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Abstract: The IceCube neutrino spectrum shows a flux which falls of as E−2 for sub

PeV energies but there are no neutrino events observed above ∼ 3 PeV. In particular the

Glashow resonance expected at 6.3 PeV is not seen. We examine a Planck scale Lorentz

violation as a mechanism for explaining the cutoff of observed neutrino energies around a

few PeV. By choosing the one free parameter the cutoff in neutrino energy can be chosen

to be between 2 and 6.3 PeV. We assume that neutrinos (antineutrinos) have a dispersion

relation E2 = p2 − (ξ3/MPl) p
3, and find that both π+ and π− decays are suppressed

at neutrino energies of order of few PeV. We find that the µ− decay being a two-neutrino

process is enhanced, whereas µ+ decay is suppressed. The K+ → π0e+νe is also suppressed

with a cutoff neutrino energy of same order of magnitude, whereas K− → π0e−ν̄e is

enhanced. The n → p+e−ν̄e decay is suppressed (while the n̄ → p−e+νe is enhanced).

This means that the ν̄e expected from n decay arising from p + γ → ∆ → π+n reaction

will not be seen. This can explain the lack of Glashow resonance events at IceCube. If no

Glashow resonance events are seen in the future then the Lorentz violation can be a viable

explanation for the IceCube observations at PeV energies.
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1 Introduction

IceCube collaboration has observed the neutrinos of very high energy going to beyond

2.6 PeV [1–4]. The IceCube data in the energy range 60 TeV to ∼ 3 PeV is consistent with

E−2
ν neutrino spectrum following E2

νdNν/dEν ' 1.2 × 10−8 GeVcm−2s−1sr−1 [2, 3]. A

neutrino spectrum sharper than E−2.3 does not give a good fit to the data [3]. There are

no neutrino events observed above ∼ 3 PeV.

In particular, there is no evidence of Glashow resonance [5], ν̄e + e− →W− → shower,

which is expected at E = 6.3 PeV. Glashow resonance gives rise to an enhanced cross-

section for ν̄e at resonance energy E = M2
W /2me = 6.3 PeV, which increases the detection

rate of νe + ν̄e by a factor of ∼ 10 [2]. This implies that at least three events should have

been observed at Glashow resonance, but none were.

The Glashow resonance gives rise to multiple energy peaks at different energies [6].

The first one is at 6.3 PeV and others lie at the Evis = E − EX , where EX is the energy

in the W decay, which does not contribute to the visible shower [7]. The decay of W into

hadrons goes as W → q̄q, giving rise to a peak at 6.3 PeV, while decay into leptons goes as

W → ν̄l, which means W boson will lose half of its energy and so a second peak at 3.2 PeV

is expected. In case of τ lepton in the final state, a further decay takes place producing a

neutrino and thus a third peak at 1.6 PeV. The events observed by IceCube [1–4] between

1 PeV to ∼ 3 PeV range may be associated with the second (leptonic decay of W ) and third
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peak (τ decay), but non-appearance of Glashow resonance hadronic shower from W → q̄q

at 6.3 PeV (dominant peak) makes this idea less attractive. The non observation of the

expected signature of Glashow resonance in IceCube data indicates a cutoff of neutrino

energies between 2–6.3 PeV [7, 8].

In this paper, we propose a mechanism which can explain why neutrinos above a certain

energy may be suppressed in the astrophysical production processes like π → µνµ, K →
µνµ etc. We assume that Lorentz violating higher dimensional operators [9, 10] give rise

to a modified dispersion relation for the neutrinos (antineutrinos) of the form E2 = p2 +

m2
ν− (ξn/M

n−2
Pl ) pn with n > 2. Depending on the sign of ξn, the neutrinos (antineutrinos)

can be either superluminal (ξn < 0) or subluminal (ξn > 0). For the superluminal case,

it has been shown [11, 12] that the presence of the extra terms in the dispersion results

in a suppression of π and K decay widths. The phase space suppression for both the

subluminal and superluminal dispersions for meson decay and the Cerenkov process ν →
νe+e− has been noticed in [9, 13–16] with limits on Lorentz violation parameters from

IceCube events. A comprehensive listing of Lorentz and CPT violating operators and their

experimental constraints is given in [17]. In this paper, we calculate the π,K, µ and n decay

processes in a fixed frame (the frame chosen being the one in which the CMBR is isotropic;

although the Earth moves at a speed vEarth ∼ 300 km/sec with respect to the CMBR, the

Lorentz correction to the neutrino energy is small as βEarth ∼ 10−3), where the neutrinos

(antineutrinos) dispersion relation is E2 = p2 +m2
ν − (ξ3/MPl) p

3 [10, 18–20]. We will have

ξ3 > 0 for neutrinos and ξ3 < 0 for antineutrinos. In the π+ decay, we find that the |M |2 is

suppressed at neutrino energy Eν , where m2
π−m2

µ ' (ξ3/MPl) p
3
ν . This implies that for the

leading order Planck suppression (n = 3) taking ξ3 ∼ 0.05, the π+ decay is suppressed at

Eν ∼ 1.3 PeV. Similarly K+ decay will be cutoff at Eν ∼ 2 PeV with m2
K−m2

µ ∼ (ξ3/MPl)p
3

and neutron decay will be cutoff for p, where (mn−mp)
2 ∼ (ξ3/MPl)p

3, which is lower than

the Glashow resonance energy. For the π− decay the |M |2 is enhanced but the phase space

is suppressed and therefor π− → µ−νµ is also suppressed. In the case of µ− → e−ν̄eνµ
decay, |M |2 is enhanced whereas the phase space suppression is not significant, so the µ−

decay rate is enhanced (while µ+ → e+νeν̄µ decay rate is suppressed). This enhancement

is significant at µ− energies ∼ 2 PeV but since the primary source of µ− is π− decay which

is already cutoff, there will be no observable effect of this enhancement in the neutrino

spectrum seen at IceCube. Neutrinos from K− → µ−ν̄µ and K+ → µ+νµ decays will

be cutoff at slightly higher energies. Radiative π± decay with a single neutrino in the

outgoing state are also suppressed. The three body kaon decay rate are determined by the ξ3

dependence of |M |2 and we find that K+ → π0µ+νµ decay is suppressed but K− → π0µ−ν̄µ
decay is enhanced. Neutron beta decay n→ p+e−ν̄e gets suppressed in the same way as µ+

decay. If the source of ν̄e is neutron beta-decay [21] then the mechanism proposed in this

paper can be used for explaining the absence of Glashow resonance [5] at IceCube. The

value of (ξ3/MPl) ∼ 0.05 M−1
pl used in this paper to explain the cutoff in PeV neutrinos is

much smaller than the bound on the dimension-five coefficient, (a
(5)
of )00 < 3.5×10−10 GeV−1

from SN1987A dispersion [13].

The rest of the paper is organized as follows. In section 2, we calculate the leptonic

decay widths of pions and kaons using modified dispersion relation of neutrino and com-
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pare them with their standard model counterparts. In section 3 we study µ− → e−ν̄eνµ,

K+ → π0e+νe and n→ p+e−ν̄e processes with modified neutrino dispersion. We give our

conclusion in section 4.

2 Two body decays

2.1 Neutrino velocity with modified dispersion

To calculate the decay widths of pion, kaon and muon, we use the following dispersion

relation,

E2 = p2 +m2
ν −

ξn

Mn−2
Pl

pn (2.1)

which is motivated by Lorentz violating higher dimensional operators [9, 10]. We will take

ξn > 0 for neutrinos and ξn < 0 for antineutrinos. We use this modified dispersion relation

to get the neutrino (antineutrino) velocity, which becomes

v =
∂E

∂p
= 1− n− 1

2

ξn

Mn−2
Pl

pn−2 . (2.2)

This is clear from eq. (2.2) that we have a subluminal neutrinos and superluminal an-

tineutrinos. In this paper, we will consider the leading order Planck suppressed dispersion

relation E2 = p2+m2
ν−(ξ3/MPl) p

3 to compute the primary decay processes which produce

neutrinos and antineutrinos. In appendix A, we obtained modified dispersion relations for

neutrinos and antineutrinos using dimension 5 operator.

2.2 π+ → µ+νµ

We calculate the pion decay width using the modified dispersion relation for neutrino by

taking n = 3 case. The amplitude calculation of pion decay process π+(q) → µ+(p)νµ(k)

gives,

M = fπVud q
µū(k)

GF√
2
γµ(1− γ5)v(p) (2.3)

where fπ ≡ f(m2
π) is a constant factor and Vud is the CKM matrix element. The spin

averaged amplitude squared is,

|M |2 = 2G2
Ff

2
π |Vud|2m2

µF (k)

[
m2
π −m2

µ − ξ′3k3

(
m2
π

m2
µ

+ 2

)]
(2.4)

where ξ′3 ≡ ξ3/MPl and the F (k) factor comes from the modified spinor relation of neutrino,

as described in eq. (B.9). The decay width of pion is then given by,

Γ =
G2

Ff
2
π |Vud|2m2

µF (k)

8πEπ

∫
k2 dk d cos θ

Eν

√
|~q − ~k|2 +m2

µ

δ(Eνµ − Eπ +
√
|~q − ~k|2 +m2

µ)

×
[
m2
π −m2

µ − ξ′3k3

(
m2
π

m2
µ

+ 2

)]
(2.5)
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after using Eνµ = F (k)k, and writing |~p| = |~q−~k|2 = k2 + q2− 2kq cos θ, our expression of

eq. (2.5) takes the following form

Γ =
G2

Ff
2
π |Vud|2m2

µ

8πEπ

∫
k dk d cos θ√
|~q − ~k|2 +m2

µ

δ(Eνµ − Eπ +
√
|~q − ~k|2 +m2

µ)

×
[
m2
π −m2

µ − ξ′3k3

(
m2
π

m2
µ

+ 2

)]
(2.6)

from the argument of the delta function in eq. (2.6), we have√
|~q − ~k|2 +m2

µ = Eπ − Eνµ (2.7)

which gives,

cos θ =

(
m2
µ −m2

π + 2Eπk − Eπk2ξ′3 + k3ξ′3
)

2kq
. (2.8)

We reduce the δ function in Eνµ to a δ function in cos θ by taking,∣∣∣∣ d

d cos θ
(Eνµ − Eπ +

√
|~q − ~k|2 +m2

µ)

∣∣∣∣ =
kq√

k2 + q2 − 2kq cos θ +m2
µ

(2.9)

and substituting in eq. (2.6). We get the pion decay width,

Γ =
G2

Ff
2
π |Vud|2m2

µ

8πEπ

∫
dk

q

[
m2
π −m2

µ − ξ′3k3

(
m2
π

m2
µ

+ 2

)]
. (2.10)

We solve the integration in the limits of k, which are fixed by taking cos θ = ±1 in eq. (2.8),

kmax =
m2
π −m2

µ + ξ′3k
2
max(Eπ − kmax)

2(Eπ − q)
(2.11)

kmin =
m2
π −m2

µ + ξ′3k
2
min(Eπ − kmin)

2(Eπ + q)
(2.12)

solving these equations numerically, we get the allowed limits of neutrino momentum. We

solve eq. (2.10) and then compare our result with the standard model result of pion decay

in a moving frame, which is

ΓSM(π → µν) =
G2

Ff
2
π |Vud|2m2

µm
2
π

8πEπ

(
1−

m2
µ

m2
π

)2

. (2.13)

We compute the pion decay rate numerically for superluminal ν̄e (ξ3 < 0) and subluminal

νe (ξ3 > 0) final states and obtain the following:

• For subluminal neutrino final state (ξ3 > 0), the allowed phase space (eq. (2.11)–

eq. (2.12)) goes up but the |M |2 (eq. (2.4)) is suppressed. There is a net suppression

in Γ(π+ → µ+νµ) as shown in figure 1 for ξ3 = 1.3× 10−2.
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Figure 1. The ratio Γ/ΓSM for π+ → µ+νµ and π− → µ−ν̄µ processes in Lorentz invariance

violating framework to its standard model prediction for superluminal ν̄µ (ξ3 < 0) and subluminal

νµ (ξ3 > 0) final states as a function of pion momentum pπ. We considered ξ3 = ±1.3 × 10−2 for

corresponding processes.

• For superluminal antineutrino final state (ξ3 < 0), the phase space (eq. (2.11)–

eq. (2.12)) is suppressed but the |M |2 is enhanced. The net effect however is a

suppression in the Γ(π− → µ−ν̄µ) for this case also [11], as shown in figure 1 for

ξ3 = −1.3× 10−2.

In figure 2, for the process π+ → µ+νµ, we show the maximum neutrino energy for different

values of ξ3 using the solution for q in terms of kmax and kmin from eq. (2.11)–(2.12) in

eq. (2.10). We see that for ξ3 = 5.0×10−2, the neutrino spectrum cutoff at kmax = 1.3 PeV.

The upper limit of observed neutrino energy provides bound on the Lorentz invariance

violation parameter ξ3. In figure 3, we show the maximum neutrino energy kmax, as a

function of Lorentz invariance violation parameter ξ3. This is clear from figure 3 that kmax

goes down as ξ3 increases.

2.3 K+ → µ+νµ

In the similar way like pion decay, we calculate the kaon decay width for the process

K+(q)→ µ+(p)νµ(k), using the modified dispersion relation for neutrinos by taking n = 3

case. We get the kaon decay width,

Γ =
G2

Ff
2
K |Vus|2m2

µ

8πEK

∫
dk

q

[
m2
K −m2

µ − ξ′3k3

(
m2
K

m2
µ

+ 2

)]
. (2.14)

In the same way like pion, we solve the integration in the limits of k by taking cos θ = ±1

which gives,

kmax =
m2
K −m2

µ + ξ′3k
2
max(EK − kmax)

2(EK − q)
(2.15)
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Figure 2. The ratio Γ/ΓSM of π+ → µ+νµ process in Lorentz invariance violating framework to its

standard model prediction for subluminal neutrino (ξ3 > 0) as a function of neutrino energy kmax

with different values of ξ3.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Ξ3

k
m
a
x
H
P
e
V
L

Π
+
®Μ

+
Ν Μ

Figure 3. The maximum neutrino energy, kmax as a function of Lorentz invariance violation

parameter ξ3.

kmin =
m2
K −m2

µ + ξ′3k
2
min(EK − kmin)

2(EK + q)
(2.16)

solving these equations numerically, we get the allowed limits of neutrino momentum. We

solve eq. (2.14) and then compare our result with the standard model result of kaon decay

– 6 –
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Figure 4. The ratio Γ/ΓSM of K+ → µ+νµ process in Lorentz invariance violating framework to

its standard model prediction for subluminal neutrino (ξ3 > 0) as a function of neutrino energy

kmax with different values of ξ3.

in a moving frame, which is

ΓSM(K → µν) =
G2

Ff
2
K |Vus|2m2

µm
2
K

8πEK

(
1−

m2
µ

m2
K

)2

. (2.17)

In figure 4, we show the maximum neutrino energy for different values of ξ3 using the

solution for q in terms of kmax and kmin from eq. (2.15)–(2.16) in eq. (2.14). We see that

for ξ3 = 5.0× 10−2 the neutrino spectrum cutoff at kmax = 2 PeV.

3 Three body decays

3.1 µ− → e−ν̄eνµ

We compute the muon decay width with subluminal neutrino and superluminal anti-

neutrino in the final state, assuming the dispersion relation for the neutrino (antineutrino),

E2
ν = k2 − ξ′3k3, where ξ3 > 0 and ξ3 < 0 correspond to subluminal neutrino and superlu-

minal antineutrino respectively. We assume identical ξ3 for all the species of ν (and ν̄) to

avoid an extra source for neutrino oscillations which is not observed [16, 22]. The amplitude

for the process µ−(p)→ e−(k′)ν̄e(k)νµ(p′) is given as,

M =
GF√

2
[ū(k′)γµ(1− γ5)v(k)][ū(p′)γµ(1− γ5)u(p)] (3.1)

where GF is the Fermi constant. After squaring amplitude and solve it using trace tech-

nology, we get the spin averaged amplitude,

|M |2 = 64G2
F(p · k)(p′ · k′) . (3.2)

– 7 –
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The decay width of muon is,

dΓ =
d3p′

(2π)32Eνµ

d3k′

(2π)32Ee

d3k

(2π)32Eν̄e

|M |2
2Eµ

(2π)4δ4(p− p′ − k′ − k) (3.3)

using the squared amplitude from eq. (3.2), we get

dΓ =
32 G2

F

8(2π)5Eµ

d3k′

Ee

d3p′

Eνµ

d3k

Eν̄e
δ4(p− p′ − k′ − k)(p · k)(p′ · k′) . (3.4)

First we write eq. (3.4) as,

Γ =
32 G2

F

8(2π)5Eµ

∫
d3k′

Ee
pαk′

β
Iαβ(p− k′) (3.5)

where

Iαβ(p− k′) ≡
∫
d3k

Eν̄e

d3p′

Eνµ
δ4(p− p′ − k′ − k)kαp

′
β (3.6)

and then to find out Iαβ(p− k′), we use the generic phase space integral formula,

Iαβ ≡
∫

d3p√
m2

2 + ~p · ~p
d3q√

m2
1 + ~q · ~q

δ4(k − p− q)pαqβ =
I

12k4
(k2[k2 − (m1 −m2)2]

[k2 − (m1 +m2)2]gαβ + 2[k4 + k2(m2
1 +m2

2)− 2(m2
1 −m2

2)2]kαkβ) (3.7)

where

I =
2π

k2

√
[k2 − (m1 −m2)2][k2 − (m1 +m2)2]. (3.8)

Applying this to our scenario by putting m2
1 = m2

ν̄e = ξ′3k
3, m2

2 = m2
νµ = −ξ′3p′

3 and taking

k = p′/2 ∼ p/4, we find

Iαβ(p− k′) =
π

6

[
1 +

7

64

ξ′3p
3

(p− k′)2

]
(3.9)([

(p− k′)2 +
7

32
ξ′3p

3

]
gαβ + 2

[
1− 7

64

ξ′3p
3

(p− k′)2

]
(p− k′)α(p− k′)β

)
after contracting Iαβ with the muon and electron momentums which respectively are p and

k′, we get

pαk′
β
Iαβ(p−k′)=

π

6

[
1 +

7

64

ξ′3p
3

(p− k′)2

]
(3.10)([

(p−k′)2+
7

32
ξ′3p

3

]
(p·k′)+2

[
1− 7

64

ξ′3p
3

(p−k′)2

]
(p·p−p·k′)(p·k′−k′ ·k′)

)
where,

p · p = m2
µ

k′ · k′ = m2
e ≈ 0

p · k′ = ~k′(Eµ − ~p cos θ)

(p− k′)2 = m2
µ − 2~k′(Eµ − ~p cos θ). (3.11)

– 8 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
2

Μ+®e+ΝeΝΜ

Μ-®e-ΝeΝΜ

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pΜHPeVL

G
�G

S
M

Ξ3=±5.0´10
-2

Figure 5. The ratio Γ/ΓSM for µ+ → e+νeν̄µ and µ− → e−ν̄eνµ processes in Lorentz invariance

violating framework to its standard model prediction for superluminal antineutrino (ξ3 < 0) and

subluminal neutrino (ξ3 > 0) final states as a function of muon momentum pµ. Here we considered

ξ3 = ±5.0× 10−2.

The decay width from eq. (3.5) can be written as,

Γ =
32G2

F

8(2π)5

(2π)

Eµ

∫ 1

−1
d cos θ

∫ m2
µ/2(Eµ−k cos θ)

0
k′dk′pαk′

β
Iαβ (3.12)

after solving it, we finally get,

Γ =
G2

Fm
4
µ

192π3Eµ

(
m2
µ +

17

80
ξ′3p

3

)
. (3.13)

We compare our result with the standard model prediction of muon decay in a moving

frame, which is

ΓSM(µ→ eν̄eνµ) =
G2

Fm
5
µ

192π3

mµ

Eµ
. (3.14)

We compute the muon decay rate for subluminal neutrino (ξ3 > 0) and superluminal

antineutrino (ξ3 < 0) and obtain the following:

• The decay rate of the process Γ(µ− → e−ν̄eνµ) is enhanced, as shown in figure 5 for

ξ3 = ±5.0× 10−2.

• The decay rate of the process Γ(µ+ → e+νeν̄µ) is reduced, as shown in figure 5 for

ξ3 = ±5.0× 10−2.
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Figure 6. The ratio Γ/ΓSM for K+ → π0e+νe and K− → π0e−ν̄e processes in Lorentz invariance

violating framework to its standard model prediction for superluminal ν̄e (ξ3 < 0) and subluminal

νe (ξ3 > 0) final states as a function of kaon momentum pK . We considered ξ3 = ±5.0 × 10−2 for

corresponding processes.

3.2 K+ → π0e+νe

We also calculate 3-body kaon decay width using the modified dispersion relation for neu-

trino by taking n = 3 case. The amplitude calculation of kaon decay process K+(pK) →
π0(pπ)e+(pe)νe(pν) gives,

|M |2 = 16G2
F|Vus|2f2

+[m2
K(pK ·pν+pπ ·pν)−2(pK ·pν)(pK ·pπ)−2(pK ·pν)(pK ·pν)−m2

Kξ
′
3p

3
ν ]

(3.15)

where f+ is the kaon form factor. The Decay width of kaon is,

dΓ =
d3pπ

(2π)32Eπ

d3pνe
(2π)32Eνe

d3pe
(2π)32Ee

|M |2
2EK

(2π)4δ4(pK − pπ − pνe − pe) (3.16)

which gives,

Γ '
G2

F|Vus|2f2
+m

4
K

768π3EK

[
m2
K

(
1− 8m2

π

m2
K

)
− 4

9
p3
Kξ
′
3

(
1− m4

π

m4
K

)]
. (3.17)

It is clear from eq. (3.17) that the K+(K−) decay rate goes down (up) as kaon momentum

pK increases, which is shown in figure 6 for ξ3 = ±5.0× 10−2.

3.3 n → p+e−ν̄e

In the similar way like muon decay, we also calculate the neutron beta decay width using

the modified dispersion relation for antineutrino. The spin averaged amplitude squared for

the neutron decay process n(p)→ p+(k)e−(k′)ν̄e(p
′) comes,

|M |2 = 64G2
F(p · p′)(k · k′) (3.18)
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using eq. (3.18), we get the following decay width of neutron,

dΓ =
32 G2

F

8(2π)5En

d3k

Ep

d3k′

Ee

d3p′

Eν̄e
δ4(p− k − k′ − p′)(p · p′)(k · k′) (3.19)

we solve eq. (3.19) in the similar way like muon decay using generic phase space integral

formula (eq. (3.7)). Then we solve the final integral over the electron energy, for which

the minimum energy is the rest energy me of the electron while the maximum energy is

approximately,

Emax ≈ mn −mp (3.20)

which finally gives,

Γ ∼
G2

F(mn −mp)
3mn

15π3En

[
(mn −mp)

2 − 5

16
ξ′3p

3

]
. (3.21)

For ξ3 = 0.05 the neutron decay width goes down at neutrino momentum p ' 0.1 PeV.

This implies that antineutrino production from neutron decay will be suppressed and so in

our model, it is also possible to explain the absence of Glashow resonance [5]. The decay

rate of the charge conjugate process n̄ → p̄e+νe is enhanced, but since only neutrons are

produced in the p+ γ → ∆→ n+ π+ processes at the source, the enhanced decay of n̄ is

not relevant to the IceCube events.

4 Conclusion

In this paper we provide a mechanism by which one can account for the lack of an-

tineutrino events at Glashow resonance (6.3 PeV) at IceCube. We show that if the neu-

trino (antineurino) dispersion is modified by leading order Planck scale suppression E2 =

p2 − (ξ3/MPl)p
3 (where ξ3 > 0 correspond to neutrinos and ξ3 < 0 correspond to antineu-

trino), then there is a suppression of the π+ decay width and corresponding neutrinos will

be cutoff at energies Eν = 1.3 PeV (with ξ3 = 0.05). The neutrinos from Kaon decay

K+ → µ+νµ will be cutoff at 2 PeV.

• Three body decays like µ− → e−ν̄eνµ and K− → π0e−ν̄e get enhanced due to different

ξ3 dependence in their |M |2, whereas three body decay widths of µ+ and K+ get

suppressed.

• Neutron decay n→ p+e−ν̄e gets suppressed in the similar way as µ+ decay. So if the

source of ν̄e is neutron beta-decay then the mechanism proposed in this paper can

be used to explain the absence of Glashow resonance at IceCube.

• Radiative three body decays like π± → e±νγ and π± → µ±νγ are factorized to the

|M |2 for two body decays π± → e±ν and π± → µ±ν times αem [23, 24] and these are

also suppressed like two body decay processes.

The enhancement in µ− decay will be significant at muon energies of 2 PeV and if the

primary source of µ− is π− decay then there will be no observable consequence of this in

– 11 –
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IceCube events. However such enhancement of the µ− decay rate would be observable for

µ− produced not from π− decay but e.g. via pair production e.g. in e+e− → µ+µ−. The

precise numerical values depend on the choice of the parameter ξ3, but obviously a cutoff

between ∼ 3 PeV and 6.3 PeV can be easily obtained in this model. We conclude that if

neutrinos at Glashow resonance energies are not observed at IceCube then explanations

in terms of new physics such as Lorentz violating modified neutrino dispersion relation

become attractive. The fact that neutron decay into p + e + ν̄e is suppressed has the

following implications. The conventional π/K decay neutrinos from astrophysical sources

have cutoff in the range of ∼ 3 PeV. However the B-Z neutrinos which arise in GZK process

have two components [25], the higher energy neutrinos from π/K will be more suppressed

compared to the lower energy n decay to ν̄e. But both components of GZK process will be

suppressed at Eν > 3 PeV.
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A Dispersion relation

The cubic dispersion relation we used for neutrinos and antineutrinos can be obtained from

the dimension 5 operator [9, 10],

LLV =
1

MPl
ψ̄(η1/n+ η2/nγ5)(n · ∂)2ψ (A.1)

where nµ is a fixed four vector that specifies the preferred frame. Both the vector and

axial-vector terms in eq. (A.1) are CPT violating in addition to being Lorentz violating.

The Lagrangian gives the equation of motion,

i/∂ψ = − 1

MPl
(η1/n+ η2/nγ5)(n · ∂)2ψ (A.2)

where we have taken E � m. This leads to the following dispersion relation for left and

right handed particles ψ,

E2 = p2 + 2(η1 ± η2)
p3

MPl
(A.3)

where + and − signs correspond to ψR and ψL respectively. Now taking the charge conju-

gation of eq. (A.1), we find

LLV =
1

Mpl

ψ̄c(−η1/n+ η2/nγ5)(n · ∂)2ψc (A.4)

where we used charge conjugation properties viz. C−1γµC = −γµ and C−1γµγ5C = γµγ5.

The operator (eq. (A.4)) gives the following dispersion relation for left and right handed
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antiparticle ψc,

E2 = p2 + 2(−η1 ± η2)
p3

MPl
(A.5)

where the + sign is for ψcR and − sign is for ψcL. Therefor for the case of left-handed

neutrinos νL, we will have the dispersion relation,

E2 = p2 + 2(η1 − η2)
p3

MPl
(A.6)

and for antineutrinos νcR we have,

E2 = p2 − 2(η1 − η2)
p3

MPl
. (A.7)

We have dispersion relation for neutrinos and antineutrinos E2 = p2 − (ξ3/MPl)p
3, where

ξ3 = −2(η1 − η2) for neutrinos and ξ3 = 2(η1 − η2) for antineutrinos.

B Spinors relation

We assume that all the particles expect neutrinos follow the standard energy-momentum

relation i.e.,

Ei =
√
p2
i +m2

i , (B.1)

where mi and pi are the mass and momentum of different particles (i = e, µ, τ etc.).

The neutrinos follow the modified dispersion relation given in eq. (2.1). There exist very

stringent bounds [22], which suggest that neutrino flavor is independent of their dispersion

relation, so we assumed the universal dispersion relation for different flavor of neutrinos.

We also define,

F (p) ≡ E

p
= 1− ξnp

n−2

2Mn−2
Pl

, (B.2)

where the function F (p) is the measure of the deviation of neutrino dispersion relation

from the standard one [26]. In this framework, the modified Dirac equation for neutrino

can be written as,

(iγ0∂0 − iF (p)~γ · ~∂)ψ(x) = 0 (B.3)

where we have neglected the neutrino mass for simplification. Now we replace the Dirac

field ψ in terms of the linear combination of plane waves i.e.,

ψ(x) = u(p)e−ip·x (B.4)

using it, we get the following form of Dirac equation,

(γ0E − F (p)~γ · ~p )u(p) = 0. (B.5)

Clearly, the positive energy solution of this equation will satisfy,

E(p) = F (p)p, (B.6)
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we used these results in the derivation of the spinors sum of neutrinos, which comes,

∑
s=1,2

us(p)ūs(p) =

(
0 p̃ · σ

p̃ · σ̄ 0

)
(B.7)

where we assumed neutrino to be massless and defined p̃ = (E,F (p)p). Following the Dirac

algebra, we get the following result for spinor sum,∑
s=1,2

us(p)ūs(p) = γµp̃µ ≡ F (p)γµpµ (B.8)

where we used the result of eq. (B.6) for further simplification. For antiparticle when

m = 0, there is an overall negative sign in eq. (B.5) and following the same procedure we

obtain the same result, ∑
s=1,2

vs(p)v̄s(p) = F (p)γµpµ . (B.9)
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