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1 Introduction

Effective field theory is used extensively in the study of strongly interacting gauge theories.

A recent review covering a number of different applications in addition to other methods

is [1]. Besides general interest in understanding strongly interacting gauge theories, they

might still be useful as an alternative for the Standard Model Higgs sector as well as for

dark matter. These applications have been reviewed recently at the 2015 [2, 3] and 2013 [4]

lattice conferences. A number of recent lattice studies is [5–11]. Reviews of technicolor

and strongly interacting Higgs sectors are [12–14].

Lattice studies are always performed at a nonzero fermion mass. In order to obtain

results in the massless limit extrapolations are needed. A main tool for this in the context

of lattice QCD is Chiral Perturbation Theory (ChPT) [15–17].

In the case of equal mass fermions three main symmetry breaking patterns are possi-

ble [18–20]. For NF Dirac fermions in a complex representation the global symmetry group

is SU(NF )L × SU(NF )R and it breaks spontaneously to the diagonal subgroup SU(NF )V .

For NF Dirac fermions in a real representation the global symmetry group is SU(2NF )

and it breaks spontaneously to SO(2NF ). An alternative possibility is that we have NF
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Majorana fermions in a real representation with a global symmetry group SU(NF ) spon-

taneously broken to SO(NF ). We show in this work that the EFT for the quantities we

consider is really the same as for Dirac fermions. The final case is NF Dirac fermions in a

pseudo-real representation. The global symmetry group is again SU(2NF ) but in this case

it is expected to be broken spontaneously to Sp(2NF ).

The effective field theory (EFT) for these cases is discussed at tree level or lowest

order (LO) in [21]. At next-to-leading order (NLO) the first case is simply ChPT for NF

light quarks with a symmetry breaking pattern of SU(NF )× SU(NF )→ SU(NF ), a direct

extension of the QCD case and was already done in [17]. The pseudo-real case was done

at NLO by [22]. The SU(2NF ) → SO(2NF ) case was done in [23]. The extension for all

three cases to next-to-next-to-leading order (NNLO) was done in earlier work by one of

the authors [24]. More references to earlier work can be found there and in [25, 26].

This paper is an extension to the work of [24]. We add a short discussion showing

that the calculations and the Lagrangian for the real case also covers the case of Majorana

fermions in a real representation. The main part of the work concerns the extension of the

calculations at NNLO order of the masses, decay constants and vacuum expectation values

to include effects of partial quenching and finite volume.

Partial quenching was introduced in ChPT by [27]. A thorough discussion of the as-

sumptions involved is in [28]. It allows to study a number of variations of input parameters

at reduced cost, as discussed in e.g. [29]. We do not use the supersymmetric method

introduced in [27] and extended (at NLO) to the cases discussed here in [23]. We only

use the quark-flow technique introduced in [30]. Two-loop results in infinite volume par-

tially quenched ChPT (PQChPT) for the masses and decay constants are in [31–33]. The

definitions of the infinite volume integrals we use can be found there.

Finite volume effects in ChPT were introduced in ChPT in [34–36]. Early two-loop

work is [37, 38]. The vacuum expectation value was discussed in more detail in [39]. After

the proper evaluation of the finite volume two-loop sunsetintegrals using two different

methods [40] the masses and decay constants were treated in both the unquenched [41]

and partially quenched [42] case. In particular the integral notation at finite volume we

use is defined in [42].

In section 2 we recapitulate briefly the discussion from [24] at the quark level and add

the case with Majorana fermions. Section 3 similarly recapitulates [24] at the effective

field theory level and adds the Majorana fermion case. The cases with Dirac fermions and

Majorana fermions are essentially identical from the EFT point of view for the quantities we

consider. The underlying reason is an U(2NF ) transformation that relates the two cases as

discussed in section 4. Partial quenching and the quark flow techniques we have used for the

different cases is discussed to some extent in section 5. For a discussion on finite volume and

the notation used there we refer to [42]. Our analytical results are described in section 6,

in particular we clarify the definitions of the decay constant and vacuum expectation value

used in terms of quark fields. The numerical examples and checks are presented in section 7.

The analytical formulas are included in the supplementary file analyticalresults.txt (online

resource 1) and the numerical programs are available via CHIRON, [43, 44]. The last

section briefly recapitulates the main points of our work.
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2 Quark level

2.1 The three Dirac fermion cases

The discussion here is kept very short, longer versions can be found in [21] and [24]. This

subsection is mainly included to show normalization conventions.

QCD or complex representation. In the NF equal mass Dirac fermions in a complex

representation, we put the NF fermions together in an NF column matrix q. The global

symmetry transformation by gL × gR ∈ SU(NF )L × SU(NF )R is given by

qL → gLqL, qR → gRqR, lµ → gLlµg
†
L+igL∂µg

†
L , rµ → gRlµg

†
R+igR∂µg

†
R , M→ gRMg†L .

(2.1)

The matrix M = mqI + s + ip brings the quark mass term mqI and the external scalar

s and pseudo-scalar densities in the Lagrangian via −qRMqL + h.c.. The external fields

lµ, rµ are in the Lagrangian via qLγ
µlµqL+qRγ

µrµqR. Taking derivatives w.r.t. the external

fields allows to calculate relevant Green functions [16, 17]. In particular, deriving w.r.t. s11
allows us to obtain 〈qL1qR1 + qR1qL1〉 and derivatives w.r.t. aµ12 with rµ12 = −lµ12 = aµ12
allows access to matrix-elements of q2γ

µγ5q1 The symmetry is spontaneously broken by a

vacuum expectation value

〈qLjqRi〉 = v0δij . (2.2)

This leaves a global symmetry SU(NF )V with gL = gR unbroken.

Adjoint or real representation. When the fermions are in a real representation, we can

introduce besides the NF right handed fermions qRi a second set of right handed fermions

in the same gauge group representation, q̃Ri = CqTLi. These can be put together in a 2NF

column vector q̂, q̂T = (qR1 . . . qRNF
q̃R1 . . . q̃RNF

). The global symmetry transformation

with g ∈ SU(2NF ) is now

q̂ → gq̂, V̂µ → gV̂µg
†, M̂ → gM̂gT . (2.3)

We define the external densities and currents as in the QCD case with rµ, lµ and M. We

define 2NF × 2NF matrices

M̂ =

(
0 M
MT 0

)
, V̂µ =

(
rµ 0

0 −lTµ

)
. (2.4)

Note that the global symmetry can change quark-antiquark currents to diquark currents.

The fermions condense forming a vacuum expectation value

1

2
〈q̂Tj Cq̂j〉 = v0JSij JS =

(
0 I

I 0

)
. (2.5)

This leaves a global symmetry SO(2NF ) with gJSg
T = JS .
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Nc = 2 or pseudo-real representation. When the fermions are in a pseudo-real

representation, we can introduce besides the NF right handed fermions qRia again a second

set of right handed fermions in the same gauge group representation, q̃Ria = εabCq
T
Lib. a, b

are gauge indices and the extra Levi-Civita tensor εab is needed to have q̃Ria transform

under the gauge group as qiRa. The explicit formula is for the case of the fundamnetal

representation with Nc = 2. qRi and q̃Ri can be put together in a 2NF column vector q̂,

q̂T = (qR1 . . . qRNF
q̃R1 . . . q̃RNF

). The global symmetry transformation with g ∈ SU(2NF )

is now

q̂ → gq̂, V̂µ → gV̂µg
†, M̂ → gM̂gT . (2.6)

We define the external densities and currents as in the QCD case with rµ, lµ and M. We

then define

M̂ =

(
0 −M
MT 0

)
, V̂µ =

(
rµ 0

0 −lTµ

)
. (2.7)

Note that the global symmetry can again change quark-antiquark currents to diquark

currents. The fermions condense forming a vacuum expectation value

1

2
〈q̂TjaεabCq̂jb〉 = v0JAij JA =

(
0 −I

I 0

)
. (2.8)

This leaves a global symmetry Sp(2NF ) with gJAg
T = JA.

2.2 Majorana fermions in a real representation

In the earlier work [24] at infinite volume Dirac fermions and Dirac masses were assumed.

It was then also asumed that the vacuum condensate was aligned with the Dirac fermion

masses. There is in fact another possibility. Majorana fermions with a Majorana mass

in a real representation of the gauge group. In this case the global symmetry is SU(NF ).

It is expected to be spontaneously broken down to SO(NF ) which is aligned with the

Majorana masses.

A Majorana spinor is a Dirac spinor that satisfies

ψ = Cψ
T

or ψ =

(
ψM

−iσ2ψ∗M

)
. (2.9)

The last equality are in the chiral representation for the Dirac matrices. The Lagrangian

for a single free Majorana fermion is

1

2
ψiγµ∂µψ −

m

2
ψψ = ψ†MCiσ

µ∂µψ −
im

2

(
ψTMσ

2ψ + ψ†Mσ
2ψ∗
)
. (2.10)

σ0 = I, σi = −σi. If we want to gauge this for m 6= 0 the mass term requires the fermions

to be in a real representation of the gauge group.

For NF Majorana fermions ψMi in the adjoint representation with external fields V̂µ
and M̂ the Lagrangian, put in a big column vector q̂T = (ψT1 . . . ψ

T
NF

) is

L = trc

(
q̂†σµ(iDµ + V̂µ)q̂

)
− i

2
trc

(
q̂Tσ2M̂†q̂ + q̂†σ2M̂q̂∗

)
. (2.11)
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This Lagrangian has a global SU(NF ) symmetry with g ∈ SU(NF ) with

q̂ → gq̂, , V̂µ → gV̂µg
† + ig∂µg

† , M̂ → gM̂gT . (2.12)

The maximal symmetry argument says that in this case the fermions will condense to

the flavour neutral vacuum 〈trc
(
q̂TCq̂

)
〉. This is conserved by the part of the global group

that satisfies ggT = I or the conserved part of the global symmetry group is SO(NF ).

Note that the form of the vacuum and the form of the mass term are the only differences

as far as the global symmetry group and its breaking are concerned compared to the case

with NF /2 Dirac fermions in a real representation.

3 Effective field theory

3.1 The general LO and NLO Lagrangian

The ChPT Lagrangian for NF flavours at LO and NLO has been derived in [17]. The

Lagrangian for the other cases has the same form as has been shown in [21, 24] and other

papers. The precise derivation can be found in [24] and the Majorana fermion case below

in section 3.3.

In terms of the quantities uµ, f±µν , χ± defined below for each case the lowest order

Lagangian is

L2 =
F 2

4
〈uµuµ + χ+〉 . (3.1)

Here we use the notation 〈A〉 = trF (A), denoting the trace over flavours. The NLO

Lagrangian derived by [17] reads

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉

+L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈f+µνuµuν〉+
1

4
L10〈f2+ − f2−〉+

1

2
H1〈f2+ − f2−〉+

1

4
H2〈χ2

+ − χ2
−〉 . (3.2)

The NNLO Lagrangian has been classified for the NF -flavour case in [45]. The Lagrangian

at NNLO for the other cases is not known, the direct equivalent of the results in [45] is

definitely a complete Lagrangian but might not be minimal. For this reason we do not

quote the dependence on the NNLO Lagrangian in the real and pseudo-real cases.

The divergences at NLO were derived for the QCD case in [17], for the others in [22, 24].

At NNLO only the QCD case is known [46].

3.2 The three Dirac fermion cases

A more extensive discussion can be found in [21, 24]. Here we simply quote the results.

When we have a global symmetry group G with generators T a which is spontaneously

broken down to a subgroup H with generators Qa which form a subset of the T a, the

Goldstone bosons can be described by the coset G/H. This coset can be parametrized [47,

48] via the broken generators Xa. Below we explain what is used for the different cases.

We always work with generators normalized to 1, i.e. 〈XaXb〉 = δab.

The quantities used from the quark level are given in section 2.
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QCD or complex representation. The Goldstone boson manifold is in this case

SU(NF ) × SU(NF )/SU(NF ) which itself has the structure of an SU(NF ) Note that the

axial generators do not generate a subgroup of SU(NF ) × SU(NF ) even if G/H has the

structure of a group in this case.

We choose as the broken generators Xa the generators of SU(NF ) ≈ G/H. The

quantities needed to construct the Lagrangian and their symmetry transformations are

u = exp

(
i√
2F

πaXa

)
→ gRuh

† ≡ hug†L

uµ = i
(
u†(∂µ − irµ)u− u(∂µ − lµ)u†

)
→ huµh

† ,

χ = 2B0M→ gRχg
†
L

χ± = u†χu† ± uχ†u→ hχ±h
† ,

lµν = ∂µlν − ∂µlν − ilµlµ + ilν lµ → gLlµνg
†
L

rµν = ∂µrν − ∂µrν − irµrµ + irνrµ → gRrµνg
†
R

f±µν = ulµνu
† ± u†rµνu→ hf±µνh

† . (3.3)

The first line defines h [47, 48].

Adjoint or real representation. The Goldstone boson manifold is in this case SU(2NF )/

SO(2NF ). The unbroken generators satisfy QaJS = −JSQaT which follows from gJSg
T =

JS . The broken generators satisfy JSX
a = XaTJS .

The quantities needed to construct the Lagrangians are [24]

u = exp

(
i√
2F

πaXa

)
→ guh†

uµ = i
(
u†(∂µ − iV̂µ)u− u(∂µ + iJSV̂

T
µ JS)u†

)
,

χ = 2B0M̂

χ± = u†χJSu
† ± uJSχ†u

V̂µν = ∂µV̂ν − ∂ν V̂µ − i
(
V̂µV̂ν − V̂ν V̂µ

)
f±µν = JSuV̂µνu

†JS ± uV̂µνu† (3.4)

The first line defines h by requiring that guh† is of the form exp(iπaXa/(
√

2F )). Note that

the derivation used JSu = uTJS .

Nc = 2 or pseudo-real representation. The Goldstone boson manifold is SU(2NF )/

Sp(2NF ). The unbroken generators satisfy QaJA = −JAQaT which follows from gJAg
T =

JA. The broken generators satisfy JAX
a = XaTJA.

– 6 –
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The quantities needed are [24]

u = exp

(
i√
2F

πaXa

)
→ guh†

uµ = i
(
u†(∂µ − iV̂µ)u− u(∂µ + iJAV̂

T
µ J

T
A )u†

)
,

χ = 2B0M̂

χ± = u†χJTAu
† ± uJAχ†u

V̂µν = ∂µV̂ν − ∂ν V̂µ − i
(
V̂µV̂ν − V̂ν V̂µ

)
f±µν = JAuV̂µνu

†JTA ± uV̂µνu† (3.5)

The first line defines h by requiring that guh† is of the form exp(iπaXa/(
√

2F )). Note that

the derivation used JAu = uTJA.

3.3 Majorana fermions in a real representation

The vacuum in this case is characterized by the condensate

1

2
〈q̂Ti Cq̂j〉 =

1

2
〈qq〉δij . (3.6)

Under the symmetry group g ∈ SU(NF ) this moves around as

δij →
(
gT g

)
ij
. (3.7)

The unbroken part of the group is given by the generators Q̃a and the broken part by the

generators X̃a which satisfy

Q̃a = −Q̃aT , X̃a = X̃aT . (3.8)

Just as in the cases discussed in [24] we can construct a rotated vacuum in general by using

the broken part of the symmetry group on the vacuum. This leads to a matrix

U = uuT → gUgT with u = exp

(
i√
2F

πaXa

)
. (3.9)

The matrix u transforms as in the general CCWZ case as

u→ guh† . (3.10)

Some earlier work used the matrix U to describe the Lagrangian [21]. Here we will, as

in [24] use the CCWZ scheme to obtain a notation that is formally identical to the QCD

case. We add NF ×NF matrices of external fields V̂µ and M̂. We need to obtain the uµ, or

broken generator, parts of u† (∂µ − iVµ)u. Eq. (3.8) have as a consequence that u satisfies

u = uT . (3.11)

– 7 –
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This leads using the same method as in [24] to

uµ = i
(
u†(∂µ − iV̂µ)u− u(∂µ + iV̂ T

µ )u†
)
. (3.12)

With this we can construct Lagrangians. The equivalent quantities to the field strengths are

f±µν = uV̂µνu
† ± uV̂µνu† (3.13)

with V̂µν = ∂µV̂ν − ∂ν V̂µ − i
(
V̂µV̂ν − V̂ν V̂µ

)
and for the mass matrix

χ± = u†χu†T ± uTχ†u (3.14)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form as given

in (3.1) and (3.2) with uµ, χ± and f±µν as defined in (3.12), (3.13) and (3.14).

4 Relation Dirac and Majorana for the adjoint case

As discussed below, we have calculated the adjoint case using two methods. They were

appropriate for the Dirac and the Majorana case respectively. After doing the trivial

2NF → NF change the results agreed exactly. If we compare the two cases, we see that

the main difference is really the choice of vacuum.

The Dirac and Majorana cases lead to a choice of vacuum

〈q̂Ti Cq̂j〉D ∝ JSij , 〈q̂Ti Cq̂j〉D ∝ Iij . (4.1)

Is it possible to relate the two cases in a simple way? Under a global symmetry transfor-

mation the first one transforms as JS → gJSg
T . If we could find a global transformation

gR that lead to gRJSg
T
R = I the two cases would be obviously the same.

It is not possible in general with a SU(2NF ) rotation to accomplish this since det JS =

±1 (−1 for the 2NF = 2) while det I = 1. However it is possible with a U(2N) transfor-

mation. An explicit choice for gR, with a free phase α is

gR =
1√
2

(
∓ieiαI ±ie−iαI

eiαI e−iαI

)
. (4.2)

It can be checked that this transforms a Dirac mass term for NF Dirac fermions into a

Majorana mass term for 2NF Majorana fermions.

Inspections of the effective Lagrangians needed lead to the immediate conclusion that

the mass independent terms really are U(2NF ) invariant, and the mass dependent terms

for the two cases are turned into each other.

gR can also be used to relate the two different embeddings of SO(2NF ) in SU(2NF ) to

each other. For the Dirac case the SO(2N) generators satisfied QaTJS = −JSQa while for

the Majorana case they satisfied Q̃aT = −Q̃a. The two sets of generators are related by

Q̃a = gRQ
ag†R , X̃a = gRX

ag†R . (4.3)

– 8 –
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5 Partially quenching and the quark flow technique

A thorough discussion of PQChPT and in particular the derivation of the propagator used

there is [49]. That discussion uses the supersymmetric method. Alternative methods of

calculation are the replica trick [50] and the quark flow method [30]. The earliest partially

quenched work for QCDlike theories used the supersymmetric method [23]. The replica

trick has been used in [51]. We use the quark-flow method.

For this method we look at the matrix

Φ = πaXa (5.1)

for each of the cases.

For the QCD case, Φ is a traceless Hermitian matrix. We actually keep Φ in the flavour

basis with elements φij and i, j are flavour indices. The tracelessness condition is enforced

by the propagator. The indices are kept explicitly and the propagator connecting a field

φij to φkl is [49]

Gijkl(k) = Gcij(k)δilδjk − δijδklGqik(k)/nsea . (5.2)

The number of sea quarks nsea is what we call NF . with Gcij = i/(p2 − χij). The neutral

part of the propagator, Gqik, can contain double poles. In particular for the mass cases we

consider:

Gqvv′ = i(χ1 − χ4)/(p
2 − χ1)

2 + i/(p2 − χ1) ,

Gqvs = i/(p2 − χ1) ,

Gqss′ = i/(p2 − χ4) . (5.3)

v, s denote valence or sea quarks. The extra parts come from integrating out the Φ0 [49] and

enforce the condition that Φ must be traceless. When constructing the Feynman diagrams,

we keep all flavour indices free. Those that connect to external states get replaced by the

value of the external valence flavour index and the remaining ones are summed over the

sea quark flavours. In the present calculation, with all sea quarks the same mass, that

corresponds to a factor of NF for each free flavour index.

For the Majorana, SU(NF )→ SO(NF ), case we have that Φ = πaXa with Φ Hermitian,

traceless and symmetric. Hermitian and traceless follow from SU(NF ) and symmetric

from (3.8). Going to the flavour basis for the diagonal elements of Φ there is no change

w.r.t. the QCD case, but the flavour charged or off-diagonal elements must be correctly

symmetrized. This has to be done both for the propagator and the connection to the

external states, keeping track of the needed normalization. Afterwards we set the flavour

indices connected to external states to their valence values and sum over the flavours for

the free indices.

For the Dirac adjoint case, SU(2NF ) → SO(2NF ), case we have that Φ = πaXa with

Φ Hermitian, traceless and satisfying XaJS = JSX
aT and the matrix Φ is 2NF × 2NF .

Rewriting Φ with NF ×NF matrices leads to the form

Φ =

(
ΦA Φ†C
ΦC ΦT

A

)
, with 〈A〉 = 0 , ΦC = ΦT

C . (5.4)
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ΦA is Hermitian. The elements in ΦA correspond to quark-antiquark states, those in ΦC to

diquark states. ΦA can be treated exactly as in the QCD case, both the diagonal and flavour

charged or offdiagonal elements, since 〈ΦA〉 = 0 replaces 〈Φ〉 = 0 in the QCD case. ΦC

can be treated as offdiagonal or flavour charged propagators but the needed symmetrizing

should be taken care of both for external states and propagators. The normalization of

all states must be done correctly as well. After constructing Feynman diagrams with both

ΦA and ΦC degrees of freedom taken into account, we sum free index lines over the NF

degrees of freedom, not 2NF . The results always agree with the calculations done with the

previous, Majorana, method.

For the last case, SU(2NF ) → Sp(2NF ), pseudo-real, we have that Φ = πaXa with

Φ Hermitian, traceless and satisfying XaJA = JAX
aT and the matrix Φ is 2NF × 2NF .

Rewriting Φ with NF ×NF matrices leads to the form

Φ =

(
ΦA Φ†C
ΦC ΦT

A

)
, with 〈A〉 = 0 , ΦC = −ΦT

C . (5.5)

ΦA is Hermitian. The elements in ΦA correspond to quark-antiquark states, those in ΦC

to diquark states. ΦA can be treated exactly as in the QCD case, both the diagonal and

flavour charged or offdiagonal elements, since 〈ΦA〉 = 0 replaces 〈Φ〉 = 0 in the QCD

case. ΦC can be treated as offdiagonal or flavour charged propagators but the needed

antisymmetrizing should be taken care of. The normalization of all states must be done

correctly as well. After constructing Feynman diagrams with both ΦA and ΦC degrees

of freedom taken into account, we sum free index lines over the NF degrees of freedom,

not 2NF . In this case and the previous we can also compare calculations with ΦA or ΦC

external states providing a check on our results.

6 Analytical results

We have calculated the masses, decay constants and vacuum expectation values to NNLO

for the QCD-like theories with the symmetry breaking patterns discussed above. A number

of checks have been performed on the analytical formulas. The infinite volume unquenched

results were obtained earlier in [24] and we have reproduced those. The partially quenched

and finite volume results in the QCD case are finite. The partially quenched expressions

reduce to the unquenched results whenever we set the sea mass equal to the valence mass.

In addition we reproduce the known results at NLO for the condensate [23] also for the

partially quenched case. The finite volume expressions have been checked against the

known NLO results and numerically with the earlier known NNLO results, as discussed in

section 7.

For the real and pseudo-real case we have the additional check that calculating the

mass or decay constant of a quark-anti-quark or a diquark meson gives the same results.

This corresponds to using a field from the A or the C sector in the matrices (5.4), (5.5).

For the real case we have the additional check that the results using the Dirac case and

the Majorana case coincide.
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The finite volume case is always done for three spatial dimensions of size L and an

infinite temporal volume. In addition we work in the center of mass system, the momenta

are such that the external states have zero spatial momentum.

The masses are the physical masses defined as the pole of the full propagator. We

consider here the case where all valence quarks have the same quark mass m1 = m̂ and the

sea quarks all have the same mass m4 = mS . For the unquenced case obviously m4 = m1.

The labeling is similar to those used in three flavour PQChPT [31–33, 42]. In the formulas

we use instead the quantities

χ1 = 2B0m1, χ4 = 2B0χ4, χ14 =
1

2
(χ1 + χ4) . (6.1)

These quantities are referred to in analyticalresults.txt (online resource 1) as m11, m44

and m14 respectively.

The formulas are given for the cases SU(NF ) × SU(NF ) → SU(NF ), SU(NF ) →
SO(NF ) and SU(2NF ) → Sp(2NF ). Note the difference in convention for the second

case compared to [24]. The three cases are referred to in the formulas with SUN, SON and

SPN for the unquenced case and PQSUN,PQSON and PQSPN for the partially quenched

case. In the latter case NF refers to the number of sea quarks.

For the mass we consider a meson made of a different quark and anti-quark or a diquark

state with two different quarks. These are always valence quarks. The physical mass at

finite volume is given by

m2
phys = χ1 +m(4)2 + ∆Vm(4)2 +m(6)2 + ∆Vm(6)2 . (6.2)

The superscript (n) labels the order pn correction and ∆V indicates the finite volume

corrections. In all cases the lowest order mass squared is given by χ1. A further break

up is done for the LEC dependent parts via the Lri (NLO) and Kr
i (NNLO) and the

remainder via

m(4)2 = mL(4)2 +mR(4)2

m(6)2 = mK(6)2 +mL(6)2 +mR(6)2

∆Vm(6)2 = ∆VmL(6)2 + ∆VmR(6)2 (6.3)

All quantities are given explicitly in analyticalresults.txt (online resource 1).

The decay constant Fphys for the same mesons as above is expanded w.r.t. the lowest

order as

Fphys = FLO

(
1 + F (4) + ∆V F (4) + F (6)2 + ∆V F (6)

)
, (6.4)

with a similar split

F (4) = FL(4) + FR(4)

F (6) = FK(6) + FL(6) + FR(6)

∆V F (6) = ∆V FL(6) + ∆V FR(6) (6.5)

All quantities are given explicitly in analyticalresults.txt (online resource 1).
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The vacuum expectation value is expanded in exactly the same way

vphys = vLO

(
1 + v(4) + ∆V v(4) + v(6)2 + ∆V v(6)

)
, (6.6)

with a similar split

v(4) = vL(4) + vR(4)

v(6) = vK(6) + vL(4) + vR(4)

∆V v(6) = ∆V vL(6) + ∆V vR(6) (6.7)

All quantities are given explicitly in analyticalresults.txt (online resource 1).

The quantities with K for the SON and SPN case have been set to zero. They are

polynomials up to the needed degree in χ1 and χ4, with an overall factor of χ1 for the mass.

The decay constant and the vacuum expectation value were defined implicitly in [24]

using a generatorXa in the axial current normalized to one and an element in M̂ normalized

to one. The consequence was that in [24] FLO = F and vLO = −B0F
2 for all cases. This

is not exactly what was done in earlier work leading to differences in factors of 2 and
√

2.

Below we explicitly specify all definitions in terms of the quark fields.

QCD or complex representation. If we label the first Dirac (valence) quark by 1 and

the second by 2 the decay constant and vacuum expectation value are defined as

〈0|q1γµγ5q2|M(p)〉 = i
√

2Fphys pµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (6.8)

M denotes a meson of that quark content with momentum p.

The resulting lowest orders are

FLO = F vLO = −B0F
2 . (6.9)

Adjoint or real representation. Here we have to be careful how we define the physical

decay constant. We can choose to do using generators normalized to one using Dirac

Fermions or generators normalized to one using the q̂i elements.

With a Dirac fermion definition, the first Dirac (valence) quark labeled by 1 and the

second by 2, the definitions are

〈0|q1γµγ5q2|M(p)〉 = i
√

2Fphys pµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (6.10)

M denotes a meson of that quark content with momentum p. The resulting lowest or-

ders are

FLO =
√

2F vLO = −2B0F
2 . (6.11)

If we instead choose to use the Majorana case, the natural definition of the decay

constant and vacuum expectation value with the first (valence) Majorana fermion labeled
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as 1 and the second as 2 via

1

2
√

2
〈0|q̂∗1σµq̂2 + q̂∗2σµq̂1|M(p)〉 = i

√
2Fphys pµ

1

2
〈q̂1σ2q̂1 + q̂∗1σ

2q̂∗1〉 = vphys (6.12)

The resulting lowest orders are

FLO = F vLO = −B0F
2 . (6.13)

Nc = 2 or pseudo-real representation. Here we again need to be careful how we

define the physical decay constant. We can choose to do using generators normalized to

one using the original Dirac Fermions or generators normalized to one using the q̂i elements.

With a Dirac fermion definition, the first Dirac (valence) quark labeled by 1 and the

second by 2, the definitions are

〈0|q1γµγ5q2|M(p)〉 = i
√

2Fphys pµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (6.14)

M denotes a meson of that quark content with momentum p. The resulting lowest or-

ders are

FLO =
√

2F vLO = −2B0F
2 . (6.15)

In terms of the q̂i the definitions are

〈0|q̂1γµq̂2 + q̂1+NF
γµq̂2+NF

|M(p)〉 = i
√

2Fphys pµ
1

2
〈q̂1+NF ,aεabCq̂1,b − q̂1,aεabCq̂1+NF ,b − q̂1+NF ,aεabCq̂1,b + q̂1,aεabCq̂1+NF ,b〉 = vphys . (6.16)

7 Numerical examples and checks

The main aim of this work is to provide the lattice work with the formulas and programs

needed to do the extrapolation to zero mass. We therefore only present some represen-

tative numerical results. The numerical programs are included in the latest version of

CHIRON, [43, 44].

For the numbers presented we always use χ1 = 0.142 GeV2, if not varied explicitly, and

F = 0.0877 GeV as well as a subtraction scale µ = 0.77 GeV. The length L for the finite

volume has been chosen such that L× 0.14 GeV=3 or L ≈ 4.2 fm.

The LECs at NLO we choose to be those of the recent determination of [52] with the

extra LEC Lr0 = 0. The NNLO constants we have always put to zero.

A number of numerical checks for the QCD case have been done. The unquenched

infinite volume results for three flavours agree with the three flavour results of [53, 54].

The partially quenched results for masses and decay constants at infinite volume agree

with the case dsea = 1, dval = 1 of [31–33]. The unquenched results for masses and decay

constants at finite volume agree with [41]. The partially quenched results for masses and

decay constants at finite volume agree with the case dsea = 1, dval = 1 of [42] and finally
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the unquenched finite volume results for the vacuum expectation value agree with the

results of [38].

In figure 1 we show the mass squared for the infinite volume for all cases we have

considered for three values of NF . In general, as was already noticed in [24] the corrections

are larger for the larger values of NF . The corrections are also larger for the SU(2NF )→
Sp(2NF ) case since this corresponds to a twice as large number of fermions as the other

cases. The partially quenched results shown in the right column are at a fixed value of χ1.

That explains why the corrections do not vanish for χ4 = 0.

The same types of results are shown for the decay constant in figure 2. The corrections

are somewhat larger than for the masses but the convergence is typically somewhat better.

The corrections for the vacuum expectation value shown in figure 3 are typically larger but

with again a reasonable convergence from NLO to NNLO.

We can now make similar plots for the finite volume corrections. The overall size of

them is as expected. The smallest mL is about two for the left hand sides of all plots. In

the unquenched case the exponential falloff with the mass is clearly visible. The partially

quenched cases contain a fixed mass scale χ1 which is why the correction is more constant

there, that mass stays at the mL = 3 point for the plots. The dips are caused by the finite

volume corrections going through zero. The corrections to the mass are shown in figure 4,

the decay constant in figure 5 and the vacuum expectation value in figure 6.

8 Conclusions

We have calculated in the effective field theory for the three possible symmetry breaking

patterns the NNLO order finite volume and partial quenching effects to NNLO in the ex-

pansion. The results satisfy a large number of checks agreeing analytically and numerically

with earlier work that our results reduce to for some cases. The analytical part of this

work relied heavily on FORM [55].

The analytical results are of reasonable length but given the total number of results

we have included them as FORM output in a supplementary file (online resource 1). They

can also be downloaded from [56].

The numerical programs have been included in CHIRON [43] version 0.54 which can

be downloaded from [44]. We have presented results in a number of cases with typical QCD

values of the parameters. The results are of the expected sizes from earlier work in three

flavour ChPT. We hope these results will be useful for lattice studies of these alternative

symmetry breaking patterns.
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Figure 1. The physical mass squared divided by the lowest order mass squared for the unquenched

(left) as a function of χ1 and the partially quenched case (right) as a function of χ4 with χ1 =

0.142 GeV2. Other input as in the text. Shown are the NLO (p4) and NNLO (p4 + p6) results for

three values of NF . Top line: SU(NF ) × SU(NF ) → SU(NF ). Middle line: SU(NF ) → SO(NF ).

Bottom line: SU(2NF )→ Sp(2NF ).
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Figure 2. The decay constant divided by the lowest order value F0 = FLO for the unquenched (left)

as a function of χ1 and the partially quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2.

Other input as in the text. Shown are the NLO (p4) and NNLO (p4 + p6) results for three values

of NF . Top line: SU(NF ) × SU(NF ) → SU(NF ). Middle line: SU(NF ) → SO(NF ). Bottom line:

SU(2NF )→ Sp(2NF ).
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Figure 3. The vacuum expectation value divided by the lowest order value v0 = vLO for the

unquenched (left) as a function of χ1 and the partially quenched case (right) as a function of

χ4 with χ1 = 0.142 GeV2. Other input as in the text. Shown are the NLO (p4) and NNLO

(p4 + p6) results for three values of NF . Top line: SU(NF ) × SU(NF ) → SU(NF ). Middle line:

SU(NF )→ SO(NF ). Bottom line: SU(2NF )→ Sp(2NF ).
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Figure 4. The absolute value of the finite volume correction to the physical mass squared divided

by the lowest order mass squared for the unquenched (left) as a function of χ1 and the partially

quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown are the NLO (p4) and

NNLO (p4 + p6) results for three values of NF . Top line: SU(NF ) × SU(NF ) → SU(NF ). Middle

line: SU(NF )→ SO(NF ). Bottom line: SU(2NF )→ Sp(2NF ).
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Figure 5. The absolute value of the finite volume correction to the decay constant divided by

the lowest order value F0 = FLO for the unquenched (left) as a function of χ1 and the partially

quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown are the NLO (p4) and

NNLO (p4 + p6) results for three values of NF . Top line: SU(NF ) × SU(NF ) → SU(NF ). Middle

line: SU(NF )→ SO(NF ). Bottom line: SU(2NF )→ Sp(2NF ).
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Figure 6. The absolute value of the finite volume correction to the vacuum expectation value

divided by the lowest order value v0 = vLO for the unquenched (left) as a function of χ1 and the

partially quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown are the NLO

(p4) and NNLO (p4 + p6) results for three values of NF . Top line: SU(NF )× SU(NF )→ SU(NF ).

Middle line: SU(NF )→ SO(NF ). Bottom line: SU(2NF )→ Sp(2NF ).
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