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1 Introduction and discussions

Recent years have witnessed major breakthroughs in computing and understanding scat-

tering amplitudes of gauge theory and gravity (see, e.g., [1] for reviews). At many stages

of the development, the N = 4 supersymmetric Yang-Mills theory (SYM) proved to be an

extremely fruitful testing ground. Many novel ideas, such as twistor string theory [2], dual

superconformal symmetry [3], Grassmannian formulation [4], on-shell diagram representa-

tion [5] and amplituhedron [6, 7], are realized in their simplest forms in N = 4 SYM and

then generalized to less symmetric theories.

The three dimensional N = 6 supersymmetric Chern-Simons-matter theory [8–14], of-

ten referred to as the ABJM theory, is a close sibling of the N = 4 SYM in many respects.

For instance, the scattering amplitudes of the ABJM theory exhibit dual superconformal

symmetry [15–18] and admits Grassmannian [19], twistor string [20–22], and on-shell dia-

gram formulations [23–25]. Despite these parallel successes, the study of ABJM amplitudes

fall short of those of N = 4 SYM in many respects. One of the most pressing problem is

the lack of a “momentum twistor” formulation [26–28] in which the dual superconformal

symmetry would become manifest (see [29] for a recent attempt in this direction). Closely

related to momentum twistors are the dual superconformal R-invariants [3], which serves
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as building blocks for an explicit formula for all tree amplitudes [30] and a starting point

for the construction of amplituhedron.

In principle, all ingredients to compute the ABJM tree amplitudes are available in the

literature. The Grassmannian integral [19], supplemented by the contour prescription from

on-shell diagrams [23–25], will produce the amplitudes. A mundane, yet seemingly unavoid-

able, problem is that each BCFW bridge in the on-shell diagram introduces a quadratic

equation in the integration variables. The solutions to quadratic equations generically con-

tain square-roots, which must cancel out when summed over all solutions and produce a

rational function of kinematic variables. Mainly for this technical reason, explicit results

for ABJM tree amplitudes to date are limited to 4- and 6-point amplitudes [15, 18, 19]

which are free from square-roots due to limited kinematics, and a partial result for 8-point

amplitude [18] without manifest supersymmetry.

The goal of this paper is to take a few steps toward the computation of all ABJM tree

amplitudes. Our two main results are a complete evaluation of the supersymmetric 8-point

amplitude and a derivation of a double soft theorem valid for all tree amplitudes.

In evaluating the Grassmannian integral for 8-point or higher amplitudes, we find it

convenient to use a new gauge, which we call “u-gauge”. The u-gauge is inspired by the

isomorphism between the orthogonal Grassmannian and the pure spinor geometries; both

of them admit the SO(2k)/U(k) coset description. A particular set of coordinates of the

coset space introduced in [31] trivially solves the orthogonality constraint and can be easily

generalized to arbitrary k. This fact makes the u-gauge, at least in some contexts, more

convenient than conventional gauges involving Euler angle coordinates.

Although the u-gauge do not circumvent the square-root problem mentioned above,

the quadratic equations in the u-gauge tend to be simpler, which allow us to combine all

residues in the contour integral. For the 8-point amplitude, the integral is effectively one-

dimensional. We can express the denominators of the amplitude in terms of the standard

cross-ratios among solutions to quadratic equations. It is easy to see that the cross-ratios

can in turn written in terms of the coefficients of the quadratic equations, thereby avoiding

the need to solve the equations explicitly.

The final result for the 8-point amplitude takes the form,

A8 = δ3(P )δ6(Q)(1 + π)JB8 J
F
8

(
F (1)

∆12∆13∆14
+

F (3)

∆31∆32∆34

)
. (1.1)

The (1 + π) factor accounts for the sum over two disjoint branches of the orthogonal

Grassmannian. The two rational functions in the big parenthesis corresponds to the two

on-shell diagrams contributing to the 8-point amplitude. The numerators F (1), F (3) as

well as the ∆ij factors in the denominators are polynomials in kinematic variables. The

on-shell diagrams suggest that ∆12,∆14,∆32,∆34 should be proportional to physical poles

of the amplitude whereas ∆13 = ∆31 should be spurious. We confirm the expectation

by explicitly proving that ∆ij for the physical poles are proportional to p2
klm factors for

adjacent particles.

In the second half of this paper, we consider the double-soft limit of ABJM ampli-

tudes. Soft limits of scattering amplitudes in gauge and gravity are well known to exhibit
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universal behavior and have bearing on gauge symmetries and spontaneously broken global

symmetries. Our motivation to study the soft limit is more modest. As we make progress

in computing higher point amplitudes, we wish to use the soft theorem to test the consis-

tency of the methods we use. Our derivation of the soft theorem will closely follow that

of ref. [32], where a similar double-soft theorem was derived for three dimensional super-

gravity theories. We show that the (2k+2)-point amplitude A2k+2 reduces to the 2k-point

amplitudes A2k with universal leading and sub-leading soft factors in the double soft limit,

A2k+2(1, 2, · · · , 2k, ε2p2k+1, ε
2p2k+2)

∣∣
ε→0

=

(
1

ε2
S(0) +

1

ε
S(1)

)
A2k(1, 2, · · · , 2k) . (1.2)

As in [32], the proof of the soft theorem is based on the BCFW [33, 34] recursion relation of

the ABJM theory [18]. We confirm that the universal soft factors respect all the symmetries

of the ABJM amplitudes for all k. For 6-point amplitude to the sub-leading order, and

for 8-point amplitude to the leading order, we explicitly take the soft limit of the known

amplitude and verify that the soft theorem holds.

Although we still have explicit form of tree amplitudes only up to 8-point, we expect

that the findings in the present paper, such as the u-gauge, cross-ratios among different

poles in the contour integral, and the double soft theorem, will lay the groundwork for

a complete construction of all tree amplitudes of ABJM theory in terms of momentum

twistors and/or dual superconformal R-invariants.

This paper is organized as follows. In section 2, we give a short review of the general

structure of the ABJM tree amplitudes and the Grassmannian integral. Then we introduce

the u-gauge and compare it with other well-known gauges. In section 3, we use the u-gauge

to compute some tree amplitudes. After reproducing the 4-point and 6-point amplitudes,

we present the details of how to evaluate the 8-point amplitude. In section 4, we propose

the double soft theorem of the ABJM amplitudes and prove it using the BCFW recursion

relation. We take the double soft limit of the 6- and 8-point amplitudes, and verify explicitly

that the theorem holds.

2 Grasssmannian integral in the U-gauge

2.1 Preliminaries

Here we briefly review the 3-dimensional spinor helicity formalism [15] and introduce the

Grassmannian integral formula for tree level amplitudes of planar ABJM theory [19].

Each spinor in three dimensions transforms under SL(2, R), and a null momentum can

be written in the bi-spinor form

pαβ = pµ(σµ)αβ = λαλβ . (2.1)

Our convention for spinors and gamma matrices are such that pαβ is real for real pµ, and

λα is real (purely imaginary) for outgoing (incoming) particles. The spinors are contracted

as 〈ij〉 ≡ λαi λjα. We normalize the norm of vectors such that p2
ij = (pi + pj)

2 = 〈ij〉2 when

both λi and λj are real.
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The on-shell superfield notation for ABJM amplitudes is built on three fermionic coor-

dinates ηI , in addition to λα, which transform as 3 under the U(3) subgroup of the SO(6)

R-symmetry group. The particle/anti-particle superfields take the form

Φ = φ4 + ηIψI +
1

2
εIJKη

IηJφK +
1

6
εIJKη

IηJηKψ4, (2.2)

Φ̄ = ψ̄4 + ηI φ̄I +
1

2
εIJKη

IηJ ψ̄K +
1

6
εIJKη

IηJηK φ̄4. (2.3)

A collective notation Λ = (λ; η) will be used when appropriate. The fact that (2.1) is

invariant under λ→ −λ, while the wave-functions of fermions pick up a minus sign, implies

the so-called “λ-parity” of the super-amplitudes.

A(Λ1, . . . ,−Λi, . . . ,Λ2k) = (−1)iA(Λ1, . . . ,Λi, . . . ,Λ2k). (2.4)

The super-conformal generators of the superconformal symmetry come in three types:

Λ
∂

∂Λ
, ΛΛ,

∂2

∂Λ∂Λ
, (2.5)

For the second type, we will use the notation

pαβ = λαλβ , qαI = λαηI , rIJ = ηIηJ . (2.6)

The super-momentum conservation is denoted as delta functions by

δ3(P )δ6(Q) with P ≡
2k∑
i=1

pαβi , Q ≡
2k∑
i=1

qαIi . (2.7)

The Grassmannian integral formula for the tree level amplitudes of planar ABJM

theory, first proposed in [19], is

L2k(Λ) =

∫
dk×2kC

vol[GL(k)]

δk(k+1)/2(C · CT )δ2k|3k(C · Λ)

M1M2 · · ·Mk−1Mk
. (2.8)

The integration variable C is a (k × 2k) matrix. The dot products denote (C · CT )mn =

CmiCni, (C · Λ)m = CmiΛi. The consecutive minor Mi is defined by

Mi = εm1···mkCm1(i)Cm2(i+1) · · ·Cmk(i+k−1). (2.9)

It was shown in [19] that this formula satisfies the same cyclic symmetry and superconformal

symmetry as the tree-level (2k)-point amplitude. Yangian invariance of the formula was

first argued in [19] and explicitly proved later in [35].

The integral (2.8) should be considered as a contour integral on the moduli space of

rank k, (k×2k) matrices C with the constraint C ·CT = 0 and the equivalence relation C ∼
gC (g ∈ GL(k)). This moduli space is known as the orthogonal Grassmannian OG(k, 2k).

The dimension of OG(k, 2k) is determined by the aforementioned two conditions:

dimC[OG(k, 2k)] = 2k2 − k2 − k(k + 1)

2
=
k(k − 1)

2
. (2.10)
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Integrating out the bosonic delta function δ2k(C · λ) leaves the momentum conserving

delta function and a contour integral over (k − 2)(k − 3)/2 variables. The geometry and

combinatorics behind the Grassmannian integral for all tree amplitudes, as well as some

loop amplitudes, have been elucidated in [23–25]. On the other hand, explicit computation

of amplitudes has never proceeded beyond 8-point [18].

2.2 U-gauge

We take a real slice of the complex orthogonal Grassmannian with the split signature,

where the “metric” in the particle basis is

g = diag(−,+,−,+, · · · ) . (2.11)

In this basis, the momenta and their spinor variables are related by

pαβi = (−1)iλαi λ
β
i , λαi ∈ R , (pi + pj)

2 = (−1)i+j〈ij〉2 . (2.12)

We find it convenient to switch between the particle basis and the light-cone basis:

ds2 =

2k∑
i=1

(−1)i(dxi)
2 =

k∑
m=1

dwmdv
m (wm = x2m + x2m−1, v

m = x2m − x2m−1) . (2.13)

In the light-cone basis, a GL(k)R subgroup of the O(k, k) symmetry group remains man-

ifest. We will use a notation with covariance under SL(k) ⊂ GL(k)R and adopt the

summation convention. The invariant tensor of SL(k,R) will be denoted by εm1···mk
.

The spinor-helicity variable for particles are denoted by λαi (i = 1, . . . , 2k, α = 1, 2).

We use the same letters w, v for the light-cone combinations of the spinor variables:

wαm = λα2m + λα2m−1 , vmα = λα2m − λα2m−1 . (2.14)

The scalar product of two spinors are defined in a usual manner.

〈λ1λ2〉 = εαβλ
α
1λ

β
2 . (2.15)

To avoid confusion, we reserve the shorthand notation 〈12〉 = 〈λ1λ2〉 exclusively for the

particle basis. In the light-cone basis, we will use 〈wmwn〉, 〈wmvn〉 and so on. The overall

momentum conservation is written as

Pαβ =
2k∑
i=1

(−1)iλαi λ
β
i =

1

2

(
wαmv

mβ + wβmv
mα
)

= 0 . (2.16)

The light-cone components of the fermionic coordinates ηIi are denoted by

θ̄Im = ηI2m + ηI2m−1 , θmI = ηI2m − ηI2m−1 . (2.17)

The supermomentum components are rewritten as

QαI =

2k∑
i=1

(−1)iλαi η
I
i =

1

2

(
wαmθ

mI + vmαθ̄Im
)
. (2.18)
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In summary, the metric and the kinetic variables in the light-cone basis take the form

g =
1

2

(
0 δmn
δm

n 0

)
, λ =

(
wn
vn

)
, η =

(
θ̄n
θn

)
. (2.19)

The light-cone form of the C-matrix before a gauge fixing is

C =
(
ta
n | san

)
. (2.20)

A priori, the GL(k)L index a is not correlated with the light-cone index n. We choose to

fix the gauge by locking GL(k)L and GL(k)R:

C =
(
ta
n | san

)
→

(
δm

n | umn
)
, umn = (t−1)m

asan . (2.21)

The orthogonality condition implies that umn is anti-symmetric:

δ(C · g · CT ) = δ

(
1

2
(umn + unm)

)
. (2.22)

Since the decomposition of umn into the symmetric and anti-symmetric parts is a linear

operation, the delta-function does not produce any u-dependent Jacobian factor.

We will call this gauge fixing the “u-gauge”. This gauge was inspired by the fact

that the orthogonal Grassmannian and the pure spinor admit the same SO(2k)/U(k) coset

description and that the umn coordinates were used in ref. [31] to solve the non-linear

constraints of the pure spinors in order to construct higher dimensional twistor transforms.

It is well known that C · λ = 0 and C · g · CT = 0 implies the overall momentum

conservation. In the light-cone gauge, C · λ = 0 is written as

wm + umnv
n = 0 . (2.23)

This equation admits a particular form of SL(k,R)-invariant solution for all k:

u∗mn =
2〈wmwn〉
〈wpvp〉

=
1

R
〈wmwn〉 , R ≡ 〈wpv

p〉
2

. (2.24)

To verify that (2.24) is indeed a solution to (2.23), it suffices to use the Schouten identity

〈wmwn〉vpα + 〈wnvp〉wαm + 〈vpwm〉wαn = 0 , (2.25)

and the momentum conservation (2.16).

The light-cone basis before the gauge fixing respects the symmetry exchanging wn and

vn. Thus it is natural to consider the “dual u-gauge” in which the roles of wn and vn

are reversed:

C =
(
xa

n | uan
)
→

(
ūmn | δmn

)
. (2.26)

In the dual u-gauge, the C · λ = 0 condition reads

vm + ūmnwn = 0 , (2.27)

– 6 –
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which admits a particular solution,

ūmn∗ = − 1

R
〈vmvn〉 . (2.28)

The dual u-gauge will be useful in a later discussion on the λ-parity for odd k. Using the

energy momentum conservation and Schouten identity, one can show that

u∗mpū
np
∗ = − 1

R
〈wmvn〉 , u∗mpū

mp
∗ = −2 . (2.29)

For k = 2 and k = 3, (2.24) is the unique solution to (2.23). For higher k, there is a

(k − 2)(k − 3)/2-dimensional solution space containing (2.24). For instance, for k = 4, the

general solution can be parametrized by

ûmn(z) = u∗mn +
z

2
εmnrsū

rs
∗ . (2.30)

The general solution for k = 5 is

ûmn(z) = u∗mn +
zp

2
εmnprsū

rs
∗ . (2.31)

The “vector” zp appears to have five components, but only three of them are independent

due to the equivalence relation,

zp ∼ zp + cαv
pα , (2.32)

which follows from the fact that ūrs∗ ∝ 〈vmvn〉 and the Schouten identity. Along the same

line of reasoning, we can write the general solution for k ≥ 4 as

ûmn(z) = u∗mn +
1

2(k − 4)!
zp1···pk−4εmnp1···pk−4rsū

rs
∗ . (2.33)

In the (k−2)-dimensional space surviving the quotient zp ∼ zp+cαv
pα, the tensor zp1···pk−4

spans a (k − 4)-plane. The effective number of components for zp1···pk−4 is, as expected,(
k − 2

k − 4

)
=

(
k − 2

2

)
=

(k − 2)(k − 3)

2
. (2.34)

Broader class of u-gauges. Most features of the u-gauge survives permutations of

columns. For instance, instead of the alternating signature metric (2.11), we may take

g = diag(−, · · · ,−︸ ︷︷ ︸
k

,+, · · · ,+︸ ︷︷ ︸
k

) , (2.35)

and define light-cone coordinates by

wm = (−1)k−1(xm+k + xm) , vm = (−1)k−1(xm+k − xm) . (2.36)

One of the useful features of all u-type gauges is that the Jacobian factors arising from the

computation of amplitudes are always powers of the R factor defined in (2.24), although

the numerical value of R does depend on the particular gauge.

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
8

There are (2k)!/(k!)2 different ways to distribute (−1) and (+1) in the diagonal entries

of the metric. An overall flip of the signs is irrelevant, so there are (2k − 1)!/(k!(k − 1)!)

inequivalent metrics. Given a fixed metric, there are k! inequivalent ways to pair the

coordinates to define light-cone coordinates. To sum up, the number of different u-type

gauges is (2k − 1)!/(k − 1)!.

Among all possibilities, we will mostly focus on the two choices we mentioned explicitly

above. Both of them generalizes to arbitrary k straightforwardly. The alternating signature

gauge defined (2.11), (2.13) is the only choice which respects the cyclic symmetry. For this

reason we will call this gauge “u-cyclic gauge”. As we will see later, the other gauge defined

by (2.35), (2.36) is convenient when we examine the factorization of A2k into two copies of

Ak+1 when k is odd. We will call this choice “u-factorization gauge”.

Lambda-parity in the u-gauge. Let us examine how the lambda parity is reflected in

the u-gauge. We will show that, for odd k, the lambda parity induces the exchange,

wm ↔ vm . (2.37)

For notational convenience, we will work in the u-factorization gauge, but the same argu-

ments hold in all u-type gauges.

With a usual gauge fixing in the particle basis [18, 19], the C-matrix is given by

C =
(
I | O

)
, OOT = I . (2.38)

In the light-cone basis, the C-matrix translates to

Ĉ =
(
I −O | I +O

)
. (2.39)

Note that the following identities hold for odd-dimensional orthogonal matrices:

det(O) = ±1 =⇒ det(I ∓O) = 0 . (2.40)

When det(O) = −1, a GL(k) gauge transformation gives rise to

Ĉ →
(
I | (I −O)−1(I +O)

)
=
(
I | U

)
. (2.41)

This establishes the relation between the u-gauge and the usual gauge in the particle basis.

The other branch with det(O) = +1 is related to the det(O) = −1 branch by

det(−O) = −det(O). The sign flip has the same effect as flipping the signs of all λαm
for m = k + 1, · · · , 2k. Up to an overall SO(2k) rotation, this is the same as the ex-

change (2.37). Thus we have proved that the lambda parity induces the exchange of wm
and vm.

3 Tree amplitudes

3.1 4-point

The momentum conservation in the particle basis reads,

P = −λ1λ1 + λ2λ2 − λ3λ3 + λ4λ4 = 0 , (3.1)

– 8 –
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where we suppressed the spinor indices. In terms of the Lorentz scalars, 〈ij〉, we obtain

〈12〉
〈34〉 =

〈23〉
〈14〉 = −〈31〉

〈24〉 = σ = ±1 , (3.2)

〈12〉2 + 〈23〉2 − 〈31〉2 = 0 . (3.3)

The sign factor σ in (3.2) specifies a branch of OG4. Without loss of generality, we will

work in the σ = +1 branch for the rest of this subsection.

In the light-cone basis, the gauge-fixed C-matrix and the metric are (u = u12)

Ĉ =

(
1 0 0 u

0 1 −u 0

)
, ĝ =

1

2


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (3.4)

In the particle basis,

C =

(
1 1 −u u
u −u 1 1

)
, g = diag(−,+,−,+) . (3.5)

To avoid confusion, we put hats on the objects in the light-cone basis.

In the evaluation of the Grassmannian integral, the kinematic delta-function gives

δ(C · λ) = JB4 δ3(P ) δ(u− u∗) . (3.6)

The value of u∗ is determined by (2.24):

u∗ =
2〈w1w2〉

〈w1v1〉+ 〈w2v2〉 =
〈23〉 − 〈31〉
〈12〉 = − 〈12〉

〈23〉+ 〈31〉 . (3.7)

The equality of three expressions follow from (3.2) with σ = +1 and (3.3). The Jacobian

factor in (3.6) is

JB4 =
〈v1v2〉

2
= −(〈23〉+ 〈31〉) . (3.8)

The fermionic delta function gives

δ(C · η) = JF4 δ
6(Q) =

(
4

〈v1v2〉

)3

δ6(Q) . (3.9)

The denominator at u = u∗ is

1

M1M2

∣∣∣∣
u=u∗

=
1

(−2u∗)(1− u2
∗)

=
(〈23〉+ 〈31〉)2

4〈12〉〈23〉 . (3.10)

Collecting all ingredients, we reproduce the standard form of the 4-point amplitude,

A4 =
δ3(P )δ6(Q)

〈12〉〈23〉 . (3.11)
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3.2 6-point

It is well known that the Grassmannian integral for the 6-point amplitude is fully localized

by the delta functions and leaves no contour integral. In the particle basis, the gauge-fixed

C matrix in the (+)-branch is

C+ =

 1 1 −u12 u12 −u13 u13

u12 −u12 1 1 −u23 u23

u13 −u13 u23 −u23 1 1

 , g = diag(−,+,−,+,−,+) . (3.12)

The kinematic delta-function can be transformed into

δ(C · λ) = JB6 δ3(P ) δ3(umn − u∗mn) . (3.13)

The value of u∗mn is determined by (2.24) and the Jacobian factor is JB6 = 1/2. The

fermionic delta function gives

δ(C · η) = JF6 δ
6(Q)δ3(ζ+) , ζI+ =

1

2
εmnpu∗mnθ̄

I
p . (3.14)

The Jacobian factor from the fermionic delta function is

JF6 =

(
4

R

)3

, (3.15)

with R defined in (2.24). The denominator at uij = u∗ij is

1

M+
1 M

+
2 M

+
3

∣∣∣∣
umn=u∗mn

=
1

8(u∗13 − u∗12u
∗
23)(u∗23 − u∗12u

∗
13)(u∗12 − u∗13u

∗
23)

. (3.16)

Collecting all ingredients, we obtain the result of the Grassmannian integral in the u-gauge:

4 δ3(P )δ6(Q)δ3(ζ+)

R3(u∗13 − u∗12u
∗
23)(u∗23 − u∗12u

∗
13)(u∗12 − u∗13u

∗
23)

. (3.17)

The full amplitude is the sum of the contributions from the two branches related to each

other by λ-parity. As explained in the previous section, for odd k, λ-parity exchanges

the two types of light-cone coordinates. In terms of the super-space variables, the ex-

change means

wm ↔ vm , θ̄m ↔ θmI , ζI+ ↔ ζI− =
1

2
εmnpū

mn
∗ θpI . (3.18)

The explicit form of the C-matrix in the conjugate branch is

C− =

 −1 1 ū12 ū12 ū13 ū13

−ū12 −ū12 −1 1 ū23 ū23

−ū13 −ū13 −ū23 −ū23 −1 1

 . (3.19)
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Summing up the two terms, we obtain the full 6-point amplitude:

A6 =δ3(P )δ6(Q)
4

R3

(
δ3(ζ+)

(u∗13 − u∗12u
∗
23)(u∗23 − u∗12u

∗
13)(u∗12 − u∗13u

∗
23)

+
δ3(ζ−)

(ū13
∗ − ū12

∗ ū
23
∗ )(ū23

∗ − ū12
∗ ū

13
∗ )(ū12

∗ − ū13
∗ ū

23
∗ )

)
, (3.20)

The planar 6-point amplitude can be factorized by two 4-point amplitudes in three

different channels. At first sight, it is not clear how the result (3.20) can exhibit the

factorization properties. Remarkably, it is possible to show that the consecutive minors

from the two branches combine to produce the desired physical poles. In the u-gauge,

we have

M+
1 M

−
1 =

(
4

R

)2

p2
123 , M+

2 M
−
2 = −

(
4

R

)2

p2
234 , M+

3 M
−
3 =

(
4

R

)2

p2
345 , (3.21)

where p2
ijk··· = (pi + pj + pk + · · · )2. A proof of this relation and discussion on its gauge

(in)dependence is presented in appendix A.1.

3.3 8-point

Contour integral. As discussed in section 2.2, the general solution to C · λ = 0 in a

u-gauge is

ûmn(z) = u∗mn +
z

2
εmnpqū

pq
∗ . (3.22)

The Grassmannian integral reduces to a contour integral in z through the relation

δ8(C · λ) = JB8 δ3(P )

∫
dz δ6(umn − ûmn(z)) , (3.23)

with JB8 = 1/(2R). Up to an overall sign, the full 8-point amplitude is obtained when the

contour separates the poles of M1 and M3 from those of M2 and M4 [18].

The minors of C-matrix can be at most quartic in ûmn(z). But, explicit computations

show that all quartic terms can be absorbed into the square of the quadratic polynomial,

ûmn(z)ûpq(z) + ûmp(z)ûqn(z) + ûmq(z)ûnp(z) = −z εmnpq . (3.24)

Similarly, all cubic terms can be rewritten as the same polynomial (3.24) times a linear

combination of ûmn(z). These two statements imply that all minors of C, including the

consecutive ones, are quadratic in z:

Mi(z) = aiz
2 + biz + ci = ai(z − z+

i )(z − z−i ) . (3.25)

The fermionic delta function produces

δ12(C · η) =

(
4

R

)3

δ6(Q)

3∏
I=1

(AIz
2 +BIz + CI) , (3.26)
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where the fermion bilinears (AI , BI , CI) are defined as follows:

1

4
εmnpqu∗mn

(
θ̄Ip +

1

2
zεprxyū

xy
∗ θ

rI

)(
θ̄Iq +

1

2
zεqszwū

zw
∗ θsI

)
=

1

4

[
−z2εmnpqū

mn
∗ θpIθqI + zεmnpqεprxyū

∗
mnū

xy
∗ θ

rI θ̄Iq + εmnpqu∗mnθ̄
I
p θ̄
I
q

]
= AIz

2 +BIz + CI . (3.27)

We wish to evaluate the contour integral

I(C) =

∮
C

dz

2πi

∏3
I=1(AIz

2 +BIz + CI)∏4
i=1(aiz2 + biz + ci)

. (3.28)

Note that, as far as the evaluation of the integral is concerned, the distinction between

(ai, bi, ci) and (AI , BI , CI) is immaterial. To streamline notations, we replace (AI , BI , CI)

(I = 1, 2, 3) by (ai, bi, ci) (i = 5, 6, 7) in what follows. To illustrate the ideas behind the

computation, we find it useful to introduce a family of integrals of similar form,

In(C) =

∮
C

dz

2πi

∏2n+1
j=n+2(ajz

2 + bjz + cj)∏n+1
i=1 (aiz2 + biz + ci)

. (3.29)

We can recover the original integral (3.28) by choosing n = 3.

These integrals share two crucial features. One is that they are homogeneous functions

of the variables (ai, bi, ci) with degree (−1) for i = 1, . . . , n + 1 and (+1) for i = n +

2, . . . , 2n+ 1. The other is that they are invariant under the SL(2,C) transformation,

z → ez + f

gz + h
,

(
e f

g h

)
∈ SL(2,C) . (3.30)

It is instructive to consider the generators of SL(2,C) one by one:

Dilatation: z → etz , (3.31)

Inversion: z → −1/z , (3.32)

Translation: z → z + ε . (3.33)

The change in z can be reproduced exactly by the change in the coefficients:

Dilatation: (ai, bi, ci)→ (etai, bi, e
−tci) , (3.34)

Inversion: (ai, bi, ci)→ (ci,−bi, ai) , (3.35)

Translation: (ai, bi, ci)→ (ai, bi + 2aiε, ci + biε+ aiε
2) . (3.36)

The integral (3.29) should be invariant under the SL(2,C) action on z, provided that the

contour transforms accordingly. It follows that the result of the integral should be invariant

under the change of coefficients listed above.
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To be specific, let us focus on the contribution of the contour C1 enclosing the two

poles z±1 only. The residue theorem gives

In(C1) =
1

a1

(
Nn(z+

1 )

Dn(z+
1 )
− Nn(z−1 )

Dn(z−1 )

)
1

z+
1 − z−1

=
1

a1Dn(z+
1 )Dn(z−1 )

· Nn(z+
1 )Dn(z−1 )−Nn(z−1 )Dn(z+

1 )

z+
1 − z−1

, (3.37)

where we defined

Nn(z) =

2n+1∏
j=n+2

Mj(z) , Dn(z) =

n+1∏
i=2

Mi(z) , Mi(z) = aiz
2 + biz + ci . (3.38)

The product Dn(z+
1 )Dn(z−1 ) is easy to evaluate. Using the relations

z+
1 + z−1 = − b1

a1
, z+

1 z
−
1 =

c1

a1
, (3.39)

we find

Dn(z+
1 )Dn(z−1 ) = a−2n

1

n+1∏
i=2

∆1i , (3.40)

where we defined short-hand notations

∆ij = β2
ij − αijγij , αij = bicj − bjci , βij = ciaj − cjai , γij = aibj − ajbi . (3.41)

The new symbols (αij , βij , γij) obey simple SL(2,C) transformation rules,

Dilatation: (αij , βij , γij)→ (e−tαij , βij , e
tγij) , (3.42)

Inversion: (αij , βij , γij)→ (γij ,−βij , αij) , (3.43)

Translation: (αij , βij , γij)→ (αij − 2βijε+ γijε
2, βij − γijε, γij) , (3.44)

so that ∆ij is fully invariant under SL(2,C).

To summarize what we have done so far,

In(C1) =
1∏n+1

i=2 ∆1i

· (a1)2n−1Nn(z+
1 )Dn(z−1 )−Nn(z−1 )Dn(z+

1 )

z+
1 − z−1

, (3.45)

The remaining z±1 -dependent part may look complicated as both Nn(z) and Dn(z) are

degree 2n polynomials in z. However, since we only need their values at the two solutions

of M1(z) = 0, we can take the polynomial quotients. If we denote the quotient and the

remainder by

Nn(z) = Qn(z)M1(z) +Rnz + Sn , Dn(z) = Q̃n(z)M1(z) + R̃nz + S̃n , (3.46)

the integral gives

In(C1) =
(a1)2n−1(RnS̃n − SnR̃n)∏n+1

i=2 ∆1i

. (3.47)
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The denominator
∏n+1
i=2 ∆1i has degree (2n; 2, · · · , 2; 0, · · · , 0). It remains to express the

numerator Fn ≡ (a1)2n−1(RnS̃n − SnR̃n), which has degree (2n − 1; 1 · · · , 1; 1, · · · , 1), in

an SL(2,C) invariant way. To do so, we introduce a few additional SL(2,C)-invariants:

Jijk = det(ai, bj , ck) = 6a[ibjck] ,

Kij = bibj − 2(aicj + ciaj) ,

Lijkl = αijγkl − 2βijβkl + γijαkl . (3.48)

For n = 0, the integral vanishes trivially as the contour can be pushed to infinity

without encountering any poles. For n = 1, the numerator Fn should be of degree (1; 1; 1)

in three groups of variables and anti-symmetric with respect to the last two. It appears

that J123 is the only SL(2,C)-invariant with required properties. An explicit computation

indeed shows that

F1 = −J123 . (3.49)

For n = 2, we look for a polynomial of degree (3; 1, 1; 1, 1) with total symmetry under

permutations in the same group and anti-symmetry between the last two groups. The

answer indeed respects all the desired properties:

F2 =
1

2
K1(2J3)1(4K5)1 +

1

2
K11J1(2

(4K3)
5) . (3.50)

Finally, we turn to n = 3, our original problem. There are a number of ways to combine Jijk,

Kij , Lijkl to construct SL(2,C)-invariants with correct symmetry properties. Remarkably,

the answer can be organized using only two such combinations:

F3 = −K11J12
(5J13

6J14
7) +

3

4
L1

(2
1

3J4)1(5L
1

6
1

7) . (3.51)

A remark is in order. The integrals In(C) are defined in such a way that if we set, say,

M3(z) = M5(z), I2(C1) should reduce to I1(C1). In terms of Fn, we should have

F2(12345)|“3=5” = ∆13F1(124) . (3.52)

The reduction does not look obvious from the expression (3.50). Similarly, it is not obvious

how the reduction from I3 to I2 occurs:

F3(1234567)|“4=7” = ∆14F2(12356) . (3.53)

It is conceivable that the decompositions (3.50) and (3.51) are not unique, and some alter-

native decomposition will make the reduction more obvious.

8-point amplitude: the result. In summary, the 8-point amplitude can be written as

A8 = δ3(P )δ6(Q)(1 + π)JB8 J
F
8

(
F (1)

∆12∆13∆14
+

F (3)

∆31∆32∆34

)
, (3.54)
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+A8 =

I(C1) I(C3)

Figure 1. On-shell digrams for the 8-point amplitude collect residues from M1 and M3.

1

2

3

45

6

7

8

∂

+

=

+

++

(D13 = 0)

(D12 = 0)

(D14 = 0)

Figure 2. Poles of I(C1) correspond to boundary components of the on-shell diagram.

with the Jacobian factors

JB8 =
1

2R
, JF8 =

(
4

R

)3

. (3.55)

With the λ-parity operator π, the (1 + π) factor denotes the sum over two branches of the

orthogonal Grassmannian. In (3.54), we removed the subscript from F3 and and added

reference to the contour by F (i). Note that this form of the 8-point amplitude is valid in

any u-type gauges.

Physical and spurious poles. The 8-point amplitude (3.54) is the sum of two contour

integrals, I(C1) encircling the poles from M1 and I(C3) encircling the poles from M3. Each

term carries physical and spurious poles. The most convenient tool to analyze the pole

structure is the on-shell diagram pioneered by [5] and elaborated for ABJM amplitudes

in [23–25].

The on-shell diagram of ABJM amplitudes are built from two building blocks: a quartic

vertex and an internal line. The quartic vertex is precisely the 4-point amplitude (3.11),

and the internal line equates the kinetic variables of two legs from different vertices and

integrates (
∫
d2|3Λ).
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Figure 3. OG tableaux for I(C1).

The poles of the amplitude corresponds to boundaries of the on-shell diagrams. Each

on-shell diagram has five vertices. Barring disconnected diagrams, each vertex yields ex-

actly one boundary term. Figure 2 shows the five boundary terms from the on-shell diagram

for I(C1). Using the canonical coordinates for on-shell diagrams introduced in [23–25], we

can easily see which consecutive minors vanish as we approach each of the five bound-

ary components. To be specific, we adopt the coordinates of [24] associated with the

OG tableaux.

The tableau for I(C1) is depicted in figure 3. It can be translated to the C-matrix

according to the rules explained in [24]. Let Ci be the i-th column of the C-matrix. We

begin by setting the ‘source’ columns (C1, C2, C3, C5) to form an identity matrix. We assign

a coordinate tv to each vertex. To fill in the ‘sink’ columns (C4, C6, C7, C8), we consider all

paths from a source to a sink which may move upward and to the right but not downward

or to the left. The path picks up ± sinh(tv) if it passes through the vertex, or ± cosh(tv)

if it makes a turn at the vertex. The final matrix element is given by a polynomial of the

form, schematically,

Csource,sink =
∑
paths

∏
vertices

fv . (3.56)

We refer the readers to [24] for details. All we need here is the remarkable fact that the

consecutive minors are given by monomials of the sinh(t) factors.:

M1 = 0 , M2 = s1s2 , M3 = s2s3s4 , M4 = s4s5 , sv ≡ sinh(tv) . (3.57)

In these coordinates, the boundary operation amounts to taking one of the coordinate

variables to zero or infinity. The orientation of the untied diagram in the OG tableaux is

shown in figure 4.

To compare with the factorization channels in figure 2, it is convenient to rescale the

minors by an overall factor, M̃i = Mi/(s2s4),

M̃1 = 0 , M̃2 =
s1

s4
, M̃3 = s3 , M̃4 =

s5

s2
. (3.58)

The rescaled minor M̃4 vanishes in the limit s2 →∞ or s5 → 0. Through the prescriptions

in figure 3 and 4, the two limits give the two boundary diagrams on top of figure 2, which

in turn corresponds to the factorization channels for p2
123 and p2

567, respectively.
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(t ! 0) (t ! •)t

Figure 4. Boundary operation in terms of canonical coordinates.

In the contour integral obtained earlier, the simultaneous vanishing of M1 and M4, or

equivalently the ‘collision’ of poles from M1 and M4, would result in the vanishing of ∆14.

It is then natural to expect that ∆14, a polynomial of kinematic variables, is proportional

to p2
123p

2
567. In the u-gauge, we can explicitly verify the proportionality between ∆ij and

physical poles. By symmetry, we expect that all of the eight physical poles are indeed

associated with “collision” of roots of the minors:

p2
123p

2
567 ∝ R4∆14 , p2

234p
2
678 ∝ R4∆12 , p2

345p
2
781 ∝ R4∆32 , p2

456p
2
812 ∝ R4∆34 . (3.59)

The powers of R are fixed on dimensional ground. We leave the details of the verification,

including the numerical coefficients, to appendix A.2.

We can identify the poles for ∆13 = ∆31 in (3.54) as spurious poles. A standard

argument in the Grassmannian integral uses the fact that

A8 = I(C1) + I(C3) = −I(C2)− I(C4) .

Since ∆13 = ∆31 arises from I(C1) and I(C3) but not from I(C2) or I(C4), it must be

spurious. The physical poles (3.59), in contrast, appear in both contour prescriptions. A

related observation is that the on-shell diagram for ∆13 = 0 in figure 2 can cancel against

the same diagram from the boundary of I(C3) if sign factors are properly assigned.

We conclude this section with a few remarks on the generalization of the methods we

used. The u-gauge has some advantages over more familiar gauges based on Euler angles.

One of them is the decomposition of the fermionic delta-function,

δ3k(C · η) = JF2kδ
6(Q)

∏
I

ζI , JF2k =

(
4

R

)3

,

ζI =
1

2(k−2)!
εmnp1···pk−2u∗mn(θ̄Ip1 +ûp1q1θ

q1I) · · · (θ̄Ip(k−2)
+ûp(k−2)q(k−2)

θq(k−2)I) ,

(3.60)

with ûpq linear in the z coordinates in (2.33). Another advantage is that, as explained in

appendix A.2, the minors take a relatively simple form in the u-gauge.

Finally, in anticipation of the generalization to 10-point or higher amplitudes, we note

that the SL(2,C) invariants are related to cross-ratios. For instance,

∆14

K11K44
=

(z1+ − z4+)(z1− − z4−)(z1+ − z4−)(z1− − z4+)

(z1+ − z1−)2(z4+ − z4−)2
. (3.61)
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Higher point amplitudes would inevitably give rise to more complicated “collision of poles”

and it would be crucial to introduce higher dimensional analogs of ∆, J,K,L invariants to

work without explicitly solving quadratic equations for the z coordinates.

4 Soft theorem for ABJM amplitudes

Soft theorems in gauge (gravity) theories explore the limit in which one or more gluon

(graviton) approaches vanishing momenta. It is well-known that the soft limit of a non-

vanishing tree amplitude is divergent and that the leading divergent term takes a universal

form. More recently the sub-leading terms in the soft limit were calculated by using on-shell

techniques [36] and spurred renewed interest in soft theorems and their applications. In this

section, we derive a soft theorem for ABJM tree amplitudes, following a similar analysis

for three-dimensional supergravity theories [32] (see also [23] for an early consideration of

the double soft limit of ABJM theory).

Since the ABJM amplitudes are well-defined only for even number of external particles,

it is natural to define the double soft limit of the (2k+2)-point amplitude A2k+2 by scaling

the momenta of the last two particles,

(p2k+1, p2k+2)→ ε2(p2k+1, p2k+2) , (4.1)

and taking the ε→ 0 limit. In spinor variables, the scaling rule is

(λ2k+1, λ2k+2)→ ε(λ2k+1, λ2k+2) . (4.2)

In view of the soft theorems in gauge theories in various dimensions, we anticipate that

A2k+2 in the soft limit reduces to the A2k up to a universal soft factor S(ε),

A2k+2|ε→0 = S(ε)A2k . (4.3)

We will find that the soft factor consists of a leading and a sub-leading term:

S(ε) =
1

ε2
S(0) +

1

ε
S(1) . (4.4)

4.1 Recursion relation for soft limit

Following the approach of ref. [32], we will use the BCFW recursion relation for ABJM

amplitudes to analyze the double soft theorem. It is convenient to choose the two reference

particle in the BCFW recursion to be (2k) and (2k+1), namely, neighboring soft and hard

particles. The BCFW-shifted kinematic variables are given by

λ̂2k = cλ2k + sλ2k+1 , η̂2k = cη2k + sη2k+1 ,

λ̂2k+1 = sλ2k + cλ2k+1 , η̂2k+1 = sη2k + cη2k+1 . (4.5)

where c = cosh t and s = sinh t with c2 − s2 = 1 and z ≡ c+ s = et.

As explained in [32, 36] for soft graviton theorems, only one of the terms in the BCFW

recursion formula contributes to the divergent soft factors. In our notation, the term is
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L R
pf

2̂k + 1

2k + 2

1

2̂k

2

Figure 5. Factorization diagram

depicted in figure 5. Let us briefly review why this is the case. The recursion formula

schematically takes the form:

A2k+2 =
k∑
l=2

Â(L)
2l

H(z+, z−)

p2
f

Â(R)
2(k+2−l) , (4.6)

where Â(L)
2l and Â(R)

2(k+2−l) are two sub-amplitudes evaluated at BCFW-deformed momenta,

pf is the momentum through the factorization channel, and

H(x, y) =
x2(y2 − 1)

x2 − y2
(4.7)

is the BCFW kernel introduced in ref. [18].

When l = 2 as in figure 5, in the soft limit (p2k+1, p2k+2) → ε2(p2k+1, p2k+2), pf in

figure 5 becomes nearly equal to p1 such that 1/p2
f ≈ 1/p2

1 diverges by the on-shell condition

of p1. For l > 2 with generic assignment of external momenta, 1/p2
f remains finite. The

other factors Â(L)
2l , Â(R)

2(k+2−l), H(z+, z−) also remain finite.

Focusing on the term in figure 5, we need to evaluate the following amplitude

A2k+2|ε→0 =

∫
d3ηf

[
A4(Λ̂2k+1,Λ2k+2,Λ1, Λ̂f )(z+)

H(z+, z−)

p2
1,2k+1,2k+2

A2k(Λ̂f , · · · , Λ̂2k)(z+)

]
+ (z+ ↔ z−)

≡ A(+)
2k+2 +A(−)

2k+2 . (4.8)

In this diagram, the BCFW-deformed pf is given by

p̂f (z) = p2 + p3 + · · ·+ p2k−1 + p̂2k(z) = −p1 − p2k+2 − p̂2k+1(z) . (4.9)

The on-shell values z+, z− are the two solutions of the on-shell condition p̂f (z)2 = 0. We

can solve this condition order by order in ε by assuming that s = s0 + εs1 + ε2s2 + · · · and
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c = c0 + εc1 + ε2c2 + · · · , with c2 − s2 = 1. The solutions are given by [32]

c± = 1− ε2

2
α2
± +O(ε4) , (4.10)

s± = −εα± +
ε3

4

[
(α± + α∓)α2

± − (α± − α∓)β2
±
]

+O(ε5) , (4.11)

z± = 1− εα± −
ε2

2
α2
± +O(ε3) (4.12)

where αj and βj are defined by

α± =
〈1, 2k + 1〉 ± 〈1, 2k + 2〉

〈1, 2k〉 , β± =
〈2k, 2k + 1〉 ± 〈2k, 2k + 2〉

〈1, 2k〉 . (4.13)

As mentioned in [32], the (+) solution corresponds to σ = +1, i.e.

〈1, f〉 = 〈2̂k + 1, 2k + 2〉, 〈f, 2̂k + 1〉 = 〈1, 2k + 2〉, 〈f, 2k + 2〉 = −〈2̂k + 1, 1〉, (4.14)

and the (−) solution corresponds to σ = −1, i.e.,

〈1, f〉 = −〈2̂k + 1, 2k + 2〉, 〈f, 2̂k + 1〉 = −〈1, 2k + 2〉, 〈f, 2k + 2〉 = 〈2̂k + 1, 1〉. (4.15)

These relations will be useful when we calculate the soft limit.

Note that, in (4.5), the first correction terms carry ε2 weight relative to the leading

terms for bosonic variables, whereas the relative weight is ε1 for fermionic variables. In

order to compute the leading and sub-leading terms of the soft limit, we need only the

leading correction terms for bosonic variables, but we should keep track of leading and

next to leading corrections for fermions.

We first focus on the A(+)
2k+2 contribution to (4.8). Upon expansion in powers of ε, the

propagator in the factorization channel gives

1

(p1 + p2k+1 + p2k+2)2
= − 1

ε2
1

α+α−〈1, 2k〉2
, (4.16)

and the BCFW kernel gives

H(z+, z−) =
z2

+(z2
− − 1)

z2
+ − z2

−
=

α−
α+ − α−

. (4.17)

The bosonic factors in the 4-point amplitude reduce to

〈f, 2̂k + 1〉 = ε〈1, 2k + 2〉 ,
〈f, 2k + 2〉 = −〈2̂k + 1, 1〉 = −ε〈1, 2k + 2〉 ,

〈f, 1〉 = 〈2k + 2, 2̂k + 1〉 = ε2〈1, 2k + 2〉β+ . (4.18)

The fermionic delta function in the 4-point amplitude can be rewritten as

δ6(Q) = δ3

(
ηf +

〈2̂k + 1, 2k + 2〉
〈2̂k + 1, f〉

η2k+2 −
〈2̂k + 1, 1〉
〈2̂k + 1, f〉

η1

)
× δ3(−〈f, 2̂k + 1〉η̂2k+1 + 〈f, 2k + 2〉η2k+2 − 〈f, 1〉η1)

= δ3(ηf + χ)× (−ε3〈1, 2k + 2〉3)× δ3(η2k+1 + η2k+2 + ε(−α+η2k + β+η1)) . (4.19)
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Figure 6. Soft limit from the on-shell diagram perspective.

The first factor absorbs the fermionic integral in (4.8). The remaining factors combine with

the bosonic factors to produce O(1) and O(ε1) terms in the soft limit.

Collecting all ingredients, we find the z+ contribution to the soft limit of A2k+2:

A(+)
2k+2 =

δ3(η̃2k+1 + η̃2k+2)

2ε2〈1, 2k〉α+β+
A2k(η̃1, η2, η3, · · · , η2k−1, η̃2k) , (4.20)

where(
η̃1

η̃2k+2

)
=

(
1 εβ+

εβ+ 1

)(
η1

η2k+2

)
,

(
η̃2k

η̃2k+1

)
=

(
1 −εα+

−εα+ 1

)(
η2k

η2k+1

)
. (4.21)

Expanding explicitly in powers of ε, we obtain

A(+)
2k+2 =

δ3(θ̄k+1)

2ε2〈1, 2k〉α+β+
A2k

+
1

2ε〈1, 2k〉α+β+

[
1

2
εIJK θ̄

I
k+1θ̄

J
k+1ξ

K
+ + δ3(θ̄k+1) (β+R2k+2,1 − α+R2k+1,2k)

]
A2k .

(4.22)

where we introduced

ξ+ = −α+η2k + β+η1 , Ri,j = ηi
∂

∂ηj
. (4.23)

Note that Ri,j are R-symmetry generators of the ABJM theory. Note also that we could

have obtained exactly the same result if we had chosen external particles (2k + 2) and

(1) as the reference legs for the BCFW recursion. In this sense, the symmetry between

(2k, 2k + 1) and (2k + 2, 1) has been restored. This is natural from the on-shell diagram

perspective as illustrated in figure 6.

The computation of A(−)
2k+2 in (4.8) proceeds in the same way. The result is

A(−)
2k+2 = − δ3(θk+1)

2ε2〈1, 2k〉α−β−
A2k

+
1

2ε〈1, 2k〉α−β−

[
1

2
εIJKθ

I
k+1θ

J
k+1ξ

K
− +δ3(θk+1) (β−R2k+2,1 + α−R2k+1,2k)

]
A2k .

(4.24)
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with ξ− = −α−η2k + β−η1. Note that A(+)
2k+2 and A(−)

2k+2 are related to each other by

lambda-parity, Λ2k+2 → −Λ2k+2, in addition to the exchange (α+, β+)↔ (α−, β−).

Finally, we add the two contributions to obtain the leading and the sub-leading soft

factor of the double soft limit

A2k+2|ε→0 =

(
1

ε2
S(0) +

1

ε
S(1)

)
A2k +O(1) . (4.25)

where the leading and sub-leading soft factors are

S(0) =
1

2〈1, 2k〉

[
δ3(θ̄k+1)

α+β+
− δ3(θk+1)

α−β−

]
, (4.26)

S(1) =
1

2〈1, 2k〉α+β+

[
1

2
εIJK θ̄

I
k+1θ̄

J
k+1ξ

K
+ + δ3(θ̄k+1) (β+R2k+2,1 − α+R2k+1,2k)

]
+

1

2〈1, 2k〉α−β−

[
1

2
εIJKθ

I
k+1θ

J
k+1ξ

K
− + δ3(θk+1) (β−R2k+2,1 + α−R2k+1,2k)

]
.

(4.27)

4.2 Soft limit of the 6-point amplitude

For simplicity, we will use λ-parity operator π which is given by

π : Λ6 → −Λ6 . (4.28)

If we use this operator, we can consider only one part of 6-point amplitude.

The soft limit with particle 5 and 6 soft is realized in the light-cone basis as

w3 → εw3 , v3 → ε v3 . (4.29)

As we observed earlier, the bosonic kinematic invariants receive leading corrections at the

ε2 order. So we can freely use the 4-point kinematic relations. For example,

R =
1

2
(〈w1v

1〉+ 〈w2v
2〉+ 〈w3v

3〉) = 〈12〉+ 〈34〉+O(ε2) = 2〈12〉+O(ε2) , (4.30)

−1 = u∗12ū
12
∗ + u∗13ū

13
∗ + u∗23ū

23
∗ = u∗12ū

12
∗ +O(ε2) . (4.31)

In the soft limit, up to O(ε2) terms, the minors become

M+
1 = 2(u∗13 − u∗12u

∗
23) = 2u∗12(−ū12

∗ u
∗
13 − u∗23) =

2u∗12

R
(〈w3v

2〉+ 〈w3w2〉)

=
2u∗12

R
(−2ε)(〈45〉+ 〈46〉) = ε

(
−4〈14〉u∗12

R

)
β+ , (4.32)

M+
2 = −2(u∗23 − u∗12u

∗
13) = 2u∗12(ū12

∗ u
∗
23 + u∗13) =

2u∗12

R
(−〈v1w3〉+ 〈w1w3〉)

=
2u∗12

R
(2ε)(〈15〉+ 〈16〉) = ε

(
4〈14〉u∗12

R

)
α+ , (4.33)

M+
3 = −2(u∗12 − u∗13u

∗
23) = −2u∗12 . (4.34)
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Recall that the 6-point amplitude (3.20) contains two fermionic parts

δ3(ζ+) , δ6(Q6) . (4.35)

Neglecting O(ε2) terms, we observe that

δ3(ζ+) = (u∗12)3δ3

(
θ̄3 +

u∗23

u∗12

θ̄1 −
u∗13

u∗12

θ̄2

)
= (u∗12)3δ3(θ̄3 + ε(−α+η4 + β+η1)) . (4.36)

The second identity follows from

u∗23

u∗12

θ̄1 −
u∗13

u∗12

θ̄2 = −u∗23ū
12
∗ θ̄1 + u∗13ū

12
∗ θ̄2 = − 1

R

(
〈w3v

1〉θ̄1 + 〈w3v
2〉θ̄2

)
= − 1

2〈12〉 [〈w3|(|2〉 − |1〉)(η2 + η1) + 〈w3|(|4〉 − |3〉)(η4 + η3)]

= − 1

2〈12〉〈w3|(|2〉η1 − |1〉η2 + |4〉η3 − |3〉η4)

= ε(−α+η4 + β+η1) , (4.37)

where we used (super)-momentum conservation

−|1〉η1 + |2〉η2 − |3〉η3 + |4〉η4 = O(ε) , 〈14〉 = 〈23〉+O(ε2) ,

and Schouten identities.

We now move on to the δ6(Q6) factor. To check our result, it is better to start with

our conjecture. From our recursion relation result, A4 part gives the super-momentum

conservation like

Q̃4 ≡ −|1〉(η1 + εβ+η6) + |2〉η2 − |3〉η3 + |4〉(η4 − εα+η5)

= −|1〉
(
η1 + ε

〈45〉+ 〈46〉
〈14〉 η6

)
+ |2〉η2 − |3〉η3 + |4〉

(
η4 − ε

〈15〉+ 〈16〉
〈14〉 η5

)
= Q4 −

ε

〈14〉 (〈15〉|4〉η5 + 〈46〉|1〉η6 + 〈16〉|4〉η5 + 〈45〉|1〉η6)

= Q4 −
ε

〈14〉 ((〈14〉|5〉+ 〈45〉|1〉) η5 − (〈14〉|6〉 − 〈16〉|4〉) η6 + 〈16〉|4〉η5 + 〈45〉|1〉η6)

= Q6 − ε
〈45〉
〈14〉 |1〉(η5 + η6)− ε〈16〉

〈14〉 |4〉(η5 + η6)

= Q6 . (4.38)

The last equality holds on the support of (4.36). So we can conclude that the six-point

supermomentum conservation becomes the four-point supermomentum conservation with

next-leading soft correction. Finally, our 6-point amplitude becomes

A6|ε→0 = (1 + π)

(
32δ3(P )δ6(Q6)δ(ζ+)

R3M+
1 M

+
2 M

+
3

)
= (1 + π)

(
δ3(θ̄3 + ε(−α+η4 + β+η1))

2ε2〈14〉α+β+

δ3(P )δ6(Q̂4)

〈12〉〈14〉

)

=

(
1

ε2
S(0) +

1

ε
S(1)

)
A4 , (4.39)
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if we expand the second line of above equations in terms of ε up to leading and sub-

leading orders.

4.3 Soft limit of the 8-point amplitude

In this last subsection, we examine the soft limit of the 8-point amplitude we computed in

section 3.3. In view of the computational complexity, we content ourselves with checking

the leading order soft factor S(0).

8-point amplitude with u-cyclic gauge. To take the double soft limit of the 8-point

amplitude, we revisit the computation of section 3.3 with two slight changes. The first is

that, to be specific, we work in the u-cyclic gauge. The C-matrix is given by

C =


1 1 −û12 û12 −û13 û13 −û14 û14

û12 −û12 1 1 −û23 û23 −û24 û24

û13 −û13 û23 −û23 1 1 −û34 û34

û14 −û14 û24 −û24 û34 −û34 1 1

 , ûmn = ûmn(z) . (4.40)

In this gauge, the fermionic delta function reduces to

δ12(C · η) =
3∏
I=1

1

4!
εmnpq(θ̄Im + ûmi(z)θiI)(θ̄In + ûnj(z)θjI)(θ̄Ip + ûpk(z)θkI)(θ̄Iq + ûql(z)θlI)

= JF8 δ
6(Q)

3∏
I=1

(AIz
2 +BIz + CI) , JF8 =

(
4

R

)3

. (4.41)

The fermionic bilinear coefficients are

AI = −1

4
εmnpqū

mn
∗ θpIθqI , BI =

1

4
εmnpqεprxyū

∗
mnū

xy
∗ θ

rI θ̄Iq , CI =
1

4
εmnpqu∗mnθ̄

I
p θ̄
I
q .

(4.42)

The second, more important change compared to section 3.3 is that, in order to expose

the soft limit more clearly (more on this below), we use the contours C2 and C4 instead of

C1 and C3. Of course the two choices are equal up to an overall sign. In the notations of

section 3.3, the result is

A8 = δ3(P )δ6(Q)(1 + π)JB8 J
F
8

(
F (2)

∆21∆23∆24
+

F (4)

∆41∆42∆43

)
, JB8 =

1

2R
. (4.43)

The λ-parity operator π acts on A8 as

π : Λ8 → −Λ8 . (4.44)

The numerators F (2) and F (4) are given by

F (2) = −K22J21
(5J23

6J24
7) +

3

4
L2

(1
2

3J4)2(5L
2

6
2

7) , (4.45)

F (4) = −K44J41
(5J43

6J42
7) +

3

4
L4

(1
4

3J2)4(5L
4

6
4

7) , (4.46)

– 24 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
8

The physical poles are related to the ∆ij factors through

∆21 = −210

R4
p2

234 p
2
678 , ∆23 = −210

R4
p2

345 p
2
781 ,

∆41 = −210

R4
p2

123 p
2
567 , ∆43 = −210

R4
p2

456 p
2
812 . (4.47)

The derivation of these relations is essentially the same as the one given in appendix A.2.

The factor ∆24 corresponds to spurious poles.

When we consider the limit in which particles 7 and 8 become soft, divergent terms

come from ∆21 and ∆23. If we use the contours C1 and C3 as in section 3.3, the two

contributions are divided into two different on-shell diagrams. But, if we use the contours

C2 and C4, both contributions come from the residues of M2(z) and we can ignore the

residues of M4(z).

Soft limit of 8-point amplitude. In the lightcone coordinates, the the double soft limit

of the 7 and 8 is realized by

w4 → εw4 , v4 → ε v4 . (4.48)

In the ε→ 0 limit, u∗m4 and ūn4
∗ are of order ε. As we discussed earlier, kinematic invariants

receive ε2 corrections, so we can freely use the kinematic relations of the 6-point amplitude.

For example, the identity (2.29) in the soft limit implies that

1 + u∗12ū
12
∗ + u∗23ū

23
∗ + u∗13ū

13
∗ = 0 +O(ε2) . (4.49)

To the leading order in ε, the coefficients of minors Mi(z) are given by

a1 = 4εū12
∗ ū

34
∗ , b1 = 4(ū12

∗ u
∗
12 + 1) , c1 = 4εu∗12u

∗
34 ,

a2 = 2ε(−ū24
∗ + ū23

∗ ū
34
∗ + ū12

∗ ū
14
∗ ) , b2 = 2(u∗12ū

23
∗ + u∗23ū

12
∗ + u∗13 + ū13

∗ ) ,

c2 = 2ε(−u∗24 + u∗23u
∗
34 + u∗12u

∗
14) ,

a3 = 4εū14
∗ ū

23
∗ , b3 = 4(u∗23ū

23
∗ + 1) , c3 = 4εu∗14u

∗
23 ,

a4 = 2(−ū13
∗ + ū12

∗ ū
23
∗ ) , b4 = 2ε(u∗12ū

14
∗ + u∗23ū

34
∗ + u∗34ū

23
∗ + u∗14ū

12
∗ + u∗24 + ū24

∗ ) ,

c4 = 2(−u∗13 + u∗12u
∗
23) . (4.50)

If we focus on the leading order only, the supermomentum-conserving delta function

of A8 trivially reduces to that of A6:

δ6(Q8)|ε→0 = δ6(Q6) . (4.51)

The only non-vanshing contribution from the fermionic part in the numerator F (2) is

F (2)|ε→0 = −(b2)3c4α12α23 a5a6a7 + (b2)3a4γ12γ23 c5c6c7 . (4.52)

One can easily check that fermionic bilinears a4+I = AI and c4+I = CI become

AI |ε→0 = −1

2
εmnpū

mn
∗ θpIθ4I = −ζI− × θ4I , (4.53)

CI |ε→0 =
1

2
εmnpu∗mnθ̄

I
p θ̄
I
4 = ζI+ × θ̄I4 . (4.54)
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The soft limit of ∆ij gives

∆21 = −α12γ12 , ∆23 = −α23γ23 , ∆24 = (b2)2a4c4 . (4.55)

We observe that the following useful identities hold in the soft limit:

a4 = −M−1 , (4.56)

c4 = −M+
1 , (4.57)

α12 = −8ε
〈67〉+ 〈68〉

R
×M+

2 = −8εβ+
〈16〉
R

M+
2 , (4.58)

γ12 = −8ε
〈67〉 − 〈68〉

R
×M−2 = −8εβ−

〈16〉
R

M−2 , (4.59)

α23 = 8ε
〈17〉+ 〈18〉

R
×M+

3 = 8εα+
〈16〉
R

M+
3 , (4.60)

γ23 = 8ε
〈17〉 − 〈18〉

R
×M−3 = 8εα−

〈16〉
R

M−3 , (4.61)

where M±i here denote consecutive minors of C± contributing to A6.

Collecting all ingredients, we obtain the soft limit of the 8-point amplitude in the

leading order

A8|ε→0 = (1 + π)
25

R4

F (2)

∆21∆23∆24

= (1 + π)

(
25

R4

) −(b2)3c4α12α23 a5a6a7 + (b2)3a4γ12γ23 c5c6c7

(b2)2a4c4α12α23γ12γ23

= (1 + π)

(
25b2
R4

)(
− 1

a4γ12γ23
a5a6a7 +

1

c4α12α23
c5c6c7

)
= (1 + π)

(
b2R

32〈16〉

)[(
δ3(θ4)

2ε2〈16〉α−β−

)
32δ3(ζ−)

R3M−1 M
−
2 M

−
3

+
{

(+)↔ (−), θ ↔ θ̄
}]

=
1

ε2
S(0)A6 +O(1/ε) . (4.62)

In the final step, we used the following non-trivial identity

b2R

〈16〉 =
2R

〈16〉
(
u∗12ū

23
∗ + u∗23ū

12
∗ + u∗13 + ū13

∗
)

=
2

〈16〉
(
〈w1v

3〉 − 〈v1w3〉+ 〈w1w3〉 − 〈v1v3〉
)

= 8 . (4.63)
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A Closer look at factorization channels

A.1 6-point amplitude

From the Grassmannian integral point of view, the three factorization channels of the 6-

point amplitude originate from the product of minors from the two branches, when the
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minors are computed from the C matrix satisfying C · λ = 0. In the alternating signature

metric g = diag(−+−+−+), the precise relation can be written as

M+
ijkM

−
ijk = K(−1)i+j+kp2

ijk . (A.1)

The subscripts (ijk) denote a set of three columns from the C-matrix, and the superscript

(±) distinguishes the two branches. The prefactor K may depend on the gauge choice but

is independent of the choice of columns (ijk).

Since the relation (A.1) is fully gauge-covariant, it is sufficient to prove it in any

convenient gauge. Moving to another gauge alters the prefactor K, but the relation remains

intact. We find it convenient to begin with a slightly unfamiliar “λ-gauge”:

C±λ =

(
−λα1 λα2 −λα3 λα4 −λα5 λα6
±〈35〉 〈46〉 ±〈51〉 〈62〉 ±〈13〉 〈24〉

)
. (A.2)

This gauge was used in deriving a dual Grassmannian formula for ABJM amplitudes [29].

We can verify (A.1) by explicit computations. Two well-known facts reduces the

number of independent terms considerably. First, (ijk) and its complement (ijk) have

minors that are equal up to an overall factor [23, 24]. In the (k, k) signature, they satisfy

M+
ijkM

−
ijk = −M+

ijk
M−
ijk
. (A.3)

Second, the gauge (A.2) respects a permutation symmetry among odd labels and another

permutation symmetry among even labels. So, without loss of generality, we may only

check (ijk) = (246) and (ijk) = (456).

The first one trivially gives

M+
246M

−
246 = (〈24〉2 + 〈46〉2 + 〈62〉2)2 = (p2

246)2 . (A.4)

The second one is slightly more involved.

M+
456M

−
456 = (〈24〉〈45〉+ 〈56〉〈62〉)2 − 〈46〉2〈13〉2

= 〈24〉2〈45〉2 + 〈56〉2〈62〉2 + 2〈24〉〈45〉〈56〉〈62〉
− 〈46〉2(〈24〉2 + 〈46〉2 + 〈62〉2 − 〈25〉2 − 〈45〉2 − 〈56〉2)

= (〈24〉2 + 〈46〉2 + 〈62〉2)(〈45〉2 + 〈56〉2 − 〈46〉2)

+ 〈25〉2〈46〉2 − (〈24〉〈56〉 − 〈62〉〈45〉)2

= −p2
246p

2
456 . (A.5)

In the second step, we used momentum conservation. Note that the alternating signature

metric is reflected in the square of a partial sum of momenta as

p2
ijk = (−1)i+j〈ij〉2 + (−1)j+k〈jk〉2 + (−1)k+i〈ki〉2 . (A.6)

In the last step, we used Schouten identity to cancel the last two terms. To sum up, in the

gauge (A.2), we have proved the relation (A.1) with Kλ = p2
246.

– 27 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
8

Let us compute the gauge dependent factor K in (A.1) for the u-cyclic gauge used

in the main text. Other u-type gauges can be treated similarly. There are two ways to

compute K. We may either compute it directly in a u-gauge or find a gauge transformation

between a u-gauge and the λ-gauge (A.2). In the latter approach, we look for GL(3,C)

matrices G± satisfying

C±λ = G±C±u , (A.7)

where we recall the C-matrices in the u-cyclic gauge,

C+
u =

 1 1 −u12 u12 −u13 u13

u12 −u12 1 1 −u23 u23

u13 −u13 u23 −u23 1 1


u=u∗

,

C−u =

 −1 1 ū12 ū12 ū13 ū13

−ū12 −ū12 −1 1 ū23 ū23

−ū13 −ū13 −ū23 −ū23 −1 1


ū=ū∗

. (A.8)

The matrices G± turn out to take a simple form

G± =
1

2

(
∓λα1 + λα2 ∓λα3 + λα4 ∓λα5 + λα6
〈35〉+ 〈46〉 〈51〉+ 〈62〉 〈13〉+ 〈24〉

)
. (A.9)

To make contact with the u-cyclic gauge, we note that the first two rows of G± are light-

cone coordinates and the third row can be rewritten as

(〈35〉+ 〈46〉, 〈51〉+ 〈62〉, 〈13〉+ 〈24〉) =
R

2
(u∗23 − ū23

∗ , u
∗
31 − ū31

∗ , u
∗
12 − ū12

∗ ) . (A.10)

Using this and the identity (2.29), we find det(G±),

det(G+) = (R/4)2 [−(u∗23 − ū23
∗ )ū23

∗ − (u∗31 − ū31
∗ )ū31

∗ − (u∗12 − ū12
∗ )ū12

∗
]

= (R/4)2 [1 + (ū12
∗ )2 + (ū23

∗ )2 + (ū31
∗ )2

]
= (R/4)2 (M−246)u ,

det(G−) = (R/4)2 [(u∗23 − ū23
∗ )u∗23 + (u∗31 − ū31

∗ )u∗31 + (u∗12 − ū12
∗ )u∗12

]
= (R/4)2 [1 + (u∗12)2 + (u∗23)2 + (u∗31)2

]
= (R/4)2 (M+

246)u . (A.11)

The determinants allow us to determine Ku up to a sign,

p2
246 = Kλ = det(G+)det(G−)Ku = (R/4)4(M−246M

+
246)u = (R/4)4K2

u(p2
246) . (A.12)

To fix the sign and make a cross-check, we compute M+M− directly in the u-cyclic gauge.

We begin by rewriting p2
246 in the light-cone variables,

42p2
246 = 42(〈24〉2 + 〈46〉2 + 〈62〉2)

= 〈v1 + w1, v2 + w2〉2 + 〈v2 + w2, v3 + w3〉2 + 〈v3 + w3, v1 + w1〉2

= (v12 + w12 + 〈w1v2〉+ 〈v1w2〉)2 + (cyclic) . (A.13)
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We introduced the short-hand notations, vmn = 〈vmvn〉, wmn = 〈wmwn〉. Using the

identity R〈vmwn〉 = −vmpwnp, the above identity can be further rewritten as

(4R)2p2
246 = (Rv12 +Rw12 + v23w13 − v13w23)2 + (cyclic)

= R2(v12 + w12)2 + (v23w13 − v13w23)2 + (cyclic)

= R2(v2
12 + v2

13 + v2
23) +R2(w2

12 + w2
13 + w2

23) + 2R4

+ (v23w13 − v13w23)2 + (v32w12 − v12w32)2 + (v31w21 − v21w31)2

= (R2 + v2
12 + v2

13 + v2
23)(R2 + w2

12 + w2
13 + w2

23)

+R4 − (v12w12 + v13w13 + v23w23)2

= (R2 + v2
12 + v2

13 + v2
23)(R2 + w2

12 + w2
13 + w2

23) = R4M−246M
+
246 . (A.14)

In the second line, all cross terms cancelled out when summed over cyclic permutation. In

the third and fifth line, we used R2 = v12w12 +v23w23 +v31w31, which is the same as (2.29).

To conclude, we have verified (A.1) that in the u-cyclic gauge,

M+
ijkM

−
ijk =

(
4

R

)2

(−1)i+j+kp2
ijk . (A.15)

A.2 8-point amplitude

In this section, we work in the u-factorization gauge introduced in section 2.2:

C =


1 û12 û13 û14 1 −û12 −û13 −û14

−û12 1 û23 û24 û12 1 −û23 −û24

−û13 −û23 1 û34 û13 û23 1 −û34

−û14 −û24 −û34 1 û14 û24 û34 1

 , ûmn = ûmn(z) . (A.16)

As we mentioned earlier, the minors are quadratic polynomials in z. For later convenience,

we organize the coefficients of the polynomials with some extra shorthand notations,

M1 = z2 + (û2
12 + û2

13 + û2
14 + û2

23 + û2
24 + û2

34) + 1

= (1 + V )z2 + 2Uz + (1 +W ) ,

M2 = z2 − (û2
23 + û2

34 + û2
24) + (û2

12 + û2
13 + û2

14)− 1

= (1 + r2 − s2)z2 − 2(p2 − q2)z − (1 +m2 − n2) ,

M3 = z2 + (û2
12 + û2

34)− (û2
13 + û2

24 + û2
14 + û2

23) + 1

= (1 + r3 − s3)z2 + 2(p3 − q3)z + (1 +m3 − n3) ,

M4 = z2 − (û2
12 + û2

13 + û2
23) + (û2

14 + û2
24 + û2

34)− 1

= (1 + r4 − s4)z2 − 2(p4 − q4)z − (1 +m4 − n4) . (A.17)

We introduced

V =
1

2

∑
i,j

(ūij∗ )2 , U =
1

4

∑
i,j,k,l

εijklu
∗
ij ū

kl
∗ , W =

1

2

∑
i,j

(u∗ij)
2 , (A.18)
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and

r2 = (ū23
∗ )2 + (ū34

∗ )2 + (ū24
∗ )2 , s2 = (ū12

∗ )2 + (ū13
∗ )2 + (ū14

∗ )2 ,

p2 = u∗23ū
14
∗ − u∗24ū

13
∗ + u∗34ū

12
∗ , q2 = u∗12ū

34
∗ − u∗13ū

24
∗ + u∗14ū

23
∗ ,

m2 = (u∗23)2 + (u∗34)2 + (u∗24)2 , n2 = (u∗12)2 + (u∗13)2 + (u∗14)2 ,

r3 = (ū12
∗ )2 + (ū34

∗ )2 , s3 = (ū13
∗ )2 + (ū24

∗ )2 + (ū14
∗ )2 + (ū23

∗ )2,

p3 = u∗12ū
34
∗ + u∗34ū

12
∗ , q3 = u∗14ū

23
∗ + u∗23ū

14
∗ − u∗13ū

24
∗ − u∗24ū

13
∗ ,

m3 = (u∗12)2 + (u∗34)2 , n3 = (u∗13)2 + (u∗14)2 + (u∗23)2 + (u∗24)2 ,

r4 = (ū12
∗ )2 + (ū13

∗ )2 + (ū23
∗ )2 , s4 = (ū14

∗ )2 + (ū24
∗ )2 + (ū34

∗ )2 ,

p4 = u∗12ū
34
∗ − u∗13ū

24
∗ + u∗23ū

14
∗ , q4 = u∗14ū

23
∗ − u∗24ū

13
∗ + u∗34ū

12
∗ ,

m4 = (u∗12)2 + (u∗13)2 + (u∗23)2 , n4 = (u∗14)2 + (u∗24)2 + (u∗34)2 .

(A.19)

Note that rh + sh = V , ph + qh = U , mh + nh = W for each h = 2, 3, 4. The quantities

(αij , βij , γij) can be expressed in terms of (mh, nh, ph, qh, rh, sh) in a simple way:

α12 = −4 [(m2 + 1)q2 − n2p2] , γ12 = −4 [p2(r2 + 1)− q2s2] ,

β12 = 2 [(m2 + 1)(r2 + 1)− n2s2] ,

α13 = 4 [(m3 + 1)q3 − n3p3] , γ13 = 4 [p3s3 − q3(r3 + 1)] ,

β13 = −2 [(m3 + 1)s3 − n3(r3 + 1)] ,

α14 = −4 [(m4 + 1)q4 − n4p4] , γ14 = −4 [p4(r4 + 1)− q4s4] ,

β14 = 2 [(m4 + 1)(r4 + 1)− n4s4] . (A.20)

As explained in the main text, the two physical poles for p2
123 and p2

567 are captured by

∆14. We can verify this by an explicit computation. With a slight rewriting to facilitate

comparison with the u-gauge, we have(
4

R

)2

p2
123 =

(
4

R

)2

(〈12〉2 + 〈13〉2 + 〈23〉2)

= (1 + r4)(1 +m4)− 2(ū14
∗ u
∗
14 + ū24

∗ u
∗
24 + ū34

∗ u
∗
34)2 + s4n4

+
(
(ū12
∗ + u∗12) + 2(ū23

∗ u
∗
13 − ū13

∗ u
∗
23)
)

(ū24
∗ u
∗
14 − ū14

∗ u
∗
24)

+
(
(ū13
∗ + u∗13) + 2(ū32

∗ u
∗
12 − ū12

∗ u
∗
32)
)

(ū34
∗ u
∗
14 − ū14

∗ u
∗
34)

+
(
(ū23
∗ + u∗23) + 2(ū31

∗ u
∗
21 − ū21

∗ u
∗
31)
)

(ū34
∗ u
∗
24 − ū24

∗ u
∗
34)

≡ (1 + r4)(1 +m4)− 2(t4)2 + s4n4

+ (x12 + 2y12)z12 + (x23 + 2y23)z23 + (x31 + 2y31)z31 , (A.21)

and, similarly,(
4

R

)2

p2
567 =

(
4

R

)2

(〈56〉2 + 〈57〉2 + 〈67〉2)

= (1 + r4)(1 +m4)− 2(t4)2 + s4n4

+ (−x12 + 2y12)z12 + (−x23 + 2y23)z23 + (−x31 + 2y31)z31 . (A.22)
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Combining the two, we have

28

R4
p2

123p
2
567 =

[
(1 + r4)(1 +m4)− 2(t4)2 + s4n4 + 2(y12z12 + y23z23 + y31z31)

]2
− (x12z12 + x23z23 + x31z31)2 . (A.23)

On the other hand, we deduce from (A.20) that

1

4
∆14 = [(m4 + 1)(r4 + 1)− n4s4]2 − 4 [(m4 + 1)q4 − n4p4] [p4(r4 + 1)− q4s4] . (A.24)

A lengthy but straightforward computation shows that (A.23) and (A.24) are equal.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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