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the scalar potential. We use them to identify the parameter regions which are stable up to

the Planck scale and find that in this case the quartic couplings of the Higgs potential can-

not be larger than 1 in magnitude and that the absolute values of the S-matrix eigenvalues

cannot exceed 2.5 at the electroweak symmetry breaking scale. Interpreting the 125 GeV

resonance as the light CP -even Higgs eigenstate, we combine stability constraints, elec-

troweak precision and flavour observables with the latest ATLAS and CMS data on Higgs

signal strengths and heavy Higgs searches in global parameter fits to all four types of Z2

symmetry. We quantify the maximal deviations from the alignment limit and find that

in type II and Y the mass of the heavy CP -even (CP -odd) scalar cannot be smaller than

340 GeV (360 GeV). Also, we pinpoint the physical parameter regions compatible with

a stable scalar potential up to the Planck scale. Motivated by the question how natural

a Higgs mass of 125 GeV can be in the context of a Two-Higgs-Doublet model, we also

address the hierarchy problem and find that the Two-Higgs-Doublet model does not offer

a perturbative solution to it beyond 5 TeV.
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1 Introduction

After the discovery of a scalar particle at the LHC [1, 2], one of the next questions is whether

this is the one Higgs particle predicted by the Standard Model (SM) or whether there are

more generations of SU(2) doublets, like it is the case for the fermions. In that sense, the

simplest and most straightforward extension of the SM would be the addition of another

Higgs doublet, the so-called Two-Higgs-Doublet model (2HDM) [3–5]. Furthermore, the

measured mass of this new scalar [6] is a peculiar value for the SM: it tells us that the

Higgs potential of this model cannot be stable up to very high energy scales [7, 8]. However,

there is the possibility that the electroweak vacuum may just end up being metastable. So

either one has to believe that we live in a metastable universe and then there is no need of

new physics beyond the SM, or one has to introduce an additional mechanism to stabilize

the Higgs potential. The latter could for instance be achieved by the heavier scalars of the

2HDM. This model might be realized as an intermediate “effective” theory which describes

physics at energy scales between the electroweak scale µew of order 102 GeV and some higher

scale µhigh. Beyond the latter, a more comprehensive model would be needed to describe

“physics beyond the 2HDM”. An upper bound on µhigh is the Planck scale µPl ≈ 1019 GeV,

at which gravitational effects become non-negligible in a quantum field theory framework.

Large scale differences between µew and µhigh bring along hierarchy problems like the

fine-tuning of the 125 GeV Higgs mass, which could be resolved by mechanisms of the

“complete” models, but are usually neglected in the effective models. Still one could ask
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to what extent the 2HDM could possibly mitigate the Higgs mass hierarchy problem and

whether it might even be valid up to Planck scale without requiring any other New Physics.

Therefore, we want to analyze the renormalization group evolution behaviour of the

2HDM in this article, focussing on softly-broken Z2 symmetric model realizations, which

avoid flavour changing neutral currents at tree-level. Recently these models have attracted

a lot of attention. A large number of papers [9–29] have analyzed current data for the

125 GeV Higgs-like state within the context of 2HDM, and investigated the phenomenology

of the other Higgs states present in the model. Given these results, the prospects for LHC

upgrades and for other future colliders were examined in [30–39].

For renormalization group studies, especially the role of Higgs self-couplings is crucial

and has been studied in the literature, in the SM (see for instance [7, 40]) as well as in the

2HDM [5, 41–47], because these quartic couplings tend to destabilize the Higgs potential

at some µhigh. Since a break-down of stability would mean that our theory would lose

validity beyond a certain scale, we want to impose a stable Higgs potential beyond µew as

a constraint on all couplings. Recently, the impact of stability up to the Planck scale on the

parameters in the alignment limit of the 2HDM was discussed in [48]. If one wants to solve

the Higgs mass fine-tuning problem, one has to guarantee the cancellation of quadratic

divergencies of higher order Higgs mass correction terms. The corresponding conditions

that need to be fulfilled are called “Veltman conditions” [49] in general, and in the context

of the 2HDM also “Newton-Wu conditions” [50]. They have been analyzed at one-loop

level [51–53] and even leading two-loop contributions have been taken into account in

type II [54–56]. A recent idea was to only relax the cancellation of the generically large

contributions of quadratic divergencies instead of imposing the strict cancellation using

Veltman conditions [57].

In this article, we want to improve available results concerning two main aspects: we

perform global parameter fits including the most up-to-date ATLAS and CMS results,

rather than only using a handful of benchmark scenarios, which might not cover the whole

spectrum of interesting features. Secondly, we go beyond leading order precision by employ-

ing two-loop renormalization group equations (RGE) in order to analyze vacuum stability

of the 2HDM scalar potential. Moreover, we want to make use of the framework of next-

to-leading order RGE to find out to what extent Veltman conditions can be fulfilled in

the 2HDM.

In the following, we first want to make the reader familiar with the model in section 2,

and introduce in section 3 its theoretical and experimental constraints and the numerical

setup that we use. Then we are ready to compare leading and next-to-leading order renor-

malization group equations for a benchmark scenario in section 4.1. We go on examining

the quartic couplings varying the stability cut-off scale in global fits without experimental

inputs in section 4.2. We also address the question of which upper limit to use for the

unitarity condition from the perspective of renormalizability. Taking into account exper-

imental data, we analyze the results of global fits to the physical parameters at µew and

µPl in section 4.3. The hierarchy problem is discussed in section 5, before we conclude in

section 6. Explicit expressions for the one-loop and two-loop RGE can be found in the

appendix A.
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2 Model

The Two-Higgs-Doublet model with a softly broken Z2 symmetry is characterized by the

following scalar potential:

V = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m

2
12(Φ

†
1Φ2 + Φ†2Φ1) +

1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

1

2
λ5

[
(Φ†1Φ2)

2 + (Φ†2Φ1)
2
]
, (2.1)

where Φ1 and Φ2 are the two Higgs doublets. In the following, we will use two sets of

parameters: the eight potential parameters from eq. (2.1), which we assume to be real

(that means the scalar potential is CP conserving), and the physical parameters consisting

of the vacuum expectation value v, the CP -even Higgs masses mh and mH , the CP -odd

Higgs mass mA, the mass of the charged Higgs, mH+ , the two diagonalization angles α

and β, and the soft Z2 breaking parameter m2
12. The first two physical parameters can be

treated as fixed by measurements, assuming that the 125 GeV scalar found at the LHC is

the lighter CP -even Higgs. Instead of α and β we will use the combinations β − α and

tanβ, since they can be directly related to physical observables. The measurements of the

light Higgs couplings to fermions and bosons are compatible with the SM, such that the

2HDM is pushed towards the so-called alignment limit [4, 31, 58, 59], in which β−α = π/2.

The masses of the heavy scalars could in general even be lighter than 125 GeV, and are

not necessarily in the decoupling limit [4] (which itself is a limiting case of the alignment

limit). In the following we will consider them to be in the range between 130 GeV and

10 TeV, that is heavier than the region where the 125 GeV scalar was found, yet still in the

TeV range, which will be accessible by future colliders.

Neglecting the first two generations of fermions, the Yukawa part of the 2HDM La-

grangian is

LY =−YtQLiσ2Φ
∗
2tR−Yb,1QLΦ1bR−Yb,2QLΦ2bR−Yτ,1LLΦ1τR−Yτ,2LLΦ2τR+h.c. (2.2)

In the above Lagrangian, the top quark only couples to Φ2 by convention; its Yukawa

coupling is related to the SM value Y SM
t by Yt = Y SM

t / sinβ. Without breaking the Z2

symmetry in the Yukawa sector, there are only four possibilities to couple the Higgs fields

to the bottom quark and tau lepton at the tree-level. They are called type I, type II,

type X or “lepton specific” and type Y or “flipped”; in table 1 we show the corresponding

Higgs field assignments. Type II is of special interest, as it contains the Higgs part of

supersymmetric models. As soon as we consider any one of the above types, only three

Yukawa couplings remain as free parameters, and we can speak of Yt, Yb and Yτ without

any ambiguity.

3 Constraints and set-up

We will apply the following sets of constraints on the parameter space: on the theoretical

side, the positivity of the Higgs potential [60] and the unitarity of the eigenvalues of the

ΦiΦj → ΦiΦj scattering matrix [61] are imposed at all scales and vacuum stability [62] at
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Type I Type II Type X (“lepton specific”) Type Y (“flipped”)

Yb,1 = Yτ,1 = 0 Yb,2 = Yτ,2 = 0 Yb,1 = Yτ,2 = 0 Yb,2 = Yτ,1 = 0

Yb,2=Y SM
b / sinβ Yb,1=Y SM

b / cosβ Yb,2=Y SM
b / sinβ Yb,1=Y SM

b / cosβ

Yτ,2=Y SM
τ / sinβ Yτ,1=Y SM

τ / cosβ Yτ,1=Y SM
τ / cosβ Yτ,2=Y SM

τ / sinβ

Table 1. Yukawa assignments in the four possible Z2 symmetric 2HDM types.

the electroweak scale. Moreover, we make sure that the quartic couplings λi (i = 1, 2, 3, 4, 5)

and the Yukawa couplings Yi (i = t, b, τ) do not run into non-perturbative regions. On the

experimental side, electroweak precision observables, the branching ratio Br(B → Xsγ), the

mass difference in the Bs system and light and heavy Higgs searches constrain the 2HDM

parameters at the electroweak scale. For a detailed description on the various constraints,

we refer to [15] and [21] except for Br(B → Xsγ) and the experimental Higgs data: in type

II and Y we assume mH+ > 480 GeV in order to be consistent with the latest bound from

Br(B → Xsγ) [63]. For the light Higgs signal strengths and heavy Higgs searches we use

the most up-to-date ATLAS and CMS publications and pre-prints [64–81], applying the

narrow width approximation. We do not make use of (semi-)tauonic B decay observables

(that is Br(B → τν) and Br(B → D(∗)τν)), which would only be relevant in type II [82],

because the existing tension between the measurements [83–85] and the corresponding SM

predictions cannot be accommodated in the 2HDM with a softly broken Z2 symmetry [86].

The SM parameters will be fixed to their best fit values [87]; for the SM Yukawa couplings

in the MS renormalization scheme at the scale mZ we take Y SM
t = 0.961, Y SM

b = 0.0172

and Y SM
τ = 0.0102. While variations of the strong coupling αs(mZ) within the 3σ allowed

range have no effects on the outcome of our fits, varying the input for mt(mZ) can have

an impact on a specific parameter region like mentioned in [45]. However, we observe that

these effects are imperceptible in the results of our global fits.

The two-loop RGE have been obtained with the publicly available package

PyR@TE [88]; we neglect all Yukawa couplings except for the top and bottom quarks

and the τ lepton. The observables have been calculated with the help of Zfitter [89–91],

FeynArts [92], FormCalc [93], LoopTools [94], HDECAY [95–97], FeynRules [98] and Mad-

Graph5 [99]. The frequentist fits are performed with the CKMfitter package [100]. For the

fits involving experimental constraints we use of the naive definition of the p-value (Wilks’

theorem) [101]. If not stated differently, exclusion limits are meant to be at the 2σ level,

which roughly corresponds to the 95% confidence level.

Since we want to discuss various values for the scale µ in the following, we want to

define our notation: the scale range for the running quantities lies between the electroweak

scale µew = mZ at the lower end and the Planck scale µPl = 1019 GeV at the upper end,

as mentioned in the introduction. If — starting with a given set of parameters at µew and

evolving to higher energy scales — one of the theoretical constraints is violated, we denote

this breakdown of stability as µst. When discussing the hierarchy problem, it might be

useful to introduce a cut-off scale µnat, which a priori does not need to be the same as

µst. Furthermore, we want to introduce the parameter t(X) = ln(µ(X)/GeV) as the usual

logarithmic scale.

– 4 –
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4 Renormalization at next-to-leading order

One can find a plethora of leading order RGE [5, 102–104] and next-to-leading order

RGE [105, 106] for different realizations of a 2HDM in the literature; however, we failed to

find a complete set for a 2HDM with soft Z2 breaking including the mass parameters, so we

list the leading order (LO) and next-to-leading order (NLO) expressions in the appendix A.

Before scanning over the whole parameter space with our fitting set-up, we want to explain

some features of the 2HDM RGE looking at a representative example.

4.1 A benchmark point

In order to compare the LO and NLO RGE, we choose the scenario H-4 from [21] as

benchmark scenario, because all quartic couplings are relatively large already at µew. It is

defined by mH = 600 GeV, mA = 658 GeV, mH+ = 591 GeV, β−α = 0.513π, tanβ = 4.28,

and m2
12 = 76900 GeV2, and compatible with all experimental measurements so far. The

cut-off scale, where one of the quartic couplings becomes non-perturbative, is at 19.5 TeV

at LO (dashed lines), and at 82 TeV at NLO (solid lines), see the top left panel of figure 1.

The Landau poles are at 54 TeV and 3.2 · 106 TeV, respectively; the former is shown as

a vertical dotted line in figures 1 and 2. The fact that the higher order contributions

“stabilize” the RG evolution, and thus increase both, cut-off and Landau pole scales, holds

for all benchmark points from [21] and is a general feature in the 2HDM: all dominant

NLO contributions to the RGE of the λi, which are cubic in the quartic couplings, come

with a negative coefficient and thus mitigate the positive LO contribution coming from

quadratic λi terms (see appendix A). Beneath the total values of LO and NLO running

we show the relative difference between LO and NLO RGE ri = |(λLO
i − λNLO

i )/λNLO
i | with

respect to the scale. For this benchmark point, the relative change of λ1 and λ3, is as large

as 10% at around 2 TeV and the difference increases even at a faster rate at higher scales.

This is a first hint that the effect of the NLO contribution to the RGE in the 2HDM is

non-negligible. One can see that r3 diverges around 35 TeV due to the fact that at this scale

λNLO
3 turns to 0. A better quantitative measure of the NLO vs. LO RGE is the relative

distance δL12 defined in [107]: for a dimensionless coupling L, we can define the relative

distance between the LO and NLO curves L
LO

(t) and L
NLO

(t) in the scale range from t1
to t2 as

δL12 =

√√√√√√√√
t2∫
t1

dt
t2−t1 [LLO(t)− LNLO(t)]2

t2∫
t1

dt
t2−t1L

NLO(t)2
.

For H-4, δλ112 is 38%, if we integrate from mZ to the LO cut-off at 19.5 TeV. To quantify

the typical size of δλc12 , where λc is the quartic coupling with the lowest perturbativity

violating scale, we checked all benchmark points of [21], and found values between 17%

and 45%, which indicates that in general the two-loop corrections are not negligible.1

1It is important to note that this definition of δL12 is only meaningful, if the denominator inside the

square root does not become too small.
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Λ1
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Λ3

Λ4

Λ5

mZ 300 GeV 1 TeV 5 TeV 19.5 TeV 82 TeV

1%

10%
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r1 r2

r3

r4

r5

0.01

0.1

1

mZ 300 GeV 1 TeV 5 TeV 19.5 TeV 82 TeV

Yt

Yb,1

YΤ,1
Yb,2

YΤ,2

mZ 300 GeV 1 TeV 5 TeV 19.5 TeV 82 TeV

100 GeV

1 TeV
m11

m22

m12

Figure 1. Leading order (dashed) and next-to-leading order (solid) RG running for the benchmark

scenario H-4. On the left, we show on top the evolution of the quartic couplings. At LO, λ1 hits

the perturbativity limit 4π at 19.5 GeV; the Landau pole is at 54 GeV, indicated by the vertical

dotted line. NLO RGE shift the perturbativity cut-off to 82 GeV. In the lower figure on the left, we

show the relative error ri = |(λLO
i − λNLO

i )/λNLO
i | between LO and NLO expressions for the quartic

couplings. The Yukawa couplings and the potential mass parameters are shown on the right. All

types look the same except for the b and τ Yukawa couplings.

In figure 1 we do not show the running of the gauge couplings g1, g2 and g3, since

the two-loop corrections are too small to be visible. Also, the running of the Yukawa

couplings is not significantly altered going from LO to NLO. However, due to the different

assignment of the Higgs fields in the four types, we start with different values at the low

scale (see table 1); that is why we denote the Yukawa couplings in the upper right panel

of figure 1 as introduced in eq. (2.2). (Note that only two of them are non-zero, depending

on the type of Z2.) Among the mass parameters, m2
12 changes least if we run to higher

scales, which we also observe as general feature of all types. m2
11 and m2

22 can have very

different values at different scales, compare the lower right panel of figure 1. Neither of

the mass couplings feeds back to the dimensionless couplings, as the RGE of the latter do

not depend on m2
12, m

2
11 or m2

22. Furthermore, we have checked the mentioned benchmark

scenarios for fixed point behaviour and do not find any below the perturbativity cut-off.

If we switch to the physical parameter basis, we observe that also the RG running of

the mixing angles can be sizable, see left side of figure 2. The scale at which β−α hits the

alignment limit corresponds to vanishing v and mh, which can be seen in the right panel

of figure 2, where we show the running of all physical mass parameters. We find that the

breakdown of the vacuum expectation value at some scale above µew is a general feature

and occurs for all benchmark scenarios that we have analyzed; this is also observable in

the benchmark points of [44].

After scrutinizing one benchmark point, we want to discuss more general features that

can be found in comprehensive fits. Especially the general dependence of µst on the value

of λi(mZ) will be an interesting question in the following.

– 6 –
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mZ 300 GeV 1 TeV 5 TeV 19.5 TeV 82 TeV
1.3

1.4

1.5

Π�2
Β-Α

Β

mZ 300 GeV 1 TeV 5 TeV 19.5 TeV 82 TeV

30 GeV

100 GeV

300 GeV

1 TeV

v

mH
+

mA

mh

mH

Figure 2. Leading order (dashed) and next-to-leading order (solid) RG running of the physical

angles and masses for the benchmark scenario H-4. The lines for mH+ and mH are almost on top

of each other. At a scale of 1.4 TeV (2.8 TeV) at LO (NLO) v and mh are 0 and β − α is in the

alignment limit of π/2.

4.2 Fits without experimental data

A parametrization independent way of setting upper limits to the quartic couplings of the

Higgs potential is the requirement that the scattering matrix of ΦiΦj → ΦiΦj processes is

unitary. This corresponds to the condition that its absolute eigenvalues should be smaller

than 16π. The tree-level expressions [61, 108–111] are widely used theoretical constraints

for the 2HDM; however, it seems that these bounds are very conservative. Studies involving

higher order corrections have shown that the eigenvalues cannot be larger than 2π in the

SM [40], and this bound has been adopted for the 2HDM of type II in [21]. Analyzing

maximally allowed cut-off scales can shed light on how well this bound is motivated from

the RGE perspective.

In this section, we only want to impose the Higgs potential bounds, regardless of exper-

imental constraints, in order to show the impact of the former on the 2HDM parameters.

Since the assumption of having a stable potential affects the potential parameters, we ex-

press our results in terms of the five quartic couplings and tan β. (The latter modifies the

Yukawa couplings as compared to their SM values, see table 1.) Due to the smallness of Yb
and Yτ , their influence on the RGE is very weak and differences between the four Z2 types

are not visible in the λi planes.

In figure 3 we show the dependence of the cut-off scale on the values of quartic couplings

and tanβ at the electroweak scale, for the two cases that either all eigenvalue moduli are

smaller than 2π or that at least one of them is larger than 2π. Our fits show that forcing

at least one eigenvalue of the S-matrix to have an absolute value larger than 2π reduces

the maximal cut-off scale µst to be at 5 · 106 GeV instead of the Planck scale; if we set at

least one eigenvalue modulus larger than 4π, the maximal µst is at a few TeV. If we want

to maintain a stable Higgs potential up to µPl, the largest eigenvalue can have a magnitude

of at most 2.5 (≈ 0.8π). Naturally, a larger upper bound on the eigenvalues allows for

larger quartic couplings. But one can also see that cut-off scales larger than 10 TeV are

only allowed for a very narrow range of tan β around 0.7 and — only in type II and Y —

for an additional narrow range around 80. While the low tan β scenarios are known to be

– 7 –
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Figure 3. The blue (light) shaded regions show the dependence of µst on the values for the quartic

couplings λi and tan β at mZ if we choose an upper limit of 2π for the absolute S-matrix eigenvalues.

The red (dark) regions illustrate the allowed regions, if we take 4π instead and force at least one of

the eigenvalues to be larger than 2π in magnitude. All types give the same dependence for the λi.

For tan β, we show the possible regions in type I and X as shaded, and the areas below the dashed

lines correspond to type II and Y.

λ1(mZ) λ2(mZ) λ3(mZ) λ4(mZ) λ5(mZ) tanβ(mZ)

µst = µew [0; 2.22] [0; 2.20] [−1.8; 4.4] [−4.4; 3.8] [−2.1; 2.1] > 0.3

µst = µPl [0; 0.52] [0.15; 1.06] [−0.6; 0.8] [−0.9; 0.9] [−0.4; 0.4] > 1.0 in type I and X

[1.0; 60] in type II and Y

Table 2. Allowed intervals for the quartic couplings and tan β at the electroweak scale, if we

assume stability at µew (first line) and up to µPl (second line).

disfavoured for light 2HDM spectra by flavour observables, we will see in the next section

that also the large tan β regions are now excluded in type II. So we can conclude for all

types but type Y that assuming µst > 10 TeV and not too heavy new Higgs states all S-

matrix eigenvalues need to be smaller than 2π in magnitude. We will use the upper bound

of 2π in the following. Figure 3 also shows the allowed λi(mZ) and tan β(mZ) intervals

for µst at Planck scale. Roughly speaking, stability up to 1019 GeV requires |λi(mZ)| . 1

and tanβ(mZ) > 1. In this case, we also observe a lower limit on λ2(mZ), which cannot

be smaller than 0.15. In type II and Y, tan β(mZ) is also limited from above and cannot

be larger than 60. We list the precise ranges of the parameters in table 2.

– 8 –
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The bounds on λ5(mZ) give us a handle on the question whether the Z2 symmetry can

be exact with stability up to the Planck scale: following [4], we find that the soft breaking

parameter can be written as

m2
12 =

tanβ

1 + tan2 β

(
m2
A + v2λ5

)
. (4.1)

Increasing µst to higher scales not only gives a stronger lower bound on λ5, but simul-

taneously also excludes low mA values, such that beyond µst ≈ 1010 GeV a cancellation

between the pseudoscalar and the λ5 contribution in (4.1) is no longer possible. Hence we

confirm the LO result of [48] that a 2HDM with µst > 1010 GeV has to be softly broken,

which does not change significantly if we use NLO RGE.

The inclusion of experimental bounds has only very little visible impact on the potential

parameters, that is why in the following section we switch to the physical basis.

4.3 Fits with experimental data

In this section we want to show the impact of the experimental results discussed in sec-

tion 3 on the physical parameter space at the electroweak scale, once assuming a stable

scalar potential at µew and once for stability up to µPl. We put special emphasis on the

dependence of mass parameters on the relevant angles in order to investigate how large

deviations from the alignment limit can still be.

In figure 4, we show the tan β–(β − α) plane for type I on the upper left, for type II

on the upper right, for type X on the lower left and for type Y on the lower right. For

a stable potential at the electroweak scale (orange) we show the 1σ, 2σ and 3σ allowed

regions (the 2σ region is shaded, the 1σ and 3σ contours are defined by the dash-dotted

and dashed lines, respectively), and for a stable potential at Planck scale (purple shaded)

we only present the 2σ region. With stability at µew, tanβ is not constrained by any

observable. For 2HDM masses below 1 TeV, however, we find a lower limit of 0.7 in all

types (cf. [112]) as well as an upper limit of roughly 60 in type II. In contrast, β − α is

constrained in all types to be fairly close to the alignment limit; the exact limits can be

found in table 3. In type I, the deviations from β − α = π/2 can be as large as 0.1π for

a broad range of intermediate values of tan β. Only a narrow band which is compatible

with all constraints and at the same time allows for deviations from the alignment limit by

more than 0.05π survives the type X fits; within this band tan β is larger than 6. In type

II and Y, this band would in principle also exist, but the new determination of the lower

bound on mH+ from Br(B → Xsγ) excludes scenarios which feature 2HDM heavy scalar

masses below 350 GeV and cut away the “lower branches” in the tan β–(β−α) plane. This

allows us to exclude a deviation by more than 0.03π from the alignment limit in those two

types of Z2 symmetry at the 95% C.L., consistent with the statistical significance of the

mentioned bound on mH+ [63]. We have seen in section 4.2 that imposing stability up to

µPl constrains the quartic couplings; at this point, we want to shed light on the effect on

the physical parameters. In figure 3, we already observed that tan β is constrained from

below in type I and type X and additionally from above in type II and type Y. In type

I we can also observe that for µst = µPl, β − α has to be closer to π/2 for low and high
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Figure 4. tanβ–(β − α) plane in type I (top left), type II (top right), type X (bottom left) and

type Y (bottom right) at mZ with stability imposed at µew in orange (light) and at µPl in purple

(dark). The dash-dotted, continuous and dashed lines border the 1σ, 2σ and 3σ allowed regions,

respectively; the 2σ region — which roughly corresponds to the 95% C.L. area — is shaded.

values of tan β than in the case of µst = µew. In type X, the “lower branch” only occurs

at 6.8 < tanβ < 26 now, and also in type II and Y the allowed region is more strongly

constrained. Interestingly, the lower bound of 1 on tan β is not necessarily the same if we

impose the alignment limit; in type II and Y we find tan β & 2 in this case. The reason

why this value is smaller than the one found in [48] is that we use NLO RGE. At leading

order, we confirm their result that tan β < 3 is excluded in the alignment limit.

In figure 5, we show the dependence of the charged Higgs mass bounds on tan β; let

us first discuss the case µst = µew: in type I the strongest constraint for low tan β values

comes from the mass difference in the Bs system. The other observables have no visible

impact on this plane. The same holds for type X, except for mH+ < 300 GeV, where

direct Higgs searches additionally cut away low tan β values. For type II and type Y,

Br(B → Xsγ) yields a lower limit of 480 GeV on mH+ ; for large masses and low tan β, the

bound from the mass difference in the Bs system is stronger. In case of the type II we also

find that a light charged Higgs is excluded for large tan β values; for instance if tan β = 30,

we obtain mH+ > 700 GeV. This is an effect only visible in a global fit: for large tan β,

heavy Higgs searches (mainly the tauonic decays) exclude light mH and mA. Electroweak
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Type I Type II Type X Type Y

µst = µew β − α [1.14; 1.91] [1.49; 1.64] [1.24; 1.70] [1.50; 1.63]

cos(β − α) [−0.33; 0.42] [−0.068; 0.081] [−0.13; 0.32] [−0.057; 0.076]

sin(β − α) [0.908; 1] [0.997; 1] [0.946; 1] [0.997; 1]

µst = µPl β − α [1.21; 1.87] [1.55; 1.62] [1.29; 1.61] [1.55; 1.61]

cos(β − α) [−0.30; 0.36] [−0.044; 0.018] [−0.04; 0.27] [−0.040; 0.018]

sin(β − α) [0.934; 1] [0.999; 1] [0.962; 1] [0.999; 1]

Table 3. Allowed intervals for β−α at the electroweak scale (and its sine and cosine) for all types

of Z2 symmetry, if we assume stability at µew (first three lines) and up to µPl (lines four to six).

precision data, however, are not compatible with too large mass splittings between the

heavy neutral and the charged Higgs particles, so also the charged Higgs cannot be too

light if tan β is large. This also qualifies that we did not use data from (semi-)tauonic B

decays, which would give a weaker bound on the same corner of the type II plane. Type

Y also features this constraint from the neutral Higgs searches, but it is much weaker and

would only be visible for tan β > 100 because the τ and b couplings to H and A cannot

be enhanced simultaneously. Requiring stability up to µPl gives almost the same regions

as with stability at µew, only that tan β gets constrained at the borders to stay within the

limits from table 2.

While the charged Higgs searches mainly depend on tan β, neutral Higgs signals

strongly depend on the deviation from the alignment limit, i.e. the actual value of β − α.

Therefore, we show in figure 6 the allowed regions in the (β − α)–mH and (β − α)–mA

planes. For all types we observe that for neutral masses above 600 GeV the deviation of

β − α from π/2 can be 0.05π at most due to the stability bound. The larger deviations in

type I and X correspond to neutral masses below 500 GeV, where the heavy Higgs searches

become relevant constraints. As explained above, these regions are indirectly excluded by

mH+ > 480 GeV in type II and Y and we obtain lower limits of 340 GeV and 360 GeV for

mH and mA, respectively. This lower bound on the pseudoscalar mass translates directly

into a bound on the question whether the Z2 can be exact, and combining eq. (4.1) with

the information from the allowed λ5 range in figure 3, we can conclude that even with a

stability cut-off at the electroweak scale m2
12 = 0 is very hard to achieve in type II and Y. If

we additionally impose stability up to the Planck scale,we can see that sizeable deviations

from the alignment limit are only possible for mH < 250 GeV and mA < 230 GeV in type

I. Type X fits do not allow for β − α deviations larger than 0.02π for heavy neutral scalar

masses above 150 GeV. In type II and Y, the lower bounds on the neutral masses increase

to mH > 460 GeV and mA > 455 GeV, because in general, higher stability cut-off scales

allow for less freedom in the mass splittings between mH , mA and mH+ [9, 48]. In our fits

we find an upper limit of 45 GeV on the absolute mass splittings for all Z2 symmetry types.

In appendix B, we also show the cos(β − α)–tanβ planes, the cos(β − α)–mH planes

and the cos(β − α)–mA planes for a comparison with some of the figures in the literature.
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Figure 5. tanβ–mH+ plane in type I (top left), type II (top right), type X (bottom left) and

type Y (bottom right) at mZ with stability imposed at µew in orange (light) and at µPl in purple

(dark). The dash-dotted, continuous and dashed lines border the 1σ, 2σ and 3σ allowed regions,

respectively; the 2σ region — which roughly corresponds to the 95% C.L. area — is shaded.

5 The hierarchy problem

As we have already mentioned, there is a large scale difference between the Planck scale and

the scale at which electroweak symmetry breaking occurs. This gap leads to the hierarchy

problem of the Higgs mass: if loop corrections can be of order of µPl, why do they cancel

each other almost perfectly, such that the Higgs mass is 17 orders of magnitude smaller?

The cancellation of these mass corrections to retain a naturally light mh was first proposed

by Veltman [49], therefore also referred to as “Veltman conditions”, and was first applied at

leading order to the 2HDM by Newton and Wu [50]. Unlike in supersymmetry, in the 2HDM

there is no mechanism which naturally accounts for these cancellations. Still, an accidental

cancellation is not excluded, so nevertheless it is interesting to address this question. In the

framework of the 2HDM, this hierarchy problem does not only affect mh but in principle

also the other scalar masses, if they are not in the decoupling limit. However, since we

do not know whether the heavier scalars are decoupled or not, we will only discuss the

hierarchy problem of the already discovered 125 GeV scalar in the following.

The largest one-loop contributions to the Higgs mass come from terms that are quadra-

tic in µnat, if we assume that the 2HDM is valid up to a given scale µnat and use this scale
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Figure 6. (β − α)–mH plane (on the left) and (β − α)–mA plane (on the right) in type I, type II,

type X and type Y (from top to bottom) at mZ with stability imposed at µew in orange (light) and

at µPl in purple (dark). The dash-dotted, continuous and dashed lines border the 1σ, 2σ and 3σ

allowed regions, respectively; the 2σ region — which roughly corresponds to the 95% C.L. area —

is shaded.
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as a cut-off. Leading higher order contributions get an additional factor of [ln(µnat/µew)]n,

where n + 1 is the number of loops. If µnat is large enough, the logarithmic factor might

compensate for the loop suppression, and the power series of the higher order corrections

no longer converges. So requiring the cancellation of the first order Higgs mass correction

— like often applied in the literature [42, 52, 53, 57] — is not sufficient if we do not know

about the higher order terms. Only if we assume perturbativity of the power series, we

can make a valid statement about whether the Higgs mass at the electroweak scale can be

natural in the 2HDM or at least whether the hierarchy problem can be mitigated. This

assumption of perturbativity is analogous to the one applied above on the Yukawa and

quartic Higgs couplings.

All higher order leading logarithm mass corrections proportional to µ2nat are given by

δm2
h =

µ2nat
16π2

[ ∞∑
n=0

fn(λi, Yi, gi)

(
ln
µnat
µew

)n]
. (5.1)

As described in [113], especially for low cut-off scales the power series can be pertur-

bative. However, we need to be careful to keep the leading logarithm sufficiently large with

respect to the lower powers in the logarithm assuming that the leading logarithm gives

the largest contribution. The leading coefficient function can be derived from the one-loop

Higgs mass corrections and reads as

f0(λi, Yi, gi) =− 3

2
cos(2α)(λ1 − λ2) +

3

2
λ1 +

3

2
λ2 + 2λ3 + λ4 +

3

4
g21 +

9

4
g22

− cos2(α)
[
6Y 2

b,2 + 2Y 2
τ,2 + 6Y 2

t

]
− sin2(α)

[
6Y 2

b,1 + 2Y 2
τ,1

]
.

In order to easily obtain the leading logarithm contributions to higher orders, we use

the recursive formula derived by Einhorn and Jones [114], relating the coefficient functions

fn+1 to fn and the running of the couplings:

fn+1(λi, Yi, gi) =
1

n+ 1

∑
L∈{λi,Yi,gi}

βL
∂

∂L
fn(λi, Yi, gi) .

This recursive relation is based on the following assumptions: the new theory has only

one mass scale (mh), and the logarithmic factor has to be large enough to suppress the

terms with lower powers of logarithms. Two-loop effects on the Veltman condition have

already been applied to the 2HDM of type II using this approach [54–56]; the authors

found that the Higgs mass hierarchy problem can be ameliorated.

An obvious choice of µnat as cut-off would be the breakdown of one of the stability

constraints µst, so we will use it for the moment. In order to analyze whether we can

make a statement on the Higgs mass naturalness in a 2HDM which is based on a reliable

perturbation series, we want to define kn as the ratio of the n-th correction term of eq. (5.1)

to the one of order n− 1:

kn =
fn(λi, Yi, gi)

fn−1(λi, Yi, gi)
ln
µnat
µew

.
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Apart from the obvious logarithmic dependence on µnat, the kn depend on the cut-off

scale also indirectly: the latter determines which values for the λi are allowed, see figure 3.

Now we can re-write eq. (5.1) as

δm2
h =

µ2nat
16π2

f0(λi, Yi, gi)

[
1 +

∞∑
n=1

n∏
`=1

k`

]
. (5.2)

Only if we impose a small value of the leading order coefficient function and a suf-

ficiently small number for k1, we can guarantee a perturbatively stable mitigation of the

hierarchy problem of mh, also assuming that the k` for ` > 1 are not too large. Note that

if we choose f0(λi, Yi, gi) to be exactly 0, k1 diverges.

If we constrain the first two factors k1 and k2 to be smaller than 1 in magnitude and

that |δm2
h| < m2

h, we observe negative k1 and k2 in most cases, independently of the type

of Z2 symmetry. This indicates that the series is alternating, which in turn means that

— except for pathological scenarios — a suppression of the first two ki factors should be

sufficient to make the series relatively robust with respect to pertubativity. Cutting the

series in eq. (5.2) after the second term (i.e. setting k3 = 0), we find that the maximal µnat is

in the TeV range for all types, depending on the value we choose for f0(λi, Yi, gi). The blue

shaded region in figure 7 shows this dependence for type I, taking into account only Higgs

potential constraints (as in section 4.2). There is a lot of freedom for f0(λi, Yi, gi), which

indicate large cancellations between the leading order contribution and higher order terms.

This calls into question our assumption that the series can be cut after the second term.

The inclusion of the experimental results (cf. section 4.3, orange shaded in figure 7) limits

the choice of f0(λi, Yi, gi) to be of order 1, and thus presumably stabilizes the perturbative

series. In both cases, however, the maximal µnat is at around 5.3 TeV for very small values

of f0(λi, Yi, gi). While we obtain the same results for type X, the maximal µnat is even lower

(3.7 TeV) in type II and Y which is a consequence of the much more strongly constrained

parameter space.

Finally, one could also impose the perturbativity of the power series in eq. (5.1) as

constraint and define µnat as its breakdown scale if it is smaller than µst. This, however,

would not alter the maximal µnat, nor would it constrain the 2HDM parameters stronger

than the conventional constraints. It would leave us with the question of what happens

beyond the breakdown of perturbative naturalness already at a few TeV.

To put it in a nutshell: softening the Higgs mass hierarchy problem is very difficult in

the context of a perturbative 2HDM and can be achieved only for very low cut-off scales

µnat. Nevertheless, this is an improvement of one order of magnitude as compared to the

SM hierarchy problem and might hint at a more complete model beyond the 2HDM at

TeV scales.

6 Conclusions

We obtain the two-loop renormalization group equations for all four Z2 symmetric types

of the 2HDM using PyR@TE and show that in general, two-loop corrections to the leading

order one-loop expressions should not be neglected. We then apply these equations to
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Figure 7. The allowed size of the one-loop coefficient f0(λi, Yi, gi) of the Veltman condition series

depends on the naturalness cut-off µnat. Without experimental constraints (light blue shaded),

|f0(λi, Yi, gi)| can be as large as 75. With the inclusion of the measurements (orange shaded), it

gets strongly constrained to be smaller than 6. More or less independently of taking into account

experimental data, we obtain an upper bound on µnat of 5.3 TeV. The plane shows the type I fit,

which agrees with the type X fit. In type II and Y, the maximal µnat is already at 3.7 TeV.

improve the predictions of renormalization group evolution of the coupling parameters,

putting a special emphasis on the quartic couplings λi, which are usually prone to run into

non-perturbative regions. The relative distance between the LO and NLO curves of the λi
can be as large as 45%. The quadratic couplings m2

11 and m2
22 from the Higgs potential

can vary by an order of magnitude between the electroweak scale and the perturbativity

cut-off, while m2
12 is in general found to be rather stable under RG evolution. We do not

observe any fixed point behaviour in the regions with a stable Higgs potential.

Imposing positivity and perturbativity bounds at all scales and stability of the vacuum

at the electroweak scale, the magnitudes of the λi at µew which give a stable Higgs potential

up to the Planck scale are found to be typically below 1; we also find lower limits of 0.15

for λ2 and of 1.0 for tan β. We have checked that these results are the same in all types.

In type II and type Y we additionally get an upper limit of 60 on tan β with stability

up to µPl. Moreover, we address the question of which upper limit for the eigenvalues of

the tree-level ΦiΦj → ΦiΦj scattering matrix is appropriate and show that as soon as at

least one of the eigenvalues exceeds 2π in magnitude, the maximal scale up to which the

Higgs potential can be stable is 5 · 106 GeV. It even reduces to 10 TeV in all types if we

assume 1 < tanβ < 60. Imposing stability up to µPl leads to an upper limit of 2.5 on the

magnitude of the eigenvalues.

Including latest results from the LHC as well as all other relevant experimental data,

we show the result of our fits for all four types. We observe that deviations from the
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alignment limit strongly depend on the value of tan β; the maximal deviation of β−α from

π/2 is 0.43, 0.08, 0.33 and 0.07 in type I, II, X and Y, respectively. (This corresponds

to deviations of sin(β − α) from 1 of at most 0.092, 0.003, 0.054 and 0.003.) Taking the

stability constraint up to µPl, the bounds on β − α become even stronger and allow for

deviations from π/2 of at most 0.36, 0.05, 0.28 and 0.04 in the respective types. The

searches for heavy neutral Higgs particles exclude a light charged Higgs boson for large

tanβ in type II and for very large tan β in type Y. In the mH/A–(β−α) planes it is visible

that deviations from the alignment limit by more than 0.05π are possible only for mH and

mA below 500 GeV in the types I and X. In type II and Y we obtain lower limits of 340 GeV

and 360 GeV on mH and mA, respectively. This makes it very difficult to realize models

with an unbroken Z2 symmetry in these two types even if the stability cut-off is only at

the electroweak scale. Demanding that the Higgs potential is stable up to the Planck scale,

these mass limits are even stronger.

We finally discuss whether a reliable statement on the seemingly fine-tuned Higgs mass

mh can be made in the context of a 2HDM and whether its hierarchy problem can be solved

at least partially. Restricting higher order corrections to the perturbative regime, we ob-

serve a maximal naturalness cut-off at 5.3 TeV. Our conclusion is that within a perturbative

framework a natural cancellation of quadratic divergencies cannot be implemented into a

Two-Higgs-Doublet model beyond O(TeV) scales.
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A Two-loop renormalization group equations

Here we list the renormalization group equations for the 2HDM with soft Z2 breaking

which we obtained with the PyR@TE code [88].

For any coupling L the complete β functions at NLO can be split into leading and

next-to-leading order contributions and further divided into bosonic and fermionic parts

as follows:

βL ≡
dL

dt
= βLOL + βNLOL

β
(N)LO
L = β

(N)LO,b
L + β

(N)LO,f
L
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Except for the Yukawa RGE the bosonic part does not involve fermionic couplings

and is type independent, while the fermionic part in general depends on the type of Z2

symmetry. If the expressions for the latter differ for the different types, we will replace the

index f by the type label I, II, X or Y, respectively.

The RGE of the gauge couplings only depend on themselves and on the Yukawa cou-

plings:

16π2βLOg1 = 7g31

(16π2)2βNLO,bg1 =

(
104

9
g21 + 6g22 +

44

3
g23

)
g31

(16π2)2βNLO,fg1 = −
(

5

6
Y 2
b +

17

6
Y 2
t +

5

2
Y 2
τ

)
g31

16π2βLOg2 = −3g32

(16π2)2βNLO,bg2 =
(
2g21 + 8g22 + 12g23

)
g32

(16π2)2βNLO,fg2 = −
(

3

2
Y 2
b +

3

2
Y 2
t +

1

2
Y 2
τ

)
g32

16π2βLOg3 = −7g33

(16π2)2βNLO,bg3 =

(
11

6
g21 +

9

2
g22 − 26g23

)
g33

(16π2)2βNLO,fg3 = −
(
2Y 2

b + 2Y 2
t

)
g33

As already mentioned, the mass parameters from the Higgs potential do not influence

the running of the dimensionless couplings. Their running, however, is not negligible and

is given by the following expressions:

16π2βLO,b
m2

11
=

(
−3

2
g21 −

9

2
g22 + 6λ1

)
m2

11 + (4λ3 + 2λ4)m
2
22

16π2βLO,I
m2

11
= 0

16π2βLO,II
m2

11
=
(
6Y 2

b + 2Y 2
τ

)
m2

11

16π2βLO,X
m2

11
= 2Y 2

τ m
2
11

16π2βLO,Y
m2

11
= 6Y 2

b m
2
11

(16π2)2βNLO,b
m2

11
=

(
193

16
g41 +

15

8
g21g

2
2 −

123

16
g42 + 12g21λ1 + 36g22λ1

− 15λ21 − 2λ23 − 2λ3λ4 − 2λ24 − 3λ25

)
m2

11

+

(
5

2
g41 +

15

2
g42 + (4g21 + 12g22)(2λ3 + λ4)

− 8λ23 − 8λ3λ4 − 8λ24 − 12λ25

)
m2

22

(16π2)2βNLO,I
m2

11
= −

(
12Y 2

b + 12Y 2
t + 4Y 2

τ

)
(2λ3 + λ4)m

2
22
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(16π2)2βNLO,II
m2

11
=

(
25

12
g21Y

2
b +

25

4
g21Y

2
τ +

45

4
g22Y

2
b +

15

4
g22Y

2
τ + 40g23Y

2
b

− 27

2
Y 4
b −

9

2
Y 2
b Y

2
t −

9

2
Y 4
τ − 36Y 2

b λ1 − 12Y 2
τ λ1

)
m2

11

− 12Y 2
t (2λ3 + λ4)m

2
22

(16π2)2βNLO,X
m2

11
=

(
25

4
g21 +

15

4
g22 −

9

2
Y 2
τ − 12λ1

)
Y 2
τ m

2
11 −

(
12Y 2

b + 12Y 2
t

)
(2λ3 + λ4)m

2
22

(16π2)2βNLO,Y
m2

11
=

(
25

12
g21 +

45

4
g22 + 40g23 −

27

2
Y 2
b −

9

2
Y 2
t − 36λ1

)
Y 2
b m

2
11

−
(
12Y 2

t + 4Y 2
τ

)
(2λ3 + λ4)m

2
22

16π2βLO,b
m2

22
= (4λ3 + 2λ4)m

2
11 −

(
3

2
g21 +

9

2
g22 − 6λ2

)
m2

22

16π2βLO,I
m2

22
=
(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
m2

22

16π2βLO,II
m2

22
= 6Y 2

t m
2
22

16π2βLO,X
m2

22
=
(
6Y 2

b + 6Y 2
t

)
m2

22

16π2βLO,Y
m2

22
=
(
6Y 2

t + 2Y 2
τ

)
m2

22

(16π2)2βNLO,b
m2

22
=

(
5

2
g41 + 8g21λ3 + 4g21λ4 +

15

2
g42 + 24g22λ3 + 12g22λ4

− 8λ23 − 8λ3λ4 − 8λ24 − 12λ25

)
m2

11

+

(
193

16
g41 +

15

8
g21g

2
2 + 12g21λ2 −

123

16
g42 + 36g22λ2

− 15λ22 − 2λ23 − 2λ3λ4 − 2λ24 − 3λ25

)
m2

22

(16π2)2βNLO,I
m2

22
=

(
g21

(
25

12
Y 2
b +

85

12
Y 2
t +

25

4
Y 2
τ

)
+ g22

(
45

4
Y 2
b +

45

4
Y 2
t +

15

4
Y 2
τ

)
+ g23

(
40Y 2

b + 40Y 2
t

)
− 27

2
Y 4
b − 21Y 2

b Y
2
t −

27

2
Y 4
t −

9

2
Y 4
τ

−
(
36Y 2

b + 36Y 2
t + 12Y 2

τ

)
λ2

)
m2

22

(16π2)2βNLO,II
m2

22
= −

(
12Y 2

b + 4Y 2
τ

)
(2λ3 + λ4)m

2
11

+

(
85

12
g21 +

45

4
g22 + 40g23 − 36λ2 −

9

2
Y 2
b −

27

2
Y 2
t

)
Y 2
t m

2
22

(16π2)2βNLO,X
m2

22
= −(8λ3 + 4λ4)Y

2
τ m

2
11

+

(
g21

(
25

12
Y 2
b +

85

12
Y 2
t

)
+ g22

(
45

4
Y 2
b +

45

4
Y 2
t

)
+ g23

(
40Y 2

b + 40Y 2
t

)
− 27

2
Y 4
b − 21Y 2

b Y
2
t −

27

2
Y 4
t − 36

(
Y 2
b + Y 2

t

)
λ2

)
m2

22
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(16π2)2βNLO,Y
m2

22
= −(24λ3 + 12λ4)Y

2
b m

2
11

+

(
g21

(
85

12
Y 2
t +

25

4
Y 2
τ

)
+ g22

(
45

4
Y 2
t +

15

4
Y 2
τ

)
+ 40g23Y

2
t

−9

2
Y 2
b Y

2
t −

27

2
Y 4
t −

9

2
Y 4
τ −

(
36Y 2

t + 12Y 2
τ

)
λ2

)
m2

22

16π2βLO,b
m2

12
=

(
−3

2
g21 −

9

2
g22 + 2λ3 + 4λ4 + 6λ5

)
m2

12

16π2βLO,f
m2

12
=
(
3Y 2

b + 3Y 2
t + Y 2

τ

)
m2

12

(16π2)2βNLO,b
m2

12
=

(
153

16
g41 +

15

8
g21g

2
2 −

243

16
g42 + 4(g21 + 3g22)(λ3 + 2λ4 + 3λ5)

+
3

2
λ21 +

3

2
λ22 − 6(λ1 + λ2)(λ3 + λ4 + λ5)

− 6λ3λ4 − 12λ3λ5 − 12λ4λ5 + 3λ25

)
m2

12

(16π2)2βNLO,I
m2

12
=

(
g21

(
25

24
Y 2
b +

85

24
Y 2
t +

25

8
Y 2
τ

)
+ g22

(
45

8
Y 2
b +

45

8
Y 2
t +

15

8
Y 2
τ

)
+ g23

(
20Y 2

b + 20Y 2
t

)
− 27

4
Y 4
b +

3

2
Y 2
b Y

2
t −

27

4
Y 4
t −

9

4
Y 4
τ

− 2(3Y 2
b + 3Y 2

t + Y 2
τ )(λ3 + 2λ4 + 3λ5)

)
m2

12

(16π2)2βNLO,II
m2

12
= (16π2)2βNLO,I

m2
12

− 18Y 2
b Y

2
t m

2
12

(16π2)2βNLO,X
m2

12
= (16π2)2βNLO,I

m2
12

(16π2)2βNLO,Y
m2

12
= (16π2)2βNLO,I

m2
12

− 18Y 2
b Y

2
t m

2
12 .

Finally, the quartic couplings from the Higgs potential:

16π2βLO,bλ1
=

3

4
g41 +

3

2
g21g

2
2 +

9

4
g42 − 3g21λ1 − 9g22λ1 + 12λ21 + 4λ23 + 4λ3λ4 + 2λ24 + 2λ25

16π2βLO,Iλ1
= 0

16π2βLO,IIλ1
= −12Y 4

b − 4Y 4
τ + 12Y 2

b λ1 + 4Y 2
τ λ1

16π2βLO,Xλ1
= −4Y 4

τ + 4Y 2
τ λ1

16π2βLO,Yλ1
= −12Y 4

b + 12λ1Y
2
b

(16π2)2βNLO,bλ1
= −131

8
g61 −

191

8
g41g

2
2 −

101

8
g21g

4
2 +

291

8
g62 + g41

(
217

8
λ1 + 5λ3 +

5

2
λ4

)
+ g21g

2
2

(
39

4
λ1 + 5λ4

)
+ g42

(
−51

8
λ1 + 15λ3 +

15

2
λ4

)
+ g21

(
18λ21 + 8λ23 + 8λ3λ4 + 4λ24 − 2λ25

)
+ g22

(
54λ21 + 6(2λ3 + λ4)

2
)

− 78λ31 − λ1
(
20λ23 + 20λ3λ4 + 12λ24 + 14λ25

)
− 16λ33 − 24λ23λ4 − 32λ3λ

2
4 − 40λ3λ

2
5 − 12λ34 − 44λ4λ

2
5

(16π2)2βNLO,Iλ1
= −

(
12Y 2

b + 12Y 2
t + 4Y 2

τ

) (
2λ23 + 2λ3λ4 + λ24 + λ25

)
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(16π2)2βNLO,IIλ1
= g41

(
5

2
Y 2
b −

25

2
Y 2
τ

)
+ g21g

2
2

(
9Y 2

b + 11Y 2
τ

)
− g42

(
9

2
Y 2
b +

3

2
Y 2
τ

)
+ g21

(
8

3
Y 4
b − 8Y 4

τ +
25

6
Y 2
b λ1 +

25

2
Y 2
τ λ1

)
+ g22

(
45

2
Y 2
b λ1 +

15

2
Y 2
τ λ1

)
− g23

(
64Y 4

b − 80Y 2
b λ1

)
+ 60Y 6

b + 12Y 4
b Y

2
t + 20Y 6

τ − (3Y 4
b + 9Y 2

b Y
2
t + Y 4

τ )λ1

− 72Y 2
b λ

2
1 − 12Y 2

t (2λ23 + 2λ3λ4 + λ24 + λ25)− 24Y 2
τ λ

2
1

(16π2)2βNLO,Xλ1
= −25

2
g41Y

2
τ + 11g21g

2
2Y

2
τ −

3

2
g42Y

2
τ + g21

(
−8Y 4

τ +
25

2
Y 2
τ λ1

)
+

15

2
g22Y

2
τ λ1

+ 20Y 6
τ − Y 4

τ λ1 −
(
12Y 2

b + 12Y 2
t

) (
2λ23 + 2λ3λ4 + λ24 + λ25

)
− 24Y 2

τ λ
2
1

(16π2)2βNLO,Yλ1
=

5

2
g41Y

2
b + 9g21g

2
2Y

2
b −

9

2
g42Y

2
b

+ g21

(
8

3
Y 4
b +

25

6
Y 2
b λ1

)
+

45

2
g22Y

2
b λ1 − g23

(
64Y 4

b − 80λ1Y
2
b

)
+ 60Y 6

b + 12Y 4
b Y

2
t −

(
3Y 4

b + 9Y 2
b Y

2
t

)
λ1

− 72Y 2
b λ

2
1 −

(
12Y 2

t + 4Y 2
τ

) (
2λ23 + 2λ3λ4 + λ24 + λ25

)
16π2βLO,bλ2

= 16π2βLO,bλ1
(λ1↔ λ2)

16π2βLO,Iλ2
= −12Y 4

b − 12Y 4
t − 4Y 4

τ +
(
12Y 2

b + 12Y 2
t + 4Y 2

τ

)
λ2

16π2βLO,IIλ2
= −12Y 4

t + 12Y 2
t λ2

16π2βLO,Xλ2
= −12Y 4

b − 12Y 4
t +

(
12Y 2

b + 12Y 2
t

)
λ2

16π2βLO,Yλ2
= −12Y 4

t − 4Y 4
τ +

(
12Y 2

t + 4Y 2
τ

)
λ2

(16π2)2βNLO,bλ2
= (16π2)2βNLO,bλ1

(λ1↔ λ2)

(16π2)2βNLO,Iλ2
= g41

(
5

2
Y 2
b −

19

2
Y 2
t −

25

2
Y 2
τ

)
+ g21g

2
2

(
9Y 2

b + 21Y 2
t + 11Y 2

τ

)
− g42

(
9

2
Y 2
b +

9

2
Y 2
t +

3

2
Y 2
τ

)
+ g21

(
8

3
Y 4
b −

16

3
Y 4
t − 8Y 4

τ +
25

6
Y 2
b λ2 +

85

6
Y 2
t λ2 +

25

2
Y 2
τ λ2

)
+ g22

(
45

2
Y 2
b +

45

2
Y 2
t +

15

2
Y 2
τ

)
λ2−g23

(
64Y 4

b +64Y 4
t −80Y 2

b λ2−80Y 2
t λ2

)
+ 60Y 6

b − 12Y 4
b Y

2
t − 12Y 2

b Y
4
t + 60Y 6

t + 20Y 6
τ

−
(
3Y 4

b + 42Y 2
b Y

2
t + 3Y 4

t + Y 4
τ

)
λ2 − (72Y 2

b + 72Y 2
t + 24Y 2

τ )λ22

(16π2)2βNLO,IIλ2
= −19

2
g41Y

2
t + 21g21g

2
2Y

2
t −

9

2
g42Y

2
t

+ g21

(
−16

3
Y 4
t +

85

6
Y 2
t λ2

)
+

45

2
g22Y

2
t λ2 − g23

(
64Y 4

t − 80Y 2
t λ2

)
+ 12Y 2

b Y
4
t + 60Y 6

t −
(
9Y 2

b Y
2
t + 3Y 4

t

)
λ2

−
(
12Y 2

b + 4Y 2
τ

) (
2λ23 + 2λ3λ4 + λ24 + λ25

)
− 72Y 2

t λ
2
2
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16π2βNLO,Xλ2
= g41

(
5

2
Y 2
b −

19

2
Y 2
t

)
+ g21g

2
2

(
9Y 2

b + 21Y 2
t

)
− g42

(
9

2
Y 2
b +

9

2
Y 2
t

)
+ g21

(
8

3
Y 4
b −

16

3
Y 4
t +

25

6
Y 2
b λ2 +

85

6
Y 2
t λ2

)
+ g22

(
45

2
Y 2
b +

45

2
Y 2
t

)
λ2

− g23
(
64Y 4

b + 64Y 4
t − 80Y 2

b λ2 − 80Y 2
t λ2

)
+ 60Y 6

b − 12Y 4
b Y

2
t − 12Y 2

b Y
4
t + 60Y 6

t

−
(
3Y 4

b + 42Y 2
b Y

2
t + 3Y 4

t

)
λ2

− 72Y 2
b λ

2
2 − 72Y 2

t λ
2
2 − 4Y 2

τ

(
2λ23 + 2λ3λ4 + λ24 + λ25

)
16π2βNLO,Yλ2

= g41

(
−19

2
Y 2
t −

25

2
Y 2
τ

)
+ g21g

2
2

(
21Y 2

t + 11Y 2
τ

)
− g42

(
9

2
Y 2
t +

3

2
Y 2
τ

)
+ g21

(
−16

3
Y 4
t − 8Y 4

τ +
85

6
Y 2
t λ2 +

25

2
Y 2
τ λ2

)
+ g22

(
45

2
Y 2
t +

15

2
Y 2
τ

)
λ2

− g23
(
64Y 4

t − 80Y 2
t λ2

)
+ 12Y 2

b Y
4
t + 60Y 6

t + 20Y 6
τ −

(
9Y 2

b Y
2
t + 3Y 4

t + Y 4
τ

)
λ2

− 12Y 2
b

(
2λ23 + 2λ3λ4 + λ24 + λ25

)
− 72Y 2

t λ
2
2 − 24Y 2

τ λ
2
2

16π2βLO,bλ3
=

3

4
g41 −

3

2
g21g

2
2 +

9

4
g42 − 3g21λ3 − 9g22λ3

+ (λ1 + λ2) (6λ3 + 2λ4) + 4λ23 + 2λ24 + 2λ25

16π2βLO,Iλ3
=
(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
λ3

16π2βLO,IIλ3
= −12Y 2

b Y
2
t +

(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
λ3

16π2βLO,Xλ3
= 16π2βLO,Iλ3

16π2βLO,Yλ3
= 16π2βLO,IIλ3

(16π2)2βNLO,bλ3
= −131

8
g61 +

101

8
g41g

2
2 +

11

8
g21g

4
2 +

291

8
g62

+ g41

(
15

4
λ1+

15

4
λ2+

197

8
λ3+

5

2
λ4

)
−g21g22

(
5

2
λ1+

5

2
λ2−

11

4
λ3+3λ4

)
+ g42

(
45

4
λ1 +

45

4
λ2 −

111

8
λ3 +

15

2
λ4

)
+ g21

(
(λ1 + λ2)(12λ3 + 4λ4) + 2λ23 − 2λ24 + 4λ25

)
+ g22

(
(λ1 + λ2)(36λ3 + 18λ4) + 6(λ3 − λ4)2

)
−
(
λ21 + λ22

)
(15λ3 + 4λ4)− (λ1 + λ2)

(
36λ23 + 16λ3λ4 + 14λ24 + 18λ25

)
− 12λ33 − 4λ23λ4 − 16λ3λ

2
4 − 18λ3λ

2
5 − 12λ34 − 44λ4λ

2
5
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(16π2)2βNLO,Iλ3
= g41

(
5

4
Y 2
b −

19

4
Y 2
t −

25

4
Y 2
τ

)
− g21g22

(
9

2
Y 2
b +

21

2
Y 2
t +

11

2
Y 2
τ

)
− g42

(
9

4
Y 2
b +

9

4
Y 2
t +

3

4
Y 2
τ

)
+ g21

(
25

12
Y 2
b +

85

12
Y 2
t +

25

4
Y 2
τ

)
λ3

+ g22

(
45

4
Y 2
b +

45

4
Y 2
t +

15

4
Y 2
τ

)
λ3 + g23

(
40Y 2

b + 40Y 2
t

)
λ3

− 27

2
Y 4
b λ3 − Y 2

b Y
2
t (21λ3 + 24λ4)−

27

2
Y 4
t λ3 −

9

2
Y 4
τ λ3

−
(
3Y 2

b + 3Y 2
t + Y 2

τ

) (
12λ2λ3 + 4λ2λ4 + 4λ23 + 2λ24 + 2λ25

)
(16π2)2βNLO,IIλ3

= (16π2)2βNLO,Iλ3
− 4

3
g21Y

2
b Y

2
t − 64g23Y

2
b Y

2
t + 36Y 4

b Y
2
t + 36Y 2

b Y
4
t

+ Y 2
b Y

2
t (36λ3 + 24λ4)−

(
3Y 2

b + Y 2
τ

)
(λ1 − λ2)(12λ3 + 4λ4)

16π2βNLO,Xλ3
= (16π2)2βNLO,Iλ3

+ Y 2
τ (λ1 − λ2)(12λ3 + 4λ4)

16π2βNLO,Yλ3
= (16π2)2βNLO,IIλ3

+ Y 2
τ (λ1 − λ2)(12λ3 + 4λ4)

16π2βLO,bλ4
= 3g21g

2
2 −

(
3g21 + 9g22

)
λ4 + 2λ1λ4 + 2λ2λ4 + 8λ3λ4 + 4λ24 + 8λ25

16π2βLO,Iλ4
=
(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
λ4

16π2βLO,IIλ4
= 12Y 2

b Y
2
t +

(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
λ4

16π2βLO,Xλ4
= 16π2βLO,Iλ4

16π2βLO,Yλ4
= 16π2βLO,IIλ4

(16π2)2βNLO,bλ4
= −73

2
g41g

2
2 − 14g21g

4
2

+
157

8
g41λ4 + g21g

2
2

(
5λ1 + 5λ2 + 2λ3 +

51

4
λ4

)
− 231

8
g42λ4

+ g21
(
4λ1λ4+4λ2λ4+4λ3λ4+8λ24+16λ25

)
+g22

(
36λ3λ4+18λ24+54λ25

)
−
(
7λ21 + 7λ22

)
λ4 − (λ1 + λ2)

(
40λ3λ4 + 20λ24 + 24λ25

)
− 28λ23λ4 − 28λ3λ

2
4 − 48λ3λ

2
5 − 26λ4λ

2
5

(16π2)2βNLO,Iλ4
= g21g

2
2

(
9Y 2

b + 21Y 2
t + 11Y 2

τ

)
+ g21

(
25

12
Y 2
b +

85

12
Y 2
t +

25

4
Y 2
τ

)
λ4

+ g22

(
45

4
Y 2
b +

45

4
Y 2
t +

15

4
Y 2
τ

)
λ4 + 40g23

(
Y 2
b + Y 2

t

)
λ4

− 27

2

(
Y 2
b − Y 2

t

)2
λ4 −

9

2
Y 4
τ λ4

−
(
12Y 2

b + 12Y 2
t + 4Y 2

τ

) (
λ2λ4 + 2λ3λ4 + λ24 + 2λ25

)
(16π2)2βNLO,IIλ4

= (16π2)2βNLO,Iλ4
+

4

3
g21Y

2
b Y

2
t + 64g23Y

2
b Y

2
t − 24Y 4

b Y
2
t − 24Y 2

b Y
4
t

− Y 2
b Y

2
t (24λ3 + 60λ4)− (12Y 2

b + 4Y 2
τ )(λ1 − λ2)λ4

16π2βNLO,Xλ4
= (16π2)2βNLO,Iλ4

− 4Y 2
τ (λ1 − λ2)λ4

16π2βNLO,Yλ4
= (16π2)2βNLO,IIλ4

+ 4Y 2
τ (λ1 − λ2)λ4

16π2βLO,bλ5
=
(
−3g21 − 9g22 + 2λ1 + 2λ2 + 8λ3 + 12λ4

)
λ5
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16π2βLO,fλ5
=
(
6Y 2

b + 6Y 2
t + 2Y 2

τ

)
λ5

(16π2)2βNLO,bλ5
=

(
157

8
g41 +

19

4
g21g

2
2 −

231

8
g42 − g21 (2λ1 + 2λ2 − 16λ3 − 24λ4)

+ g22 (36λ3 + 72λ4)− 7λ21 − 7λ22 − (λ1 + λ2) (40λ3 + 44λ4)

− 28λ23 − 76λ3λ4 − 32λ24 + 6λ25

)
λ5

(16π2)2βNLO,Iλ5
=

(
g21

(
25

12
Y 2
b +

85

12
Y 2
t +

25

4
Y 2
τ

)
+ g22

(
45

4
Y 2
b +

45

4
Y 2
t +

15

4
Y 2
τ

)
+ g23

(
40Y 2

b + 40Y 2
t

)
− 3

2

(
Y 2
b − Y 2

t

)2 − 1

2
Y 4
τ

−
(
12Y 2

b + 12Y 2
t + 4Y 2

τ

)
(λ2 + 2λ3 + 3λ4)

)
λ5

(16π2)2βNLO,IIλ5
= (16π2)2βNLO,Iλ5

−
(
36Y 2

b Y
2
t + 12Y 2

b (λ1 − λ2) + 4Y 2
τ (λ1 − λ2)

)
λ5

16π2βNLO,Xλ5
= (16π2)2βNLO,Iλ5

− 4Y 2
τ (λ1 − λ2)λ5

16π2βNLO,Yλ5
= (16π2)2βNLO,IIλ5

+ 4Y 2
τ (λ1 − λ2)λ5

Strictly speaking (and according to the introduced notation), there are only fermonic

contributions to the β functions of the Yukawa couplings. However, we will denote the

bosonic loop contributions which are the same in all types as β
(N)LO,b
Yi

. Note that one

bosonic contribution of βNLOYb
and βNLOYτ

also depends on the type; thus we add the term

to the corresponding βNLO,fYi
.

16π2βLO,bYt
= −

(
17

12
g21 +

9

4
g22 + 8g23

)
Yt

16π2βLO,IYt
=

(
3

2
Y 2
b +

9

2
Y 2
t + Y 2

τ

)
Yt

16π2βLO,IIYt
= 16π2βLO,IYt

−
(
Y 2
b + Y 2

τ

)
Yt

16π2βLO,XYt
= 16π2βLO,IYt

− Y 2
τ Yt

16π2βLO,YYt
= 16π2βLO,IYt

− Y 2
b Yt

(16π2)2βNLO,bYt
=

(
1267

216
g41 −

3

4
g21g

2
2 +

19

9
g21g

2
3 −

21

4
g42 + 9g22g

2
3 − 108g43

+
3

2
λ22 + λ23 + λ3λ4 + λ24 +

3

2
λ25

)
Yt

(16π2)2βNLO,IYt
=

(
g21

(
7

48
Y 2
b +

131

16
Y 2
t +

25

8
Y 2
τ

)
+ g22

(
99

16
Y 2
b +

225

16
Y 2
t +

15

8
Y 2
τ

)
+ g23

(
4Y 2

b + 36Y 2
t

)
−1

4
Y 4
b −

11

4
Y 2
b Y

2
t +

5

4
Y 2
b Y

2
τ −12Y 4

t −
9

4
Y 2
t Y

2
τ −

9

4
Y 4
τ −6Y 2

t λ2

)
Yt

(16π2)2βNLO,IIYt
=

(
g21

(
− 41

144
Y 2
b +

131

16
Y 2
t

)
+g22

(
33

16
Y 2
b +

225

16
Y 2
t

)
+g23

(
16

3
Y 2
b +36Y 2

t

)
−5

2
Y 4
b −

5

2
Y 2
b Y

2
t −

3

4
Y 2
b Y

2
τ −12Y 4

t −2Y 2
b λ3+2Y 2

b λ4−6Y 2
t λ2

)
Yt
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16π2βNLO,XYt
= (16π2)2βNLO,IYt

−
(

25

8
g21 +

15

8
g22 +

5

4
Y 2
b −

9

4
Y 2
t −

9

4
Y 2
τ

)
Y 2
τ Yt

16π2βNLO,YYt
= (16π2)2βNLO,IIYt
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B cos(β − α) planes

In order to simplify the comparison with figures in the literature, we show the dependence

of tanβ, mH and mA on cos(β−α) in figures 8 and 9, corresponding to the figures 4 and 6.
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Figure 8. tanβ–cos(β−α) plane in type I (top left), type II (top right), type X (bottom left) and

type Y (bottom right) at mZ with stability imposed at µew in orange (light) and at µPl in purple

(dark). The dash-dotted, continuous and dashed lines border the 1σ, 2σ and 3σ allowed regions,

respectively; the 2σ region — which roughly corresponds to the 95% C.L. area — is shaded.
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Figure 9. cos(β − α)–mH plane (on the left) and cos(β − α)–mA plane (on the right) in type I,

type II, type X and type Y (from top to bottom) at mZ with stability imposed at µew in orange

(light) and at µPl in purple (dark). The dash-dotted, continuous and dashed lines border the 1σ,

2σ and 3σ allowed regions, respectively; the 2σ region — which roughly corresponds to the 95%

C.L. area — is shaded.
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