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1 Introduction

The work of Festuccia and Seiberg [1] provides an easy to implement recipe to construct

gauge theories with rigid supersymmetry on curved manifolds. One picks an (off-shell) su-

pergravity theory coupled to the vector and matter multiplets and solves the Killing spinor
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equations arising from the gravitino and dilatino variations. These in turn impose con-

straints on the auxiliary fields that then appear as parameters in the lagrangian of the field

theory once one has decoupled gravity using a suitable scaling limit. Using supergravity

techniques, the approach allows for a classification of admissible spacetime manifolds [2–9].

In five dimensions, initial progress came not so much from the rigid limit of super-

gravity, as from the direct construction of supersymmetric field theories on increasingly

intricate manifolds [10–13]. Here, a key observation was that the theory on the five-sphere

can be readily generalized to generic Sasaki-Einstein manifolds and even to manifolds that

support only a K-contact structure. Contact with the formalism of the rigid limit was made

by Imamura and Matsuno [14] who solved the Killing spinor equations of the N = 1 super-

gravity of Kugo, Ohashi and Zucker [15–17] locally, as well as in [18] where the equations

arising from the gravitino were discussed in the context of the same supergravity theory.

For maximal supergravity in d = 5, consider [19]; a superspace approach to five-dimensional

N = 1 backgrounds has been developed in [20, 21].

Of course, the interest in rigid supersymmetry goes hand in hand with the idea of

localization following [22]. In this context, the Sasakian case has proven to be interesting.

Sasakian manifolds, being the odd dimensional cousin of Kähler ones, support something

akin to an integrable complex structure on the space transverse to the Reeb vector R. That

is, the tangent bundle admits the decomposition

TCM = T 1,0 ⊕ T 0,1 ⊕ CR . (1.1)

This is integrable in a sense that we will discuss shortly and it follows that one can introduce

differentials ∂b and ∂̄b that correspond to the Dolbeault operators ∂ and ∂̄ that are familiar

from complex geometry. In [23, 24] this was used in order to simplify the calculation of the

perturbative part of the supersymmetric partition function and to solve the BPS equations

on the Higgs branch.

This note focusses on the question to what extent this notion and use of holomorphy

can be extended to general five-dimensional backgrounds admitting rigid N = 1 supersym-

metry. Our analysis is based on the gravitino and dilatino equations of [15, 16] which in

our conventions and in Euclidean signature are

DmξI = tI
JΓmξJ + FmnΓ

nξI +
1

2
VpqΓmpqξI (1.2)

and

4
[

(DmtI
J)Γm + tI

J(F + 2V)mnΓ
mn

]

ξJ + (4∇mVmnΓn + FmnFklΓ
mnkl + C)ξI = 0 .

(1.3)

Here, I = 1, 2 are indices for the fundamental representation of SU(2)R. F = dA is a

U(1) field strength and V an antisymmetric tensor. The triplet t J
I is valued in the adjoint

representation of SU(2)R. The covariant derivatives are DmξI = ∇mξI − A J
mI ξJ and

Dmt J
I = ∇mt J

I − [Am, t] J
I . For later convenience, note that (1.2) can also be rewritten as

DmξI = Γmξ̃I +
1

2
(Vpq −Fpq)ΓmpqξI , ξ̃I = tI

JξJ +
1

2
FmnΓ

mnξI . (1.4)
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In the Lorentzian theory, the spinors ξI satisfy a symplectic Majorana condition (A.1).

Transitioning to the Euclidean theory one usually drops such reality conditions and effec-

tively doubles the degrees of freedom of all fields involved. In general, the spinor ξI defines

a possibly complex vector R. Imposing the reality condition (A.1) for ξI it follows that R

is real and non-vanishing and that the tangent space decomposes as in (1.1), which one

refers to as an almost Cauchy-Riemann (CR) structure (of hypersurface type) [25].

As opposite to the familiar case of almost complex structures, the integrability condi-

tion for (1.1) is not unique. Indeed, there are two possibilities. To begin, there is the case

of a integrable CR structure,
[

T 1,0, T 1,0
]

⊆ T 1,0, (1.5)

that defines a CR manifold. CR manifolds have previously appeared in the context of the

rigid limit of new minimal supergravity with Lorentzian signature in [6]; there, the authors

found fibrations of the real line over three dimensional CR manifolds. Alternatively, there

is the condition
[

T 1,0 ⊕ CR, T 1,0 ⊕ CR
]

⊆ T 1,0 ⊕ CR , (1.6)

which defines a transversally holomorphic foliation (THF).1 The work of [2] relates rigid

supersymmetry in three dimensions with the existence of a THF. Note that Sasakian

manifolds fulfill both (1.5) and (1.6) as here [RSasakian, T
1,0] ⊆ T 1,0.

Naturally, the question whether solutions to the Killing spinor equations (1.2) and (1.3)

admit integrable CR structures or THFs is closely related to the question whether a given

five dimensional manifold M admits any solution in the first place. As we alluded above,

this question was already addressed in [14] and [18], but not exhaustively answered. As we

will see, existence of a solution to the Killing spinor equations that satisfies the symplectic

Majorana condition implies the existence of a globally non-vanishing Killing vector field

parallel to R. We will show that the existence of such a Killing vector field is not only

necessary, but also sufficient. While we will do so by directly constructing a single solu-

tion and arguing that there are no topological obstructions, one can already give a short

argument why one should be able to expect this result. The existence of a non-vanishing

vector field implies that M admits an SO(4) structure. Since the theory has an SU(2)R
symmetry, one can perform an operation akin to a Witten twist in four dimensions and

identify the the SU(2)R with an SU(2) factor inside the structure group.

The structure of this note is as follows: the relation between the supersymmetry spinor

ξI , almost CR-structures and almost contact structures is the topic of section 2. Then,

we will discuss the integrability of the Killing spinor equations, possible obstructions and

general differential properties of (1.2) and (1.3) in section 3. Section 4 is concerned with the

implications for localization. We will argue that the results of [18, 23] can be generalized

to CR-manifolds and THFs. Subsequently we discuss the existence of globally well-defined

solutions (section 5). The discussion in this section is not concerned with CR-structures

or THF, yet with the existence of a spinor satisfying the Killing spinor equations in the

first place. It can thus also be considered independently from the other results of this note.

1For some background material on transversely holomorphic foliations, see e.g. [26, 27].
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Finally, we will conclude with some examples from the literature in section 6. Various

appendices complement the discussion.

Note added. During the final stages of this project [28] appeared, which has some

overlap with our work. There, the authors study rigid supersymmetry on Riemannian

five-manifolds using a holographic approach.

2 Algebraic properties

In this section we will discuss the algebraic structures arrising from the existence of the

spinors ξI .

2.1 The almost contact structure

The bulk of our analysis is based on the following set of bi-spinors that can be defined for

any given ξI :

s ≡ ǫIJ(ξIξJ) , Rm ≡ −s−1ǫIJ(ξIΓ
mξJ) ≡ gmnκn , (ΘIJ)mn ≡ (ξIΓmnξJ) . (2.1)

Let us emphasize the presence of the minus sign as well as the normalizing factor s−1 in

the definition of R where we tacitly assume that s 6= 0. If one imposes the symplectic

Majorana condition (A.1) one finds that s and R are a real function and a real vector field

respectively. A further consequence of (A.1) is that s ≥ 0 with equality if and only if

ξI = 0. It follows that s > 0 everywhere on M since the gravitino equation is linear and of

first order. Finally, the two forms ΘIJ lie in the adjoint representation of SU(2)R.

Using Fierz-identities, one can show the following identities involving the bispinors:

1 = ιRκ , 0 = ιRΘIJ , ιR ∗ΘIJ = ΘIJ , ⋆ΘIJ = κ ∧ΘIJ , RmΓmξI = −ξI .

(2.2)

Here, ∗ is the usual five-dimensional Hodge dual and ιR denotes interior multiplication.

The first of the above equations tells us that M carries an SO(4) structure. This allows us

to introduce a lot of structure that is familiar from four-dimensional geometry. As is usual,

we will refer to vectors and forms parallel to R and κ respectively as vertical and their

orthogonal complement as horizontal. I.e. forms can be decomposed as ω = ωH+ωV . Then

the Hodge dual defines the notion of self-dual and anti self-dual forms on the horizontal

subspace. See equations (A.4) and (A.5) for full definitions. Since the ΘIJ are both

horizontal and self-dual, ΘIJ = (ΘIJ)
+, they define an isomorphism between su(2)R and

the su(2)+ factor in the typical so(4) ∼= su(2)+ × su(2)− decomposition of the Lie algebra

of the structure group. One can also verify some more involved identities involving ΘIJ :

ΘIJmpΘ
pn

KL = −1

4
s2(ǫIKǫJL + ǫILǫJK)Π n

m

+
1

4
s(ǫJKΘ n

ILm + ǫIKΘ n
JLm + ǫJLΘ

n
IKm + ǫILΘ

n
JKm ) ,

s−2ΘIJklΘ
IJ
mn =

1

2
(ΠkmΠln −ΠknΠlm + ǫklmnpR

p) .

(2.3)
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Here Πmn = gmn−κmκn and thus the latter of these is a projection to horizontal, self-dual

two-forms.

Suppose now that mIJ is an SU(2)R triplet. Later we will show that mIJ = tIJ emerges

naturally when imposing integrability and we will refer to this as the canonical choice. Yet

for now, we continue with a generic mIJ and define2 detm ≡ −1/2
∑

IJ

mI
JmJ

I . Once we

impose the reality condition (2.10) for mIJ , detm will be positive semi-definite. For now

we proceed with the milder assumption detm 6= 0 and define the following tensor

Φmn =
(

Φ[m]
)

mn
≡ s−1

√

1

detm
m

IJ(ΘIJ)mn . (2.4)

As follows from (2.3), Φ satisfies the following condition:

Φm
kΦ

k
n = −δmn +Rmκn . (2.5)

Mathematicians refer to a multiplet (κ,R,Φ) as an almost contact structure if

κmRm = 1 , Φm
kΦ

k
n = −δmn +Rmκn , Φm

nR
n = κnΦ

n
m = 0 . (2.6)

As we have shown, the quantities defined using ξI and a suitable mIJ satisfy these relations,

and therefore define an almost contact structure. Note that Φ is invariant under mIJ 7→
fmIJ for any non-zero function f .

2.2 The almost CR structure

Equations (2.5) and (2.6) indicate that for each m, Φ[m] defines an almost CR structure.

Indeed, each Φ[m] induces a decomposition of the complexified tangent bundle as in (1.1) via

X ∈ T 1,0 ⇔ ΦX = iX . (2.7)

The decomposition holds also for the exterior algebra and all horizontal n-forms ω = ωH

can be decomposed into (p, q)-forms via

ω =
∑

p+q=n

ωp,q . (2.8)

In this context Φmn is a horizontal (1, 1)-form. Similar to the case of four-dimensional

Kähler manifolds, self-dual and anti-self-dual 2-forms have a simple (p, q)-decomposition,

ω+ = ω2,0 + ω0,2 + ω|Φ , ω− = ω1,1, (2.9)

with ω1,1 primitive and thus annihilated by contraction with Φ.

We continue by discussing the integrability of the almost CR structure (1.1). While

this can be done using a direct analysis of the Niejenhuis tensor, we prefer to do a spinorial

2Note that
∑

IJ

mI
J
mJ

I = m1

1
m1

1 +m1

2
m2

1 +m2

1
m1

2 +m2

2
m2

2 = −2m11m22 + 2m12m21 = −2 detm•• .
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analysis in the spirit of [1].3 This is computationally more straight forward, yet requires

us to impose the reality condition

mIJ = ǫII
′

ǫJJ
′

mI′J ′ (2.10)

for the triplet which we alluded to previously. The bar denotes complex conjugation. Let

us emphasize that we are also using the symplectic Majorana condition since we assume R

to be real.

In appendix B we show that one can characterize elements of T 1,0 in terms of a spinorial

equation:

X ∈ T 1,0 ⇔ XmHI
JΓmξJ = 0 , (2.11)

where

HI
J = H J

I [m] =

√

1

detm
mI

J − iδJI . (2.12)

Similarly, one can also characterize the tangent vectors in T 1,0 ⊕ CR by the spinorial

equation

X ∈ T 1,0 ⊕ CR ⇔ (Πm
nX

n)HI
JΓmξJ = 0 . (2.13)

Recall that Πm
n = δmn − Rmκn is a projection that maps a generic tangent vector to its

horizontal component.

3 Differential properties

We finally turn to the integrability conditions for the decomposition (1.1). To do so, we will

first establish some useful identities involving the bispinors (2.1) and the gravitino (1.2)

and dilatino (1.3) variations. Subsequently we consider the case of CR structures as a

warm-up before studying the integrability conditions for THFs.

Note that while our analysis will yield precise conditions for the solutions to equa-

tions (1.2) and (1.3) to define integrable CR structures and THFs, we will not address

the inverse problem; i.e. the question whether any five manifold that is either CR or THF

admits spinors that solve (1.2) and (1.3) as well as the relevant integrability conditions.

However, the inverse problem has been discussed in the context of [28]. Interested readers

should consult section 3.4 therein.

3.1 Supersymmetry variations and bispinors

Studying the gravitino variation (1.2), one finds that the scalar s satisfies∇ns = 2sRmFmn,

from which it follows that LRF = LRs = 0. Similarly, the non-normalized vector field sR

is Killing:

∇m(sRn) = 2(tIJΘIJ)mn−2sFmn−2s(ιR ⋆ V)mn , ∇m(sRn)+∇n(sRm) = 0 . (3.1)

3For a third possibility using differential forms orthogonal to T 1,0 or T 1,0 ⊕ R respectively see [6].
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One also finds that ιRdκ = −s−1ds while ιRd(sκ) = −2ds. There is a more involved

relation involving the two-form tIJΘIJ :

∇k(t
IJΘIJ)mn = Dkt

IJ(ΘIJ)mn + 2det t(gnkRm − gmkRn) + 2Fkpt
IJ(ξIΓmn

pξJ)

+ gnkVpqtIJ(ξIΓmpqξJ)− 2Vn
qtIJ(ξIΓmkqξJ)

− gmkVpqtIJ(ξIΓnpqξJ) + 2Vm
qtIJ(ξIΓnkqξJ) . (3.2)

Similarly we are interested in the consequences of the dilatino equation (1.3) for

bispinors and background fields. By contraction with tIJξI one finds that R
m∇m(tIJ t

IJ) =

2LR det t = 0. Contraction with ξI on the other hand fixes the value of the scalar,

C = 4κn∇mVmn − 4s−1(F + 2V)mn(t
IJΘIJ)

mn + 2(ιR ∗ F)mnFmn . (3.3)

We can extract additional information from the dilatino equation and start by projecting it

onto its “chiral” components. Recalling the last identity in (2.2) we consider the projector
1
2(1−RmΓm). Acting on (1.3) and using (3.3), one finds

0 = DRt
J

I ξJ + t J
I Rl(F + 2V)mnΓlmnξJ + s−1(F + 2V)mn(tKLΘKL)mnξI . (3.4)

A related identity can be obtained by contracting (1.3) with ξIΓmn and projecting onto

the horizontal subspace:

(RkDkt
IJ)(ΘIJ)mn − 2

[

(F + 2V)H × (tIJΘIJ)
]

mn
= 0 , (3.5)

where (η×ω)mn = η p
m ωpn−ω p

m ηpn. In passing, one needs to use the simple identity (A.6).

As a point of consistency note that one can obtain the same result by contracting (3.4)

with ξIΓmn and again projecting onto the horizontal part.

3.2 Integrability

3.2.1 Cauchy-Riemann structures

Having established the existence of the almost CR structure (1.1), it is natural to ask if

it satisfies any integrability condition. As a warm-up to the integrability condition of a

THF (1.6), we consider the slightly simpler case of a CR structure (1.5).

Thus we study the condition (2.11) for the commutator [X,Y ] for arbitrary X, Y ∈
T 1,0. I.e. by acting with Y nDn on (2.11) and antisymmetrizing in X,Y , one finds that

[X,Y ] ∈ T 1,0 ⇔ 0 = X [mY n]
[

DmH J
I ΓnξJ +H J

I ΓnDmξJ
]

. (3.6)

This reduces quickly to

X [mY n]
[

DmH J
I ΓnξJ − [H, t] J

I ΓmnξJ + 2H J
I (F + V)mnξJ

]

. (3.7)

Per usual, (3.7) can be mapped to two equations by suitable contractions.

To begin, we contract (3.7) with ξI and find that ([H, t] J
I Θ I

J )2,0 = 0. Due to the

reality conditions for ξI , m
J

I and t J
I this means that [H, t] J

I Θ I
J ∈ Ω1,1. This in turn

– 7 –
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is equivalent to [H, t] J
I being proportional to m J

I . However, [H, t] J
I is proportional to

[m, t] J
I and thus the only solution is m J

I = ft J
I for any non-zero function f .

Being rid of the commutator term, we consider the contraction with ξJ symmetrized

over SU(2)R indices. This leads to sHIJ [X
[mY n](F + V)mn]. The necessary vanishing of

the expression in square brackets means that (F + V)2,0 = 0.

Finally, we contract with ξJΓk:

X [mY n]DmH K
I

(

ΘJKkn − 1

2
ǫJKsgkn

)

. (3.8)

By symmetrizing and antisymmetrizing over I and J , it is clear that both terms in paran-

theses have to vanish independently. It follows that DXH J
I = 0.

In summary, the almost CR-structure is integrable and the manifold is CR if and only if

m
J

I = ft J
I , (F + V)2,0 = 0 , DX

(

t J
I√
det t

)

= 0 , ∀ X ∈ T 1,0. (3.9)

Note that due to our reality condition for t J
I , the last statement is actually equivalent to

DX

(

t J
I√
det t

)

= 0 , ∀ X ∈ TMH , (3.10)

where TMH = T 1,0 ⊕ T 0,1.

3.2.2 Transversally holomorphic foliations

Having discussed integrable CR structures, we now turn to the integrability condition

for transversal holomorphic foliations (1.6). Using identical arguments to those from the

previous section, we note that the integrability condition is

[X,Y ]∈T 1,0⊕R ⇔ 0 =X [mY n]
[

DmH J
I Π k

n ΓkξJ+∇mΠ k
n H J

I ΓkξJ+H J
I Π k

n ΓkDmξJ
]

.

(3.11)

To begin, consider (3.11) for X,Y ∈ T 1,0. Direct substitution gives

X [mY n]
(

DmH J
I Γn − [H, t] J

I Γmn − 2 ⋆ Vmnk(Γ
k +Rk)H J

I

)

ξJ . (3.12)

Now, since X,Y ∈ T 1,0, the only contributions to the last term arise from the components

of ⋆V that lie in Ω2,1⊕Ω2,0∧R. However, since (Γk+Rk)ξI = Πk
lΓ

lξI the latter of these is

annihilated by the projection while the former vanishes due to holomorphy — i.e. for any

ω ∈ Ω0,1, H J
I ωkΓ

kξJ = 0. Thus we are left with

X [mY n]
(

DmH J
I Γn − [H, t] J

I Γmn

)

ξJ . (3.13)

Once again, contraction with ξI gives the first necessary condition, ([H, t]IJΘIJ)
2,0 = 0,

from which it follows once again that m J
I = ft J

I . Just as in the CR case the second

condition is DXH J
I = 0, ∀X ∈ T 1,0.

We continue our analysis of (3.11) by considering X ∈ T 1,0 and Y = R. Using the

results from the previous paragraph, one finds that the necessary and sufficient condition

is the vanishing of

Xm
[

−DRH
J

I Γm + 2(F + 2ιR ⋆ V)mn(Γ
n +Rn)H J

I

]

ξJ . (3.14)

– 8 –
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By inspection one finds that the only contributing terms including F or V lie in Ω2,0 —

(Ω1,0⊕Ω0,1)∧R as well as Ω0,2 components are projected to zero while those in Ω1,1 vanish

due to holomorphy. The components in Ω2,0 are of course self-dual under ιR⋆ so the above

can be rewritten in terms of F + 2V instead of F + 2ιR ⋆ V .
To further simplify this, we consider the chiral projection of the dilatino equation (3.4).

Acting with XmH J
I Γm on (3.4) one finds that

H J
I DRt

K
J XmΓmξK = 4H J

I t K
J XmιR ⋆ (F + 2V)mnΓ

nξK . (3.15)

Now, we first note thatDRt
J

I =
√
det tDRH

J
I asDR(det t) = 0. Together withH K

I H J
K =

−2iH J
I it follows that

DRH
J

I XmΓmξK = 2i(det t)−1/2XmH J
I t K

J ιR ⋆ (F + 2V)mnΓ
nξK

= 2XmH J
I ιR ⋆ (F + 2V)mnΓ

nξK . (3.16)

As before we argue that only the Ω2,0 and Ω0,2 terms contribute. Thus we find that (3.14)

vanishes without any further conditions. In the end, the integrability conditions are

m
J

I = ft J
I , DX

(

t J
I√
det t

)

= 0 , ∀ X ∈ T 1,0. (3.17)

As in the case of the CR structure the reality condition for t J
I implies that the last condition

holds for all horizontal sections of the tangent bundle. By comparison with equation (3.9)

it is clear that any solution defining a THF also defines an integrable CR structure while

the converse is not the case.

4 Implications for localization

4.1 The ∂b and ∂̄b operators

Suppose that our manifold satisfies either of the integrability conditions (3.9) or (3.17). Let

us show one can define nilponent operators ∂b and ∂̄b similar to those on complex structures.

To do so, consider a (0, 1)-form α0,1. We can decompose its exterior derivative as

dα0,1 = πV (dα
0,1) + π2,0(dα0,1) + π1,1(dα0,1) + π0,2(dα0,1) , (4.1)

where πV and πp,q are projectors to the vertical and (p, q) components. Since neither

[T 1,0 ⊕ CR, T 1,0 ⊕ CR] nor [T 1,0, T 1,0] have a component in T 0,1 one finds that

dα0,1(X1,0, Y 1,0) = X1,0
(

α0,1(Y 1,0)
)

− Y 1,0
(

α0,1(X1,0)
)

− α0,1
([

X1,0, Y 1,0
])

. (4.2)

In other words, π2,0(dα0,1) = 0, which allows us to define (dV , ∂b, ∂̄b) via

dα0,1 = πV (dα
0,1) + π1,1(dα0,1) + π0,2(dα0,1) ≡ dV α

0,1 + ∂bα
0,1 + ∂̄bα

0,1 . (4.3)

From d = ∂b + ∂̄b + dv and d2 = 0 it follows directly that ∂2
b = ∂̄2

b = 0 and one can define

cohomology groups Hp,q

∂̄b
via the exact sequence

. . .
∂̄b−→ Ωp,q−1 ∂̄b−→ Ωp,q ∂̄b−→ Ωp,q+1 ∂̄b−→ . . . . (4.4)

– 9 –



J
H
E
P
1
1
(
2
0
1
5
)
0
4
1

4.2 Mode counting and partition functions

As mentioned in the introduction, partition functions for supersymmetric gauge theories

calculated in the context of topological field theories or localization simplify significantly

on Kähler and Sasakian manifolds. The argument relies not only on the existence of the

differential ∂̄b (∂̄ in the Kähler case). Indeed, one also requires the compatibility of the

decomposition (1.1) with the action of the Lie derivative £sR. In this section we will go over

this argument of [23, 29] in some detail and discuss under what circumstances it applies to

the manifolds in question.

Consider a vector multiplet with Lie algebra g. The bosonic modes lie in Ω1(g) ⊕
H0(g) ⊕ H0(g), where H0(g) denotes harmonic Lie algebra valued functions. Fermionic

modes on the other hand can be mapped to Ω+(g)⊕ Ω0(g)⊕ Ω0(g). The one-loop contri-

bution to the perturbative partition function is given by4

√

detfermions£sR

detbosons£sR
. (4.5)

If £sRΦ = £sRκ = 0 we can calculate the determinants using the decomposition (1.1).

Clearly £sRκ = 0, so we need to evaluate £sRΦ = ιsRdΦ. Direct calculation using (3.2)

yields

dΦ = −s−1ds∧Φ+s−1D

(

tIJ√
det t

)

∧ΘIJ +2s−1
[

ιR(F+2V)∧Φ−κ∧
(

(F+2V)×Φ
)]

.

(4.6)

Thus

£sRΦ = DR

(

tIJ√
det t

)

ΘIJ − 2
[

(F + 2V)H × Φ
]

= 0 , (4.7)

where we used (3.5). In conclusion we can rewrite (4.5) as
√

det£sR
(Ω2,0 ⊕ Ω0,0Φ⊕ Ω0,2 ⊕ Ω0,0 ⊕ Ω0,0)

det£sR
(Ω1,0 ⊕ Ω0,1 ⊕ Ω0,0κ)

1

det£sR
H0

, (4.8)

where we used the notation detΩp,q £sR = det£sR
Ωp,q and dropped the various appearances

of g for readability. As [£sR, ∂̄b] = 0 it follows that the above simplifies to
√

√

√

√

det£sR
H0,2

∂̄b
det£sR

H0,0

∂̄b

det£sR
H0,1

∂̄b

√

√

√

√

det£sR
H2,0

∂̄b
det£sR

H0,0

∂̄b

det£sR
H1,0

∂̄b

. (4.9)

It is interesting to note that the above argument does not require a property akin to

Lefschetz decomposition on Kähler manifolds. Recall that the Lefschetz theorem relates

cohomology groups of the Dolbeault operator as H0,0

∂̄
∼= H1,1

∂̄,ω
, where the subscript ω

denotes forms parallel to the symplectic form ω. Such a decomposition, while true for

e.g. Sasaki-Einstein manifolds does not hold in general for the operator Φ. That is, for

α ∈ Ω1,1
Φ one can write α = aΦ for some scalar function a, yet ∂̄bα = 0 is not in one-to-one

correspondence with ∂̄ba = 0 since ∂̄bΦ does not vanish in the general case.

4This was shown to be true for generic Sasakian manifolds in [12]. Here we assume it to be true for

five-dimensional Riemannian manifolds admitting a integrable CR-structure or THF.
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4.3 BPS equations on the Higgs branch

The nilponency of ∂̄b has also immediate implications on the Higgs branch BPS equations

of N = 1 theories. In [24] these were studied for supersymmetric backgrounds that are

K-contact. Defining ∂̄a ≡ ∂̄b− ia0,1 for a U(1) connection a with field strength Fa, some of

the relevant equations are

∂̄aα+ ∂̄∗

aβ = 0 , F 0,2
a = 2iᾱβ , F dκ

a =
1

2

(

ζ − |α|2 + |β|2
)

. (4.10)

Here, α is a 0-form and β is a (0, 2)-form; both are related to the scalar in the hy-

permultiplet. The superscript dκ denotes the component along dκ. The BPS equa-

tions and the nilpotence then imply that ∂̄a∂̄
∗
aβ = −∂̄a∂̄aα = iF 0,2

a α = −2|α|2β. Thus

2
∫

|α|2|β|2 +
∫

|∂̄∗
aβ|2 = 0, and it follows that

{

β = 0

∂̄aα = 0
, or

{

α = 0

∂̄∗
aβ = 0

. (4.11)

In other words, similar to our discussion in the previous section we see that results for

Sasaki (-Einstein) manifolds can be extended to geometries that are either THF or CR.

5 A Karlhede-Rocek-Witten twist in five dimensions

As discussed above in section 3.1 as well as in [14] a necessary condition for the existence of

a solution of the background supergravity variations for supersymmetry spinors satisfying

the symplectic Majorana condition is the existence of a Killing vector. Recall that the

symplectic Majorana condition (A.1) implies that s > 0 from which it follows that v has

no zeroes. In other words, the Killing vector is globally non-vanishing.5 In this section

we will show that the existence of a globally non-vanishing Killing vector is also sufficient

for the manifold M to admit supersymmetry spinors that solve (1.2) and (1.3).6 At the

heart of the argument is the idea that the existence of the vector implies that the manifold

supports an SO(4) structure. This in turn allows us to do a standard Witten twist [30, 31].7

Our strategy is to work in a patch using methods familiar from Kaluza-Klein reduction,

yet show that we can write the overall result in terms of globally well-defined objects. In

principle one should be able to make the same argument using the general, local solution

of [14].

Given a manifold M with a Killing vector v = ∂τ we can write the vielbein as8

ê α
µ =

(

e a
m kam
0 k

)

, Ê µ
α =

(

E m
a −aa
0 k−1

)

. (5.1)

5If one does not impose the symplectic Majorana condition, the situation is more complicated. I.e. both

s and R are generally complex; it is also clear that the vector vanishes if the spinors are parallel. Moreover,

note that R does not even vanish at a single point. Assume ∃p ∈ M such that R|p = 0. It follows that

s(p) = 0 and thus ξI |p = 0. From the gravitino equation it follows immediately that ξI vanishes identically

on M.
6We would like to thank Diego Rodriguez-Gomez for many discussions and collaboration that lead to

the approach used in this section.
7See also e.g. [32, 33] for five-dimensional, twisted field theories.
8In this section, greek indices run from one to five while roman ones only run from one to four.
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I.e. the metric takes the form ds2 = gmndx
mdxn + k2(dτ + a)2, where ∂τ = v. The spin

connection is

ω̂abc = ωabc , ω̂ab5 =
1

2
kfab , ω̂5bc = −1

2
kfbc , ω̂5b5 = −∂b log k . (5.2)

Here, f = da. Keeping in mind (2.2), we demand the spinor ξI to be anti-chiral. That is,

Γ5ξI = −ξI which is why we write ξI ≡ ξ−I .

5.1 Gravitino equation

One can then decompose the gravitino variation (1.2) into components along a = 1, . . . 4,

components along a = 5 as well as chiral and anti-chiral parts:

0 = Daξ
−

I − aa(∂τξ
−

I −A J
τI ξ−J ) + Fa5ξ

−

I + ΓabVb5ξ−I , (5.3)

0 = −1

4
kfabΓ

bξ−I − t J
I Γaξ

−

J −FabΓ
bξ−I − 1

2
VbcΓabcξ

−

I , (5.4)

0 = k−1(∂τξ
−

I −A J
τI ξ−J ) + t J

I ξ−J − 1

8
kfbcΓ

bcξ−I +
1

2
VbcΓbcξ

−

I , (5.5)

0 =
1

2
∂b log kΓ

bξ−I + Fb5Γ
bξ−I . (5.6)

The last of these, (5.6), is solved by A = −1
2k

−1v. It follows that

Fa5 = −1

2
∂a log k , Fab = −1

2
kfab . (5.7)

Equation (5.3) is solved by setting A J
τI = 0, ξ−I =

√
kχI , where χIχ

I = 1, and — more

importantly — DaχI = ∇aχI − A J
aI χJ = 0. The possibility of finding a χ such that

∇aχI = A J
aI χJ is of course at the heart of this argument. As long as Γ5χI = −χI , it is

possible to find such a spinor; explicit calculations can be done using ’t Hooft matrices for

example [34]. With all our previous assumptions and observations (5.4) becomes

4Vab =
1

2
kǫabcd5f

cd + 4s−1ΘIJ
ab tIJ . (5.8)

Substituting this into (5.5) we find that tIJ = 0 since

0 =
1

8
(kfab − 4Vab)Θ

ab
IJ =

1

8

(

kfab −
1

2
kǫabcd5f

cd + 4s−1ΘKL
ab tKL

)

Θab
IJ =

1

2
Θab

IJΘ
KL
ab tKL .

(5.9)

In summary, the gravitino equation is fully solved by

ξ−I =
√
kχI , DaχI = 0 , A = −1

2
k−1

v , tIJ = 0 , 4Vab =
1

2
kǫabcd5f

cd, Va5 = 0 .

(5.10)

By now it is clear that the spinor bilinears s, v coincide with the scalar and vector defined

by the background, k, v, i.e. s = k, v = v, so we drop the distinction.
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5.2 Dilatino equation

Performing a similar decomposition of the Dilatino equation, one finds

0 = 4D̂t J
I Γaξ−J − 8t J

I (F + 2V)a5Γaξ−J + 4∇̂αVαbΓbξ
−

I − 4FabFc5Γ
abcξ−I , (5.11)

0 = −4D̂5t
J

I ξ−J + 4t J
I (F + 2V)abΓabξ−I − 4∇̂αVα5ξ−I + FabFcdΓ

abcdξ−I + Cξ−I . (5.12)

Imposing the solution to the gravitino equations (5.10), this simplifies of course consider-

ably. Also, note that

∇̂αVαb = ∇aVab + ∂a log kVab , ∇̂αVα5 = −1

2
kfabVab. (5.13)

Then, (5.12) is solved by C = −1
4k

2fabfcdǫ
abcd5. Since 4s∇bVba = −1

2sǫ
abcd5fbc∂dk, one

finds that (5.11) is solved trivially.

5.3 Topological issues

To conclude, we discuss whether the solution (5.10) is globally well-defined. Since F is

globally exact we only have to worry about the SU(2)R field strength. Our strategy is to

rewrite this in terms of the Riemann tensor. Thus we use the integrability condition for

the spinor χI ,

0 = [Da, Db]χI = −F IJ
ab χJ +

1

4
Rabαβγ

αβχI . (5.14)

This implies F IJ
ab = −2s−1RabκλΘ

IJκλ from which it follows that we can express the SU(2)R
connection in terms of a projection of the Riemann tensor. In summary, the two connec-

tions are

F IJ = −2s−1RH
µνΘ

IJµν , F = −1

2
d(k−1

v) , (5.15)

where RH
µν = Πσ

κΠ
τ
λRστµνdx

κ ⊗ dxλ denotes the horizontal part of the curvature two-form.

In both cases, all objects appearing on the right hand side are globally well defined. We

proceed to consider characteristic classes defined by F IJ . Using (2.3) one finds that

F J
I ∧ F I

J = −4RH
κλ ∧RH

µν

(

ΠκµΠλν +
1

2
ǫκλµνρκρ

)

. (5.16)

The expression is completely horizontal and since v is Killing, 0 = £v(F
J

I ∧ F I
J ) =

ιvd(F
J

I ∧ F I
J ) from which it follows that (5.16) is closed and defines thus an element of

the de Rham cohomolgy group H4(M) as it should. Usually the next question would be

whether this element is trivial and whether it might be an obstruction to the existence of

the solution given by (5.10) and C. However, equation (5.16) clearly show that this class

has a representative that is independent of our specific solution since it can be expressed

in terms of v and the Riemann tensor. Thus, in the case that the class is non-trivial, it is

clear that the corresponding cycle in homology exists and vice versa.

One might worry about the f dependence of V . In general, the manifolds are not

bundles yet only foliations and one cannot necessarily think of f as the curvature of a

connection. Yet as we saw above, f is a projection of F onto the horizontal space —
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f = −2k−1FH . While one might not consider f globally as the curvature of a connection,

it is well-defined as a two-form. Since it doesn’t enter the solution directly yet only via

V , this is good enough and we conclude that any manifold M admits a solution to (1.2)

and (1.3) with symplectic Majorana spinor if and only if there is a non-vanishing Killing

vector v.

6 Examples

It follows from the previous section that any direct product R×M4 or S1 ×M4 admits a

solution to the Killing spinor equations and thus rigid supersymmetry. Similarly, it is clear

that such manifolds do not trivially9 admit an integrable CR-structure or a THF if M4

does not admit a complex structure — the example coming to mind here being R × S4.

See however the discussion in [28].

6.1 Sasakian manifolds

Sasakian manifolds are the odd-dimensional analogues of Kähler manifolds. They are

either characterized by having Kähler metric cones, or by the existence of a Killing spinor

satisfying

(∇m − iAm)ξ =
i

2
Γmξ . (6.1)

Here, A is the connection one-form associated to the Ricci-form on the metric cone. The

equation and its complex conjugate correspond to the special case of (1.2) with

F = V = 0 , (Am)I
J = Am(σ3)I

J , tI
J =

i

2
(σ3)I

J . (6.2)

Since both t and A have only components along σ3 one finds that ∇mtIJ = 0. The dilatino

equation is solved by

C = 0 . (6.3)

Hence, N = 1 supersymmetry can be defined on any 5-dimensional Sasakian structure as

was first observed without resorting to supergravity [12].

Sasakian structures are examples of both Cauchy-Riemann or transversal-holomorphic

structures, as follows from the fact that ∇mtIJ = F = V = 0.

6.2 Squashed S5 with SU(3)×U(1) symmetry

Squashed five-spheres have appeared in various places in the literature. In particular, [35,

36] discussed a class of squashed S5, with the metric

ds2S5

b

=
1

b2
(dτ + h)2 + dσ2 +

1

4
sin2σ(dθ2 + sin2θdϕ2) +

1

16
sin22σ(dψ + cos θdϕ)2 . (6.4)

Our discussion follows that of [36] closely. The real constant b is the squashing parameter,

which gives a round sphere when b = 1, h is a 1-form defined as

h = −1

2
sin2σ(dψ + cos θdϕ) , (6.5)

9“Trivially” here means that one simply embeds the Killing vector in the obvious way. For a specific

choice of M4 and Killing vector, this might change.
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where ω can be viewed as the Kähler form on CP 2, satisfying dω = 0. The metric is

written in a form adapted to the smooth U(1)-fibration over CP 2, where b−2(dτ + h)2 is

the metric in the U(1)-fiber direction, and b is there to squash the radius. In this way it

is easy to see the metric has U(1) × SU(3) symmetry, where U(1) rotates the fiber, and

SU(3) is the isometry of CP 2. The CP 2 Kähler form is ω = 1
2dh. With the vielbein

e1 =
1

2
sinσ cosστ3 , e2 = dσ , e3 =

1

2
sinστ2 , e4 =

1

2
sinστ1 , e5 = b−1(dτ + h) ,

(6.6)

one finds

ω = e1 ∧ e2 − e3 ∧ e4, ω ∧ ω = −2e1 ∧ e2 ∧ e3 ∧ e4, ∗ (ω ∧ ω) = −2e5, (6.7)

where we have introduced the left-invariant one forms

τ1 + iτ2 = e−iψ(dθ + i sin θdφ) , τ3 = dψ + cos θdφ . (6.8)

This class of squashed sphere admits solutions to the Killing spinor equations

∇mξI +
i

2
(Am)I

JξJ =

− i

2b

(

1 +Q
√

1−b2
)

(σ3)I
JΓmξJ +

√
1−b2

b
ωmnΓ

nξI +
1

2

√
1−b2

2b
ωpqΓmpqξI , (6.9)

where Q is a real parameter. And of course one can define bilinears as in (2.1). In terms

of (A.8), the quarter BPS solution with Q = −3 is given by

ξ1 =
c+√
2
e−

3iτ
2











1

1

0

0











, ξ2 =
c−√
2
e

3iτ
2











1

−1

0

0











. (6.10)

The symplectic Majorana condition (A.1) corresponds to (c−)
∗ = c+. For more involved

3/4 BPS solutions refer to [36].

Comparing (1.2) with (6.9) one identifies

tI
J = − i

2b

(

1 +Q
√

1− b2
)

(σ3)I
J , F =

√
1− b2

b
ω , V =

√
1− b2

2b
ω ,

(Am)I
J =

(

1 +Q
√
1− b2

)√
1− b2

b
e5 . (6.11)

Note that κ = −e5 and one finds that ω is horizontal and self-dual since ⋆ω = κ ∧ ω.

Furthermore dκ = −2b−1ω and ∇mωmn = 4b−1κn. Moreover

ωmnωklΓ
mnklξI = ωmnωklǫ

mnkl
rΓ

rξI = 2ωmn(∗ω)mn
rΓ

rξI = 2ωmnω
mnκrΓ

rξI = −8ξI .

(6.12)

Finally, substituting everything into the dilatino equation (1.3), one finds

0 = −4i

b2
(

1 +Q
√

1−b2
)

√

1− b2(σ3)
J

I ωmnΓ
mnξJ + 8

√
1−b2

b2
κmΓmξI − 8

1− b2

b2
ξI + CξI .

(6.13)
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From (3.3) it follows that

C = 8

√
1−b2

b2
+ 8

1− b2

b2
− 4i

(

1 +Q
√
1−b2

)√
1−b2

b2s
ωmnΘ J

mnI (σ3)
I

J , (6.14)

so the above simplifies to

0 = −4i

(

1 +Q
√
1−b2

)√
1−b2

b2
[

(σ3)
J

I ωmnΓ
mnξJ + s−1ωmnΘ L

mnK (σ3)
K

L ξI
]

, (6.15)

which vanishes identically for the above solution.

Now compare the “algebraic equation” of [36]. Rewritten in our conventions, it is

0 = (1 +Q)
√

1− b2ξI −
i

2

√

1− b2(σ3)
J

I ωmnΓ
mnξJ , (6.16)

where we used (2.2). Contracting with ξI one finds (σ3)
J

I ωmnΘ I
mnJ = 2is(1 + Q). Sub-

stituting this into (6.15) yields (6.16), which tells us that the Dilatino equation and the

“algebraic equation” are equivalent in the case of squashed S5.

Comparing (6.11) with (3.9) and (3.17) it is clear that the squashing does not change

the fact that S5 admits both a CR-structure and a THF. In principle this is already clear

from the form of the metric (6.4) since changes in the parameter b do not affect the CP 2

base of the bundle.
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Pini, Paul Richmond, Martin Roček, Diego Rodriguez-Gomez, James Sparks, Alessandro

Tomasiello and Maxim Zabzine for various discussions. J.S. would also like to thank Kavli

IPMU, the University of Milano-Bicocca and the organizers of the 2014 workshop “The

String Theory Universe” where some of the results here were presented. The work of J.S.

is funded by by the Asturian government’s CLARIN grant ACB14-27. The work of Y.P.

was supported in part by National Science Foundation, grant PHY-1316617.

A Conventions

Gamma matrices and spinors. Let us focus on a Riemannian five-manifold M . We

use Γm to denote the hermitian Gamma matrices satisfying the algebra {Γm,Γn} = 2gmn

for g with the Euclidean signature. The spinors have 4 complex components. Denote the

antisymmetric charge conjugation matrix by C, which satisfies CΓm = (Γm)TC. The anti-

symmetric inner product between two arbitrary spinors is defined as (ψχ) ≡ ∑

ψαCαβχ
β ,

denoted by a parenthesis (). Our spinors satisfy a symplectic Majorana condition:

ξI = CǫIJξJ . (A.1)

Here, C is the antisymmetric charge conjugation matrix and ξI denotes complex conjuga-

tion. SU(2)R indices are raised and lowered with the invariant matrices ǫIJ =
(

0 1
−1 0

)

and

ǫIJ =
(

0 −1
1 0

)

which act from the left.
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The following Fierz-identities are used

2ξ1(ξ2ξ3)− 2ξ2(ξ1ξ3) = ξ3(ξ2ξ1) + Γmξ3(ξ2Γmξ1) , (A.2)

Γmnξ1(ξ2Γmnξ3) = −4
[

ξ3(ξ2ξ1) + ξ2(ξ3ξ1)
]

. (A.3)

Hodge duality and the horizontal/vertical decomposition. A generic p-form can

be decomposed into its horizontal and vertical components via

ω = ωH + ωV ≡ ιR(κ ∧ ω) + κ ∧ ιRω . (A.4)

Horizontal two-forms ωH can be further projected onto their self-dual and anti self-dual

parts,

ω = ω+ + ω− ≡ 1

2
(ω + ιR ∗ ω) + 1

2
(ω − ιR ∗ ω) . (A.5)

Using (ιR∗)2 = Rmκm = 1 one sees that ιR ∗ ω± = ±ω±.

Given a pair ω± of self-dual and anti-self-dual 2-forms, one finds

Ωmn ≡ (ω+)mk(ω
−)kn − (ω+)nk(ω

−)km = 0 . (A.6)

This can be easily shown in an orthonormal basis (and properly oriented): (ω±)12 =

±(ω±)34, (ω
±)13 = ±(ω±)42, (ω

±)14 = ±(ω±)23, and for instance,

Ω13 = ω+
12ω

−

23 + ω+
14ω

+
43 − ω+

32ω
−

21 − ω+
34ω

−

41

= −ω+
23ω

+
34 − ω+

21ω
−

14 + ω+
43ω

−

32 + ω+
41ω

−

12

= +ω+
23ω

−

34 + ω+
21ω

−

14 − ω+
43ω

−

32 − ω+
41ω

+
12 ,

(A.7)

where the first and the second equality in the second line come from applying on the first

line the self-duality on ω+ and the anti-self-duality on ω−.

For explicit calculations, we use

Γ1 = −σ1 ⊗ I , Γ2 = σ2 ⊗ σ1 , Γ3 = σ2 ⊗ σ2 , Γ4 = σ2 ⊗ σ3 , Γ5 = σ3 ⊗ I .

(A.8)

The charge conjugation matrix is C = Γ24.

B The spinorial holomorphy condition

We prove the spinorial characterization of T 1,0 and T 1,0⊕RR in equations (2.11) and (2.13).

Assume X ∈ T 1,0, namely Φm
nX

n = iXm. Then

−
√

1

detm
mI

J(ξIΓmΓnξJ)X
n + iδJI (ξ

IΓmΓnξJ)X
n = 0 , (B.1)

which simplifies to HI
J(ξIΓmΓnξJ)X

n = 0, where HI
J ≡ (detm)−1/2mI

J − iδJI .
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Due to the reality properties of mIJ we have the identity
∑

HI
KHJ

K = 2iHI
J . Con-

tracting the above with Xm and inserting the identity, one has

XmHI
KHJ

KεII
′

ξαI′Cαβ(Γ
m)βγ(Γn)

γ
δξ

δ
JX

n = 0

⇔ XmHK
I(Γm)γβξ

β
I X

nHK
J(Γn)

γ
δξ

δ
J = 0

⇔
∑

K,α

∆α
K∆α

K = 0 .

(B.2)

This implies ∆α
K = 0, namely HI

JXmΓmξJ = 0.

It is obvious how to extend to X ∈ T 1,0 ⊕ CR: one just needs to project out the

vertical components of X, and the horizontal components should satisfy HI
JXmΓmξJ = 0.

Namely,

HI
JΠm

nX
nΓmξJ = 0 , Πm

n = δnm −Rmκn . (B.3)

C The Nijenhuis tensor, £sRΦ and integrability of THFs

In this appendix we discuss the integrability of the canonical almost CR structure Φ = Φ[t]

in terms of its Niejenhuis tensor.

C.1 The Nijenhuis tensor and [T 1,0, T 1,0]

Given an almost CR structure (κ,R,Φ), one can define its Nijenhuis tensor as

NΦ(X,Y ) ≡ −[X,Y ] + κ
(

[X,Y ]
)

R+ [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ] , (C.1)

which can be expressed in components

Nk
mn ≡ Φl

m∇lΦ
k
n − Φl

n∇lΦ
k
m +Φk

l∇nΦ
l
m − Φk

l∇mΦl
n . (C.2)

For simplicity, we restrict our analysis to the canonical almost CR structure determined

by tIJ , namely

Φm
n ≡

√

1

det t
tIJ(ξIΓ

m
nξJ) . (C.3)

By explicitly inserting the Killing spinor equation and the dilatino equation into (C.2), one

finds that

NΦ(X,Y ) + dκ(ΦX,ΦY )R = 0 , ∀X,Y ∈ Γ(TMH) , (C.4)

provided that

XmDm

(

tIJ√
det t

)

= 0 , ∀X ∈ Γ(TMH) , (C.5)

where TMH is the horizontal part of the tangent bundle. Of course this condition is the

same as in (3.17).

We will now show that the above condition (C.4) is equivalent to the statement that

[

T 1,0, T 1,0
]

⊂ T 1,0 ⊕ CR . (C.6)
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To do so, consider X,Y ∈ T 1,0. Using Φ(X) = iX and κ([X,Y ]) = −dκ(X,Y ), one can

evaluate (C.1):

NΦ(X,Y ) + dκ(X,Y ) = −2(1 + iΦ)[X,Y ] = −2[X,Y ]0,1. (C.7)

It is clear that (C.4) implies that [X,Y ] ∈ T 1,0 ⊕ CR and vice versa.

C.2 £sRΦ and [T 1,0, R]

In section 4 we showed gravitino and dilatino equations imply that for the canonical almost

CR structure £sRΦ = 0. For any X ∈ TM it follows that

£sR(ΦX) = Φ
(

s[R,X]−X(s)R
)

= sΦ
(

[R,X]
)

. (C.8)

On the other hand

£sR(ΦX) = [sR,ΦX] = s[R,ΦX]− (ΦX)(s)R (C.9)

and thus

sΦ
(

[R,X]
)

= s[R,ΦX]− (ΦX)(s)R , (C.10)

which we rewrite as

[R,ΦX] = Φ
(

[R,X]
)

+ (ΦX)(log s)R . (C.11)

Now, consider that any X1,0 ∈ T 1,0 can be written as X1,0 = X − iΦX for some

X ∈ TMH . Then

[X1,0, R] = (1− iΦ)[X,R] + i(ΦX)(log s)R

= [X,R]1,0 +
(

κ([X,R]) + i(ΦX)(log s)
)

R ∈ T 1,0 ⊕ CR . (C.12)

In other words, we have confirmed that the canonical almost CR structure defines a THF

as long as the triplet t J
I is covariantly constant; i.e. equation (3.17).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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