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1 Introduction

A significant feature of many gauge theories is the existence of topological solitons which

may appear when the gauge and/or global symmetries are spontaneously broken. Monopoles,

vortices and domain walls are by now familiar, and have found important applications in

vast areas of modern physics, such as cosmology, condensed matter physics and particle

physics. From another view point, the topological solitons can be seen as nontrivial so-

lutions of nonlinear differential equations. A direct way to study topological solitons is

solving such nonlinear equations exactly. For instance, a beautiful systematic method to

construct exact solutions for instantons has been well-established and is widely known as

the ADHM construction [1]. This is, however, a special case and for many other types of

solitons numerical calculations are needed to study solutions.

The present work concerns the so-called Abrikosov-Nielsen-Olesen (ANO) vortex as the

simplest topological soliton with finite energy in the (1+2)-dimensional theory. This vortex

appears as a topological defect [3] in Ginzburg-Landau theory [2] and may be viewed as a

static solution to the equations describing the 1+2 dimensional Abelian Higgs model [4].

In this theory all the vortex features depend on one dimensionless parameter λ = ms/mv:
1

the ratio of the Higgs boson mass ms to the vector boson mass mv. The intervortex force

is, roughly speaking, a superposition of an attractive force caused by the Higgs boson and

a repulsive force caused by the vector boson as seen in a scalar potential [10]

U(R) ≃ v2

2π

(
−q2sK0(msR) + q2mK0(mvR)

)
(1.1)

for a well-separated pair of vortices with a large distance R. Here, qs and qm stand for

a vortex scalar charge and a magnetic dipole moment, respectively. Therefore the force

with the longest correlation length is dominant and the vortices attract (repel) each other

for λ < 1 (λ > 1) [6]. The critical coupling λ = 1 is a rather special case where net

intervortex forces are exactly canceled thanks to the coincidence of the two coefficients,

qs = qm ≡ 2πC1. From a mathematical viewpoint, the Euler-Lagrange equations reduce

to the first order differential equation called the Bogomol’nyi-Prasad-Sommerfield (BPS)

equations for vortices saturating Bogomol’nyi bound, whose total energy is quantized as

Ek = |k|πv2 with the winding number k ∈ Z. In this critical case, the constant C1 appears,

for instance, in a potential for a pair of moving vortices [12]

Uλ=1(R, ~u) ≃ πv2 × C2
1K0(mvR)|~u|2 +O(|~u|4) (1.2)

with a relative velocity ~u, since only the magnetic field accepts a Lorentz boost and the

two forces are not canceled out. Unlike the remarkable cases of instantons and monopoles,

no analytic solutions for this BPS equation in flat spacetime have been found even at this

critical coupling. Thus only a few quantities are exactly calculable and a detailed study of

the vortices, for instance, the calculation of a value of C1 requires numerical analysis.

In this paper, to complement the numerical analysis, we propose a simple and straight-

forward, but new idea for analyzing vortices at critical coupling, where fields are expanded

1 λ/
√
2 is known as the Ginzburg-Landau parameter.
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perturbatively with respect to the winding number k ∈ Z around its origin k = 0. To

justify this perturbative expansion, (let us call it “small winding-number expansion”), the

BPS equations must be extended so that they allow a real winding number k ∈ R. Since

the BPS equations with an infinitesimal winding number |k| ≪ 1 can be exactly solved, we

can systematically perform perturbation calculations without tuning any parameters and

this perturbative expansion is supposed to work well as a practical tool. Here, we calculate

values of three typical quantities with λ = 1 including C1 as the most simple examples to

check this idea.

The constant C1 has often been calculated in the literature. De Vega & Schaposnik [5]

gave a semi-analytical study for axially-symmetric solutions with an arbitrary winding

number k ∈ Z>0, and constructed power-series expansions around a center of a vortex

and asymptotic expressions for the opposite side. These two can be determined by only

one constant Dk+1
k for the power-series expansion and Ck (Zk in their notation) for the

asymptotic expression. Comparing these parameters in a middle region, they obtained

the values: C1 = 1.7079 . . . and D2
1 = 0.72791 . . . . These values now seems to be widely

accepted in literature, for instance, C1 = 1.7079 appears in refs. [7, 11, 13, 15] and also in

a standard textbook of Vilenkin & Shellard [8]. However, we encounter a different value

for C1: C1 = 10.58/2π ≃ 10.57/2π ≃ 1.682 ∼ 1.684 which was obtained by Speight [10]

about twenty years later than de Vega & Schaposnik [5]. Furthermore, Tong [11] gave the

supergravity prediction C1 = 81/4 ≃ 1.68179 . . . which seems to agree well with Speight’s

C1. These values also seem to be accepted in literature, for instance, ref. [12] and another

standard textbook by Manton & Sutcliffe [9]. There exists a 1.5 % discrepancy between

old and new results.

In section2.6, we shall conclude that the correct value is the old one C1 = 1.7079 by

using two different kinds of numerical calculations with higher accuracy. In section4.2.3,

we reproduce this value by using the small winding-number expansion to verify its power.

This paper is organized as follows. In section2, we review the BPS vortex in the

Abelian-Higgs theory, and define an extended vortex function which allows the winding

number of non-integer, as a solution of the BPS equations. There a non-trivial integral

formula including the vortex function is derived and three typical constants Cν , Dν and

Sν for a vortex solution are introduced and their analytical and numerical properties are

discussed. In section3 we perform a small winding-number expansion of the vortex function

and the three constants using Feynman-like diagrams. Results obtained there are modified

in section4, using the Padé approximation to overcome problems with finite convergent

radii of the expansions. Summary and discussion are given in section5, and some useful

inequalities and details of the calculations are summarized in the appendices.

2 Review of ANO vortex at critical coupling

2.1 Set up for ANO vortex

The Abrikosov-Nielsen-Olesen (ANO) vortex is an elementary topological soliton in the

2+1 dimensional Abelian-Higgs model

L = − 1

4e2
FµνF

µν +
1

2
(Dµφ)

∗Dµφ− V (φ), (2.1)
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where φ is a complex scalar field, metric is ηµν = diag.(+1,−1,−1) and covariant derivative

is Dµ = ∂µ + iAµ. A scalar potential V (φ) is of the wine-bottle type

V (φ) =
λ2e2

8

(
|φ|2 − v2

)2
, (2.2)

which has a vacuum |φ| = v where the U(1) gauge symmetry is spontaneously broken. The

Higgs mechanism makes the scalar and the gauge fields massive. Their masses are given

by, ms = λ ev, mv = ev respectively. The spontaneously broken U(1) symmetry gives rise

to a soliton which is topologically stable object supported by π1(U(1)), of which element is

called a winding number. To require vanishing of the kinetic term |Diφ|2 = 0 at the spatial

infinity connects this winding number with the first Chern class

π1(U(1)) = Z ∋ k = − 1

2π

∫
d2xF12. (2.3)

This topological defects are called the Abrikosov-Nielsen-Olesen vortex.

In this paper, we take the critical coupling constant, λ = 1, as the simplest model,

where the two masses are identical, mv = ms ≡ m. Then we can perform the Bogomol’nyi

completion of an energy density H for static configurations as

H
∣∣
λ=1

=
1

2e2

{
F12 ±

e2

2

(
v2 − |φ|2

)}2

+
1

2
|(D1 ± iD2)φ|2

∓v2

2
F12 ±

i

2
ǫij∂i

(
φDjφ̄

)
, (2.4)

and a total mass (tension in higher dimension) of vortices, T , has a lower bound

T =

∫
d2xH

∣∣
λ=1

≥ ∓v2

2

∫
d2xF12 = ±πv2k. (2.5)

The inequality is saturated by BPS states which satisfy the BPS equations

∓F12 =
e2

2

(
v2 − |φ|2

)
, (D1 ± iD2)φ = 0. (2.6)

Without loss of generality we will consider the BPS equations with the upper sign. In order

to find general solutions of the BPS equations, it is useful to solve the second equation in

eq. (2.6) at first and, it can be solved with the complex coordinate z = x1 + ix2 and

introducing a smooth real function ψreg = ψreg(z, z̄)

Az̄ =
i

2
∂z̄ψreg, φ = v e−

ψreg
2 P (z), P (z) ≡

k∏

I=1

(z − zI), (2.7)

where an arbitrary holomorphic function P (z) can be set to be a monic polynomial without

loss of generality. Here zeros {zI ≡ x1I+ix2I ∈ C} of the Higgs field φ are topological defects

and identified as positions of vortices. One of the important features of BPS vortices is

that they feel no interactions since the attractive and repulsive force are exactly canceled.

So we can put BPS vortices anywhere as many as we like. Note that the smooth field

– 4 –
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ψreg must behave as ψreg ≈ log |P (z)|2 at the spatial infinity to obtain a finite energy, it is

convenient and more familiar to rewrite ψreg in terms of a singular field ψ,

ψ ≡ ψreg − log |P (z)|2 = − log
|φ|2
v2

, (2.8)

so that ψ vanishes at the spatial infinity. With this singular field, then, the first equation

in eq. (2.6) can be rewritten to be, so called, Taubes’ equation

−∂2
i ψ +m2

(
1− e−ψ

)
= J, (2.9)

with source terms J

J = J(~x) = 4π
k∑

I=1

δ2(~x− ~xI). (2.10)

Here we used that the magnetic field can be rewritten as,

−F12 = 2∂z∂z̄ψreg =
1

2

(
∂2
i ψ + J

)
(2.11)

which coincides with eq. (2.3) and k is the total winding number. Existence and uniqueness

of a solution for Taubes’ equation with a given arbitrary J have been established by [14].

With this solution, therefore, we obtain a complete solution for φ and Ai. In terms of a

solution of ψ and the source J , the energy densityHBPS for BPS vortices can be rewritten to

HBPS ≡ v2

4

(
J + ∂2

i σ[ψ]
)
, σ[ψ] ≡ ψ + e−ψ − 1 ≥ 0, (2.12)

which gives the lower bound in eq. (2.5). There is, however, no known exact solution for

this equation, even in the simplest case with k = 1.

2.2 Extension of Taubes’ equation and particle description

In a case that kI vortices coincide at ~x = ~xI for each I, the source terms are replaced with

J = 4π
∑

I

kIδ
2(~x− ~xI), k =

∑

I

kI . (2.13)

where kI indicates the winding number at ~x = ~xI . A request that the winding number

kI is positive integer is to give the single-valued Higgs field φ and Profiles of ψ and the

magnetic field in eq. (2.11) and the energy density in eq. (2.12) can be calculated without

constructing φ. If we omit constructing φ, therefore, we can formally extend Taubes’

equation with the generalized source terms

J = 4π
∑

I

νIδ
2(~x− ~xI), νI ∈ {ν |ν > −1, ν ∈ R}. (2.14)

Here the winding number kI is renamed νI to stress that νI can be non-integer and the

lower bound of the winding numbers will be discussed in section2.4. A ‘total mass’ of this

extended object is formally calculated as

TBPS =

∫
d2xHBPS = πv2 × ν, ν ≡

∑

I

νI , (2.15)
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which takes a negative value for ν < 0. Integrating the both sides of Taubes’ equation

eq. (2.9) we find the following identity corresponding to eq. (2.3)

ν =
1

4π

∫
d2x

(
∂2
i ψ + J

)
=

m2

4π

∫
d2x(1− e−ψ), (2.16)

which is no longer an element of π1(U(1)). In the rest of this paper, we will study this

extended Taubes’ equation with a generalized source term eq. (2.14) and its solution nu-

merically and analytically. This extension allows us to consider a Taylor expansion of the

solution with respect to the winding numbers as discussed in section 3, although we are not

specially interested in the solution with the winding numbers of non-integer.

Uniqueness of the solution for this extended Taubes’ equation can be easily shown as

appendix A.1. For instance, we know the trivial solution

ψ = 0 for J = 0. (2.17)

To show existence of the solution for the extended Taubes’ equation is difficult and out of

scope of this paper, and we just assume the existence of the solution here. Therefore, the

solution of ψ is a function with respect to a coordinate ~x, positions of vortices {~xI} and

their winding number {νI}, ψ = ψ(~x, {~xI , νI}). Furthermore we assume that the solution

is differentiable with respect to {νI}. Under this assumption, we can derive, for each I,

(−∂2
i +m2e−ψ)

∂ψ

∂νI
= 4πδ2(~x− ~xI) (2.18)

from Taubes equation eq. (2.9) with the source eq. (2.14). According to appendix A.1

the above equation show that the solution ψ is strictly increasing with respect to each νI ,

∂ψ/∂νI > 0. In the limit of the vanishing source J = 0, furthermore we find

lim
J→0

∂ψ

∂νI
=

4π

−∂2
i +m2

δ2(~x− ~xI) = 2K0(m|~x− ~xI |), (2.19)

where the modified Bessel function of the second kind K0(x) emerges as a two-dimensional

Green’s function. That is, in this limit a vortex solution is exactly solved and treated

as a linear combination of free massive particles and for small |νI | ≪ 1 at least, ψ is

approximated well everywhere as

ψ ≈ 2
∑

I

νIK0(m|~x− ~xI |). (2.20)

This is the starting point of the small winding-number expansion which will be discussed

in section 3.

In this particle description, it will be convenient to rewrite Taubes’ equation as

−∂2
i ψ +m2ψ = J +m2σ[ψ], σ[ψ] = ψ2

∞∑

n=0

(−1)n

(n+ 2)!
ψn, (2.21)

– 6 –
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with σ[ψ] as dimensionless self-interaction terms. Then, by applying the Green’s function

method to Taubes’ equation, we obtain2 an integral equation for ψ with Green’s function

G(~x) = K0(m|~x|),

ψ(~x) = 2
∑

I

νIG(~x− ~xI) +m2

∫
d2y

2π
G(~x− ~y)σ[ψ(~y)]. (2.22)

Since σ[ψ] ≥ 0 andK0(x) > 0 are always hold, we find that the solution of Taubes’ equation

must satisfy a fundamental inequality

ψ(~x) > 2
∑

I

νIK0(m|~x− ~xI |). (2.23)

2.3 Scaling argument and a physical size of a vortex

Let us consider the following Lagrangian in a two-dimensional Euclidean spacetime

LBPS = −1

2
(∂iψ)

2 −m2(ψ + e−ψ − 1) + Jψ, (2.24)

which induces Taubes’ equation as an equation of motion of ψ, and an action3 is

K = −
∫

d2xLBPS

∣∣∣
solution

+Kghost, (2.26)

where Kghost is introduced to cancel UV divergences of the kinetic term and the source

term and we set Kghost as, for instance,

Kghost = −
∫

d2x

(
1

2
(∂iϕ)

2 +
1

2
m2

0ϕ
2 − Jϕ

)
,

ϕ(~x) = 2
∑

I

νIK0(m0|~x− ~xI |). (2.27)

After this regularization we can apply the scaling argument to this action. For simplicity,

let us consider an axially symmetric case with the source J = 4πνδ2(~x). Since K is a

dimensionless quantity, the dimensional argument tells us

0 = m2 ∂K

∂m2
+m2

0

∂K

∂m2
0

(2.28)

By using equations of motion for ψ and ϕ, derivatives of K with respect to masses can be

calculated by

m2 ∂K

∂m2
=

∫
d2xm2

(
ψ + e−ψ − 1

)
= m2

∫
d2xψ − 4π ν,

m2
0

∂K

∂m2
0

= m2
0

∂Kghost

∂m2
0

= −
∫

d2x
m2

0

2
ϕ2 = −2πν2, (2.29)

2Here we used the fact that ψ vanishes at the spatial infinity.
3Substituting the solution, K becomes a function with respect to complex coordinates zI = x1

I + ix2
I

describing positions of vortices. With a limit of m0 → 0, this quantity gives a Kähler potential describing

the vortex moduli space [16] as

πv2
∑

I

νI |zI |2 + v2 lim
m0→0

K. (2.25)

At the limit m0 → 0, 1/m0 gives a IR cut-off and Kghost can be eliminated by Kähler transformations.

Actually one can confirm that the above Kähler potential gives Samols’ metric [17].

– 7 –
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where we used eq. (2.16). Therefore, we find the following formula [18]
∫

d2xψ =
2π

m2
× ν(ν + 2). (2.30)

As we seen the above this exact formula does not come from topological argument, but

from the scaling argument. To check numerical calculations we use this formula in this

paper. Thanks to this non-trivial identity combining eq. (2.16), the following integral is

calculated as
∫

d2x|~x|2HBPS

πv2
=

1

8π

∫
d2x|~x|2∂2

i σ[ψ] =

∫
d2x

2π
(ψ + e−ψ − 1) =

ν2

m2
, (2.31)

and a size of the vortex with the positive winding number ν > 0 can be naturally defined

with the energy density HBPS given in eq. (2.12) and calculated as,

RBPS ≡
√
2×

∫
d2x|~x|2HBPS∫
d2xHBPS

=
2
√
ν

m
for ν > 0, (2.32)

which turns out to be a key point in section 4. It is natural for the scaling argument to

determine a typical size of a soliton.

2.4 Axially symmetric solution

Let us consider a single vortex sitting the origin with the winding number ν, that is,

we consider a solution with the source term J = 4πνδ2(~x). Its configuration is axially

symmetric and described by a function ψ = ψ(mr, ν) with respect to a radial coordinate

r = |~x| and the winding number ν. The partial differential equation (2.9), therefore,

reduces to an ordinary differential equation

1

r

d

dr

(
r
dψ

dr

)
= m2(1− e−ψ) (2.33)

with the following two boundary conditions

lim
r→0

r
dψ

dr
= −2ν, lim

r→∞
ψ = 0. (2.34)

Even for the non-integer number ν, a set of the differential equation and the boundary

conditions defines an unique solution under assumption of its existence. Especially for

small |ν| ≪ 1, ψ is approximated in the full range of r ∈ R>0 as

ψ ≈ E1[ψ] ≡ 2νK0(mr), lim
ν→0

ψ

ν
= lim

ν→0

∂ψ

∂ν
= ψ1 ≡ 2K0(mr). (2.35)

See figure 1 for some examples of profile functions of N [ψ] which denotes ψ calculated

numerically. Here we assume that the solution ψ is smooth with respect to ν at ν = 0.

This assumption requires the solution to be extended for the negative winding number ν.

Since ∂ψ/∂ν > 0 as discussed in section 2.2, a lower bound of ν is shown by taking a

derivative of the both sides of eq. (2.30) as

0 <

∫
d2x

∂ψ

∂ν
=

4π

m2
(ν + 1), (2.36)
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Figure 1. Magnetic flux in the left panel and differences ∆ψ = N [ψ]− E1[ψ] in the right panel

that is, there exist no solution of Taubes’ equation with ν ≤ −1. We just assume the

existence of the solution with ν > −1 in this paper.

Note that we can show the following inequalities although we have no exact solu-

tion. Applying the discussion in appendix. A.1 to Taubes’ equation with the source J in

eq. (2.14), we find the solution ψ must be positive for ν > 0 and be negative for ν < 0, and

eq. (2.33) tells us that r dψ
dr is strictly increasing (decreasing) with respect to r for ν > 0

(ν < 0), and therefore the boundary conditions eq. (2.34) give lower and upper bounds as,

ψ > 0, −2ν < r
dψ

dr
< 0, for ν > 0,

ψ < 0, −2ν > r
dψ

dr
> 0, for − 1 < ν < 0. (2.37)

According to appendix A.1, the following inequality

(−∂2
i +m2e−ψ)

∂2ψ

∂ν2
= m2e−ψ

(
∂ψ

∂ν

)2

> 0, (2.38)

implies that ψ is a downward-convex function,

∂2ψ

∂ν2
=

1

ν

∂

∂ν

(
ν
∂ψ

∂ν
− ψ

)
> 0. (2.39)

Combining eq. (2.35) with this fact, we find that ψ/ν is strictly increasing with respect to

ν and furthermore we obtain

∂ψ

∂ν
>

ψ

ν
> 2K0(mr) > 0 for ν > 0,

0 <
∂ψ

∂ν
<

ψ

ν
< 2K0(mr) for − 1 < ν < 0. (2.40)

With this axially-symmetric solution ψ(~x) = ψ(r) with r = |~x|, the integral equation

eq. (2.22) reduces to

ψ(r) = 2νK0(mr) +m2

∫ ∞

0
ds sGF(r, s)σ[ψ(s)], (2.41)

where the reduced Green’s function GF(r, s) takes the following form

GF(r, s) =

∫
dθ

2π
K0

(
m
√
r2 + s2 − 2rs cos θ

)

= Θ(r − s)K0(mr)I0(ms) + Θ(s− r)K0(ms)I0(mr) (2.42)

– 9 –
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with the step function Θ(x) and the modified Bessel function of the first kind I0(x).

2.5 Observable parameters, Cν , Dν , Sν

2.5.1 Dν and Internal size Rin

To define the solution ψ of Taubes’ equation even with the positive non-integer winding

number ν, we have to consider a behavior of the solution around the core of the vortex

seriously. Note that in the massless limit m → 0, Taubes’ equation has a general solution4

with a positive real arbitrary constant Rin as,

lim
m→0

ψ = − log Y, Y ≡
(

r

Rin

)2ν

(2.43)

and with the finite mass m > 0, therefore, ψ can be expanded by m and we find an

expansion of ψ around the origin r = 0 in an unfamiliar form,

ψ = − log Y +
∞∑

n=1

Fn(Y )(mr)2n

≈ −2ν log(mr) + 2Dν +





1
4(mr)2 for ν > 0

−1
4
e−2Dν

(1+ν)2
(mr)2(1+ν) for − 1 < ν < 0

, (2.44)

where we treated mr and Y as if they were independent of each other, and a function

Fn(Y ) is independent of m and turns out to be a polynomial of order n with respect to Y

determined sequentially by solving Taubes’ equation as,

F1(Y ) =
1

4

(
1− Y

(1 + ν)2

)
, F2(Y ) =

Y

64

(
4

(2 + ν)2
− Y

(1 + ν)2

)
, · · · (2.45)

which must vanish in the limit ν → 0 for a finite radius r due to eq. (2.17). The dimen-

sionless constant Dν appeared in the expansion is related to Rin as5

Dν = ν log(mRin). (2.47)

Therefore the expansion of ψ can be defined by a pair of parameters {ν,Rin}. The unique-
ness of the solution with a given ν means, however, that to satisfy the boundary condition

at the spatial infinity, the constant Rin must take a certain value corresponding to each

value of ν, that is, a function Rin = Rin(ν), otherwise a function defined by the expansion

always glows up at a large r. In appendix A.2 this feature is analytically discussed and at

the present we find a pair of lower and upper bounds of Rin as

2
√
ν + 1

m
> Rin >

2

m

√
ν

e
for ν > 0. (2.48)

4Here we omit the boundary condition for the spatial infinity.
5 A relation between Dν for ν = k ∈ Z>0 and Dk+1

k defined by de Vega & Schaposnik [5] is

Dk+1
k =

4k

k + 1
exp(−2Dk), (2.46)

For instance, we numerically obtain D2
1 = 2 exp(−2 × 0.505360825 . . . ) = 0.72791247 . . . which coincides

with their value D2
1 = 0.72791.
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Figure 2. Profile of Dν for the full range of ν. Numerical Data Nsht[Dν ] are plotted by dots.

Dashed lines in the left panels describe En[Dν ] given in section 3. Dashed lines in the right panel

give the bounds given in eq. (2.48). P̂2[Dν ], P̂6[Dν ] plotted by a solid line are defined in section 4.

According to eq. (2.40) Rin and Dν/ν turn out to be strictly increasing functions with

respect to ν and take values at ν = 0

lim
ν→0

Dν

ν
= lim

r→0
(K0(r) + log r) = log 2− γ ≈ 0.115932,

lim
ν→0

Rin =
2e−γ

m
≈ 1.12292

m
, (2.49)

with Euler’s gamma γ. In figure 2, we plot a profile of Dν/ν. Note that there is an another

way to calculate Dν using the integral form eq. (2.41) as,

Dν = lim
r→0

(
ψ

2
+ ν log(mr)

)
= ν(log 2− γ) +

m2

2

∫ ∞

0
dssK0(ms)σ[ψ(s)]. (2.50)

These different two definitions of Dν will be used to double-check numerical calculations

of Dν .

Since the axially symmetric vortex solution we consider has the only one mass param-

eter m, we expect that the dimensionfull parameter Rin controlling a profile of the solution

should be the same order of the vortex size RBPS given in eq. (2.32). Thanks to eq. (2.48),

roughly speaking, we find actually RBPS ≈ Rin for large ν. We call Rin an internal size.

On the other hand Dν is directly related to a value of the action K with J = 4πνδ2(~x) in

the previous subsection. In the same way of eq. (2.29), we can calculate a derivative of K

with respective to ν,

∂K

∂ν
= −4π × lim

r→0
(ψ − ϕ) = 8πν log

(
m

m0

)
− 8π (Dν − ν(log 2− γ)) (2.51)

and by setting the mass of the ghost m0 to be m0 = 2e−γm, we obtain the following simple

relations,

Dν = − 1

8π

dK

dν
, K = −8π

∫ ν

0
dyDy. (2.52)
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Figure 3. Profile of Cν for small ν in the left panel and for large ν in the right panel. Numerical

Data Nsht[Cν ] are plotted by dots. Dashed lines in the both panels describe approximants of the

order n, En[Cν ], in terms of the winding-number expansion discussed in section 3. P̂3[Cν ] plotted

by a solid line and P̂1[Cν ] plotted by a dot-dash-line are defined in section 4.

2.5.2 Scalar charge Cν

Let us take m large conversely, that is, consider a infrared region r ≫ Rin ≈ 2
√
ν/m.

There, an asymptotic behavior of ψ can be treated as a fluctuation of a free massive scalar

field around the vacuum. Due to the axial symmetry, such a fluctuation is written with a

certain constant Cν ∈ R>0 as

ψ ≈ 2CνK0(mr). (2.53)

There is the similarity between this asymptotic form and the form of eq. (2.35) and the

uniqueness of the solution of Taubes’ equation indicates that the two constants Cν and ν

are in one-to-one correspondence. Actually, to satisfy the boundary condition at the origin

r = 0, the constant Cν must be a function with respect to ν and according to eq. (2.17),

Eq. (2.19) and Eq. (2.39) we find

lim
ν→0

Cν = 0, lim
ν→0

dCν

dν
= 1,

d2Cν

dν2
> 0. (2.54)

These property tell us that Cν/ν is strictly increasing with respect to ν and a lower bound

of Cν is given as Cν > ν. A profile of this function is shown in figure 3. According to the

integral equation eq. (2.41), Cν can be calculated by

Cν = lim
r→∞

ψ

2K0(mr)
= ν +

m2

2

∫ ∞

0
dssI0(ms)σ[ψ(s)]. (2.55)

Bringing this identity back, we can remove the explicit ν-dependence from the integral

equation eq. (2.41) as

ψ(~x) = 2CνK0(mr)−
∫ ∞

0
ds sGad(r, s)σ[ψ(s)], (2.56)

with an ‘advanced’ Green’s function6

Gad(r, s) = Θ(s− r) {K0(mr)I0(ms)− I0(mr)K0(ms)} ≥ 0. (2.57)

6Positivity of this quantity is easily shown since K0(r) (I0(r)) is strictly decreasing (increasing) with

respect to r.
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Using this integral equation eq. (2.56), the asymptotic behavior in eq. (2.53) is modified as

ψ = 2CνK0(mr)− 2C2
ν

∫ ∞

0
ds sGad(r, s)K0(ms)2 +O(e−3mr). (2.58)

Thanks to these two different forms of the integral equations for ψ eq. (2.41) and eq. (2.56),

we find lower and upper bounds as

2νK0(mr) < ψ < 2CνK0(mr). (2.59)

A one of purposes of this paper is to confirm the true value of C1.

2.5.3 Total scalar potential Sν

Finally let us consider the following definite integral7

Sν =
m2

2

∫
d2x

2π
(1− e−ψ)2, (2.60)

which is dimensionless and proportional to a total potential energy of the Abelian-Higgs

model at critical coupling,

Sν =
λ

E1

∂Eν

∂λ

∣∣∣
λ=1

=
2

E1

∫
d2xV (φ)

∣∣∣
λ=1,sol

, (2.61)

This quantity with ν > 0 satisfies

0 < Sν <
m2

2

∫
d2x

2π
(1− e−ψ) = ν, (2.62)

and according to eq. (2.17) and eq. (2.19) we find

lim
ν→0

Sν = lim
ν→0

dSν

dν
= 0, lim

ν→0

d2Sν

dν2
= 2. (2.63)

Thanks to eq. (2.40) we find that Sν is also an increasing function with respect to ν and

according to the profile of Sν shown in figure 4 an ‘energy’ per an unit winding number

Sν/ν is also an increasing function with respect to ν, and this property gives

Sν1+ν2 > Sν1 + Sν2 . (2.64)

This inequality is consistent with the well known property of type II (type I) vortices, that

is, intervortex forces are repulsive (attractive) for the coupling λ > 1(λ < 1).8

2.6 Numerical data

We numerically calculate values of Cν , Dν , Sν in most of the range of ν as ν =

1/20, 1/10, · · · , 500, 1000 using mainly the shooting method. These data are listed in ta-

ble. 1. We will denote these data as Nsht[Cν ], Nsht[Dν ] and Nsht[Sν ] for Cν , Dν , Sν re-

7This quantity also appeared as a fundamental constant, c = 2S1 ≈ 0.830707,in eq. (5.2) of a paper [19].
8 It is natural to expect the following inequalities on values of total energies Ek for axially-symmetric

vortex-solutions,

Ek1+k2

>
<Ek1

+ Ek2
for λ>

< 1, (2.65)

which induces the inequality (2.62). To the best of our knowledge, there is no known mathematical proof

for these inequalities although they are quite reasonable.
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Figure 4. Profile of Sν for the full range of ν. Numerical Data Nsht[Sν ] are plotted by dots.

Dashed lines in the left panels describe En[Sν ] given in section 3. P̂3[Sν ] plotted by a solid line and

P̂1[Sν ] plotted by a dashed-line are defined in section 4.

ν Cν Dν Rin Sν

1/20 0.05152300 0.007221252 1.155375 0.002320344⋆

1/10 0.1061386 0.01714170 1.186986 0.008668711⋆

1/5 0.2249350 0.04429221 1.247899 0.03070642⋆

1/2 0.6633334 0.1736933 1.415364 0.1444002⋆

1 1.707864 0.5053608 1.657584 0.4153533

2 5.336582 1.443305 2.057831 1.085081

3 11.86421 2.615596 2.391367 1.832041

4 22.61080 3.948209 2.683313 2.619544

5 39.31961 5.402536 2.946174 3.432922

10 317.5504 13.88300 4.008030 7.704638

20 5424.053 34.27687 5.550253 16.68079

50 1284274. 107.9305 8.659094 44.65765

100 5.455139×108 250.0538 12.18905 92.38242

200 2.607156×1012 568.9475 17.19704 189.1678

500 4.568733×1019 1650.717 27.15154 482.7929

1000 6.065189×1027 3647.519 38.37932 975.6104

Table 1. Numerical Data of Cν , Dν(Rin) and Sν . All data are sufficiently stable values and we

double-checked them except for data added stars.

spectively. In section 4, we use these data as references to show how the winding-number

expansion introduced in section 3 works well. The other purpose of this subsection is to

settle the problem on the numerical value of C1. We need, therefore, numerical calculations

with high accuracy. To show accuracy of our numerical data to readers, let us enter into

details of the numerical calculations we performed.

Note that there exist two kinds of strategies in the shooting method and we observe a

big difference in usability between them. We calculate numerical solutions of ψ in a region

{r |ǫ ≤ r ≤ L} where we set m = 1 and take ǫ = 10−2n+1 and L = 2
√
ν + p log 10 with

p, n = 8 ∼ 9 referring to the flux size Rflux given in eq. (2.32). The first strategy is to take
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r = ǫ as the initial point of the calculation and fine-tune the parameter Dν so that a profile

of ψ satisfies the boundary condition at r = L and read Cν from a profile of ψ at r = L.

Since the initial conditions are given by a pair {ν,Dν}, an incorrect pair always makes a

profile function blow up at large r. The second one is to take r = L as the initial point

and fine-tune the parameter Cν so that ν = −(rψ′/2) at r = ǫ and read Dν at r = ǫ. In

this strategy the profile function is controlled by the only one initial parameter Cν which

is related to ν in one-to-one correspondence thanks to dCν/dν > 1. With the sufficiently

large L, therefore, a profile function with an arbitrary Cν always gives a certain solution

corresponding to a certain ν, without the profile blowing up, and thus this strategy gives

a function ν = f(Cν). Thanks to this property, it is easy to create a computer program

for tuning Cν automatically with a given ν and arbitrary precision. We take the second

strategy in this paper although the first strategy was taken9 in Speight’s paper [10].

As we explained above, numerical data Nsht[Cν ], Nsht[Dν ] for Cν , Dν are directly ob-

tained. To double-check those data, we also use the integral formulas eq. (2.55) and

eq. (2.50) for Cν , Dν respectively, to obtain different data N ′
sht[Cν ], N

′
sht[Dν ]. We regard

|N ′
sht[X]/Nsht[X]− 1| with X = Cν , Dν , as errors of these data and plot them in the right

panel of figure 5. For instance, we obtain as double-checked numbers,

Nsht[C1] = 1.707864175

Nsht[D1] = 0.505360825378 (2.66)

for ν = 1 and the numerical data listed in table. 1 have been double-checked in this

sense. Therefore we conclude that the numerical result C1 = 1.7079 given by de Vega and

Schaposnik is correct. Thanks to the non-trivial identity in eq. (2.30), we can estimate

accuracy of the profile functions itself by calculating the following quantity

δ =

∣∣∣∣
1

ν(ν + 2)

{∫ L

ǫ
drrN [ψ] + 2N [Cν ]

∫ ∞

L
drrK0(r)

}
− 1

∣∣∣∣ , (2.67)

and we plotted this in the right panel of figure 5. Note that we observe that the precision

of Nsht[Cν ] generally get worse than those of δ,Dν as shown in figure 5. The precision

of calculations in Speight’s paper seems to be less than six digits and we guess that his

result C1 ≈ 1.683 has an error of O(10−2) ∼ O(10−3) which is consistent with the other

numerical results including ours.

We obtain also a stable numerical value of S1 with long digits

Nsht[S1] = 0.4153533072562, (2.68)

by the shooting method. To perform double check of the values of Sν , we also use the

relaxation method as the other numerical calculation. In the relaxation method, we in-

troduce a relaxation time τ and extend ψ(~x) to be dependent on τ , ψ = ψ(~x, τ), and

modify the equations of motion by adding a friction term ∂ψ/∂τ with an appropriate sig-

nature. With an appropriate initial function of ψ, ψ(r, τ = 0) = 2νK0(r) for instance,

9He stated there as “Hence, all numerical solutions blow up at large r, and even though a1 and b2 were

tuned to six decimal places, the Runge-Kutta algorithm could not shoot beyond r = 10.”
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Figure 5. Estimated numerical errors: The left panel plots errors of numerical data calculated by

the relaxation method from those calculated by the shooting method as, |Nrlx[X]/Nsht[X]−1| with
X = Cν , Dν , Sν . The right panel plots errors of numerical data in terms of the shooting method

itself as, |N ′

sht
[Cν ]/Nsht[Cν ]− 1|, |N ′

sht
[Dν ]/Nsht[Dν ]− 1| and δ.

this friction term defines the time evolution of ψ and decreases an ‘energy’ of this system

defined in eq. (2.26). In principle, therefore, the true solution could be obtained with an

infinite τ as ψ(r) = limτ→∞ ψ(r, τ). As larger τ , we will get better accuracy in many

cases. In reality, beyond a certain finite τ , we observe stability of values of the observables

with small noises, since those accuracy can not be better than the calculation accuracy.

For instance we stopped the time evolutions at τ ≈ 4 × 104. The relaxation method is

convenient and powerful to solve (simultaneous) nonlinear (partial) differential equations

numerically. We need no fine-tuning of any parameters there. In the simple system we are

considering, however, the shooting method is more powerful to get precision. Generally

speaking, numerical data Nrlx[X] for X = Cν , Dν , Sν calculated by the relaxation method

get worse precision as shown as figure 5. We find |Nrlx[S1]/Nsht[S1]− 1| ≈ 5× 10−11 which

is guessed to be mainly an error of Nrlx[S1]. We also get Nrlx[C1] = 1.707864188 . . . and

Nrlx[D1] = 0.5053608253753 . . . again.

3 Small winding-number expansion

In the paper [5], de Vega and Schaposnik calculated C1 and D1 by a semi-analytical study.

Their strategy was essentially as follows. Let us divide the integrals in eq. (2.50) and

eq. (2.55) as

∫ ∞

0
=

∫ b

0
+

∫ ∞

b
, with b ≈ RBPS. (3.1)

The former integral is calculated by inserting the expansion eq. (2.44) which depends on

Dν and the latter is calculated by the expansion eq. (2.58) which depends on Cν . Then we

obtain simultaneous equations for Cν and Dν , and thus, approximate the values of Cν , Dν

as their solution.

In this section we will give a different expansion of the solution ψ using eq. (2.41) and

calculate them more straightforwardly and more systematically.
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3.1 ν-expansion of the vortex function ψ

In the normal case, we can not define an expansion of ψ with respect to the winding number

as a topological quantum number. In the previous section, we relax the winding number

ν from an integer to a real number and assume smoothness at ν = 0, and thus, we can

consider a Taylor expansion of the solution for ψ with respect to the winding number as,

with eq. (2.17)

ψ =
∞∑

n=1

νnψn. (3.2)

Since the approximate solution E1[ψ] = νψ1 in eq. (2.35) satisfies the boundary conditions

eq. (2.34) and has the same asymptotic form as eq. (2.53) for an arbitrary ν, we expect

that the following finite series of order n

En[ψ] ≡
n∑

m=1

νm ψm (3.3)

gives a good approximation and becomes better as the larger order n. Here, a higher-order

coefficient ψn for n ≥ 2 can be sequentially calculated by expanding the integral equation in

eq. (2.22), or eq. (2.41) for the axially symmetric case, with the first approximant E1[ψ], as

ψn(~x) = m2

∫
d2y

2π
G(~x− ~y)σn(~y), σ[ψ] =

∞∑

n=2

νnσn (3.4)

where expansion coefficients σn = σn(~x) in the interaction terms σ[ψ] are

σ2 =
1

2
ψ2
1, σ3 = −1

6
ψ3
1 + ψ1ψ2, · · · . (3.5)

Let us call this Taylor expansion a small winding-number expansion , or simply, a ν-

expansion. Note that in this expansion the winding number ν is fixed and higher order

corrections have no logarithmic singularity as

lim
r→0

r
dψn

dr
= 0 for n ≥ 2. (3.6)

The absence of the solution for ν ≤ −1 shown in eq. (2.36) might indicate that a radius of

convergence for the ν-expansion of ψ is less than 1. In section 4, we will discuss that this

fact is not a big problem.

We can perform calculations of the ν-expansion of ψ with the familiar technic using
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Feynman diagrams. The ν-expansion of ψ(~x) is given concretely as

ψ(~x) = 2ν × +
1

2
(2ν)2 ×

+(2ν)3 ×





1

2
− 1

6





+(2ν)4 ×





1

2
+

1

8

−1

6
− 1

4
+

1

24





+O(ν5), (3.7)

using conventions for Feynman diagrams,

G(~x) = K0(m|~x|) = , m2

∫
d2y

2π
G(~x− ~y)G(~y)2 = .(3.8)

Here diagrams of the order n have n external legs coming from the point-like vortex at the

origin ~x = ~0.

3.2 En[Cν ]

Let us approximate Cν analytically by using the ν-expansion,

Cν =
∞∑

n=1

cnν
n, c1 = 1. (3.9)

In principle, its coefficients cn can be obtained by taking the ν-expansions of the both sides

of eq. (2.55) and inserting ψn obtained in eq. (3.7) into the right hand side. Comparing

eq. (2.41) and eq. (2.55), however, we find that the coefficient cn can be calculated by only

replacing the propagator with I0(m|~x|) as

ψn(~x) = ⇒ cn =
1

2
(3.10)
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where the triangle symbol stands for

I0(m|~x|) = . (3.11)

For instance, coefficients c2, c3 are calculated as

c2 = =

∫ ∞

0
drr I0(r)K0(r)

2 =
π

3
√
3
≈ 0.604600,

c3 = 2 − 2

3

= 2× 11

432
π2 − 2

3
× π2

16
=

π2

108
≈ 0.0913852. (3.12)

See appendix B for details. Finally we obtain

Cν = ν +
π

3
√
3
ν2 +

π2

108
ν3 + 0.0126799ν4

−0.0013557(41)ν5 + 0.000781(22)ν6 +O(ν7), (3.13)

which gives a finite series En[Cν ] as an approximant of order n

En[Cν ] =
n∑

k=1

ck ν
k. (3.14)

As shown in figure 6, we observe that as the order n is larger, an error of En[C1], that is,

|En[C1]/Nsht[C1] − 1| is smaller. The sixth order approximant for ν = 1, E6[C1], gives a

quite nice value near to the numerical value Nsht[C1] in eq. (2.66) as

E6[C1] = 1.70809 . . . ,

∣∣∣∣
E6[C1]−Nsht[C1]

Nsht[C1]

∣∣∣∣ ≈ 1.0× 10−4. (3.15)

Unfortunately the accuracy of this value is worse than that of the value C1 ≈ 1.7079 given

by de Vega and Schaposnik. According to figure 6 a radius of convergence of the infinite

series, νc, is obviously finite and smaller than ten, νc < 10 and we can not judge whether

νc is larger than one or not. In section 4, we will overcome these problems.

3.3 En[Dν ]

Next, let us consider the ν-expansion of Dν ,

Dν =
∞∑

n=1

dnν
n, d1 = log 2− γ. (3.16)
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Figure 6. Errors of the n-th order approximants En[C1] and P̂n[C1] in the left panel, and En[C10]

and P̂n[C10] in the right panel. P̂n[Cν ] will be defined in section 4

According to eq. (2.50), the expansion coefficient dn for n ≥ 2, is calculated by reducing

diagrams in eq. (3.7) as,

ψn(~x) = ⇒ dn =
1

2
. (3.17)

We find therefore, by performing integrals numerically,

Dν = (log 2−γ)ν+ν2× +ν3 ×




2 − 2

3





+ν4 ×





5 − 10

3
+

1

3





+O(ν5)

= 0.115932ν + 0.585977ν2 − 0.333905ν3 + 0.244999ν4

−0.196695ν5 + 0.165065(79)ν6 +O(ν7) (3.18)

and the ν-expansion of Rin is also obtained as

(mRin)
2 = exp

(
2Dν

ν

)

= 1.26095 + 1.47777ν + 0.0238675ν2

−0.030728ν3 + 0.0300632ν4 − 0.02652(10)ν5 +O(ν6). (3.19)

Note that this quantity is known to have the lower bound 4e−1ν and the second coefficient

is near to this bound as 1.47777 > 4e−1 = 1.47152. Finite series

En[Dν ] =
n∑

k=1

dk ν
k (3.20)
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were expected to be good approximations, but we find their slow convergence as seen in

figure 2.

3.4 The ν-expansion of the formula eq. (2.30)

To check consistency of the ν-expansion of the formula eq. (2.30), we need some unfamiliar

formulas. There is a non-trivial identity as,

∫
d2xψn =

∫
d2xm2

−∂2 +m2
σn =

∫
d2xσn, (3.21)

and using eq. (B.1) we find

∫
d2xψ1ψn =

∫
d2xσn

m2

−∂2 +m2
ψ1 = −m2

∫
d2xσn

∂ψ1

∂m2
. (3.22)

Using the above formula, we also find with σ1 = 4πδ2(x)/m2,

∫
d2xψ1 =

4π

m2
,

∫
d2xψ2 =

1

2

∫
d2xψ2

1 = −2π
∂ψ1

∂m2

∣∣∣
r=0

=
2π

m2
(3.23)

and since ψ3 is a dimensionless quantity we can confirm

∫
d2xψ3 =

∫
d2x

(
−1

6
ψ3
1 + ψ1ψ2

)
=

∫
d2x

(
−1

6
ψ3
1 −

1

2
ψ2
1 m

2 ∂ψ1

∂m2

)

= −1

6

∂

∂m2

(
m2

∫
d2xψ3

1

)
= 0. (3.24)

To check eq. (2.30) for more higher order, similarly we must need the dimensional argument

again. Checking eq. (2.30) is, therefore, tautological in this sense.

3.5 En[Sν ]

To calculate the ν-expansion of Sν , at first we rewrite the definition of Sν by inserting the

identity in eq. (2.31)

Sν =
m2

2

∫
d2x

2π
(1− e−ψ)2 =

m2

2

∫
d2x

2π

(
ψ2 − ψ3 + · · ·

)

= ν2 +m2

∫
d2x

2π

(
1

2
(1− e−ψ)2 + 1− e−ψ − ψ

)

= ν2 +m2

∫
d2x

2π

(
−ψ3

3
+

ψ4

4
− 7

60
ψ5 +

1

24
ψ6 − 31

2520
ψ7 +O(ψ8)

)
. (3.25)
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Here we canceled a ψ2 term to avoid complicated and redundant calculations such as those

in section 3.4, and thus, substituting eq. (3.7) we easily find the following expansion,10

Sν = ν
∞∑

k=1

skν
k

= ν2 − 1

3
(2ν)3 × + (2ν)4 ×




−1

2
+

1

4





+(2ν)5 ×




−3

4
+

2

3
− 7

60





+O(ν6) (3.26)

and then, we obtain by reusing the calculations of integrals in eq. (3.18)

Sν = ν2 − 1.562605ν3 + 2.73802ν4

−5.05307ν5 + 9.59699ν6 − 18.5461(5)ν7 +O(ν8). (3.27)

A finite series of order n for Sν is defined as

En[Sν ] = ν
n∑

k=1

sk ν
k, s1 = 1. (3.28)

Unfortunately we find, however, that these finite series do not work as approximations even

at ν = 1 as shown in figure 4 and it is inevitable to use some technique for obtaining good

approximations.

4 Padé approximations and Large ν behaviors

4.1 The bag model for large ν

The result of the vortex size RBPS in eq. (2.32) implies that the total magnetic flux of a

vortex is proportional to an area occupied by the flux for ν > 0,

∣∣∣∣
∫

d2xF12

∣∣∣∣ = 2πν =
m2

2
× πR2

BPS (4.1)

where m2/2 = e2v2/2 is the maximum of the magnetic field allowed by the BPS equations

eq. (2.6) for ν > 0. This fact evokes the liquid droplet model of nuclear structure, and

gives an intuitive explanation in our axially symmetric case for the Bradlow bound [20],

which means just that the area πR2
BPS must be less than the total area if we considered a

closed two-dimensional base space.

10Here a diagram of order n has n+ 1 external legs.
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Figure 7. Configurations of the magnetic flux − 2

m2F12 = 1 − e−ψ for ν = 9, 36, 81, 144 of which

radiuses are estimated to be mR = 6, 12, 18, 24 respectively.

In a paper [23], the size RBPS was obtained by a physically intuitive way using the

bag model proposed in [21, 22] for the large winding number ν. In the bag model, a

vortex configuration consists of an inside Coulomb phase, the outside vacuum in the Higgs

phase, and a thin domain-wall at r = R interpolating their phases. In the Coulomb phase,

the magnetic field takes a non-vanishing constant determined by the total magnetic flux

in eq. (2.3) with ν = k, and vanishes in the vacuum. By omitting a thickness of the

domain-wall, profiles of the Higgs field and the magnetic fields are approximated by

|φ|2 =
{

0 for r < R

v2 for r > R
, |F12| =

{
2ν
R2 for r < R

0 for r > R
, (4.2)

of which the total energy is calculated as

Tbag =
2πν2

e2R2
+

e2v4

8
πR2 ≥ πv2 × ν = TBPS. (4.3)

This energy is minimized just at R2 = 4ν/e2v2 = R2
BPS. Actually, we numerically observe

profiles of the magnetic field for large ν in figure 7. A profile of the domain-wall is almost

invariant with various values of ν. For large ν, therefore, a contribution to the total energy

Tbag form the domain-wall can be negligible.

Since a vortex configuration for large ν drastically changes around the domain-wall at

r ≈ R ≫ 1/m, we expect that the approximation for r ≪ Rin in eq. (2.43) is applicable

for r = R− ǫ < R with ǫ = O(1/m) as

O(1) ≈ ψ(R− ǫ) ≈ −2ν log (m(R− ǫ)) + 2Dν ≈ 2ν log

(
Rin

R

)
, (4.4)

and similarly the asymptotic behavior in eq. (2.53) is applicable for r = R+ ǫ

O(1) ≈ ψ(R+ ǫ) ≈ CνK0(m(R+ ǫ)) ≈ Cν

√
π

2mR
e−mR. (4.5)

Inserting R = RBPS = 2
√
ν/m, these estimations give large-ν behaviors of Cν and Dν as

Cν ≈ O(1)× ν
1
4 e2

√
ν , Dν ≈ ν

2
(log ν +O(1)) . (4.6)

– 23 –



J
H
E
P
1
1
(
2
0
1
5
)
0
7
3

We also estimate Sν as

Sν =
m2

2

∫
d2x

2π
(1− e−ψ)2 ≈ 1

4π
× π(mR)2 +

1

4π
×O(1)× 2πmR+O(R0)

≈ ν − β
√
ν +O(ν0). (4.7)

Not that the term proportional to
√
ν comes from contribution of surface of the vortex and

the coefficient β must be positive due to eq. (2.62). The above estimations for large ν will

become important clues to modify the approximations using the ν-expansion.

4.2 (Global) Padé approximations

Let us assume that we know only a finite series of order n,

En[F (ν)] =
n∑

k=0

fkν
k, (4.8)

as a part of a certain infinite series F (ν) and it behaves as almost an alternating series like

F (ν) = |f0|− |f1|ν+ |f2|ν2− . . ., and it seems to have a small radius of convergence ν ≈ νc.

To get a good approximation for ν > νc with such a series, it is powerful to use the Padé

approximation which replace the series by some rational functions, with n = m+ l,

En[F (ν)] = P(m,l)[F (ν)] +O(νm+l+1). (4.9)

where a Padé approximant of F (ν) is given by

P(m,l)[F (ν)] =

a0 +
m∑

n=1

anν
n

1 +

l∑

n=1

bnν
n

, (4.10)

where coefficients of these rational functions are determined so that they satisfies

dkF (ν)

dνk

∣∣∣
ν=0

=
dk

dνk
P(m,l)[F (ν)]

∣∣∣
ν=0

for k = 0, 1, · · · ,m+ l. (4.11)

Here the two sets {an} and {bn} are determined uniquely from the finite set

{f0, f2, · · · , fn+m}.
There is arbitrariness in a choice of (m, l) for the order n. The approximant P(m,l)[F (ν)]

behaves for large ν as

P(m,l)[F (ν)] ≈ am
bl

νm−l. (4.12)

Note that if we fix p = m − l to remove that arbitrariness, then n is restricted so that

n− p = 2l. In the case of p = 1 for example, we arrange the Padé approximants for all of

the order n as

P(1,0)[F (ν)],
√
P(2,0)[F (ν)2], P(2,1)[F (ν)],

√
P(4,2)[F (ν)2], · · · . (4.13)
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Figure 8. Poles and Zeros for Pn[Sν ]/ν
2 in the left panel, and for Pn[Dν ]/ν in right panel. We

observe common poles ν ≈ −0.5 for Pn[Sν ] and ν ≈ −1 for Pn[D] and a common zero ν ≈ −0.2 for

Pn[D]. A pair of a pole and an adjacent zero do not change a large-ν behavior remarkably.

4.2.1 P̂n[Sν ]

The series expansion for Sν seems to be almost alternative series, and according to config-

urations for the finite series En[Sν ] shown in the left panel of figure 4 we guess that the

radius of convergence is around |ν| ≈ 0.5 which implies, for instance, that the function Sν

has a singularity at ν ≈ −0.5. The Padé approximation can avoid such a singularity and

enlarge the radius of convergence. Let us take the following rational functions Pn[Sν ] with

respect to ν, as Padé approximants of the order n for Sν ,

P2[Sν ] = P(2,1)[Sν ] =
ν2

1 + 1.5626ν
,

P3[Sν ] = P(3,1)[Sν ] =
ν2 + 0.189609ν3

1 + 1.75221ν
,

P4[Sν ] = P(3,2)[Sν ] =
ν2 + 1.05188ν3

1 + 2.61449ν + 1.34739ν2
,

P5[Sν ] = P(4,2)[Sν ] =
ν2 + 1.34536ν3 + 0.0556454ν4

1 + 2.90796ν + 1.86162ν2
,

P6[Sν ] = P(4,3)[Sν ] =
ν2 + 1.94979ν3 + 0.69144ν4

1 + 3.5124ν + 3.44191ν2 + 0.814411ν3
. (4.14)

Here we have fixed arbitrariness on choice of the Padé approximants P(m,n)[Sν ] so that

all coefficients of the above are positive.11 As a result poles and zeros of these functions

turn out to sit only on the negative real axis of ν as shown in figure 8 and the rational

functions Pn[Sν ] have poles around ν ≈ −0.5 in common. Actually these functions give

good approximations in a wider range of ν as shown in figure 9. Note that these rational

functions behave as

P2n[Sν ] = O(ν), P2n+1[Sν ] = O(ν2), for large ν, (4.15)

and P2n[Sν ] give comparatively good approximations even for large ν. This property can

be understood if we take account of the behavior of Sν for large ν shown in eq. (4.7). Extra

11 This fact might be just by our good luck. We have no proof for existence and uniqueness of such a

choice in the all order n. At least, we have to avoid zeros and poles on the positive real axis of ν since we

know 0 < Sν < ν, although the arbitrariness remains under this restriction.
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Figure 9. Profiles of Pn[Sν ] in the left panel and their errors from numerical data of Sν calculated

by the shooting method, |Pn[Sν ]/Nsht[Sν ]− 1| in the right panel.

zeros ν ≈ −5.27 of P3[Sν ] and ν ≈ −23.4 of P5[Sν ] shown in figure 8 can be regarded as

disturbances for large-ν behaviors.

Let us consider the large-ν behavior more seriously. The large-ν behavior in eq. (4.7)

does not always mean that the function Sν has a branch cut. For an example, a function√
ν tanh(

√
ν) has no branch cut anywhere although it behaves

√
ν for large ν ∈ R>0. Here,

we just assume existence of a branch cut. For instance, a function

P̂1[Sν ] = ν − ν

√
1

1 + 2ν
(4.16)

has a branch point at ν = −1/2 and desirable behaviors as

P̂1[Sν ] =

{
ν2 +O(ν3) for ν ≪ 1/2

ν −
√

ν
2 +O(

√
ν
−1

) for ν ≫ 1/2
, (4.17)

and consequently it works as a quite good approximation for the full range of ν as shown

in figure 4. The Padé approximation taking account of informations for large ν is called

the global Padé approximation [24]. Note that an expansion of the following quantity is

also alternative series due to the singularity,

(
1− Sν

ν

)2

= 1− 2ν + 4.12521ν2 − 8.60125ν3

+18.0239ν4 − 37.857ν5 + 79.5748ν6 +O(ν7), (4.18)

Let us apply the Padé approximation to the above series or its squared quantity. According

to eq. (4.7), the above quantity behaves as O(ν−1) for large ν and this property fixes the

arbitrariness of Padé approximants completely. Addition to P̂1[Sν ] in the above, then, we

obtain the following functions as the global Padé approximants of Sν ,

P̂2[Sν ] = ν − ν 4

√
1

1 + 4ν + 3.74958ν2
,

P̂3[Sν ] = ν − ν

√
1 + 0.80192ν

1 + 2.80192ν + 1.47863ν2
,
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Figure 10. Errors |P̂n[Sν ]/Nsht[Sν ]− 1| of Global Padé approximations P̂n[Sν ] for Sν . Distortion

of a profile with n = 6, at ν = 1/20 is consistent to errors of Nsht[Sν ] itself shown in figure 5.

P̂4[Sν ] = ν − ν 4

√
1 + 0.697034ν

1 + 4.69703ν + 6.53772ν2 + 2.31356ν3
,

P̂5[Sν ] = ν − ν

√
1 + 1.11774ν + 0.064997ν2

1 + 3.11774ν + 2.17527ν2 + 0.0904502ν3
,

P̂6[Sν ] = ν − ν
4

√
1 + 1.81492ν + 0.525555ν2

1 + 5.81492ν + 11.5348ν2 + 8.60739ν3 + 1.63522ν4
,

(4.19)

which behave for large ν as

P̂n[Sν ] = ν − βn
√
ν +O

(
1√
ν

)
, (4.20)

with coefficients for n = 1, 2, · · · ,

{βn} = {0.707107, 0.718628, 0.736437, 0.740872, 0.847699, 0.75294, · · · }. (4.21)

At this stage we do not know whether βn converges to a true value of β. As we see in

figure 10, the global Padé approximation works well and P̂6[Sν ] has a quite small errors less

than 10−3 in the full range of ν. Even for small ν, the global Padé approximants P̂n[Sν ]

give the best result as shown in figure 11 and the best approximant P̂6[Sν ] gives

P̂6[S1] = 0.4153585 . . . ,
∣∣∣P̂6[S1]/Nsht[S1]− 1

∣∣∣ ≈ 1.3× 10−5. (4.22)

These are the satisfactory values enough as results with the small winding-number expan-

sion.12

12 We wish, although, to modify a slow convergence of the large-ν behavior if possible. Note that a

natural and probable expansion of Sν around the infinity ν = ∞ is

Sν = ν − β
√
ν +

∞∑

n=0

αn

(
√
ν)n

(4.23)

although our global Padé approximants P̂n[Sν ] set α2n = 0. If an actual expansion has non-vanishing α2n,

convergence of P̂n[Sν ] is interfered by this feature. An irregular behavior of P̂5[Sν ] shown in figure 10 might

be caused by this obstruction. This technical difficulty might be fatal unfortunately.
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Figure 11. Errors of S1 in the left panel, and S5 in the right panel.

Figure 12. Profiles and errors of Pn[Dν ]

4.2.2 P̂n[Dν ]

The ν-expansion of Dν given in eq. (3.18) also seems to be almost an alternating series

and have a finite radius of convergence as shown in figure 2. Hence let us consider Padé

approximations of En[Dν ]. We can fix arbitrariness of the Pad’e approximation by requiring

that all coefficients are positive as,

P3[Dν ] =
0.115932ν + 0.652038ν2

1 + 0.569826ν
,

P4[Dν ] =
0.115932ν + 0.67104ν2 + 0.0960493ν3

1 + 0.733739ν
,

P5[Dν ] =
0.115932ν + 0.706900ν2 + 0.297736ν3

1 + 1.04306ν + 0.176257ν2

P6[Dν ] =
0.115932ν + 0.728018ν2 + 0.419974ν3 + 0.0174966ν4

1 + 1.22522ν + 0.309917ν2
, (4.24)

which have a pole ν ≈ −1 in common as seen in figure 8. As shown in figure 12 Pn[Dν ]

give comparatively good approximations. To get better approximations, let us apply the

Padé approximation not to Dν it self, but to exp(2nDν/ν) with n = 1, 2, 4, then we obtain

P̂2[Dν ] =
ν

2
log

(
0.853276 + ν

0.676695

)
,

P̂3[Dν ] =
ν

2
log

(√
0.708551 + 1.66078ν + ν2

0.667557

)
,
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Figure 13. Errors in global Padé approximations for Dν .

Figure 14. Errors of D1 in the left panel, and D5 in the right panel.

P̂4[Dν ] =
ν

2
log

(
0.654559 + 1.60982ν + ν2

0.519101 + 0.668311ν

)
,

P̂5[Dν ] =
ν

2
log

(
4
√
0.511978 + 2.40006ν + 4.25790ν2 + 3.38280ν3 + ν4

0.670835

)
,

P̂6[Dν ] =
ν

2
log

(
2.17939 + 5.34930ν + 4.17049ν2 + ν3

1.72838 + 2.21671ν + 0.676831ν2

)
. (4.25)

These functions have the same behavior for large ν as eq. (4.6),

P̂n[Dν ] ≈
ν

2
log

(
ν

αn

)
, αn < e/4 ≈ 0.679570. (4.26)

Hence, as shown in figure 13 and figure 14, these give quite good approximations and errors

of P̂6[Dν ] are less than 10−3 in the full range of ν. The best approximant we obtained gives

P̂6[D1] = 0.5053639 . . . , |P̂6[D1]/Nsht[D1]− 1| ≈ 6.1× 10−6,

2 exp(−2P̂6[D1]) = 0.727908 . . . , (4.27)

which reproduces the numerical result presented by de Vega and Schaposnik. This value

with the similar accuracy was also obtained analytically in ref. [25].

4.2.3 P̂n[Cν ]

The ν-expansion of Cν in eq. (3.13) gives a quite good approximation for Cν , at least for

ν = 1 and we do not know whether the radius of convergence is larger than one or not. In
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this stage, therefore, it is not useful to apply the (ordinary) Padé approximation to En[Cν ].

Once we take account of the large-ν behavior of Cν given in eq. (4.6), however, we notice

that there exists a singularity at the infinity and we have to remove this at the first stage.

Let us consider the following function

C̃ν ≡
√
ν

2
sinh(2

√
ν) (4.28)

which has an infinite number of zeros on a negative real axis of ν and regular everywhere

except for an essential singularity at the infinity. The nearest next zero to the origin is

ν = −π2/4 ≈ −2.47. It is, therefore, natural to assume that a quantity Fν ≡ (Cν/C̃ν)
4

has an infinite number of poles (and zeros) on the negative real axis of ν. Actually we find

that an expansion of Fν gives an almost alternative series as,

Fν =

(
Cν

C̃ν

)4

= 1− 0.248268ν + 0.020833ν2 + 0.034017ν3

−0.0342630ν4 + 0.0226871ν5 +O(ν6). (4.29)

According to eq. (4.6), Fν must behave for large ν as

Fν =
const.

ν
+O(ν−2), (4.30)

which means that we removed the singularity at the infinity in success. Next, let us apply

the Padé approximation to the series in eq. (4.29) or its squared quantity, satisfying the

property eq. (4.30). We obtain,13

P̂1[Cν ] = C̃ν , P̂2[Cν ] = C̃ν
4

√
1

1 + 0.248268ν
,

P̂3[Cν ] = C̃ν
8

√
1

1 + 0.496535ν + 0.143244ν2
,

P̂4[Cν ] = C̃ν
4

√
1 + 0.712165ν

1 + 0.960432ν + 0.217611ν2
,

P̂5[Cν ] = C̃ν
8

√
1 + 0.600743ν

1 + 1.09728ν + 0.441534ν2 + 0.0481954ν3
,

P̂6[Cν ] = C̃ν
4

√
1 + 0.709639ν + 0.0702914ν2

1 + 0.957906ν + 0.287275ν2 + 0.017348ν3
. (4.32)

where we added P̂1[Cν ] to the above although it does not satisfy eq. (4.30). We observe

the large-ν behaviors of them except for P̂1[Cν ] as

P̂n[Cn] ≈ ωn
4
√
νe2

√
ν (4.33)

13There exists still arbitrariness on a choice of a function C̃ν . We can choose, for example,

C̃ν = ν cosh(2
√
ν). (4.31)

However, a Padé approximant of the 6-th order with this choice turn out to brake up due to emergence of

zeros or poles on the positive real axis of ν.
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Figure 15. Errors of global Padé approximants P̂n[Cν ] for Cν .

with coefficients

{ω2, ω3, · · · } = {0.354169, 0.318735, 0.336252, 0.342689, 0.354693, · · · }. (4.34)

In figure 15, we observe that these functions give nice approximants in the full range

of ν and modify En[Cν ] as shown in figure 6. Resultantly, even for C1, we succeeded in

reproducing the numerical result C1 = 1.7079 given by de Vega and Schaposnik as

P̂6[C1] = 1.7078629 . . . ,

∣∣∣∣∣
P̂6[C1]

Nsht[C1]
− 1

∣∣∣∣∣ = 7.2× 10−7. (4.35)

5 Summary and discussions

We considered the small winding-number expansion (the ν-expansion) of the solution of

the Taubes equation by extending the winding number, which is a topological quantum

number, to be a real number larger than −1. We confirmed that the ν-expansion is useful

to give good approximations of axially-symmetric vortex solutions in most of the range

allowed for the winding number. Finally we found that for the scalar charge C1 the best

approximate value in terms of the ν-expansion with the help of the Padé approximation

is P̂6[C1] = 1.7078629 . . . , which coincides with a value Nsht[C1] = 1.707864175, obtained

numerically by the shooting method. We judged that the result given by de Vega and

Schaposnik is correct, and Tong’s conjecture giving C1 = 8
1
4 ≈ 1.68 from superstring

theory perspective is incorrect as a vortex solution in the Abelian-Higgs model. Their

numerical similarity might suggest a certain universality.

The Abelian-Higgs model of critical coupling is just the simplest toy model to test

and establish usefulness of the ν-expansion. The idea of the ν-expansion is rather simple

and more straightforward than the strategy taken by de Vega & Schaposnik. As for BPS

states of vortices in further complicated systems like non-Abelian gauge-Higgs models or

of separated (parallel) multi-vortices, therefore, it is expected that the ν-expansion can

be straightforwardly applied to their analytical approximations. Since it is difficult to

apply the shooting method to such complicated systems, we guess that the role of the

ν-expansion will become more important there. The ν-expansion is also expected to be

powerful to analyze dependence on dimensionless parameters of solutions, like dependence
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on the number N and a ratio of two gauge couplings of U(N) = [U(1) × SU(N)]/ZN for

an U(N) vortex.

We expect that the ν-expansion can be applied to systems of non-critical coupling,

although it might not be a straightforward extension. Our final goal is to establish a

systematic tool to study the dynamics of vortices quantitatively without taking the critical

coupling limit. Since in the ν-expansion vortices are treated as singular particles (strings)

in a three(four)-dimensional spacetime, it will become possible to treat vortices of arbitrary

shapes and discuss their dynamics analytically and quantitatively if we can consider such

an extended ν-expansion.
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A Inequalities

A.1 Uniqueness of the solution

Let us show the uniqueness of the solution f(~x) of the following d-dimensional partial

differential equation defined by a strictly increasing function W(f) with respect to f and

a source term J as

−∂2
i f(~x) +W(f(~x)) = J(~x), (A.1)

where we require that f(~x) vanishes at the spatial infinity. Note that if there exists a region

Σf with its boundary ∂Σf for a certain scalar function f(~x) so that f(~x) satisfies

f(~x) < 0 for ~x ∈ Σ, f(~x) = 0 for ~x ∈ ∂Σ, (A.2)

which gives ~n · ~∂f(~x) ≥ 0 with a normal vector ~n of ∂Σ and then Stokes’ theorem tells us

the following inequality

∫

Σf

ddx∂2
i f(~x) =

∫

∂Σf

d~S · ~∂f(~x) ≥ 0. (A.3)

If we assume that there exist different two solutions f1(~x), f2(~x) for eq. (A.1), then there

exists the region Σδf for a difference δf = f1 − f2(or f2 − f1) and we can derive inconsis-

tency as,

0 ≤
∫

Σδf

ddx∂2
i δf(~x) =

∫

Σδf

ddx {W(f1(~x))−W(f2(~x))} < 0. (A.4)

Therefore, if there exist a solution of eq. (A.1), then it must be unique.
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Furthermore, let us consider a solution f(~x) with W(0) = 0 and J(~x) ≥ 0,

−∂2
i f(~x) +W(f(~x)) ≥ 0. (A.5)

If there exist a region Σf for this function f where W(f) < 0, then we find inconsistency

again

0 ≤
∫

Σf

ddx∂2
i f(~x) ≤

∫

Σf

ddxW(f(~x)) < 0. (A.6)

Such a solution f(~x) must be, therefore, positive semidefinite everywhere.

A.2 Sequence of sets of upper and lower bounds

Here let us modify the inequality eq. (2.37) for ν > 0.

I0 : ∞ > ψ > 0, 0 > P ≡ r
∂ψ

∂r
> −2ν, (A.7)

to obtain a stronger set of upper and lower bounds of them.

By integrating Taubes equation and P = rψ′, we find relations between P and ψ using

integrals as, with Y = (r/Rin)
2ν and setting m = 1,

ψ = Ψ[P ] ≡ lim
ǫ→0

{
−2ν log

(
ǫ

Rin

)
+

∫ r

ǫ

ds

s
P (s)

}
= − log Y +

∫ r

0

ds

s
(P (s) + 2ν),

P = P[ψ] ≡ −2ν +

∫ r

0
ds s

(
1− e−ψ(s)

)
. (A.8)

Let us assume that the following set of inequalities In

In : fM
n > ψ > fm

n , gMn > P > gmn , for all r ∈ R>0. (A.9)

with some given functions fM,m
n , gM,m

n satisfying

· · · ≥ fM
n−1 ≥ fM

n > fm
n ≥ fm

n−1 ≥ · · · ≥ fm
0 = 0,

0 = gM0 ≥ · · · ≥ gMn−1 ≥ gMn > gmn ≥ gmn−1 ≥ · · · ≥ gm0 = −2ν. (A.10)

Using these inequalities, we can construct an another set of inequalities as

Ψ[gMn ] > ψ > Ψ[gmn ], P[fM
n ] > P > P[fm

n ]. (A.11)

Therefore we obtain a set of stronger lower and upper bounds as In+1 by

gMn+1 = min
[
gMn ,P[fM

n ]
]
, gmn+1 = max [gmn ,P[fm

n ]] ,

fM
n+1 = min

[
fM
n ,Ψ[gMn ]

]
, fm

n+1 = max [fm
n ,Ψ[gmn ]] . (A.12)

Consistency of these inequalities requires that gMn+1 > gmn+1 and fM
n+1 > fm

n+1 which reduce

to, non-trivial inequalities

0 = gM0 > P[fm
n ], Ψ[gMn ] > fm

0 = 0. (A.13)
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This couple of inequalities turns out to give lower and upper bounds for Rin as follows.

The initial set of inequalities I0 gives

I1 : ∞ > ψ > max[0,− log Y ], min

[
r2

2
− 2ν, 0

]
> P > −2ν, (A.14)

and therefore we find the followings are required

0 > maxP[fm
1 ] → 2ν >

∫ Rin

0
drr

(
1−

(
r

Rin

)2ν
)

=
νR2

in

2(1 + ν)
,

0 < minΨ[gM1 ] → 0 <
r2

4
− log Y

∣∣∣
r=2

√
ν
= ν log

(
R2

ine

4ν

)
, (A.15)

and that is, Rin must satisfy

2
√
ν + 1 > Rin > 2

√
ν

e
, (A.16)

otherwise a function ψ can not satisfy the set of inequalities I0 and thus blows up at large

r. With Rin satisfying the above set of inequalities, the next set of inequalities I2 can be

consistently obtained as

I2 : max[0,− log Y ] < ψ <

{
r2

4 − log Y for r ≤ 2
√
ν

ν log
(
R2

ine
4ν

)
for r > 2

√
ν

,

min

[
r2

2
− 2ν, 0

]
> P >





−2ν + r2

2

(
1− Y

1+ν

)
for r ≤ Rin

−2ν +
νR2

in
2(1+ν) for r > Rin

. (A.17)

In principle, you can calculate I3, I4, . . . , sequentially as you like.

B Some integrals

Since the modified Bessel function of the second kind is a two dimensional Green’s function,

we can find the following relations

∫
d2xK0(m|~x− ~x1|)K0(m|~x− ~x2|)

=
2π

−∂2 +m2
K0(m|~x1 − ~x2|)

=

(
2π

−∂2 +m2

)2

δ2(~x1 − ~x2) = − ∂

∂m2

4π2

−∂2 +m2
δ2(~x1 − ~x2)

= −2π
∂

∂m2
K0(m|~x1 − ~x2|) =

π

m
|~x1 − ~x2|K1(m|~x1 − ~x2|) (B.1)

By using the integral formulas

K0(x) =

∫ ∞

0

dt

2t
e−

x
2 (t+

1
t ), I0(x) =

∫ 2π

0

dθ

2π
ex cos θ, (B.2)
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one can calculate the following definite integrals,

=

∫ ∞

0
drrI0(r)K0(r)

3 =

∫
d2x

2π
ex1K0(|~x|)3

=

∫
d2x

2π

dt1dt2dt3
8t1t2t3

e
x1−(t1+t2+t3)−

(x21+x22)

4

(

1
t1

+ 1
t2

+ 1
t3

)

=

∫ ∞

0

dt1dt2dt3

4t1t2t3

(
1
t1
+ 1

t2
+ 1

t3

)e−(t1+t2+t3)+
(

1
t1

+ 1
t2

+ 1
t3

)

−1

=
1

4

∫ ∞

0

du1du2
(1 + u1)(1 + u2)(u1 + u2)

=
π2

16
(B.3)

with t1 = su1, t2 = su2, t3 = s,

=

∫
d2xd2y

4π2
I0(|~x|)K0(|~x|)K0(|~x− ~y|)K0(|~y|)2

=
1

4

∫ ∞

0

dt1dt2dt3dt4
t1t2 + (t1 + t2)(t3 + t4)

e
−(t1+t2+t3+t4)+

(

1
t4

+ 1
t3+(1/t1+1/t2)

−1

)

−1

=
11π2

432
, (B.4)

=

∫ ∞

0
drrK0(r)

3 =

∫ ∞

0

dt1dt2dt3

4t1t2t3

(
1
t1
+ 1

t2
+ 1

t3

)e−(t1+t2+t3)

=
1

4

∫ ∞

0

du1du2
(1 + u1 + u2)(u1 + u2 + u1u2)

=
1

36

{
ψ(1)

(
1

3

)
+ ψ(1)

(
1

6

)
− 8π2

3

}
≈ 0.585977 (B.5)

where ψ(1)(x) = d2 log Γ(x)/dx2 is the digamma function, and

=

∫ ∞

0
drrK0(r)

4 =
7

8
ζ(3) ≈ 1.051800. (B.6)
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