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1 Introduction and summary

There is no doubt that M-theory is one of the most important achievements in theoretical

physics, though, at the same time, it is one of the most mysterious theories. It is a famous

result from the AdS/CFT correspondence [1] that the number of degrees of freedom of the

stack of N M2-branes is N3/2 and that of the stack of M5-branes is N3. With these novel

large N behaviors which are in contrast to the intuitive behavior N2 of D-branes, it is

obvious that these M-theoretical branes deserve intensive studies.

The M2-brane worldvolume theory on the flat spacetime was explored by supersym-

metrizing the topological Chern-Simons theory [2] and finally it was proposed [3] that the

worldvolume theory of N M2-branes on the geometry C
4/Zk is described by N = 6 super-

symmetric Chern-Simons theory with gauge group U(N)k × U(N)−k and bifundamental

matters between them, which is dubbed ABJM theory. Here the subscript k and −k are

the Chern-Simons levels associated to each U(N) factor.

Following recent progress of localization techniques [4–7], it was found that for the par-

tition function and vacuum expectation values of supersymmetric quantities in the ABJM
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theory, the infinite-dimensional path integral in defining these quantities is reduced to

a finite-dimensional matrix integration. Furthermore, due to the large supersymmetries,

many interesting properties of this ABJM matrix model are discovered [8–26]: the pertur-

bative part of the partition function sums up to the Airy function [13]; the divergences in

the coefficients of membrane instantons and those of worldsheet instantons cancel among

themselves [20]; the non-perturbative part of the partition function is expressed in terms

of the refined topological string [24].

Here we briefly review these results on the partition function of the ABJM theory.

First let us consider the perturbative part.1 It was predicted from the gravity dual that

the ’t Hooft coupling λ = N/k should be shifted as λeff = λ − 1/24 + 1/(24k2) [27] and

(except an inconsistency in the coefficient of the k−2 correction) this shift was captured

from the study of the matrix model [10, 12]. With the shift of the ’t Hooft coupling in

mind, the all genus perturbative corrections of the partition function sum up to the Airy

function [13]

Zpert(N) = eAC−1/3Ai
[
C−1/3(N −B)

]
, (1.1)

using the relation with the topological string theory on local P1×P1 [9, 10]. This result was

later beautifully rederived [15] by rewriting the ABJM partition function into the partition

function of a Fermi gas system, without mentioning the relation with the topological string.

Here the N -independent constants C and B are given by simple functions of k

CABJM(k) =
2

π2k
, BABJM(k) =

1

3k
+

k

24
, (1.2)

while A is a very complicated function

AABJM(k) = −1

6
log

k

4π
+ 2ζ ′(−1)− ζ(3)

8π2
k2 +

1

3

∫
dx

ekx − 1

(
3

x sinh2 x
− 3

x3
+

1

x

)
, (1.3)

which was obtained by taking the Borel sum of the constant map contribution [16].

The non-perturbative effects have a more drastic structure. It turns out that there are

two types of non-perturbative effects. One is called worldsheet instanton [10, 28] which

corresponds to the string worldsheet wrapping the holomorphic cycle CP
1 in CP

3, while

the other is called membrane instanton [12] which corresponds to the D2-brane wrapping

the Lagrangian submanifold RP
3 of CP3, where CP

3 comes from the string theory limit

k → ∞ of C
4/Zk. It was found [20] that the coefficients of both instanton effects are

actually divergent at certain levels k, though the divergences are cancelled perfectly, if

we include all of the non-perturbative effects including worldsheet instantons, membrane

instantons and their bound states. This cancellation mechanism helps us to determine the

whole non-perturbative effects [24].

It is interesting to ask whether the beautiful structures in the ABJM theory persist in

other theories. Before arriving at the ABJM theory, a large class of supersymmetric Chern-

Simons theories were found. For N = 3, the supersymmetric Chern-Simons theories are

1The partition function can be studied in the perturbation of 1/N with the ’t Hooft coupling λ = N/k

fixed from the stringy regime or with the M-theory background k fixed from the M-theory regime. The

perturbation can be understood in either sense.
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Figure 1. Circular quiver with {sa}Ma=1
= {(+1), (−1)2, · · · , (+1)2, (−1)}, which is associated to

the N = 4 superconformal Chern-Simons theories. Here we paint the edges assigned with sa = +1

black, and those assigned with sa = −1 white.

constructed [29–31] for general gauge groups and general matter contents. Especially, the

theory has the conformal symmetry when the gauge group is
∏M

a=1U(N)ka with
∑M

a=1 ka =

0 and the matter fields are in the bifundamental representation of U(N)ka and U(N)ka+1 [32,

33]. These theories can be expressed by a circular quiver taking the same form as the

Dynkin diagram of ÂM−1, where each vertex denotes the U(N) factor of the gauge group

and each edge denotes the bifundamental matter. The Chern-Simons theory with less

supersymmetries is believed to describe the worldvolume theory of multiple M2-branes on

a geometry with less supersymmetries.

It was found that among others when the number of the U(N) factors is even and the

levels are k and −k appearing alternatively, the number of the supersymmetries is enhanced

to N = 4 [34, 35] and the background geometry is interpreted to be an orbifold [36–38].

As pointed out in [39], the N = 4 enhancement is not restricted to the case of alternating

levels. In fact, as long as the levels are expressed as

ka =
k

2
(sa − sa−1), sa = ±1, (1.4)

the supersymmetry of all these theories extends to N = 4. Since these theories are char-

acterized by sa which are associated to the edges of the quivers and take only two signs,

it is more suitable to assign two colors to the edges, rather than to paint the vertices.

See figure 1.

With its simplicity in derivation, the authors of [15] were able to further argue that,

for the large class of general N = 3 superconformal circular quiver Chern-Simons theories

(associated with a hermitian Hamiltonian, as explained later), the perturbative partition

function is always given by the same form (1.1) with some coefficients C, B and A. Also,

the study of the large N behavior (the coefficient C) in many theories can be found in
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earlier works [40–54]. Especially it is worthwhile to mention that, according to [15] the

expression of the coefficient C was given a geometrical interpretation as the classical vol-

ume inside the Fermi surface. Moreover, recently in [55] the special N = 4 case with

the gauge group [U(N)k × U(N)−k]
r, whose quiver is the r-ple repetition of that of the

ABJM theory, was studied carefully including the instanton effect using the relation to the

original ABJM theory. Alongside, the authors found that if the circular quiver is the r-ple

repetition of a “fundamental” circular quiver, the grand potential of the repetitive theory

is given explicitly by that of the “fundamental” theory. Especially, it was found that the

perturbative coefficients of the r-ple repetitive theory [C]r, [B]r, [A]r are related to [C]1,

[B]1, [A]1 by

[C]r =
1

r2
[C]1, [B]r = [B]1 −

π2

3

(
1− 1

r2

)
[C]1, [A]r = r[A]1. (1.5)

However, the coefficients B, A and the non-perturbative corrections for general N = 3

theories have not been known so far.

In this paper, we extend the previous studies on the ABJM theory to the more general

N = 4 cases with the levels (1.4). Especially we hope that after figuring out the cancellation

mechanism among all of the instanton effects, the instanton moduli space of the membrane

theories will become clearer. We first concentrate on the perturbative part. Using the Fermi

gas formalism, we give an explicit formula for B, which is deeply related to the redefinition

of the ’t Hooft coupling. We have found that, when the edges are assigned with

{sa}Ma=1 = {(+1)q1 , (−1)p1 , (+1)q2 , (−1)p2 , · · · , (+1)qm , (−1)pm}, (1.6)

where the expression denotes a sequence consisting of q1 elements of +1, p1 elements of −1
and so on in this ordering, the coefficient B is given by

B =
B(0)

k
+ kB(2), (1.7)

with

B(0) = −1

6

[
Σ(p)

Σ(q)
+

Σ(q)

Σ(p)
− 4

Σ(q)Σ(p)

]
,

B(2) =
1

24

[
Σ(q)Σ(p)− 12

(
Σ(q, p, q)

Σ(q)
+

Σ(p, q, p)

Σ(p)
− Σ(q, p)Σ(p, q)

Σ(q)Σ(p)

)]
. (1.8)

Here we adopt the notation of Σ(L), with L denoting an alternating sequence of q and p,

whose definition is given by

Σ(q) =
m∑

a=1

qa, Σ(p) =
m∑

a=1

pa,

Σ(q, p) =
∑

1≤a≤b≤m

qapb, Σ(p, q) =
∑

1≤a<b≤m

paqb,

Σ(q, p, q) =
∑

1≤a≤b<c≤m

qapbqc, Σ(p, q, p) =
∑

1≤a<b≤c≤m

paqbpc. (1.9)
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Note that the condition in each summation can be restated as the requirement that we

choose qa’s and pa’s out of q1, p1, q2, p2, · · · , qm, pm by respecting its ordering. We stress

that the result (1.7) with (1.8) is encoded suitably in this notation. After we introduce

this notation, the proof of the result is quite straightforward.

It is still difficult to obtain the general expression of the coefficient A with the current

technology. For the special case when the edges of sa = +1 and those of sa = −1 are

clearly separated

{sa}Ma=1 = {(+1)q, (−1)p}, (1.10)

we conjecture that the coefficient A is given in terms of the coefficient of the ABJM case

AABJM(k) (1.3) by

A(k) =
1

2

(
p2AABJM(qk) + q2AABJM(pk)

)
. (1.11)

Later we shall provide evidences for this conjecture using the WKB expansion (6.33) and

numerical data (table 2).

After determining the perturbative part, we continue to the non-perturbative part.2

To fully understand the non-perturbative instanton effects, we still need lots of future

studies. We shall concentrate on the separative case (1.10) with q = 2, p = 1, that is,

{sa}3a=1 = {(+1)2, (−1)}, which is the simplest case other than the ABJM theory. Using the

WKB expansion of the Fermi gas formalism, we can study the membrane instanton order

by order in ~ = 2πk. We have found that the first membrane instanton is consistent with

JMB
np (µ) = − 2

tan πk
2

e−µ +O(e−2µ), (1.12)

up to the O(k5) term in the ~ = 2πk expansion. On the other hand, using the numerical

coefficients of the grand potential for k = 3, 4, 5, 6, we conjecture that the first worldsheet

instanton is given by

JWS
np (µ) =

4 cos π
k

sin2 2π
k

e−
2
k
µ +O(e− 4

k
µ). (1.13)

We can see that the coefficients of both the first membrane instanton (1.13) and the first

worldsheet instanton (1.12) are divergent at k = 2 and the remaining finite part after

cancelling the divergences matches perfectly with the numerical coefficients at k = 2.

The remaining part of this paper is organized as follows. In section 2, we shall demon-

strate the Fermi gas formalism for general N = 4 superconformal Chern-Simons theories.

Then in section 3 we shall proceed to derive the expression of B for general N = 4 circular

quivers. We shall shortly see the consistency with the transformation under the repetition

in section 4 and see the possible generalization to the N = 3 cases in section 5. After that,

2The interpretation of these non-perturbative instanton effects in the gravity dual still awaits to be

studied carefully. In this paper we call these non-perturbative instanton effects membrane instanton when

the exponent is proportional to µ while we call them worldsheet instanton when the exponent is proportional

to µ/k.
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we shall turn to the WKB expansion of the grand potential in section 6, where not only

the consistency with the expression of B but also further information on the coefficient A

and the instantons are found. In section 7 we shall study the non-perturbative instanton

effects for the special case of {sa}3a=1 = {(+1)2, (−1)}. Finally in section 8 we conclude

with some future directions.

Note added. As our work had been completed and we were in the final stage of checking

the draft, Hatsuda and Okuyama submitted their work [56], where they also used the

Fermi gas formalism to study the Nf matrix model [53]. Although the original theories are

different, in terms of the Fermi gas formalism, the density matrix (2.4) in [56] is reproduced

if we restrict our setup to the separative case {sa}Ma=1 = {(+1)Nf , (−1)} and put k = 1.

Their results also have some overlaps with ours. For example, our conjectural form of the

coefficient A (1.11) reduces to their conjecture (3.12) in [56] under this restriction.

2 N = 4 Chern-Simons matrix model as a Fermi gas

In this section we shall show that the partition functions of N = 4 superconformal circular

quiver Chern-Simons theories, with gauge group
∏M

a=1U(N)ka and Chern-Simons levels

chosen to be (1.4), can be regarded as the partition functions of N -particle ideal Fermi gas

systems governed by non-trivial Hamiltonians. Although this structure was already proved

in [15] for more general N = 3 superconformal circular quiver Chern-Simons theories

without the restriction of levels (1.4), we shall repeat the derivation since the special

simplification occurs for N = 4 theories with the levels (1.4). In particular we find that,

corresponding to the colors of edges {sa}Ma=1 (1.6), the Hamiltonian of the associated Fermi

gas system is given by

e−Ĥ =

[
2 cosh

Q̂

2

]−q1[
2 cosh

P̂

2

]−p1

· · ·
[
2 cosh

Q̂

2

]−qm[
2 cosh

P̂

2

]−pm

. (2.1)

Let us begin with the partition function of an N = 4 circular quiver Chern-Simons

theory with gauge group [U(N)]M and levels (1.4),

Z(N) =
1

(N !)M

∫ ( M∏

a=1

N∏

i=1

Dλa,(i)

)


M∏

a=1

∏N
i<j

(
2 sinh

λa,(i)−λa,(j)

2

)2

∏N
i,j 2 cosh

λa+1,(i)−λa,(j)

2


 , (2.2)

obtained by localization technique [5]. HereM is the number of vertices and the integration

measure is given by

Dλa,(i) =
dλa,(i)

2π
exp

(
ika
4π

λ2a,(i)

)
, (2.3)

with ka being the Chern-Simons level for the a-th U(N) factor of the gauge group [U(N)]M .

Using the Cauchy identity

∏N
i<j(xi − xj)

∏N
i<j(yi − yj)∏

i,j(xi + yj)
= deti,j

1

xi + yj
, (2.4)
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and the integration formula [57]

1

N !

∫ (∏
Dxk

)
deti,k(φi(xk)) detj,k(ψj(xk)) = deti,j

(∫
Dyφi(y)ψj(y)

)
, (2.5)

we find that the partition function is

Z(N) =
1

N !

∫ ( N∏

i=1

Dλ1,(i)

)
∑

σ∈SN

(−1)σρ(λ1,(σ(i)), λ1,(i)), (2.6)

where the density matrix ρ(x, y) is given by

ρ(x, y) =

∫ ( M∏

a=2

Dλa

)
1

2 cosh x−λM

2

(
M−1∏

a=2

1

2 cosh λa+1−λa

2

)
1

2 cosh λ2−y
2

. (2.7)

If we introduce the grand potential J(µ) as

eJ(µ) = 1 +

∞∑

N=1

eµNZ(N), (2.8)

the sum over the permutation in (2.6) simplifies into

J(µ) = tr log(1 + eµρ). (2.9)

Here both the multiplication among ρ and the trace are performed with Dλ1, just as the

multiplication within ρ (2.7) which is performed with Dλa (a = 2, · · · ,M). Introducing

the Fourier transformation (λM+1 = λ1)

1

2 cosh λa+1−λa

2

=

∫
dΛa

2π

e
i
2π

(λa+1−λa)Λa

2 cosh Λa

2

, (2.10)

for all a, we find that the integration associated with λa in tr ρn is given by

∫
· · · dΛa

2π

1

2 cosh Λa

2

dΛa−1

2π

1

2 cosh Λa−1

2

· · ·
∫
dλa
2π

exp

[
ikaλ

2
a

4π
− i(Λa − Λa−1)λa

2π

]
. (2.11)

If we introduce the coordinate variables Λa = Qa for sa = +1 and the momentum variables

Λa = Pa for sa = −1, we find that, up to an irrelevant numerical factor which will be

cancelled out finally, this integration essentially gives that

∫
dλa
2π

exp

[
ikaλ

2
a

4π
− i(Λa − Λa−1)λa

2π

]
≃ 〈Λa|Λa−1〉, (2.12)

because the inner products of the coordinate and momentum eigenstates are given by

〈Qa|Qa−1〉 = 2πδ(Qa −Qa−1), 〈Pa|Pa−1〉 = 2πδ(Pa − Pa−1),

〈Qa|Pa−1〉 =
1√
k
eiQaPa−1/(2πk), 〈Pa|Qa−1〉 =

1√
k
e−iPaQa−1/(2πk). (2.13)
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Finally the integration in tr ρn is given by

∫
· · · dΛa

2π

dΛa−1

2π
· · · 1

2 cosh Λa

2

〈Λa|Λa−1〉
1

2 cosh Λa−1

2

· · · . (2.14)

This means that, if we define the position and momentum operator Q̂, P̂ obeying the

canonical commutation relation

[Q̂, P̂ ] = i~, (2.15)

with ~ = 2πk, the Hamiltonian Ĥ(Q̂, P̂ ) is given as (2.1) for the ordering (1.6) (see figure 1).

Therefore, the grand potential J(µ) can be interpreted as the grand potential of the ideal

Fermi gas system whose one-particle Hamiltonian Ĥ is given by (2.1), where µ is the

chemical potential dual to the number of particles.

3 Fermi surface analysis

In the previous section we have constructed the Fermi gas formalism forN = 4 superconfor-

mal Chern-Simons theories by rewriting the partition function into that of non-interacting

N -particle Fermi gas systems with non-trivial Hamiltonians (2.1).

Note that the Hamiltonian (2.1) is non-hermitian. In some particular cases, including

the ABJM theory, however, we can choose it to be hermitian by redefining the Hamilto-

nian by

e−Ĥ →
(
2 cosh

Q̂

2

)x

e−Ĥ

(
2 cosh

Q̂

2

)−x

, (3.1)

with a real number x, which does not affect the trace. Below, we shall restrict ourselves to

these cases.

It was argued in [15] that, for a large class of general N = 3 superconformal circular

quiver Chern-Simons theories associated to a hermitian Hamiltonian Ĥ in the above sense,

the number n(E) of states whose eigenvalue of Ĥ is smaller than E is universally given as

n(E) = CE2 + n(0) + non-pert, (3.2)

with C and n(0) being constants depending on k and “non-pert” standing for non-

perturbative corrections. From this form the authors showed that the perturbative part of

the grand potential is given by a cubic polynomial

Jpert(µ) =
C

3
µ3 +Bµ+A, (3.3)

where the coefficient B is given by

B = n(0) +
π2C

3
. (3.4)

However, the explicit forms of n(0) and A for the general circular quivers were not known.
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In this section we shall calculate n(0) and C explicitly for the class of N = 4 super-

conformal circular quiver Chern-Simons theories, from the study of the Fermi surface as

in [15]. The results are, for the quiver (1.6),

C =
2

π2kΣ(q)Σ(p)
, (3.5)

n(0) = − 1

6k

(
Σ(p)

Σ(q)
+

Σ(q)

Σ(p)

)
+ kB(2), (3.6)

where B(2) is defined in (1.8). Using (3.4) we can read off the expression of B (1.7) directly

from this result.

3.1 The strategy

We follow the strategy of [15] in calculation. The concrete definition of the number of

states n(E) is

n(E) = tr θ(E − Ĥ). (3.7)

If we introduce the Wigner transformation Â→ (Â)W with

(Â)W =

∫
dQ′

2π

〈
Q− Q′

2

∣∣∣∣ Â
∣∣∣∣Q+

Q′

2

〉
e

iQ′P
~ , (3.8)

similarly to the case of ABJM theory [15], n(E) is approximated by

n(E) ≃
∫
dQdP

2π~
θ(E −HW), (3.9)

up to non-perturbative corrections in E for large E. Here we have introduced the abbre-

viation HW = (Ĥ)W. This means that, up to the non-perturbative corrections, n(E) is

given by the volume inside the Fermi surface of the semiclassical Wigner Hamiltonian,

n(E) ≃ 1

2π~
vol{(Q,P ) ∈ R

2|HW(Q,P ) ≤ E}. (3.10)

Here HW is calculated from (2.1) by using the following property of the Wigner transfor-

mation

(ÂB̂)W = (Â)W ⋆ (B̂)W, (3.11)

with the star product given by

⋆ = exp

[
i~

2

(←−
∂ Q
−→
∂ P −

←−
∂ P
−→
∂ Q

)]
, (3.12)

which follows from the definition of the Wigner transformation (3.8).

Before going on, we shall argue some general properties of the Fermi surface (3.10).

The Wigner Hamiltonian HW obtained from the quantum Hamiltonian (2.1) is a sum of

the classical part

H
(0)
W = Σ(q)U +Σ(p)T, (3.13)

– 9 –
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Figure 2. The Fermi surface of the N = 4 superconformal circular quiver Chern-Simons theory.

We depict region I (|P | ≤ P∗) by the region shaded by the vertical lines, while region II (|Q| ≤ Q∗)

denotes that shaded by the horizontal lines.

with

U(Q) = log 2 cosh
Q

2
, T (P ) = log 2 cosh

P

2
, (3.14)

and ~ corrections which consist of derivatives of U and T . Also, from the behavior of U(Q)

and T (P ) in the limit of |Q| → ∞ and |P | → ∞,

U =
|Q|
2

+O(e−|Q|), U ′ =
sgn(Q)

2
+O(e−|Q|), U ′′ = O(e−|Q|),

T =
|P |
2

+O(e−|P |), T ′ =
sgn(P )

2
+O(e−|P |), T ′′ = O(e−|P |), (3.15)

it follows that the Fermi surface is approaching to

Σ(q)|Q|+Σ(p)|P | = 2E, (3.16)

as E →∞.

From this property, if we choose a point (Q∗, P∗) on the Fermi surface which is distant

only by O(e−E) from the midpoint (E/Σ(q), E/Σ(p)) of the edge of (3.16), the total volume

inside the Fermi surface is decomposed as

vol = vol(I) + vol(II)− 2Q∗ · 2P∗, (3.17)

where region I denotes the |P | ≤ P∗ part inside the Fermi surface while region II denotes

the |Q| ≤ Q∗ part. See figure 2.

3.2 Semiclassical Wigner Hamiltonian

Now let us start concrete calculations. The quantum Hamiltonian (2.1) is

e−Ĥ = e−(q1−x)Ûe−p1T̂ e−q2Ûe−p2T̂ · · · e−xÛ , (3.18)
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where Û = U(Q̂) and T̂ = T (P̂ ). Here we have introduced a constant x deliberately,

which does not change the trace of operators, to make Ĥ hermitian. Let us compute this

Hamiltonian using the Baker-Campbell-Hausdorff formula,

eXeY = exp

[
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + · · ·

]
. (3.19)

For the computation, we prepare the following formula which holds up to higher bra-

ckets3

e−q1Ûe−p1T̂ e−q2Ûe−p2T̂ · · · e−qm+1Û

= exp

[
−Σm+1(q)Û − Σm(p)T̂ +

(
Σm(q, p)− 1

2
Σm+1(q)Σm(p)

)
[Û , T̂ ]

− 1

2

(
Σm+1(q, p, q)−

1

6
Σm+1(q)

2Σm(p)

)
[Û , [T̂ , Û ]]

− 1

2

(
Σm(p, q, p)− 1

6
Σm+1(q)Σm(p)2

)
[T̂ , [Û , T̂ ]]

]
, (3.22)

and substitute q1 − x into q1 and x into qm+1. Here we write explicitly the index m in the

definition of Σ(L) in (1.9) to avoid confusion. As we shall see below, higher brackets are

irrelevant to the perturbative coefficients C and B.

We shall choose x to be

x =
Σm(q, p)

Σm(p)
− Σm(q)

2
, (3.23)

so that the coefficient of a non-hermitian operator [Û , T̂ ] vanishes

Σm(q, p)− 1

2
Σm+1(q)Σm(p)

∣∣∣∣q1→q1−x
qm+1→x

= Σm(q, p)− xΣm(p)− 1

2
Σm(q)Σm(p) = 0. (3.24)

3One can prove the formula (3.22) by induction along with its “dual” formula

e−q1Ûe−p1T̂ e−q2Ûe−p2T̂ · · · e−pmT̂

= exp

[
−Σm(q)Û − Σm(p)T̂ +

(
Σm(q, p)−

1

2
Σm(q)Σm(p)

)
[Û , T̂ ]

−
1

2

(
Σm(q, p, q)−

1

6
Σm(q)2Σm(p)

)
[Û , [T̂ , Û ]]

−
1

2

(
Σm(p, q, p)−

1

6
Σm(q)Σm(p)2

)
[T̂ , [Û , T̂ ]]

]
, (3.20)

up to higher brackets. Multiplying e−q
m+1Û to this from the right and applying the Baker-Campbell-

Hausdorff formula (3.19), one obtains the relation (3.22). Also, multiplying e−p
m+1T̂ from the right further,

and using an identity

Σm(q, p) + Σm(+1)(p, q) = Σm(+1)(q)Σm(p), (3.21)

one obtains the relation (3.20) with m replaced with m + 1. Combining with the fact that both of the

formulae hold for m = 1, we complete the proof of both formulae by induction.
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Then, the coefficients of [Û , [T̂ , Û ]] and [T̂ , [Û , T̂ ]] become

cT = −1

2

(
Σm+1(q, p, q)−

1

6
Σm+1(q)

2Σm(p)

)∣∣∣∣q1→q1−x
qm+1→x

= −1

2

(
Σm(q, p, q)− xΣm(p, q) + xΣm(q, p)− x2Σm(p)− 1

6
Σm(q)2Σm(p)

)

= −1

2

(
Σm(q, p, q) +

1

12
Σm(q)2Σm(p)− Σm(q, p)Σm(p, q)

Σm(p)

)
, (3.25)

and

cU = −1

2

(
Σm(p, q, p)− 1

6
Σm+1(q)Σm(p)2

)∣∣∣∣q1→q1−x
qm+1→x

= −1

2

(
Σm(p, q, p)− 1

6
Σm(q)Σm(p)2

)
, (3.26)

where we have used (3.21) in the computation.

The Wigner Hamiltonian HW is obtained by replacing the operators Û , T̂ with the

functions U , T and the operator product with the ⋆-product. Then, we find that the

~-expansion of the Wigner Hamiltonian

HW =
∞∑

s=0

~
sH

(s)
W , (3.27)

is given by H
(0)
W in (3.13) and

H
(2)
W = −cT (U ′)2T ′′ − cU (T ′)2U ′′, (3.28)

up to higher order terms. The higher order terms in ~ in (3.27) comes from both higher

brackets and higher derivatives from the ⋆-products. General form of such terms is

∑

n≥3

[
cTn (U

′)nT (n) + cUn (T
′)nU (n)

]
+
∑

m,n≥2

U (m)T (n)(· · · ), (3.29)

with cTn and cUn being some constants. Since (Q,P ) on the Fermi surface always satisfies

either |Q| ≥ Q∗ or |P | ≥ P∗, the third terms are always non-perturbative according to the

asymptotic behavior of U and T in (3.15). As we see below, the first two terms do not

affect the volume (3.17) up to non-perturbative corrections either.

3.3 Volume inside the Fermi surface

Now that the Wigner Hamiltonian with quantum corrections is obtained to the required

order, let us calculate the volume inside the Fermi surface (3.10), following the decompo-

sition (3.17). First we consider the region I. Since |Q| ≥ Q∗ ∼ E holds for the parts of the

Fermi surface surrounding this region, we can use the approximation (3.15) for U . Then

the points on the Fermi surface HW = E are parametrized as (Q±(P ), P ) with

Q±(P ) = ±
2

Σm(q)

[
E − Σm(p)T +

~
2

4
cTT ′′ −

∑

n≥3

(
±1

2

)n
cTnT

(n)

]
+ non-pert , (3.30)
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with which the volume of region I is

vol(I) =

∫ P∗

−P∗

dP

∫ Q+(P )

Q−(P )
dQ

=
4

Σm(q)

[
2EP∗ − Σm(p)

(
P 2
∗

2
+
π2

6

)
+

~
2

4
cT
]
+ non-pert . (3.31)

The contribution from T (n) with n ≥ 3 is the surface term T (n−1), which just gives non-

perturbative effects due to (3.15) when evaluated at P = ±P∗. Similarly, the volume of

region II is evaluated, using the approximation (3.15) for T (P ), as

vol(II) =
4

Σm(p)

[
2EQ∗ − Σm(q)

(
Q2

∗

2
+
π2

6

)
+

~
2

4
cU
]
+ non-pert . (3.32)

Summing up all the contributions to (3.17), one obtains the total volume. After

substituting the volume into (3.10), the number of states n(E) is written as (3.2), with C

and n(0) given by (3.5) and (3.6).

4 Repetition invariance

As explained in (1.5), it was found in [55] that, if the circular quiver is the r-ple repetition

of another fundamental circular quiver, the coefficients C, B and A of the repetitive theory

are related to those of the fundamental theory. This implies that the quantity n(0) (3.4)

is invariant under repetition,

[n(0)]r = [n(0)]1. (4.1)

In this section we show this property explicitly for the result (3.6) we have obtained in the

previous section for general N = 4 circular quivers.

Suppose that the circular quiver (1.6) is the r-ple repetition of a fundamental circular

quiver (M = rM̃ , m = rm̃)

{sa}M̃a=1 = {(+1)q̃1 , (−1)p̃1 , · · · , (+1)q̃m̃ , (−1)p̃m̃}. (4.2)

To study how n(0) changes under the repetition, let us first consider its building block

Σm(L) defined in (1.9). For this purpose, we shall decompose the label a of qa and pa into

two integers (α, ã) by

a = (α− 1)m̃+ ã, (4.3)

with 1 ≤ α ≤ r and 1 ≤ ã ≤ m̃, which implies

qa = q̃ã, pa = p̃ã, (4.4)

Then we find that the relation a < b (or a ≤ b) appearing in the summation in (1.9) is

represented as

“α < β”, or “α = β and ã < b̃ (or ã ≤ b̃)”, (4.5)
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if we decompose a and b into (α, ã) and (β, b̃) respectively. This means that we can

decompose Σm(L) for the repetitive quiver into the products of Σm̃(Li) for the fundamental

ones with different α,

Σm(L) =
r∑

s=1

∑

L1,L2,··· ,Ls

Fs(r)
s∏

i=1

Σm̃(Li), (4.6)

with a combinatorial factor Fs(r). Here the sum is taken over all possible partitions of L,

L = L1L2 · · ·Ls. The combinatorial factor Fs(r) is given by counting possible combinations

of {αi}si=1 satisfying the inequality 1 ≤ α1 < α2 < · · · < αs ≤ r,

Fs(r) = #{(α1, · · · , αt)|1 ≤ α1 < α2 < · · · < αs ≤ r} =
(
r

s

)
. (4.7)

For example, the condition 1 ≤ a ≤ b < c ≤ m in defining Σm(q, p, q) (1.9) is decomposed as

(1, 1) ≤ (α, ã) ≤ (β, b̃) < (γ, c̃) ≤ (r, m̃), (4.8)

where the inequalities are understood in the sense of (4.5). This implies that Σm(q, p, q)

can be decomposed into Σm̃(q, p, q), Σm̃(q, p)Σm̃(q), Σm̃(q)Σm̃(p, q) or Σm̃(q)2Σm̃(p) re-

spectively when α = β = γ, α = β < γ, α < β = γ or α < β < γ. The combinatorial

factor of decomposing Σm(q, p, q) into Σm̃(q, p)Σm̃(q) is computed by choosing two different

elements α = β and γ out of {1, 2, · · · , r}. In this way, we find several formulae

Σm(q) =

(
r

1

)
Σm̃(q),

Σm(q, p) =

(
r

1

)
Σm̃(q, p) +

(
r

2

)
Σm̃(q)Σm̃(p), (4.9)

Σm(q, p, q) =

(
r

1

)
Σm̃(q, p, q)+

(
r

2

)
(Σm̃(q)Σm̃(p, q) + Σm̃(q, p)Σm̃(q))+

(
r

3

)
Σm̃(q)2Σm̃(p),

as well as those with the role of q and p switched. With these relations and (3.21), one can

prove that n(0) in (3.6) satisfies

[n(0)]r = [n(0)]1. (4.10)

5 A preliminary study on N = 3 quivers

Having obtained the expression of the coefficient B for the N = 4 superconformal circular

quiver Chern-Simons theories in section 3 and checked the repetition invariance in section 4,

in this section we shall make a digression to comment on possible generalization of the

analysis to the N = 3 cases. It was already shown in [15] that the partition function

of N = 3 Chern-Simons matrix models can also be rewritten into that of a Fermi gas

system and the sum of the perturbative terms is given by the Airy function (1.1). Here

the one-particle Hamiltonian of the Fermi gas system is given as

e−Ĥ = e−Û1e−Û2 · · · e−ÛM , (5.1)
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with Ûa defined by

Ûa = log 2 cosh
P̂ − νaQ̂

2
, (5.2)

and νa given by the Chern-Simons levels ka = kna as

νa =
a∑

b=1

nb, (5.3)

which implies νM = 0. In this section, we shall apply the analysis in section 3 to this theory

and calculate n(E) at the most leading part in ~ expansion. Since the Hamiltonian (5.1) is

symmetric under exchange among νa’s at the most leading order, for the later convenience,

let us replace νa with νσ(a) so that the new νa satisfies

νa ≤ νa+1, (5.4)

for all a. The conclusion is that the coefficients C and B in the Airy function (1.1) are

given by4

C =
2

π~

M∑

a=1

|νa+1 − νa|∑M
b=1 |νa+1 − νb|

∑M
c=1 |νa − νc|

+O(~), (5.5)

B =
2π

3~

M∑

a=1

|νa+1 − νa|∑M
b=1 |νa+1 − νb|

∑M
c=1 |νa − νc|

− π

3~

M∑

a=1

1
∑M

b=1 |νb − νa|
+O(~), (5.6)

with νM+1 = ν1
The idea of calculation is similar to the one used in section 3 and [15]. At this order,

the Wigner Hamiltonian is given as the classical one

H
(0)
W =

M∑

a=1

Ua, (5.7)

with

Ua = log 2 cosh
P − νaQ

2
. (5.8)

To obtain the total volume inside the Fermi surface

n(E) =
1

2π~
vol

{
(Q,P )

∣∣∣
M∑

i=a

log 2 cosh
P − νaQ

2
≤ E

}
+O(~), (5.9)

below we consider its deviation from the volume inside the convex 2M -gon5

1

2π~
vol

{
(Q,P )

∣∣∣
M∑

a=1

|P − νaQ| ≤ 2E

}
, (5.10)
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Figure 3. The Fermi surface of the N = 3 superconformal circular quiver Chern-Simons the-

ory. The outer polygon is the limiting convex 2M -gon (5.10) and the inner closed curve is the

Fermi surface.

where the Fermi surface (5.9) is approaching in the limit E → ∞ as in section 3. (See

figure 3.)

Now let us calculate the volume of the deviation, the red region in figure 3. Since

both HW(Q,P ) and the polygon are invariant under (Q,P ) → (−Q,−P ), we can restrict

ourselves to Q > 0. Hereafter, we shall denote as Sa the region around the vertex with

P − νaQ = 0 and Q > 0, surrounded by the curve HW = E and the two edges of the

polygon ending on this vertex. Since Sa is distant at order E from the lines P − νbQ = 0

with b 6= a, on Sa the Hamiltonian can be approximated up to non-perturbative corrections

in E as

HW ≃ HW,a =
M∑

b( 6=a)

|P − νbQ|
2

+ log 2 cosh
P − νaQ

2
. (5.11)

There are further simplification of calculation due to the invariance of the volume under

an affine transformation (Q,P )→ (Q,P − νaQ) on each Sa. See figure 4. After this affine

transformation, if we denote the points on the edge of the polygon as (Q(P ), P ) and those

on the Fermi surface HW,a = E as (Q′(P ), P ), we find that

Q(P )−Q′(P ) =
1

∑M
b=1 |νb − νa|

(
2 log 2 cosh

P

2
− |P |

)
+ non-pert . (5.12)

Therefore the volume of the region Sa is

vol(Sa) =

∫ Pa+

Pa−

dP
1

∑M
b=1 |νb − νa|

(
2 log 2 cosh

P

2
− |P |

)
+ non-pert . (5.13)

4Although we neglect the O(~) corrections to B and C in our analysis in this section, the formula for

C (5.5) is actually correct without any ~ corrections, as already known in [15] (see also [44]).
5For simplicity, we assume the generic case νa 6= νb (a 6= b) in the following argument, though we can

justify the final results (5.5) and (5.6).
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Figure 4. The left figure shows the region Sa, the part of the colored region, and the right figure

shows its affine transformation.

Here we have denoted by P± the value of the P -coordinate at the midpoints of the currently

considered edges of the polygon, where the Fermi surface and the edge of polygon coalesce

up to O(e−E). Since the integrand is O(e−E) at |P | ∼ E, one can extend the domain of

integration to (−∞,∞) and obtains

vol(Sa) =
π2

3
∑M

b=1 |νb − νa|
+ non-pert . (5.14)

Subtracting them from the volume inside the polygon, one finally obtains

n(E) =
1

2π~

(
4E2

M∑

a=1

|νa+1 − νa|∑M
b=1 |νa+1 − νb|

∑M
c=1 |νa − νc|

−
M∑

a=1

2π2

3
∑M

b=1 |νb − νa|

)

+O(~) + non-pert . (5.15)

If one choose the Chern-Simons levels as (1.4) so that the supersymmetry enhances to

N = 4, the values of νa’s (before rearranged as (5.4)) are

{νa}Ma=1 = {(+1)q1 , (0)p1 , (+1)q2 , (0)p2 , · · · , (+1)qr , (0)pr}, (5.16)

and the classical limit of the results for N = 4 theories (3.5) and (3.6) are recovered.

Note that, although the hermiticity of the Hamiltonian is crucial in discussing the

physical Fermi surface in section 3, in the N = 3 cases the trick making Hamiltonian her-

mitian by unitary transformation works only for very restricted cases. We hope, however,

to extend our results on N = 3 to higher corrections in ~ by, for example, the method in

section 6 in future works.

6 WKB expansion of grand potential

In this section, we shall calculate the grand potential J(µ) at the first few leading orders

in ~ including the non-perturbative term in µ. We find that all these computations are

consistent with our perturbative result of the coefficient B obtained in section 3. Besides,
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we have obtained several new insights on the coefficient A and the non-perturbative terms,

which enable us to conjecture the expression of the coefficient A (1.11) for the case when

the edges of sa = +1 and those of sa = −1 are separated, and the expression of the first

membrane instanton (1.12) for the case of {sa}3a=1 = {(+1)2, (−1)}.
Again, the computation is parallel to [15]. We write J(µ) as

J(µ) =

∞∑

n=1

(−1)n−1

n
eµn

∫
dQdP

2π~

(
e−nĤ

)
W
, (6.1)

and evaluate the integral for each n by expanding (e−nĤ)W order by order in ~. Then, we

can substitute the results back to J(µ) and resum the series to obtain the ~-expansion,

J(µ) =

∞∑

s=0

~
s−1J (s)(µ). (6.2)

As stressed in [15], there are two kinds of ~ corrections to (e−nĤ)W. One is from the correc-

tion toHW itself fromH
(0)
W , which is partly discussed in section 3. The other comes from the

fact that HW ⋆HW 6= H2
W. Keeping in mind the decomposition e−nĤ = e−nHWe−n(Ĥ−HW),

the latter contributions can be systematically treated by introducing

Gt =
(
(Ĥ −HW)t

)
W
. (6.3)

The first few non-trivial examples of Gt are given by

G2 = HW ⋆ HW −H2
W, G3 = HW ⋆ HW ⋆ HW − 3HW(HW ⋆ HW) + 2H3

W, · · · . (6.4)

It was shown in [15] that, apart from ~ corrections to HW itself, the ~ expansion of Gt is

Gt =
∞∑

s=2[ t+2
3 ]

~
sG(s)t , (6.5)

with G(s)t = 0 for any odd s. With these contributions, (e−nĤ)W is written as

(
e−nĤ

)
W

= e−nH
(0)
W exp

[
−n

∞∑

s=2

~
sH

(s)
W

]
×
(
1 +

∞∑

t=2

(−n)t
t!
Gt
)
, (6.6)

expanding the second and third factor, one obtains the parts which contribute to each

J (s)(µ).

Below we perform these studies for J (0)(µ) and J (2)(µ). Then restricting to the class

of separative quivers, that is, {sa}Ma=1 = {(+1)q, (−1)p}, we calculate J (4)(µ). Note that

J (s)(µ) vanishes for any odd s since the integrand is always an odd function with respect

to Q or P at this order. In our computation the following quantity appears frequently,

F(a, α, b, β, µ) =
∞∑

n=1

(−1)n−1

n
eµn

∫
dQdP

2π

1
(
2 cosh Q

2

)an+α

1
(
2 cosh P

2

)bn+β
. (6.7)

– 18 –



J
H
E
P
1
1
(
2
0
1
4
)
1
6
4

This quantity can be computed by integrating each term with the formula

∫ ∞

−∞
dx

1(
2 cosh x

2

)n =

√
4π

2n
Γ
(
n
2

)

Γ
(
n+1
2

) , (6.8)

and using the multiplication theorem of the gamma function

Γ(mx) =
mmx

√
(2π)m−1m

m−1∏

i=0

Γ

(
x+

i

m

)
, (6.9)

for m ∈ N and x ∈ R, so that we can use the Pochhammer’s generalized hypergeometric

function

pFq(a1, · · · ap; b1, · · · bq; z) =
∏q

j=1 Γ(bj)∏p
i=1 Γ(ai)

∞∑

n=0

∏p
i=1 Γ(ai + n)∏q
j=1 Γ(bj + n)

zn

n!
. (6.10)

Then we find that this function can be expressed as

F(a, α, b, β, µ) = − 1

2α+β
√
ab

[(−eµ
2a+b

)2Γ(1)
Γ(2)

a−1∏

i=0

Γ(1 + α
2a + i

a)

Γ(1 + α+1
2a + i

a)

b−1∏

j=0

Γ(1 + β
2b +

j
b )

Γ(1 + β+1
2b + j

b )

× a+b+2Fa+b+1

({
1 +

α

2a
+
i

a

}a−1

i=0
,
{
1 +

β

2b
+
j

b

}b−1

j=0
, 1, 1;

{
1 +

α+ 1

2a
+
i

a

}a−1

i=0
,
{
1 +

β + 1

2b
+
j

b

}b−1

j=0
, 2;
(−eµ
2a+b

)2)

− eµ

2a+b

Γ(12)

Γ(32)

a−1∏

i=0

Γ(12 + α
2a + i

a)

Γ(12 + α+1
2a + i

a)

b−1∏

j=0

Γ(12 + β
2b +

j
b )

Γ(12 + β+1
2b + j

b )

× a+b+2Fa+b+1

({1
2
+
α

2a
+
i

a

}a−1

i=0
,
{1
2
+
β

2b
+
j

b

}b−1

j=0
,
1

2
, 1;

{1
2
+
α+ 1

2a
+
i

a

}a−1

i=0
,
{1
2
+
β + 1

2b
+
j

b

}b−1

j=0
,
3

2
;
(−eµ
2a+b

)2)]
. (6.11)

In the following three subsections, we shall first compute the grand potential order by order

in ~ and express the final result using the function F(a, α, b, β, µ). Then, we choose several
specific types of quivers {sa}Ma=1 to study the grand potentials in the large µ expansion

and guess the general behavior of the perturbative and non-perturbative parts, J (s)(µ) =

J
(s)
pert(µ) + J

(s)
np (µ).

6.1 J(0)(µ)

First we consider the most leading part, J (0)(µ). At this order, (e−nĤ)W is simply e−nH
(0)
W .

Since H
(0)
W is given as (3.13), the quantity is nothing but the one computed previously6

J (0)(µ) = F(Σ(q), 0,Σ(p), 0, µ). (6.12)

6For the r-ple repetition of the ABJM quiver, this result was also obtained by Masazumi Honda by

similar techniques (private note).
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Studying the asymptotic behavior of J (0)(µ) at µ → ∞ for 1 ≤ Σ(q) ≤ 4 and 1 ≤
Σ(p) ≤ 4, we have found that the perturbative part coincides with the following expression

J
(0)
pert(µ) =

4µ3

3πΣ(q)Σ(p)
+

[
4π

3Σ(q)Σ(p)
− π

3

(
Σ(p)

Σ(q)
+

Σ(q)

Σ(p)

)]
µ

+
2ζ(3)

π

(
Σ(p)2

Σ(q)
+

Σ(q)2

Σ(p)

)
. (6.13)

The µ dependent part is consistent with the results obtained in section 3. We have also

found that, the non-perturbative corrections consist of terms proportional to

exp

[
− 2nµ

Σ(q)

]
, or exp

[
− 2nµ

Σ(p)

]
, (6.14)

with n ≥ 1 but not their bound states. For example, for Σ(q) = 1,Σ(p) = 2 we obtain

J (0)
np (µ) = −8e−µ +

[
−12µ2 − 28µ− 28

π
+ π

]
e−2µ +O(e−3µ), (6.15)

while for Σ(q) = 2,Σ(p) = 3 we find

J (0)
np (µ) = −

160π2

9
√
3Γ
(
−1

3

)
Γ
(
2
3

)
Γ
(
8
3

)e−
2µ
3 − 64e−µ +

9 · 2 2
3π

3
2

Γ
(
−5

3

)
Γ
(
7
6

)e−
4µ
3 +O(e−2µ), (6.16)

without e.g. the bound state e−
5
3
µ of e−

2
3
µ and e−µ.

6.2 J(2)(µ)

Collecting the relevant terms in the expansion of (e−nĤ)W (6.6), J (2)(µ) is given as

J (2)(µ) =
∞∑

n=1

(−1)n−1

n
eµn

∫
dQdP

2π
e−nH

(0)
W

[
−nH(2)

W +
n2

2
G(2)2 (H

(0)
W )− n3

6
G(2)3 (H

(0)
W )

]
,

(6.17)

where G(s)t is defined by (6.4) and (6.5), whose several relevant terms are given explicitly by

G(2)2 (H
(0)
W ) = −1

4
Σ(q)Σ(p)U ′′T ′′,

G(2)3 (H
(0)
W ) = −Σ(q)2Σ(p)

4
(U ′)2T ′′ − Σ(q)Σ(p)2

4
(T ′)2U ′′. (6.18)

Using the integration by parts
∫
dQe−nH

(0)
W U ′g(Q,P ) =

∫
dQe−nH

(0)
W

1

nΣ(q)

∂g

∂Q
,

∫
dPe−nH

(0)
W T ′g(Q,P ) =

∫
dPe−nH

(0)
W

1

nΣ(p)

∂g

∂P
, (6.19)

for an arbitrary function g(Q,P ), one can replace

(U ′)2 → 1

nΣ(q)
U ′′, (T ′)2 → 1

nΣ(p)
T ′′, (6.20)
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in the integrand in (6.17). After these replacements, we can use our formula (6.11) directly

to obtain

J (2)(µ) =

[
B(2) − 1

24
Σ(q)Σ(p)∂2µ

]
F(Σ(q), 2,Σ(p), 2, µ). (6.21)

Again we calculate the asymptotic behavior of J (2)(µ) for 1 ≤ Σ(q) ≤ 4, 1 ≤ Σ(p) ≤ 4

and obtain the perturbative parts expressed as

J
(2)
pert(µ) =

B(2)µ

2π
− B(2)(Σ(q) + Σ(p))

2π
, (6.22)

where the term proportional to µ is consistent with the result obtained in section 3. We have

also found that each term in the non-perturbative part exhibits the same behavior (6.14)

as those in J (0)(µ). For {sa}3a=1 = {(+1)2, (−1)}, for example, we find that

J (2)
np (µ) =

1

6
e−µ +

[
µ2 − 11µ/3− 1/2

2π
− π

24

]
e−2µ +O(e−3µ). (6.23)

Remarkably, the exponents appearing in this expression depends only on (Σ(q),Σ(p)), not

on the ordering of {sa}Ma=1. For example, for {sa}4a=1 = {(+1)2, (−1)2}, we find that

J (2)
np (µ) =

[
2µ+ 1

3π

]
e−µ +

[
µ2 − 17µ/3 + 7/6

π
− π

3

]
e−2µ +O(e−3µ), (6.24)

while, for {sa}4a=1 = {(+1), (−1), (+1), (−1)}, we find

J (2)
np (µ) =

[
−µ

2 − 10µ/3− 2/3

8π
+

π

24

]
e−µ +

[
5µ2 − 77µ/3 + 7/6

4π
− 5π

12

]
e−2µ +O(e−3µ).

(6.25)

Both of these last two examples share the same instanton exponents with different poly-

nomial coefficients.

6.3 J(4)(µ) for separative models

The terms in (6.6) which are relevant to J (4)(µ) are H
(2)
W , H

(4)
W and Gt with 2 ≤ t ≤ 6.

Here we shall restrict ourselves to the case m = 1, that is, {sa}Ma=1 = {(+1)q, (−1)p}, since
H

(4)
W for general circular quivers is still obscure. In this case H

(4)
W is given as

H
(4)
W =

qp2

144
T ′T (3)U (4) − q2p

288
U ′U (3)T (4) − q3p2

240
(U ′)2U ′′(T ′′)2 +

q2p3

60
(T ′)2T ′′(U ′′)2

− q3p2

80
(U ′)2U ′′T ′T (3) +

q2p3

120
(T ′)2T ′′U ′U (3) +

7q4p

5760
(U ′)4T (4) − qp4

720
(T ′)4U (4).

(6.26)

Though the result contains a lot of terms, it is again simplified by using the following

replacements

(U ′)4 → 1

(nq)2

(
9(U ′′)2 − 3

2
U ′′

)
, (T ′)4 → 1

(np)2

(
9(T ′′)2 − 3

2
T ′′

)
,

(U ′)2U ′′ → 1

nq

(
3(U ′′)2 − 1

2
U ′′

)
, (T ′)2T ′′ → 1

np

(
3(T ′′)2 − 1

2
T ′′

)
, (6.27)
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which are allowed by the integrating by parts (6.19) and the definition of U and T (3.14).

One finally obtains

J (4)(µ) =
∑

n≥1

(−1)n−1

n
eµn

∫
dQdP

2π
e−nH

(0)
W

× (qp)2(1− n2)
5760

[
−(9− n2)

(
(U ′′)2 +

1

2
U ′′

)(
(T ′′)2 +

1

2
T ′′

)
+ (4− n2)U ′′T ′′

]
. (6.28)

After processing the integral and the sum over n in the same way as in J (0)(µ) and J (2)(µ),

one can write J (4)(µ) as

J (4)(µ) =
(qp)2

5760

[
−(1− ∂2µ)(9− ∂2µ)f41 + (1− ∂2µ)(4− ∂2µ)f42

]
, (6.29)

with

f41 = F(q, 4, p, 4, µ) +
1

2
F(q, 2, p, 4, µ) + 1

2
F(q, 4, p, 2, µ) + 1

4
F(q, 2, p, 2, µ),

f42 = F(q, 2, p, 2, µ). (6.30)

We calculate its asymptotic behavior at µ→∞ for small q, p and find that the results

are consistent with the following expression

J
(4)
pert(µ) = −

(q + p)(qp)2

69120π
. (6.31)

Also, we calculate the non-perturbative effect and find

J (4)
np (µ) =

1

1440
e−µ +

[
−µ

2 − 49µ/15 + 34/15

96π
+

π

1152

]
e−2µ +O(e−3µ), (6.32)

for {sa}3a=1 = {(+1)2, (−1)}.

6.4 Implication of WKB analysis

In the above subsections we have studied the WKB expansion order by order and guess

the general form of the perturbative part of J (0)(µ), J (2)(µ) and J (4)(µ) for general N =

4 circular quivers. Collecting the cubic and linear terms in J (0)(µ) and J (2)(µ), it is

straightforward to see that the results match respectively with C and B in our Fermi

surface studies in section 3. If we collect the constant terms for the separated model

from (6.13), (6.22) and (6.31), we find

A =
4ζ(3)

π

1

2

(
p2

q~
+
q2

p~

)
− 1

24π

p2q~+ q2p~

2
− 1

34560π

p2(q~)3 + q2(p~)3

2
+O(~5). (6.33)

This result leads us to conjecture that the coefficient A is given in terms of that of the

ABJM theory by (1.11). Also, if we collect the first instanton term for the case of {sa}3a=1 =
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{(+1)2, (−1)}, we find

JMB
np (µ) =

[
− 4

πk
+
πk

3
+

(πk)3

180
+O(k5)

]
e−µ +

1

π

[(
− 6

πk
+ πk − (πk)3

12
+O(k5)

)
µ2

+
( 14
πk
− 11πk

3
+

49(πk)3

180
+O(k5)

)
µ (6.34)

+
( 14
πk

+
π

2k
− πk

2
− π3k

12
− 17(πk)3

90
+
π5k3

144
+O(k5)

)]
e−2µ +O(e−3µ).

This is consistent with the series expansion of (1.12). In the next section, we shall see

a strong numerical evidence for these conjectures (1.11) and (1.12) for the {sa}3a=1 =

{(+1)2, (−1)} case.
If we restrict ourselves to the separative case {sa}3a=1 = {(+1)2, (−1)}, we can proceed

further with the instanton expansion. We find that the instanton takes the form

JMB
np (µ) =

∞∑

ℓ=1

[
c2ℓ−1e

−(2ℓ−1)µ + (a2ℓµ
2 + b2ℓµ+ c2ℓ)e

−2ℓµ

]
. (6.35)

As in [22], we can define the functions

Ja(µ) =
∞∑

ℓ=1

a2ℓe
−2ℓµ, Jb(µ) =

∞∑

ℓ=1

b2ℓe
−2ℓµ, Jc(µ) =

∞∑

ℓ=1

cℓe
−ℓµ, (6.36)

and rewrite the sum of the perturbative part and the membrane instanton part

Jpert(µ) + µ2Ja(µ) + µJb(µ) + Jc(µ) = Jpert(µeff) + µeffJ̃b(µeff) + J̃c(µeff), (6.37)

in terms of the effective chemical potential

µeff = µ+
Ja(µ)

C
. (6.38)

Then we find that the two coefficients b̃2ℓ and c̃2ℓ defined by

J̃b(µeff) =
∞∑

ℓ=1

b̃2ℓe
−2ℓµeff , J̃c(µeff) =

∞∑

ℓ=1

c̃ℓe
−ℓµeff , (6.39)

satisfy the derivative relation

c̃2ℓ = −k2
∂

∂k

b̃2ℓ
2ℓk

. (6.40)

We have checked it for 1 ≤ ℓ ≤ 4. This structure [22] was important in the ABJM case for

the result to be expressed in terms of the refined topological string [24]. This makes us to

expect the theory to be solved as in the ABJM case.
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7 Cancellation mechanism beyond ABJM

In the previous sections, we have studied mainly the perturbative part of the general N = 4

superconformal circular quiver Chern-Simons theories. Here we shall look more carefully

into the non-perturbative effects by restricting ourselves to a certain model. Aside from

the ABJM matrix model, which has a dual description of the topological string theory

on local P
1 × P

1, the next-to-simplest case would probably be the separated one with

{sa}3a=1 = {(+1)2, (−1)}. We shall see explicitly the first sign that this theory has a

similar interesting structure in the instanton expansion. Namely, both the coefficients of

the worldsheet instanton and the membrane instanton contain poles at certain coupling

constants, though the poles are cancelled in the sum. First, let us note that the membrane

instanton effect of this model has been fixed to be (1.12) in (6.34) and is divergent when k

is an even number k = keven,

JMB
np (µ) ∼ − 4

π(k − keven)
e−µ. (7.1)

Hereafter, we shall see that the divergence at k = 2 is cancelled by the first worldsheet

instanton.

We also determine the total non-perturbative effects by following the strategy of [20].

We first compute the exact values of the partition function Z(N) up to a certain

number Nmax [18–20]. We have computed them for (k,Nmax) = (1, 20), (2, 13), (3, 7),

(4, 9), (5, 3), (6, 7). Several examples are listed in table 1.

Then, we assume the polynomial expression for the instanton coefficient in the grand

potential to be the same form as that in the ABJM case and fit the data of the exact

values in table 1 with the corresponding expression of the partition function to find out

the unknown coefficients. We can then determine the coefficients from those with larger

contribution in µ→∞ one by one. For example, if the grand potential is given by

Jk=4(µ) =
C

3
µ3 +Bµ+A+ γ1e

− 1
2
µ + (α2µ

2 + β2µ+ γ2)e
−µ + γ3e

− 3
2
µ +O(e−2µ), (7.2)

We fit the exact values of Z(N) against the function

Z(N) = eAC−1/3

(
Ai
[
C−1/3(N −B)

]
+ γ1Ai

[
C−1/3

(
N +

1

2
−B

)]

+
(
α2∂

2
N − β2∂N + γ2 +

1

2
γ21

)
Ai
[
C−1/3

(
N + 1−B

)]

+
(
γ3 + γ1

(
α2∂

2
N − β2∂N + γ2

)
+

1

6
γ31

)
Ai
[
C−1/3

(
N +

3

2
−B

)])
, (7.3)

with the six unknown coefficients A, γ1, α2, β2, γ2, γ3. We can first confirm the coincidence

between the numerical value of A and our expected value of A (1.11). After that, we plug

in the expected exact value (1.11) and repeat the same fitting to determine γ1. Note that,

unlike the ABJM matrix model, since the exponential decay is rather slow, we find a better

accuracy if we include coefficients of the higher instanton effects into fitting.
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Z2(1) =
1

8π
, Z2(2) =

−8+π2
1024π2

, Z2(3) =
−600+61π2

368640π3
, Z2(4) =

960− 9424π2+945π4

94371840π4
,

Z2(5) =
2479680− 1928080π2 + 169899π4

237817036800π5
,

Z2(6) =
14999040 + 110004160π2 − 118324488π4 + 10843875π6

91321742131200π6
,

Z3(1) =
1

12π
, Z3(2) =

−864 + 89π2

31104π2
, Z3(3) =

−21384 + 13311π2 − 2048
√
3π3

10077696π3
,

Z3(4) =
614304− 1821312π2 − 32768

√
3π3 + 196297π4

1934917632π4
,

Z3(5) =
339072480− 997174800π2 + 44236800

√
3π3 + 936266499π4 − 158617600

√
3π5

15672832819200π5
,

Z3(6) = (−5845063680 + 55396185120π2 + 530841600
√
3π3 − 110714929056π4

− 2124840960
√
3π5 + 11796983935π6)/(2708265511157760π6),

Z4(1) =
1

16π
, Z4(2) =

−48 + 5π2

8192π2
, Z4(3) =

−2640 + 833π2 − 180π3

5898240π3
,

Z4(4) =
6400− 15776π2 − 4864π3 + 3081π4

402653184π4
,

Z4(5) =
48625920− 83759200π2 + 11894400π3 + 38045661π4 − 10773000π5

30440580710400π5
,

Z4(6) = (−1157345280 + 10549584640π2 + 5902848000π3 − 17773668432π4

− 9397728000π5 + 4494764925π6)/(46756731971174400π6),

Z5(1) =
1

20π
, Z5(2) =

−7000 + (3145− 1088
√
5)π2

400000π2
,

Z5(3) =
−300000 + (367025− 14400

√
5)π2 − 18432

√
50− 10

√
5π3

360000000π3
,

Z6(1) =
1

24π
, Z6(2) =

−3240 + 331π2

746496π2
, Z6(3) =

−495720 + 287037π2 − 43520
√
3π3

2418647040π3
,

Z6(4) =
459794880− 1161396144π2 − 320716800

√
3π3 + 289774225π4

50153065021440π4
,

Z6(5) = (572595791040− 1548287349840π2 + 122276044800
√
3π3 + 1331543069217π4

− 229345715200
√
3π5)/(1137471514686259200π5),

Z6(6) = (−9765317657088 + 73750628879424π2 + 30831120875520
√
3π3

− 143992509769800π4 − 81529317310464
√
3π5 + 57069728465365π6)

/(786220310951142359040π6).

Table 1. Exact values of the partition function Zk(N) of the model {sa}3a=1
= {(+1)2, (−1)}.
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numerical values expected exact values

k = 2 A −0.3103048519 −0.3103048520
α1 0.0000001660 0

β1 0.6366192705 2/π ≃ 0.6366197724

γ1 0.6366205469 2/π ≃ 0.6366197724

k = 3 A −0.8115986816 −0.8115986811
γ1 2.666666666 8/3 ≃ 2.666666667

k = 4 A −1.368159992 −1.368159992
γ1 2.828426464 2

√
2 ≃ 2.828427125

k = 5 A −2.014160398 −2.014179117
γ1 3.577692778 8/

√
5 ≃ 3.577708764

k = 6 A −2.762757648 −2.762757648
γ1 4.618802104 8/

√
3 ≃ 4.618802154

Table 2. Comparison of numerical values obtained from fitting and expected exact values for the

perturbative coefficient A and the non-perturbative ones. The expected exact values for A is given

in (1.11) written in terms of the ABJM value (1.3) while the expect values for the first instanton

effects are given in (7.4).

Finally we find that, from the numerical studies of the partition function of the sepa-

rative model with {sa}3a=1 = {(+1)2, (−1)}, the grand potential is given by

Jk=2
np (µ) =

[
2µ+ 2

π

]
e−µ +O(e−2µ), Jk=3

np (µ) =
8

3
e−

2
3
µ +O(e− 4

3
µ),

Jk=4
np (µ) = 2

√
2e−

1
2
µ +O(e−µ), Jk=5

np (µ) =
8√
5
e−

2
5
µ +O(e− 4

5
µ),

Jk=6
np (µ) =

8√
3
e−

1
3
µ +O(e− 2

3
µ). (7.4)

The comparison of these exact values with the numerical values obtained from fitting can

be found in table 2. Note that, although we only display the first several exact values of

the partition function in table 1, we have used our full set of exact values in obtaining the

numerical values. Aside from the case of k = 5 where we have only a few data, as a whole

we find a very good match.

Since there are no other contributions than the worldsheet instanton in the first in-

stanton effect in Jk=3,4,5,6(µ), we expect that these coefficients should be explained by the

first worldsheet instanton. We find a good interpolating function for it as in (1.13). Note

that this factor is divergent at integers k = 1, 2. At k = 2, we find that

JWS
np (µ) ∼

[
4

π(k − 2)
+

2(µ+ 1)

π

]
e−µ, (7.5)

where the divergence cancels completely with (7.1) which is coming from the membrane

instanton (1.12) and the finite part reproduces the numerical study (7.4). This is a non-

trivial consistency check of our conjecture of (1.12) and (1.13).
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8 Discussion

In this paper we have studied the partition functions of superconformal Chern-Simons the-

ories of the circular quiver type using the Fermi gas formalism. Aside from the preliminary

study in section 5, our main target is the cases where the supersymmetry is enhanced to

N = 4. Following the argument that the perturbative part should sums up to the Airy

function (1.1) in this case as well, we have explicitly determined the perturbative coefficient

B (1.7) for the general N = 4 cases. We also find a conjectural form (1.11) of the coef-

ficient A for the special case where the two colors of edges in the circular quiver diagram

are separated, i.e. {sa}Ma=1 = {(+1)q, (−1)p}. We further restrict ourselves to the case of

{sa}3a=1 = {(+1)2, (−1)}, which is the simplest case next to the ABJM case, and study

the non-perturbative effects. We find that the non-perturbative effects enjoy the similar

cancellation mechanism as in the ABJM case. Both the coefficients of the worldsheet in-

stanton and those of the membrane instanton are divergent at certain levels, though the

divergences are cancelled completely.

We would like to stress that our study is one of the first signals that it is possible to

generalize the success in the ABJM theory to more general theories whose relation with

the topological string theory is not so clear. Namely, after finding out that for the ABJM

theory the cancellation of divergences in coefficients [20] helps to determine the grand

potential in terms of the refined topological string theory on local P1 × P
1 [24], the ABJ

theory [58, 59] was studied carefully in [57, 60–64] using its relation to the topological

string theory [9, 10]. Here for the general N = 4 superconformal theories of the circular

quiver type, though the direct relation to the topological strings is still unclear, our study

suggests that most of the methods used in the ABJ(M) theory are also applicable. The

final result may correspond to some deformations of the topological string theories and [65]

may be helpful along this line.

We hope to extend the results on the ABJM theories to the class of models with

{sa}Ma=1 = {(+1)q, (−1)p}, which we believe that it is appropriate to call the “(q, p)-minimal

model” in N = 3 quiver Chern-Simons theories. Even more, maybe we can finally solve all

of the N = 4 or N = 3 Chern-Simons theories and understand the whole moduli space by

studying the cancellation mechanism among various instanton effects.

Before it, there are many basic points to be fixed firstly. For example, in this paper

we have restricted ourselves to the theories with hermitian Hamiltonians in the Fermi gas

formalism. We believe, however, that our result (1.7) works for the non-hermitian cases

to some extent by the following two observations. First, the result (3.6) from the Fermi

surface analysis is consistent with that from the WKB analysis (6.22) where we do not refer

to the hermiticity. Second, the formal expression associated to the non-hermitian higher

commutators reduces finally to vanishing non-perturbative terms (3.29). It is desirable to

give a more concrete argument for the non-hermitian cases. Also, though we have given a

few non-trivial evidences for our conjecture of the coefficient A for the separative models,

it is desirable to prove it rigorously and write down a formula for the general case.

In this paper we have displayed the coefficients of the membrane instanton (1.12) and

the worldsheet instanton (1.13) for the next-to-simplest (2,1) separative model, {sa}3a=1 =
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{(+1)2, (−1)}. Actually we can continue to the coefficients of higher instantons. We can

find an exact function expression for the second membrane instanton coefficient which is

consistent with the WKB expansion in section 6. Also, we can repeat the numerical fitting

in section 7 to higher instantons as in the ABJM case [20, 22] to find an exact function

expression for the second and third worldsheet instanton coefficients. It seems that the

cancellation mechanism works as well. However, we decide not to display them because

the evidences are not enough yet.

It is also interesting to observe that the k = 1 and k = 2 grand potentials in the (2,1)

model resemble respectively to the k = 2 grand potential in the ABJM theory and that

in [56] with Nf = 4. This implies that in general the k = 1 grand potential in the (2q, 1)

model is related to the k = 2 grand potential in the (q, 1) model with the signs of the odd

instanton terms reversed. Using the results in [56], we have checked this relation also for

q = 3, 4, 6.

Obviously it is interesting to reproduce many of our prediction from the gravity side.

Let us list several discussions. First we have seen the shift of the coefficient B (1.7), which

implies the shift of the ’t Hooft coupling constant

λeff = λ−B(2) − B(0)

k2
. (8.1)

We would like to see its origin in the gravity dual along the line of [27]. Next the result of the

WKB expansion (6.14) implies that the membrane instanton can wrap on the Lagrangian

submanifolds which have the volume divided by the factors of Σ(q) and Σ(p). It would

be interesting to reproduce these effects from the gravity dual. It was known [66] that

the ordering of (1.6) corresponds to the extra discrete torsion in the orbifold background.

In this sense, we find it natural that this effect appears only in the shift of the ’t Hooft

coupling and in the coefficient polynomials as in (6.24) and (6.25). We would like to

understand this effect better. Along the line of the interpretation in the gravity dual, it is

very interesting to note that the coefficient of the one-loop log term was studied from the

gravity side [67] and the match with the expansion of the Airy function (1.1) was found.

Also, very recently, the Airy function was reproduced from the localization computation

in the gauged supergravity [68].

Finally, though we have used the matrix model (2.2) obtained after localization for the

partition functions of superconformal Chern-Simons theories, it would be interesting to

study the non-perturbative instanton effects directly from the field-theoretical viewpoints.
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