0, λz
′)

J̄2
ν (λz0) + Ȳ 2

ν (λz0)

∫ ∞

0
dw cosh(w∆t)

×e−nuLl

u
cosh(u∆xl + inα̃l)|u=

√
w2+λ2+k(l)2

, (A.3)

where nq−1 = (np+1, . . . , nl−1, nl+1, . . . , nD−1), k
(l)2 = k2 − k2l , and the summation over r

in the exponent goes over r = 1, . . . , D − 1, r 6= l. In deriving this result, we have used

the relation
∑

s=±1

e−su∆xl

euLl+isα̃l − 1
= 2

∞
∑

n=1

e−nuLl cosh(u∆xl + inα̃l). (A.4)
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Note that the part GRp+1×T q−1(x, x′) does not contribute to the VEV of the current density

along lth dimension. The expression (A.3) gives the contribution to the Hadamard function

from the modes with continuous λ. In the presence of a bound state, a similar representation

can be found for the corresponding contribution.

Another useful representation for the Hadamard function in the R-region is obtained by

using the identity (2.23) for the integrand in (A.3). The part in Gl(x, x
′) coming from the

first term in the right-hand side of (2.23) gives the corresponding function in the boundary-

free AdS spacetime (the brane is absent), denoted here by G0l(x, x
′). In the part induced

by the brane, coming from the last term in (2.23), we rotate the integration contour by the

angle π/2 for the term with j = 1 and by the angle −π/2 for the term with j = 2. In this

way we get

Gl(x, x
′) = G0l(x, x

′)− a1−DLl(zz
′)D/2

2p−1πp+2Vq

∞
∑

n=1

∑

nq−1

∫

dkp e
ikr∆xr

×
∫ ∞

0
dw cosh(w∆t)

∫ ∞

0
du

∑

s=±1

cos(u∆xl − snα̃l)e
isnuLl

× Īν(λz0)

K̄ν(λz0)
Kν(λz)Kν(λz

′)|
λ=

√
w2+u2+k(l)2

. (A.5)

Now, we consider the L-region. The corresponding expression for the Hadamard func-

tion is given by (2.43). In a way similar to that for the R-region, applying the formula (A.1),

for the part induced by the compactification of the lth dimension we find the follow-

ing representation

Gl(x, x
′) =

8 (zz′)D/2 Ll

(2π)p+1 aD−1Vqz20

∞
∑

n=1

∑

nq−1

∫

dkp e
ikr∆xr

∑

n

γn

×Tν(γn)Jν(γnz/z0)Jν(γnz
′/z0)

∫ ∞

0
dw cosh(w∆t)

×e−nuLl

u
cosh(u∆xl + inα̃l)|u=√w2+γ2

n/z
2
0+k(l)2

. (A.6)

In this expression, for the summation over n we can use the formula (2.44). The part

coming from the first term in the right-hand side of (2.44) corresponds to the boundary

free contribution and, as a result, we obtain the decomposition similar to (A.5) where now

the brane-induced contribution is obtained from that in (A.5) by the replacements Iν(x) ⇄

Kν(x).
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