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Abstract: We construct black holes with scalar hair in a wide class of four-dimensional

N = 2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepoten-

tial containing one free parameter. Considering the truncated model in which only a single

real scalar survives, the theory is reduced to an Einstein-scalar system with a potential,

which admits at most two AdS critical points and is expressed in terms of a real superpo-

tential. Our solution is static, admits maximally symmetric horizons, asymptotically tends

to AdS space corresponding to an extremum of the superpotential, but is disconnected from

the Schwarzschild-AdS family. The condition under which the spacetime admits an event

horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons

the black holes can be extremal. In this case, the near-horizon geometry is AdS2 × H2,

where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our

solution displays fall-off behaviours different from the standard one, due to the fact that

the mass parameter m2 = −2`−2 at the supersymmetric vacuum lies in a characteristic

range m2
BF ≤ m2 < m2

BF+`−2 for which the slowly decaying scalar field is also normalizable

(m2
BF = −9/(4`2) denotes the Breitenlohner-Freedman bound). Nevertheless, we identify

a well-defined mass for our spacetime, following the prescription of Hertog and Maeda.

Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic

cosmological constant alone, as one would expect in absence of electromagnetic charges and

angular momentum. Our solution shows qualitatively the same thermodynamic behaviour

as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass

and AdS curvature radius. We also find that our spherical black holes are unstable against

radial perturbations.
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1 Introduction

The uniqueness theorems for stationary, nonextremal black holes in the Einstein-Maxwell

system [1–5] are one of the crowning triumphs of general relativity. Stationary black holes

in asymptotically flat spacetimes are thus completely specified by the asymptotic charges

(M,J,Q) and exhausted by the Kerr-Newman family. One might expect the validity of this

statement as stemming from the observation that the higher multipole moments present

at the formation of black holes would die away due to electromagnetic and gravitational

radiation. A perturbative analysis of black-hole ringdowns affirmatively supports this be-

lief [6]. Inspired by these works, Ruffini and Wheeler proposed a novel conjecture [7] that

black holes in more general settings do not allow additional ‘hair’ to be characterized.

Unlike the Einstein-Maxwell system without a cosmological constant, the global bound-

ary value problem utilizing a nonlinear sigma model cannot be adopted in an Einstein-scalar

system if the scalar fields have a potential. This difficulty restricts the applicability of the

no scalar-hair proof only to the static case. When the potential V (φ) of a scalar field

satisfies φ∂V/∂φ ≥ 0, Bekenstein gave an elegant proof which rules out nontrivial scalar

configurations outside an asymptotically flat static black hole with a regular horizon [8, 9].

This theorem was later generalized to an arbitrary nonnegative potential [10, 11] and to

noncanonical scalar systems [12]. By sidestepping some assumptions that go into these

theorems, black holes are not necessarily getting bald. Prototype examples are black holes

sourced by a conformally coupled scalar field [13, 14] and the ‘coloured’ black holes dressed

with a Yang-Mills field [15]. Unfortunately, both of these solutions are unstable [16, 17]
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and are not realizable as final states of the gravitational collapse. Note that, based on the

results of [18, 19], refs. [20–22] analytically constructed coloured hairy BPS black holes.

Being supersymmetric, these solutions are expected to be stable.1 Black holes in four-

dimensional N = 2 ungauged supergravity violating the no-hair conjecture were found

in [25], but unfortunately the special Kähler metric of the scalar field target space is not

positive definite when evaluated on the solutions, and thus ghost modes appear.

In asymptotically AdS spacetimes, the situation changes drastically and the story is

much richer. Although a no-hair theorem for static and spherically symmetric asymp-

totically AdS black holes has been established for nonconvex potentials [26], one cannot

validate the uniqueness of the Schwarzschild-AdS black hole without additional restrictions

even in the Einstein-Λ(< 0) system [27]. Moreover, finding solutions itself is a formidable

task, since the usual solution-generating techniques do not work in the presence of scalar

potentials. Hence, we do not yet grasp the whole picture of the solution space of AdS black

holes. Recently, many black holes admitting scalar hair have been obtained by ansatz-

based approaches, for which the potential is ‘derived’ in such a way that the assumed

metric solves the equations of motion [28–33]. This kind of heuristic approach gives in

general a peculiar form of the scalar potential, which lacks physical motivations unless the

parameters are tuned appropriately.2

Here we are interested in black holes with scalar hair in gauged supergravities. In

this framework, the scalar fields acquire a potential due to the gaugings, which leads us

naturally to set up the situation of asymptotically AdS spacetimes. AdS black holes with

scalar hair are of primary importance in the context of the gauge/gravity correspondence

and applications to condensed matter physics. From the holographic point of view, the ex-

citation of unstable modes creates a bound state of a boundary tachyon [35]. It follows that

the instability of a hairy black hole provides an interesting phase of the dual field theories.

In this paper, we construct a static, neutral black hole with a maximally symmetric

horizon admitting scalar hair in N = 2 supergravity with Fayet-Iliopoulos gauging. We

consider a model with a single vector multiplet for which the prepotential involves a sin-

gle free parameter. By truncating to the subsector of a real scalar field and vanishing

gauge fields, the resulting scalar potential can be expressed in terms of a superpotential.

One of the critical points extremizes also the superpotential and the mass parameter at

the critical point is given by m2 = −2`−2, where ` is the AdS curvature radius. It is

worth noting that the mass is in the characteristic range m2
BF ≤ m2 < m2

BF + `−2, where

m2
BF = −9/(4`2) denotes the BF bound [36] under which the scalar field is perturbatively

unstable. In this case, the slowly decaying mode of the scalar field is also normalizable,

for which the asymptotic fall-off behavior deviates from the standard one. It then follows

that the conventional methods for computing conserved quantities in asymptotically AdS

spacetimes [37–41] cannot be applied. In spite of this, some authors have used without

justification a formula which is valid only in the case of Dirichlet boundary conditions.

1However, since they admit degenerate horizons, these black holes are generically unstable for

supersymmetry-breaking perturbations [23, 24].
2 In some cases, the derived potential may have an origin in supergravity. For instance, the black hole

constructed in [34] can be embedded into the symplectically deformed N = 8 gauged supergravity.
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We exploit the prescription of Hertog and Maeda [42] to compute conserved charges valid

also for the mixed boundary conditions. We explore in detail the condition under which

our solution admits an event horizon for each horizon topology. We also analyze the Wick

rotation of our solution, which describes an asymptotically de Sitter black hole.

An outline of the present paper consists as follows. In section 2, we give a brief

review of N = 2 gauged supergravity with Abelian Fayet-Iliopoulos gauging. We truncate

the model down to a single scalar and examine the structure of the scalar potential. In

section 3, we present the hairy black hole solution and show that some hairy black holes

obtained in the literature are recovered by taking certain limits. In section 4, we address

some physical properties of our solution. We identify a well-defined mass function of

the spacetime, explore the structure of the Killing horizons in detail, and work out the

conditions under which the solution admits an event horizon. We then investigate the

thermodynamic behaviour of the black holes and discuss their (in)stability. An extension

to the asymptotically de Sitter case is also given. Section 5 concludes with some remarks.

2 Fayet-Iliopoulos gauged N = 2, D = 4 supergravity

We consider N = 2, D = 4 gauged supergravity coupled to nV abelian vector multi-

plets [43].3 In addition to the vierbein eaµ, the bosonic field content consists of the vectors

AIµ enumerated by I = 0, . . . , nV , and the complex scalars zα (α = 1, . . . , nV ). These

scalars parametrize a special Kähler manifold, i.e., an nV -dimensional Hodge-Kähler man-

ifold which is the base of a symplectic bundle characterized by the covariantly holomorphic

sections

V =

(
XI

FI

)
, DᾱV = ∂ᾱV −

1

2
(∂ᾱK)V = 0 , (2.1)

where K = K(zα, z̄α) is the Kähler potential and Dα denotes the Kähler-covariant U(1)

derivative. The covariantly symplectic section V obeys the symplectic constraint

〈V , V̄〉 = XI F̄I − FIX̄I = i , (2.2)

where 〈 , 〉 denotes the symplectic inner product. It is also useful to define v(z) as

V = eK(z,z̄)/2v(z) , (2.3)

where v(z) corresponds to a holomorphic symplectic vector,

v(z) =

(
ZI(z)
∂
∂ZI

F (Z)

)
. (2.4)

F is a homogeneous function of degree two, referred to as the prepotential, whose existence

is assumed to get the final expression. In terms of v, one finds the Kähler potential

e−K(z,z̄) = −i〈v , v̄〉 . (2.5)

3Throughout this paper, we use the notations and conventions of [44].
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The matrix NIJ describes the coupling between the scalars zα and the vectors AIµ, and is

defined by the relations

FI = NIJXJ , DᾱF̄I = NIJDᾱX̄J . (2.6)

The bosonic Lagrangian reads

e−1Lbos =
1

2
R+

1

4
(ImN )IJF

I
µνF

Jµν − 1

8
(ReN )IJ e

−1εµνρσF IµνF
J
ρσ

−gαβ̄∂µzα∂µz̄β̄ − V , (2.7)

with the scalar potential

V = −2g2ξIξJ [(ImN )−1|IJ + 8X̄IXJ ] , (2.8)

that results from U(1) Fayet-Iliopoulos gauging. Here, g denotes the gauge coupling and

the ξI are constants. In what follows, we define gI = gξI .

In this paper, we focus on a model with prepotential characterized by a single param-

eter n,

F (X) = − i
4

(X0)n(X1)2−n , (2.9)

that has nV = 1 (one vector multiplet), and thus just one complex scalar z. This is a

truncation of the stu model with F ∝ (X0X1X2X3)1/2 (set X2 = X02n−1
, X3 = X13−2n

).

Note that, for zero axions and a special choice of the FI parameters ξI , the latter can be

obtained by dimensional reduction from eleven-dimensional supergravity [45].

Choosing Z0 = 1, Z1 = z, the symplectic vector v becomes

v =


1

z

− i
4 nz

2−n

− i
4 (2− n)z1−n

 . (2.10)

The Kähler potential is given by

e−K =
1

4

[
n(z2−n + z̄2−n) + (2− n)(z1−nz̄ + zz̄1−n)

]
. (2.11)

When n = 1, the scalar manifold describes SU(1, 1)/U(1). In what follows, we shall restrict

to the truncated model with a single real scalar z = z̄ and a vanishing vector field F Iµν = 0.4

In that case, the metric and kinetic matrix for the vectors boil down to

gzz̄|Imz=0 = ∂z∂z̄K|Imz=0 =
n(2− n)

4z2
, N|Imz=0 = − i

4

(
nz2−n 0

0 (2− n)z−n

)
,

4After some computations, one can show that setting F Iµν = 0 ensures that z = z̄ is a consistent

truncation of the theory (2.7). Namely, Imz = 0 solves the field equations. Since the axion field is zero, it is

thus possible to embed our model into eleven-dimensional supergravity, following the argument below (2.9).
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while the potential (2.8) becomes

V = −8

[
2n− 1

n
g2

0 z
n−2 + 4 g0g1 z

n−1 +
3− 2n

2− n
g2

1 z
n

]
. (2.12)

Then the action reduces to

S =

∫ [
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

]√
−g d4x , (2.13)

where we defined the canonical scalar field φ by φ = λ−1
n ln z, with

λn =

√
2

n(2− n)
, 0 < n < 2 . (2.14)

Here the allowed range of n comes from the restriction ImN < 0, which assures positivity

of the kinetic term for the gauge fields. In terms of φ, the potential is given by

V (φ) = −8

[
2n− 1

n
g2

0 e
λn(n−2)φ + 4 g0g1 e

λn(n−1)φ +
3− 2n

2− n
g2

1 e
λnnφ

]
, (2.15)

which can be written in terms of a real superpotential W = W (φ) as

V = 4
[
2(∂φW )2 − 3W 2

]
, (2.16)

where

W (φ) = g1e
nλnφ/2 + g0e

(n−2)λnφ/2 . (2.17)

In what follows we shall assume that both g0 and g1 are positive. Remark that the theory

is invariant under

g0 → g1 , g1 → g0 , n→ 2− n , φ→ −φ . (2.18)

This invariance allows us to restrict to the range 0 < n ≤ 1 for the discussion of the physical

properties of the solution. In spite of this, we shall consider the full range 0 < n < 2 for

clarity of our argument.

One finds that the potential (2.15) has two critical points (see figure 1), namely

eλnφ1 =
g0(2− n)

g1n
, eλnφ2 =

g0(2− n)(1− 2n)

g1(3− 2n)n
. (2.19)

φ = φ1 always exists for 0 < n < 2. Since the extremum φ = φ1 is also a critical point of

the superpotential, it describes a supersymmetric vacuum, for which there exists a Killing

spinor ε satisfying [46, 47]

(∇µ +Wγµ)ε = 0 , (γµ∇µφ− 4∂φW )ε = 0 . (2.20)

These equations are obtained by the truncation of gravitino and gaugino variations for

N = 2 gauged supergravity5. On the other hand, the extremum φ = φ2 does not exist in

the range 1/2 ≤ n ≤ 3/2 and it breaks supersymmetry.

5In order to show this, one first notices that the superpotential is expressed as W = gIX
I . Following

the same argument as in section 3.2 of [46], one gets (2.20) provided ε = ε1 + iε2, instead of the convention

ε = ε1 + ε2 adopted in [46]. Here, εi (i = 1, 2) are chiral spinors and εi are their charge conjugations with

negative chirality.
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Figure 1. The behaviour of the scalar potential for (i) 0 < n < 1/2, (ii) 1/2 < n < 3/2 and

(iii) 3/2 < n < 2. The 1/2 ≤ n < 3/2 case admits only a global maximum corresponding to the

supersymmetric vacuum, otherwise there exist two critical points. The extrema always correspond

to a negative cosmological constant.

If we define φ ≡ φ1 + δφ and expand the potential around φ1, the action (2.13) can be

written as

S =

∫ [
R− 2Λ

2
− 1

2
gµν∂µδφ ∂νδφ−

1

2
m2δφ2 +O(δφ3)

]√
−g d4x , (2.21)

with the cosmological constant Λ = −3`−2, where the asymptotic AdS curvature radius is

given by

` =
ρ0

2
√

2g0

, ρ0 ≡
n√
2

(
(2− n)g0

ng1

)1−n/2
. (2.22)

The dimensionless parameter ρ0 was introduced for later convenience. The mass parameter

m measures the curvature of the potential at the supersymmetric critical point and reads

m2 = −2`−2 . (2.23)

This is exactly the value for a conformally coupled scalar field in AdS. One can follow

the same steps to show that the other vacuum φ = φ2 also corresponds to the negative

cosmological constant Λ = −3`22 and its mass spectrum is given by

m2 =
6

`22
, `2 =

n(3− 2n)

4g0(1− n)

(
g0(2− n)(1− 2n)

g1n(3− 2n)

)1−n/2
. (2.24)

The supersymmetric vacua (∂φW = 0) are always stable since the mass is above or equal

to the Breitenlohner-Freedman (BF) bound [36], which can be grasped as

m2 = ∂2
φV = 8

[
2

(
∂2
φW −

3

4
W

)2

− 9

8
W 2

]
≥ −9W 2 = m2

BF , (2.25)

where m2
BF = −9/(4`2) denotes the BF mass bound. One sees that the above mass (2.23)

indeed exceeds this lower bound. Here, it is important to remark that the mass (2.23) at

the vacuum φ1 lies in the BF range [36]

m2
BF ≤ m2 < m2

BF +
1

`2
. (2.26)
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By requiring the conservation and the positivity of a suitable energy functional, Breiten-

lohner and Freedman [36] found that the slowly decaying mode of the scalar field is also

normalizable when the mass parameter lies in this range. It was later shown by Ishibashi

and Wald [48] that this is also a necessary condition for stability of the scalar field. They

proved that the Hamiltonian operator of various fields admits a positive, self-adjoint ex-

tension if and only if the mass is above or equal to the BF bound (see proposition 3.1 in

ref. [48]). They also showed that the extension of the Hamiltonian is specified by a single

parameter taking values in RP1 ∼= S1 when the mass of the scalar field lies in the BF

range. They further proved that the possible choices of self-adjoint extension correspond

to the freedom of choosing possible boundary conditions specified by that parameter. This

parameter appears in the asymptotic behaviour of the scalar field as follows. Let r denote

the standard radial coordinate of AdS. Then the free scalar field φ propagating in AdS

behaves at infinity as6

φ ∼ φ±(xi)

rλ±
, λ± =

1

2
(3±

√
9 + 4m2`2) , (2.27)

where xi are coordinates on the conformal boundary. For the vacuum φ = φ1, this gives

λ+ = 2 and λ− = 1. When m2 ≥ m2
BF + 1/`2 as in the vacuum φ2, the allowed boundary

condition is only of Dirichlet type, and thus φ−(xi) = 0. For the BF (2.26), φ−(xi)

can also be nonvanishing and the ratio corresponding to the mixed boundary condition is

characterized by a single dimensionless parameter α as [42]

φ ∼ φ−(xi)

rλ−
+
αφ

λ+/λ−
− (xi)

rλ+
. (2.28)

This relation is crucial for determining the mass of the spacetime in a later section.

3 Black holes with scalar hair

In this section, we construct black hole solutions with a nontrivial scalar profile in the

Einstein-scalar theory described by the action (2.13). The equations of motion following

from (2.13) read

�φ = V ′(φ) , Rµν = ∂µφ∂νφ+ gµνV (φ) , (3.1)

where the potential is given by (2.15). As we are looking for static black holes, we use the

ansatz

ds2 = − e2X(r)dt2 + e−2X(r)dr2 + e2Y (r)dΣ2
k , φ = φ(r) , (3.2)

where dΣ2
k is the line element on a two-dimensional space with constant curvature k,

dΣ2
k =

dχ2

1− kχ2
+ χ2dϕ2 , k = 0,±1 . (3.3)

6When the BF bound is saturated, the two solutions are degenerate and there appears a second solution

with a logarithmic branch. Since this case does not appear in our model, we shall not pursue it in this

paper. We refer the reader to e.g. [49, 50] and references therein for a recent discussion of that case.

– 7 –
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Introducing the new function ψ = X + Y , the equations of motion (3.1) boil down to

X ′′ + 2X ′ψ′ = −e−2XV (φ) ,

ψ′′ + 2ψ′2 − ke−2ψ = −2e−2XV (φ) ,

φ′′ + 2φ′ψ′ = e−2XV ′(φ) ,

X ′2 − ψ′2 +
1

2
φ′2 + ke−2ψ = e−2XV (φ) .

(3.4)

It is worth noting that the equations (3.4) may also be derived from the one-dimensional

action

S =

∫ [
1

2
e2ψ

(
−X ′2 + ψ′2 − 1

2
φ′2
)
− 1

2
e−2X+2ψV (φ)

]
dr . (3.5)

Since r does not appear explicitely in the Lagrangian, the Hamiltonian H is constant, and

from the last equation of (3.4) we see that H coincides with k/2.

Inspired by [51] we set

e2Y (r) = f1(r)nf2(r)2−n . (3.6)

Then it turns out that a class of solutions to the equations of motion (3.4) is given by

f1 =
n√
2

(
r +

2β

n

)
, f2 =

2− n√
2

g0

g1

(
r − 2β

2− n

)
,

e2ψ = 8g2
0

(
r +

2β

n

)(
r − 2β

2− n

)(
r2 − 4(1− n)

n(2− n)
βr + 4

5n2 − 10n+ 4

n2(2− n)2
β2 +

k

8g2
0

)
,

eλnφ =
g0(2− n)

g1n

r − 2β/(2− n)

r + 2β/n
, (3.7)

where β denotes an arbitrary constant. The metric becomes then

ds2 = − e2ψ

fn1 f
2−n
2

dt2 +
fn1 f

2−n
2

e2ψ
dr2 + fn1 f

2−n
2 dΣ2

k . (3.8)

Note that the solution is given in terms of a quartic polynomial e2ψ and two linear functions

f1, f2, whose powers reflect the expression for the prepotential. This generic structure was

first observed in [52]. When β = 0, we recover AdS in static coordinates with a two-

dimensional constant curvature space dΣ2
k. Hence β measures the deviation from AdS and

is proportional to the mass of the black hole, as we will see later. If we take the limit

g0 → 0 with g1/g0 kept finite, the potential vanishes and the spacetime reduces to the

asymptotically flat metric found in [53, 54], which describes a naked singularity. It follows

that our solution does not include asymptotically flat black holes with scalar hair. It is

also worthwhile to remark that the only way to kill the scalar field is β = 0, hence the

solution (3.8) is disconnected from the (topological) Schwarzschild-AdS family. As we will

see, the metric (3.8) admits a parameter range that allows a regular event horizon with a

nontrivial scalar field. (3.8) provides thus a novel example describing a hairy black hole.
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3.1 Comparison with other literature

Before going into the details of our solution, it is useful to compare it with other asymp-

totically AdS hairy black holes previously constructed in the literature. Some of them turn

out to correspond actually to a subclass of (3.7), (3.8).

The first class is the special case n = 1/2 and k = 1 presented in [55], which represents

an exact solution of the theory obtained by the single scalar truncation of U(1)4 ⊂ SO(8)

gauged supergravity. Setting β2 = 0 and subsequently taking the limit β1 →∞ in eq. (2.1)

of [55], we obtain the metric

ds2 = −(1 + g2r2)
√
f0dt2 +

dr2

(1 + g2r2)
√
f0

+ r2
√
f0 dΩ2

2 , (3.9)

and the scalar field

φ = −
√

3

2
log f0 , (3.10)

where f0 = 1− 2µ/r. From the expression of the potential we learn that g2 = g2
0ρ
−2
0 and it

is straightforward to check that the metric (3.9) can be put in the form (3.8) through the

transformations r → ρ0

(
r − 4

3β
)
, t→ ρ−1

0 t and requiring that µ = −8
3βρ0.

If one takes instead n = 1/2, k = −1 and g1 = 3g0, (3.7), (3.8) boils down to the MTZ

black hole [56].7

Another interesting solution with scalar hair was obtained in [29, 58]. In these papers

a general ansatz for the metric and the scalar field are presented, and the expression of the

potential is derived by requiring the equations of motion to hold. Although the produced

potential in general fails to have a physical motivation, a subclass of it (α = 0 in their

notation) is inspired by supergravity. Tailoring to the present normalization (2.13), the

four-dimensional solution in [58] reads

ds2 = − f(r)

H1+µ
1 (r)H1−µ

2 (r)
dt2 +H1+µ

1 (r)H1−µ
2 (r)

(
dr2

f(r)
+ r2dΣ2

k

)
, (3.11)

where

Hi = 1 +
qi
r
, f = kH1H2 + g2r2(H1+µ

1 H1−µ
2 )2 , φ =

ν√
2

ln

(
H1

H2

)
. (3.12)

Their scalar potential is given by

V = −1

2
g2e
√

2(µ−1)φ/ν
[
(µ− 1)(2µ− 1)e2

√
2φ/ν − 4(µ2 − 1)e

√
2φ/ν + (µ+ 1)(2µ+ 1)

]
.

(3.13)

Here µ, ν are constants satisfying µ2 + ν2 = 1. If we set

µ = ±(n− 1) , ν = ±
√
n(2− n) , (3.14)

7In a conformally related frame (the Jordan frame), the MTZ black hole and various generalizations

thereof were discussed in [57].
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we can recover our potential (2.15) with g0 = gn/4, g1 = g(2−n)/4 [59]. The solution (3.11)

does not have an event horizon for k ≥ 0, but is very similar to ours. In fact, taking e.g. the

plus sign in (3.14), one sees that (3.11) is of the form (3.8) with the fi proportional to rHi.

However, it turns out that the sign of φ in (3.12) and (3.7) disagrees. Moreover, the function

ψ that results from casting (3.11) into the form (3.8) is different from ψ in (3.7). It follows

that the static solution (3.11) corresponds to a branch different from ours. It would be

very interesting to seek for a solution that comprises both (3.7), (3.8) and (3.11), (3.12).

An ansatz for ψ and φ that in principle does this job would be

e2ψ = f1(r)f2(r)[c1r
2 + c2r + c3 + c4f1(r)2n−1f2(r)3−2n] , λnφ = ln

(
c0
f2(r)

f1(r)

)
,

(3.15)

with fi(r) = air + bi, where ai, bi, ci are constants. Indeed, our solution has c4 = 0,

while (3.11) would correspond to c1 = c2 = 0. Unfortunately it turns out that (3.15) works

either for (3.7), (3.8) or for (3.11), (3.12), but is unable to synthesize both. We shall leave

the construction of such a more general solution for future work.

Let us finally compare with the spherically symmetric numerical solution discussed

in [60]. Our Lagrangian reduces to theirs when n = 1 with g0 = g1. Hence one may hope

that our solution represents their numerical solution. However, our metric does not admit

a spherical horizon when n = 1, as we will see in the next section. This fact also suggests

to look for more general solutions that contain both (3.7), (3.8) and the numerical one

of [60].

4 Physical discussion

In this section, we explore various properties of the hairy black hole obtained in the previous

section.

4.1 Mass

The mass of a given spacetime is the most fundamental physical quantity. Let us therefore

try to identify a well-defined mass for our spacetime. Since the conserved charges defined

at infinity are usually encoded in the leading terms of physical fields departing from the

background spacetime, we consider the asymptotic behavior of the metric and the scalar

field. For this purpose, it is convenient to define the areal radius by

ρ =

√
fn1 f

2−n
2 . (4.1)

In terms of ρ, the asymptotic expansion (ρ→∞) of the metric (3.8) reads

ds2 ' −
(
k +

ρ2

`2
− 2µ1

ρ

)
dτ2 +

(
k + γ +

ρ2

`2
− 2µ2

ρ

)−1

dρ2 + ρ2dΣ2
k , (4.2)

where τ = ρ−1
0 t, ` = ρ0/(2

√
2g0) is the AdS radius given in (2.22) and

γ ≡ 32g2
0β

2

n(2− n)
. (4.3)
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We have also defined the two parameters

µ1 =
1

12
ρ0λ

6
n(n− 1)β[3kn2(n− 2)2 + 128g2

0β
2(3− 2n)(1− 2n)] , (4.4a)

µ2 =
1

12
ρ0λ

6
n(n− 1)β[3kn2(n− 2)2 + 128g2

0β
2(5n2 − 10n+ 3)] . (4.4b)

The scalar field behaves according to (2.27),

φ ' φ1 +
φ−
ρ

+
φ+

ρ2
+O(1/ρ3) , (4.5)

where φ1 is defined by (2.19) and

φ− = −2λnβρ0 , φ+ = −2(n− 1)λ3
nβ

2ρ2
0 . (4.6)

It follows that the parameter α in (2.28) characterizing the boundary condition reads

α =
1

2
(1− n)λn . (4.7)

We also note the useful relation

γ =
1

2`2
φ2
− . (4.8)

Thus far, various notions of asymptotically AdS spacetimes have been defined [37–40], and

lots of apparently distinct definitions of conserved charges have been proposed. Unfortu-

nately, asymptotic AdS boundary conditions put forward in these papers do not allow a

class of metrics behaving like (4.2). Due to the fact that the mass of the scalar field lies

in the range (2.26), the stress tensor of the slowly decaying mode φ− of the scalar field

does not fall off sufficiently rapidly at infinity, giving rise to a backreaction to the geometry

which modifies the gρρ behaviour from the standard asymptotic form with γ = 0. This is a

main obstruction to construct the conserved quantity following the prescriptions in [37–40].

This property is also encoded into the behavior of the Misner-Sharp energy [61], which is

a well-defined quasi-local energy in pseudo-spherical symmetry [62] and is defined by

MMS =
1

2
ρ

[
k − (∇ρ)2 +

ρ2

`2

]
. (4.9)

One easily sees that it diverges as ρ→∞ for our spacetime (3.8).

Hertog and Maeda proposed a possible way to avoid this problem [42].8 They general-

ized the boundary conditions of Henneaux-Teitelboim [39] in such a way that the relaxed

boundary conditions (i) include spacetimes containing a scalar field with mass parameter

in the BF range, (ii) are invariant under the asymptotic symmetries (eq. (2.14) of [42]),

8Note that the result of Hertog and Maeda follows also from holographic renormalization. In particular,

mixed boundary conditions shift the holographic stress tensor according to table 3 in [63]. Computing

the conserved charges with this shifted stress tensor yields the charges of [42]. We would like to thank

I. Papadimitriou for pointing out this to us.
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and (iii) allow charges generated by the corresponding asymptotic symmetries to remain

finite. Focusing on the asymptotically globally AdS case (k = 1), they obtained [42]

Q[ξ] = QHT[ξ] +
λ−

16π`

∮
dΩ2ξ

⊥r2

(
φ2 +

2

3
α(λ+ − λ−)φ3/λ−

)
, (4.10)

where ξ is an asymptotic symmetry and ξ⊥ denotes its normal component to the spacelike

surface. QHT[ξ] denotes the contribution of the Henneaux-Teitelboim charge [39]. We

would like to stress that this piece is divergent, which is precisely cancelled by the divergence

of the second term. In the present case, the mass is given by M = Q[ρ0∂t], i.e.,9

M = µ2 −
32

3
g2

0ρ0n(2− n)(1− n)λ6
nβ

3 = µ1 , (4.11)

where the last equality was evaluated by using (4.4a). The constant of integration has

been fixed so that it vanishes for AdS spacetime. This expression also coincides with the

formula given in [68] (see also the discussion in [69])

M = µ2 −
1

3
m2αφ

3/λ−
− , (4.12)

where m is the mass (2.23) at the AdS vacuum φ = φ1. A natural generalization to the

topological cases (k = 0,−1) is inferred to be

M =
Σkµ1

4π
, (4.13)

where Σk is the area of a unit maximally symmetric space with curvature k. We will justify

this expression below by deriving the first law of black hole thermodynamics.

The n = 1 case is particularly interesting since the mass vanishes, whereas the scalar

field profile remains nontrivial. This does not contradict the positive mass theorem, since

the n = 1 spherical solution describes a naked singularity as shown in section 4.2.

Note that the parameter µ1 indeed corresponds to the Coulomb part of the spacetime.

Namely the Weyl scalar of the Newman-Penrose formalism behaves as

Ψ2 = −µ1

ρ3
+O(1/ρ4) . (4.14)

This behaviour partly justifies the use of the Ashtekhar-Magnon definition of conserved

charges [38] for spacetimes with scalar field in the BF range, since their mass essentially

corresponds to the coefficient of the O(1/ρ3) term of the electric part of the Weyl tensor.

Considering the fall-off behaviour of the stress-energy tensor in [38], there does not appear

to be an a priori reason why the Ashtekhar-Magnon charge is finite in the present case.

Perhaps it appears that some miraculous cancellation occurs between terms arising from

the metric and the scalar field.
9In refs. [55, 64, 65], it was argued that an extra work term should contribute to the (variation of the)

Hamiltonian defined by Wald’s covariant phase space method [66, 67] as δHξ = δM − XδY . However,

this additional term XδY violates the necessary condition (δ1δ2 − δ2δ1)Hξ = 0 for the existence of a

Hamiltonian, unless X,Y are functionally dependent (in the analysis of [68], a similar restriction arises

from the consistency of asymptotic symmetry). In the present case, this additional term vanishes thanks to

the relation (4.6). For more general solutions where the integrability condition fails, the requirement of 1st

law may provide a good foothold in the construction of well-defined mass. See also the related discussion

in [70].
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4.2 Horizon structure

There appear two possible Killing horizons r±, which are identified by the two roots of

e2ψ = 0, i.e.,

r± =
8g0β(1− n)±

√
−2kn2(2− n)2 − 64g2

0β
2(3− 8n+ 4n2)

4g0n(2− n)
. (4.15)

r = r+ describes the event horizon of a black hole, on which we focus hereafter. The other

roots r = −2β/n and r = 2β/(2 − n) are not our concern, since they correspond to a

curvature singularity. This can be easily seen by noting that the areal radius ρ defined

by (4.1) vanishes at these points.

Let us first discuss the conditions under which spherical horizons exist. Setting k = 1

in (4.15), the expression under the square root is nonnegative for 1/2 < n < 3/2 and

32g2
0β

2 ≥ − n2(2− n)2

3− 8n+ 4n2
. (4.16)

In addition, we must impose that the curvature singularities at r = −2β/n and r =

2β/(2 − n) be hidden behind the horizon. It turns out that this yields a lower bound on

g2
0β

2 that is more stringent than (4.16). A straightforward calculation shows that spherical

black holes exist for

1

2
< n < 1 and g0β >

n(2− n)

8
√

2
√

(2n− 1)(1− n)
(4.17)

or

1 < n <
3

2
and g0β < −

n(2− n)

8
√

2
√

(3− 2n)(n− 1)
. (4.18)

Note that for n = 1 and k = 1 the solution describes a naked singularity, since in this case

either the dangerous radius 2β (for β > 0) or −2β (for β < 0) is larger than r+. In the

k = 1 case, the inner horizon r = r− is always smaller than max[−2β/n, 2β/(2− n)]. This

means that the singularity is spacelike and the causal structure is the same as for the k = 1

Schwarzschild-AdS black hole.

An analogous computation shows that flat horizons (k = 0) are possible for 1/2 < n < 1

and β > 0 or for 1 < n < 3/2 and β < 0. In the special case n = 1 the horizon always

coincides with one of the singularities. For the planar case, the inner horizon r− cannot be

larger than the singularity at max[−2β/n, 2β/(2− n)].

Finally, hyperbolic black holes (k = −1) exist if β satisfies the following conditions:

• 0 < n < 1/2:

− n(2− n)

8
√

2
√

(n− 1)(2n− 3)
< g0β ≤

n(2− n)

4
√

2
√

(2n− 1)(2n− 3)
, (4.19)

• 1/2 ≤ n < 1:

g0β > −
n(2− n)

8
√

2
√

(n− 1)(2n− 3)
, (4.20)
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• 1 < n ≤ 3/2:

g0β <
n(2− n)

8
√

2
√

(n− 1)(2n− 1)
, (4.21)

• 3/2 < n < 2:

− n(2− n)

4
√

2
√

(2n− 1)(2n− 3)
≤ g0β <

n(2− n)

8
√

2
√

(n− 1)(2n− 1)
. (4.22)

For n = 1 there is no restriction on β. When (4.19) or (4.22) are satisfied the inner horizon

r− also appears, since it is larger than max[−2β/n, 2β/(2− n)].

In the case k = −1, r+ and r− can actually coincide. One finds that extremal hyper-

bolic hairy black holes exist when

0 < n <
1

2
and g0β =

n(2− n)

4
√

2
√

(3− 2n)(1− 2n)
(4.23)

or
3

2
< n < 2 and g0β = − n(2− n)

4
√

2
√

(3− 2n)(1− 2n)
. (4.24)

The extremal solution interpolates between AdS4 at infinity and AdS2×H2 at the horizon.

Interestingly, the value of the scalar field at the horizon agrees with the other critical

point of the potential at φ = φ2. It follows that the scalar field goes thereby from the

supersymmetric vacuum φ1 at r =∞ to φ = φ2 at the horizon. We explicitly checked that

the near-horizon geometry with φ = φ2 breaks supersymmetry. From the holographic point

of view, the black hole describes a (2 + 1)-dimensional superconformal field theory that is

perturbed by a multi-trace deformation and flows to a conformal quantum mechanics in

the IR (‘flow across dimensions’) [63, 71].

4.3 Thermodynamics

Let us next discuss thermodynamic properties of the black holes. In terms of the horizon

radius r+, the area of the black hole horizon reads

A = Σkf
n
1 (r+)f2−n

2 (r+) . (4.25)

From (4.2), the unit time translation at AdS infinity corresponds to ξ = ρ0∂/∂t, which is

timelike outside and null on the event horizon. The surface gravity, κ2 = −1
2∇µξν∇

µξν , is

then easily computed to give

κ =
(e2ψ)′

2
√

2g
(−2+n)/2
0 g

(2−n)/2
1 n−n/2(2− n)(n−2)/2fn1 f

2−n
2

∣∣∣∣∣
r=r+

, (4.26)

which accords with the Euclidean prescription of removing conical singularities. The Hawk-

ing temperature is then defined by T = κ/2π. An elementary computation reveals that

the first law of black hole thermodynamics [72] holds,

δM =
κ

8π
δA . (4.27)
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Figure 2. The behaviour of temperature and area as functions of the mass for k = 1, n = 3/4. The

asymptotic AdS radius has been set to ` = 1 and the corresponding quantities for the Schwarzschild-

AdS black hole are also shown. Both black holes have a critical temperature. Our black hole solution

has a positive mass bound and a smaller entropy compared to the Schwarzschild-AdS black hole.

It turns out that the scalar charge fails to contribute to the 1st law, consistent with the

analysis in [73]. Due to the appearance of a curvature scale, there is no straightforward

expression for an integrated mass formula.

Figure 2 shows the temperature and the horizon area as functions of the mass for k = 1

and n = 3/4 (in red), as compared to the Schwarzschild-AdS solution (blue). One can see

that the qualitative behaviour is very similar to that of the Schwarzschild-AdS black hole.

There appears a critical temperature Tc above which we have two kinds of black holes

with M ≶ Mc [74]. We do not write down the explicit expression for Tc since it is quite

messy, but it can be easily computed. The behaviour of the specific heat C = T∂S/∂T is

also similar to the Schwarzschild-AdS black hole, since one has C ≶ 0 for M ≶ Mc and

C → ±∞ for M →Mc ± 0.

One sees from figure 2 that, for a given mass, the area of the hairy black hole is

always smaller than the one of the Schwarzschild-AdS black hole, which implies that the

hairy black hole is unstable. Such an instability was actually also found for the numerical

solutions in the literature [60, 75]. We shall verify in section 4.4 that our solution admits

also an unstable mode.

In the case of a hyperbolic horizon (k = −1), there appears an inner horizon outside

the curvature singularities. The area product of the two Killing horizons is given by

A+A− =
Σ2
k

256g4
0n

4

(
n

2− n

)2n [
kn2(2− n)2 + 128g2

0(1− n)(3− 2n)β2
]n

×
[
kn2(2− n)2 + 128g2

0(1− n)(1− 2n)β2
]2−n

. (4.28)

According to the analysis in [76], the area product of a generic black hole depends only on
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the (quantized) charges, the angular momenta and the cosmological constant. However, the

right hand side of (4.28) does not correspond to such a quantity.10 It would be interesting

to explore the physical meaning of the right hand side of (4.28).

4.4 Instability against radial perturbations

The behaviour of the entropy of our hairy black hole with respect to Schwarzschild-AdS

(figure 2) implies that our solution is unstable against dynamical perturbations. Focusing

on spherically symmetric perturbations, we show that this is indeed the case.

The background spacetime we consider is the spherical solution (k = 1) of the form

g(0)
µν dxµdxν = −f(r)dt2 +

dr2

f(r)
+ ρ(r)2(dθ2 + sin2 θdϕ2) , φ(0) = φ(0)(r) , (4.29)

where f = e2ψ/(fn1 f
2−n
2 ) and ρ(r) is given by (4.1). Here and in what follows, we attach

(0) to denote the background quantities. The governing equations are

Eµν ≡ Rµν −
1

2
Rδµν − Tµν = 0 , Eφ ≡ ∇µ∇µφ− ∂φV = 0 . (4.30)

Let us consider the spherically symmetric perturbations

gµν ' g(0)
µν + g(1)

µν (r)e−iωt , φ ' φ(0) + φ(1)(r)e−iωt , (4.31)

where (1) corresponds to the perturbed value. Using the gauge freedom g
(1)
µν → g

(1)
µν +

L ξg
(0)
µν , we can work in a gauge where only g

(1)
tt and g

(1)
rr are nonvanishing (see [78] for a

review of gravitational perturbations in spherically symmetric spacetimes).

Using the background Einstein’s equations E
(0)
µν = 0 and linearized Einstein’s equations

E
(1)
µν = 0, the perturbed scalar equation E

(1)
φ = 0 reduces to the single master equation(

− d2

dr2
∗

+ U(r)

)
Φ = ω2Φ , (4.32)

where Φ = ρφ(1) and r∗ =
∫

dr/f(r) denotes the tortoise coordinate. The potential U(r)

reads

U=
f

2ρρ′2
[fρ3(φ(0))′4+2ρ′2(fρ′)′−2ρρ′(fρ)′(φ(0))′2+4ρ2ρ′(φ(0))′Vφ+2ρρ′2Vφφ] , (4.33)

where the prime denotes the differentiation with respect to r, Vφ = ∂φV and Vφφ = ∂2
φV

correspond to the background value. The tortoise coordinate asymptotically behaves as

r∗ ∼
1

f ′(r+)
ln(r − r+)→ −∞ (r → r+) , r∗ ∼ −

`2

r
+K (r →∞) , (4.34)

where K is a constant.

10Visser argued that the contribution coming from the virtual horizons should be taken into account [77].

However, such contributions do not make sense in the present context, since other two roots of e2ψ = 0

correspond to the singularities at which the area vanishes.
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We are now looking for an unstable mode which occurs at a purely imaginary frequency.

Hence we set σ = −iω (σ > 0) as in ref. [60]. Since U → 0 for r∗ → −∞, the normalizable

asymptotic solution at the horizon reads

Φ ∼ exp(σr∗) , (r∗ → −∞) . (4.35)

Let us next consider the boundary condition for Φ at infinity. The scalar field behaves as

φ ∼ φ−
ρ

+
αφ2
−

ρ2
. (4.36)

Hence for φ = φ(0) + φ(1)e−iωt we have

φ(1) ∼
φ

(1)
−
ρ

+
2αφ

(0)
− φ

(1)
−

ρ2
. (4.37)

Let U0 = U(r → ∞) < 0 and suppose σ̃ =
√
−U0 − σ2 is positive. Then the asymptotic

solution reads

Φ ∼ A cos(σ̃r∗ + b) ' A
[
cos(σ̃K + b) +

σ̃`2

r
sin(σ̃K + b)

]
, (4.38)

where A and b are constants. Noting ρ ∼ ρ0(r+O(1/r)), a comparison of (4.37) and (4.38)

gives

σ̃`2 tan(σ̃K + b) =
2αφ

(0)
−

ρ0
. (4.39)

This translates into

d

dr∗
Φ ' −

2αφ
(0)
−

ρ0`2
Φ (r →∞) . (4.40)

We now have a Schrödinger-type equation (4.32) with the boundary conditions (4.35), (4.40).

We numerically solved the eigenvalue problem and found an unstable mode as displayed

in figure 3. As β increases, the instability rate becomes smaller. Since we fix the AdS

curvature, large β means large horizon radius. Thus the smaller hairy black hole is more

unstable. For the chosen values n = 3/4, g0 = ` = 1, the unstable mode seems to dis-

appear around β ∼ 1.4. The profound physical reason for this value and its relation to

thermodynamics remain still to be understood.

4.5 Asymptotically de Sitter case

A Wick rotation of the coupling constants, g0 → ig0, g1 → ig0, reverses the sign of the

scalar potential, hence the metric is asymptotically de Sitter. The potential is no longer

expressed in terms of a real superpotential, yet the solution still solves the equations of

motion (3.1). In eqs. (3.7), the expressions of f1, f2 and φ are left invariant, whereas

e2ψ =

(
r +

2β

n

)(
r − 2β

2− n

)
×
[
k − 8g2

0

(
r2 − 4(1− n)

n(2− n)
βr + 4

5n2 − 10n+ 4

n2(2− n)2
β2

)]
. (4.41)
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Figure 3. Instability rate against radial perturbations for n = 3/4, g0 = ` = 1.

Our solution is compatible with the no-hair theorem for asymptotically de Sitter space-

times [79] since the potential is not convex.

The Killing horizons are given by

rc =
8g0β(1− n) +

√
2kn2(2− n)2 − 64g2

0β
2(3− 8n+ 4n2)

4g0n(2− n)
, (4.42a)

r+ =
8g0β(1− n)−

√
2kn2(2− n)2 − 64g2

0β
2(3− 8n+ 4n2)

4g0n(2− n)
. (4.42b)

r = rc is a cosmological horizon, while r = r+ ≤ rc is a black hole event horizon. It turns

out that the condition for the existence of these real roots is weaker than the no naked

singularity condition r+ ≥ max[2β/(2− n),−2β/n]. One finds that horizons exist only for

k = 1 with the following parameter region:

• 0 < n ≤ 1/2:

n(2− n)

8
√

2(1− n)(1− 2n)
< g0β ≤

n(2− n)

4
√

2(1− 2n)(3− 2n)
, (4.43)

• 3/2 ≤ n < 2:

− n(2− n)

4
√

2(2n− 3)(2n− 1)
≤ g0β < −

n(2− n)

8
√

2(n− 1)(2n− 3)
. (4.44)

For these parameter ranges, the global structure is the same as for the k = 1 Schwarzschild-

de Sitter black hole. One can also verify that there exist no lukewarm black holes for which

the temperatures of the black hole horizon and the cosmological horizon are equal.

5 Final remarks

In this paper we constructed a new family of black holes with scalar hair in N = 2 Fayet-

Iliopoulos gauged supergravity. A distinguished feature of our solution is that it is sourced
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only with a scalar field. This kind of exact black hole solution is of importance and will be

a stepping stone for constraining the conditions under which the no-hair theorem is valid.

We explored various properties of these black holes. In particular, we pointed out that

the standard methods of computing conserved charges does not work, since the asymptotic

behaviour of the metric is out of the framework of ‘asymptotically AdS’ proposed in the lit-

erature. Nevertheless, we identified a well-defined mass function following the prescription

of Hertog and Maeda [42]. This fixes some confusions prevailing in the literature.

One may be tempted to hope that this solution would be a novel counterexample to

the no hair conjecture. Since our black hole is unstable, this is not the case. However,

this instability is interesting from the holographic viewpoint [35]. It would be nice to see

if our solution has some potential applications in the AdS/CFT correspondence, and in

particular to condensed matter physics, where one typically includes the leading scalar

operator in the dynamics. This is generically uncharged, and is dual to a neutral scalar

field in the bulk.

Another possible extension of the present work is to look for rotating black holes.

In this case, there might exist a rotating black hole which admits only a helical Killing

vector [80]. It would be interesting to construct this kind of exact solutions in the framework

of supergravity.
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Henri Poincaré, Paris, november 2000, http://itf.fys.kuleuven.ac.be/∼toine/home.htm#B.
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