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that SMT describes N = 4 super-Yang-Mills theory (SYM) near zero-temperature critical

points in the grand canonical phase diagram. Equivalently, SMT arises from non-relativistic

limits of N = 4 SYM. Even though SMT is a non-relativistic quantum mechanical theory

it contains a variety of phases mimicking the AdS/CFT correspondence. Moreover, the

g → ∞ limit of SMT can be mapped to the supersymmetric sector of string theory on

AdS5 × S5. We study SU(2) SMT in detail. At large N and low temperatures it is a

theory of spin chains that for small g resembles planar gauge theory and for large g a non-

relativistic string theory. When raising the temperature a partial deconfinement transition

occurs due to finite-N effects. For sufficiently high temperatures the partially deconfined
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1 Introduction and summary

The AdS/CFT correspondence between N = 4 super-Yang-Mills theory (SYM) with gauge

group SU(N) and type IIB string theory on AdS5 × S5 promises in its strongest version

a complete quantitative agreement between the two theories for any N and any ’t Hooft

coupling λ [1–3]. Recent years of research have improved enormously our quantitative

understanding of the AdS/CFT correspondence in two sectors of the theory. One is the

supersymmetric sector with the technique of localization that enables one to compute exact

partition functions [4]. Another is the planar limit with N = ∞ for which one employs

an integrable spin chain as the connecting link between weakly coupled planar N = 4

SYM and tree-level string theory on AdS5 × S5 [5–7]. In that case it is the presence of
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the integrability symmetry that enables one to quantitatively interpolate between the two

sides of the correspondence.

The goal of this paper is to devise a way to go beyond these two sectors in order

to obtain a quantitative understanding of the AdS/CFT correspondence with N < ∞,

both for supersymmetric and non-supersymmetric observables, enabling one to interpolate

between weak and strong ’t Hooft coupling. The motivations for this are many. An

important one is that to study black holes in AdS/CFT one needs to go beyond infinite

N , and include non-perturbative effects in 1/N for large N , e.g. what one can call finite-N

effects. Understanding black holes quantitatively in the AdS/CFT correspondence would

be of enormous importance, particularly if one can go beyond the supersymmetric sector.

Similarly, to study the emergence of D-branes in the AdS/CFT correspondence, for example

in the form of Giant Gravitons, one needs to understand finite-N effects as well.

The idea of this paper is to generalize the integrable spin chain as connecting link

between the gauge and string theory sides beyond N =∞. However, since it appears that

the integrability symmetry does not in general extend beyond N = ∞ one needs another

simplifying feature to enable one to realize this idea.1 The simplifying feature will be to

consider the AdS/CFT correspondence in certain non-relativistic limits that in the grand

canonical ensemble correspond to approaching critical points at zero temperature T = 0.

Let ~Ω parametrize the five chemical potentials conjugate to the relevant global symmetry

charges of N = 4 SYM, then we take a limit of the form [11–15]

(T, ~Ω)→ (0, ~Ω(c)) , λ→ 0 , with
λ

T
and

~Ω− ~Ω(c)

T
kept fixed (1.1)

where ~Ω(c) parametrizes the critical point. ForN =∞ the result of this limit is that one gets

a much simpler spin chain as connecting link that only has a nearest neighbor interaction

and which is a non-relativistic quantum mechanical theory. We also get a rescaled coupling

g proportional to the ’t Hooft coupling such that for small g the spin chain resembles planar

N = 4 SYM in a subsector and for large g a non-relativistic string theory which can be

obtained as a limit of string theory on AdS5×S5 [15, 16]. Most importantly, the spin chain

theory is so simple that it is possible to take the strong coupling limit g � 1 without need

of employing the integrability symmetry.

The central proposal of this paper is that Spin Matrix theory provides the connect-

ing link between the gauge and string theory sides in the AdS/CFT correspondence near

a zero-temperature critical point. Spin Matrix theory is a new non-relativistic quantum

mechanical theory that we define in this paper. It can be thought of as a finite-N general-

ization of nearest-neighbor spin chains. Spin Matrix theory is based on a Hilbert space of

harmonic oscillators with both a spin index and a matrix index. The matrix index belongs

to the adjoint representation of U(N).2 Instead the spin index is in a semi-simple Lie

1There is evidence of integrability symmetry for excitations of Giant Gravitons [8, 9]. However, it is not

clear that one can make a general extension of the integrability symmetry from N =∞ to large N . Indeed

there are indications that the symmetry breaks down for 1/N corrections [6, 10].
2For simplicity we base Spin Matrix theory on the U(N) group rather than SU(N). See section 6 for a

translation of our results to SU(N).
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Figure 1. Phase diagram of SU(2) Spin Matrix theory as function of the temperature T and the

coupling g. The stipled line marks the temperature Tc where a partial deconfinement transition

occurs. At zero coupling this meets the Hagedorn temperature TH .

(super)algebra representation and for N = ∞ Spin Matrix theory reduces to a nearest-

neighbor spin chain based on this representation. It includes an interacting Hamiltonian

with a single coupling constant g.

We show that N = 4 SYM with gauge group U(N) near zero-temperature critical

points, in the sense of the limit (1.1), indeed is described by particular versions of Spin

Matrix theory for any given N . For a particular zero-temperature critical point we get

what we denote as SU(2) Spin Matrix theory.

We study in detail the phase diagram of the SU(2) Spin Matrix theory in this paper.

Despite that it is a non-relativistic quantum mechanical theory with a relatively simple

formulation it includes a variety of very interesting phases. Taking a fixed but large N

one can parametrize the phase diagram in terms of the temperature T and the coupling

constant g. We have illustrated the phase diagram in figure 1. For small temperatures and

any g SU(2) Spin Matrix theory is described as a gas of (weakly interacting) Heisenberg spin

chains. For small g this can be described as near-planar N = 4 SYM in the SU(2) sector at

weak coupling, while for large g it can be described as a non-relativistic string theory (with

small string coupling). Note in particular that the semi-classical limit of the non-relativistic

string theory is accurately described at tree-level by the Landau-Lifshitz sigma-model. As

explained in [15] this is no coincidence as the limit (1.1) for the SU(2) critical point can be

reinterpreted as the limit of Kruzcenski [16] of string theory on AdS5 × S5.

Raising the temperature T of the weakly interacting spin chain gas the perturbative

1/N effects give rise to an increasing interaction among the spin chains. Eventually finite-

N effects come into play and for sufficiently high temperatures one encounters a partial

deconfinement transition at a temperature which we denote Tc, as illustrated by the stipled
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Figure 2. Illustration of our general philosophy for Spin Matrix theory. The diagram represents

the regimes of N = 4 SYM. Towards the right one approaches the planar limit regime, depicted

in blue. Towards the bottom one approaches the Spin Matrix theory regime depicted in red. The

black area depicts the regime in which one finds black holes and D-branes.

line in figure 1. We explore the partially deconfined phase above this phase transition by

considering its behavior in the high-temperature regime where we find that its description

simplifies. For zero coupling g = 0 we analyze in detail the partition function of SU(2) Spin

Matrix theory and find that for sufficiently large temperatures it reduces to the partition

function of N2 + 1 uncoupled harmonic oscillators. This happens in the classical limit

where we can view the harmonic oscillators as distinguishable.

Turning on the coupling g we show using coherent states that SU(2) Spin Matrix theory

at sufficiently high temperatures is described by a classical matrix model. This classical

matrix model is based on four Hermitian N ×N matrices in the Hamiltonian formulation.

For g = 0 it describes N2 +1 uncoupled harmonic oscillators as mentioned above. For non-

zero g the matrix model has a potential term proportional to g that gives rise to interactions

between the N2+1 harmonic oscillators. At large g most of the harmonic oscillators become

infinitely heavy and decouple, leaving a phase of 2N uncoupled harmonic oscillators.

We see SU(2) Spin Matrix theory as a quantum mechanical model for the AdS/CFT

correspondence since its phases bear strong resemblence to phases of the AdS/CFT cor-

respondence. For low temperature the Heisenberg spin chain works as a connecting link

between small and large coupling, as already mentioned, with clear connections to the

small and large ’t Hooft coupling limits of the AdS/CFT correspondence at N = ∞. For

high temperatures we see a partial deconfinement into a high-temperature phase described

by a classical matrix model for interacting harmonic oscillators. Our assertion is that this

resembles a phase corresponding to a highly excited gas of D-branes.

We have summarized our general philosophy of how we envision that the Spin Matrix

theory limits of N = 4 SYM can be used to approach a quantitative understanding of finite-

N effects in the context of the AdS/CFT correspondence in figure 2. The regime with black

holes and D-branes is separated from the planar limit regime in the figure since it is non-
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perturbative in the string coupling, and hence corresponds to finite-N effects, whereas in

the planar limit the string coupling is exactly zero (hence also Newtons constant is exactly

zero). Instead the Spin Matrix theory limit gives an effective rescaled string coupling g/N

that can be tuned, thus making it possible to have overlaps of the Spin Matrix theory

regime with the two other regimes.3

In section 3.4 we confirm this philosophy in the supersymmetric sector by showing for

a zero-temperature critical point of N = 4 SYM that one can match the g → ∞ limit

of Spin Matrix theory exactly to what one obtains for string theory on AdS5 × S5 at the

dual critical point (assuming the validity of a commonly accepted conjecture). In section 6

we elaborate more on this philosophy, and argue that it can be employed also beyond the

supersymmetric sector.

The structure of this paper is as follows. In section 2 we define Spin Matrix theory

in general and show that it has a limit as nearest neighbor spin chain theory for N =

∞. In section 3 we show that Spin Matrix theory describes N = 4 SYM near critical

points, or, equivalently, can be obtained from N = 4 SYM in non-relativistic limits. In

section 4 we focus on SU(2) Spin Matrix theory and review results in the planar and near-

planar limits corresponding to low temperature. In section 5 we derive new results on the

high temperature behavior of SU(2) Spin Matrix theory where finite-N effects sets in. In

section 6 we discuss our results.

2 Spin Matrix theory

2.1 Definition of Spin Matrix theory

Spin Matrix theory is a quantum mechanical theory with a well-defined Hilbert space and

Hamiltonian acting on the Hilbert space. Spin Matrix theory is built on a representation

Rs of a semi-simple Lie (super-)group Gs, which we here call the spin group, and on the

adjoint representation Rm of the group U(N) on the space of N ×N complex matrices.4

Hilbert space of Spin Matrix theory. We consider first the purely bosonic case.

Define the raising operators

(a†s)
i
j (2.1)

Here s ∈ Rs is in the representation of the spin group Gs and the i, j indices are N × N
indices corresponding to the adjoint representation Rm of U(N) (i = 1, . . . , N labels the

fundamental and j = 1, . . . , N the anti-fundamental representation of U(N)). Correspond-

ing to the raising operators (2.1) we have the vacuum |0〉 and the lowering operators (as)j i
such that

(as)j i|0〉 = 0 ,
[
(as)j i, (a

†
s′)

k
l

]
= δss′δ

k
i δ
j
l (2.2)

3In the related context of the gauge/gravity duality for D0-branes impressive work has been done to

make numerical simulations on the gauge theory side that approximately reproduce the gravity side (see for

instance the recent work [17]). While this gives important evidence for holography one would ultimately

like to have an analytical approach.
4One can generalize this to matrix representations of other groups such as SU(N), SO(N) and Osp(N).
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and all raising operators commute with each other. This defines a bosonic harmonic oscil-

lator for each s ∈ Rs and (i, j) ∈ Rm. Hence we can define a Hilbert space H′ as all the

possible harmonic oscillator states

H′ =
∞∑
L=0

sym
[
(Rs ⊗Rm)L

]
(2.3)

involving the symmetric product of L representations Rs ⊗ Rm. We can write a basis for

H′ as

(a†s1)i1
j1

(a†s2)i2
j2
· · · (a†sL)iL

jL
|0〉 , L = 1, 2, . . . (2.4)

The Hilbert space H of Spin Matrix theory is defined as the linear subspace of H′ of states

that are singlets of the Rm representation. The singlet condition on a state |φ〉 in H′ is

Φi
j |φ〉 = 0 , Φi

j ≡
∑
s∈Rs

N∑
k=1

[
(a†s)

i
k(a

s)kj − (a†s)
k
j(a

s)ik
]

(2.5)

One finds that the Hilbert space H is spanned by the set of states of the form

N∑
i1,i2,...,iL=1

(a†s1)i1
iσ(1)

(a†s2)i2
iσ(2)
· · · (a†sL)iL

iσ(L)
|0〉 , L = 1, 2, . . . (2.6)

where σ ∈ S(L) is an element of the permutation group S(L) of L elements. Using a

slightly different notation we can equivalently say H is spanned by the set of states

Tr(a†s1a
†
s2 · · · a

†
sl

) Tr(a†sl+1
· · · ) · · ·Tr(a†sk+1

· · · a†sL)|0〉 , L = 1, 2, . . . (2.7)

where the traces are over the Rm indices. The individual cycles of the permutation elements

correspond to single traces. In general one can find linear relations between the states of the

form (2.6) or (2.7) when L > N . To have a proper basis for the Hilbert space one would need

to thin out the set of states such that only a linearly independent set is left. Such a basis

is provided by the restricted Schur polynomials which in addition are orthogonal [18, 19].

One can also include fermionic excitations. This is realized as a split up Rs = Bs⊕Fs
of the spin group representation. Then for s ∈ Bs the raising operator (a†s)ij and the

corresponding lowering operator obey the bosonic commutator (2.2). Instead for s ∈ Fs
we have

(as)j i|0〉 = 0 ,
{

(as)j i, (a
†
s′)

k
l

}
= δss′δ

k
i δ
j
l (2.8)

Moreover, all raising operators in Bs commute with all raising operators in Bs and Fs
while all raising operators in Fs anticommute with each other. With this, one can define

the Hilbert spaces H′ and H from eqs. (2.4), (2.5) and (2.6). Specifically, the Hilbert space

H of Spin Matrix theory is the linear space spanned by the states (2.6), or equivalently (2.7).

The split up of the spin group representation Rs = Bs ⊕ Fs into bosonic and

fermionic excitations happens for instance for representations of Lie supergroups of the

type SU(p, q|r) with both p + q and r non-zero. Here the generators in the su(p, q) and

su(r) subalgebras of the su(p, q|r) algebra are bosonic while the remaining generators are

fermionic. While a bosonic generator acting on s ∈ Bs gives an element in Bs a fermionic

generator acting on s gives an element in Fs and so forth.
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Hamiltonian of Spin Matrix theory. We consider now interactions in Spin Matrix

theory. The type of interaction that we consider is where two excitations are annihilated

and two new are created. We demand furthermore that the interaction should commute

with all generators of the spin group Gs and that the spin and matrix parts factorize. The

general form of such a Hamiltonian is

Hint =
1

N
U s
′r′
sr

∑
σ∈S(4)

Tσ (a†s′)
iσ(1)

i3
(a†r′)

iσ(2)
i4

(as)iσ(3) i1(ar)iσ(4) i2 (2.9)

where Tσ, σ ∈ S(4), are coefficients and where the sums over s, r, s′, r′ and i1, i2, i3, i4 are

understood (note that the factor of 1/N is for later convenience). One can check that this

Hamiltonian preserves the singlet condition (2.5) and hence stays within the Hilbert space

H. Furthermore, it is a Hermitian operator on H provided the spin part is a Hermitian

matrix (U s
′r′
sr )∗ = U srs′r′ and that the Tσ coefficients obey Tσ−1 = Tσ. We choose the Tσ

coefficients for Spin Matrix theory such that∑
σ∈S(4)

Tσσ = (14) + (23)− (12)− (34) (2.10)

We take this explicit choice of T since it describes the behavior near zero-temperature

critical points of N = 4 SYM, as we shall see below. Furthermore, it ensures that the

Hamiltonian reduces to that of a general nearest-neighbor spin chain for N = ∞, as we

shall see in section 2.2.

Turning now to the spin part of the interaction in (2.9) we see that U is a linear

operator which takes an element in Rs ⊗Rs and gives a new element in Rs ⊗Rs

U : Rs ⊗Rs → Rs ⊗Rs (2.11)

We see from the form of Hint in (2.9) that U s
′r′
sr = U r

′s′
rs . Expand now the product repre-

sentation Rs ⊗Rs into irreducible representations

Rs ⊗Rs =
∑
J
VJ (2.12)

where J labels the irreducible representations VJ (labelling includes multiplicities). We

impose that Hint should commute with all generators of the spin group Gs. This means

that in each subspace VJ the interaction U is proportional to the identity matrix, hence

U s
′r′
sr =

∑
J
CJ (PJ )s

′r′
sr (2.13)

where PJ is the projector that projects from Rs ⊗Rs into VJ for a given J . We see thus

that the only freedom in choosing the interaction Hint lies in choosing the constants CJ .

In general we include also a diagonal piece in the Hamiltonian. Define the operator

L =
∑
s

Tr(a†sa
s) (2.14)

– 7 –
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This gives what we call the length of a state and it commutes with the generators of Gs
(e.g. for the state in (2.7) the length is L). In addition we have the Cartan generators of

Gs here denoted Kp with p labelling them. Thus, we take our most general Hamiltonian to

be of the form H = gHint + µ0L−
∑

p µpKp. One notices that the partition function at a

temperature T is invariant under the rescaling T → αT , g → αg, µ0 → αµ0 and µp → αµp
and hence one can remove a parameter. One could choose g = 1 which would connect high

(low) temperature to weak (strong) coupling. However, we choose instead µ0 = 1 since

then we can connect high (low) temperature to long (short) average lengths of the states.

Since non-planar effects increase with the length one gets that for low temperature the

theory becomes effectively planar (assuming N is large) and for very high temperature the

theory is highly non-planar. In summary, the Hamiltonian of Spin Matrix theory is

H = L+ gHint −
∑
p

µpKp (2.15)

where g is the coupling constant of the interaction and µp can be regarded as chemical

potentials. Hence we can write the partition function for Spin Matrix theory as

Z(β, µp) = Tr(e−βH) = Tr(e−β(L+gHint−
∑
p µpKp)) (2.16)

where the trace is over the Hilbert space H.

2.2 Spin chains from Spin Matrix theory

We consider here Spin Matrix theory in the planar limit N = ∞. In the planar limit

N =∞ the multi-trace states (2.7) are linearly independent and provide therefore a basis.

The Hilbert space H of Spin Matrix theory can thus be thought of as being that of a gas

of single trace states. Consider a single-trace state

|s1s2 · · · sL〉 ≡ Tr(a†s1a
†
s2 · · · a

†
sL

)|0〉 (2.17)

One can interpret this as a spin chain with translation invariance (due to the cyclicity

of the trace) since the contraction between the individual raising operator clearly defines

a succession of the spins [5]. Note that having N = ∞ is crucial for the spin chain

interpretation. If one has L > N one can generically write the single trace as a linear

combination of multi-trace states of the type (2.7), all built from single-traces shorter than

L, and hence the succession of the spins is no longer well-defined.5

Consider next the action of the interacting part of the Hamiltonian Hint on a contracted

two-oscillator state

Hint(a
†
m)ij(a

†
n)j l|0〉 =

2

N
U rsmn

[
δil(a

†
r)
i′

j(a
†
s)
j
i′+N(a†r)

i
j′(a

†
s)
j′

l−(a†r)
j
j(a
†
s)
i
l−(a†r)

i
l(a
†
s)
j
j

]
|0〉

(2.18)

One can see that the second term dominates for large N since it is proportional to N .

Thus, Hint has an extra factor of N when one applies it to two contracted oscillators. The

5On the other hand, we show in section 5.1 that for a generic Spin Matrix theory Hilbert space a given

basis of multi-trace states necessarily contains arbitrarily long single-traces.
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planar limit N →∞ of Hint can only be non-singular if U rsmn is finite in the limit. In fact,

we assume that U rsmn does not depend on N , i.e. that the coefficients CJ are independent

of N . This means that in the planar limit only the action of Hint on the contracted

oscillators survive. Hence Hint is non-zero only when applied to nearest-neighbor sites on

a single-trace, and zero (going to zero as 1/N) when applied to two oscillators belonging to

two different single-traces (say in a multi-trace state) or when applied to two non-nearest

neighbor operators in a single trace. The action of Hint on (2.17) is

Hint|s1s2 · · · sL〉 = 2
L∑
k=1

Umnsksk+1
|s1 · · · sk−1mnsk+2 · · · sL〉 (2.19)

Thus on a single trace state the Hamiltonian is given essentially by U in (2.13) acting on

neighboring spins. This is thus a nearest neighbor spin chain Hamiltonian. We see from

this that the Spin Matrix theory has a unique extension from the N =∞ limit to the full

finite N theory since the full Spin Matrix theory is uniquely determined by U rspq .

As already remarked, the multi-trace state basis (2.7) can be interpreted as the basis

for a gas of spin chains with spin chain Hamiltonian (2.19). We can thus say that in the

planar limit the partition function of Spin Matrix theory is that of a gas of spin chains.

Relaxing the planar limit to large N one can still effectively regard the states (2.7) as a basis

for low enough temperatures and energies such that the average length of a multi-trace is

smaller than N . However, the other terms in Hint that go like 1/N will now be non-zero

and enable that the spin chains can split or join with a propability of order 1/N . Thus,

assuming large N , one concludes that at low energy/temperatures Spin Matrix theory can

be thought of as a gas of weakly interacting spin chains. We shall exhibit this in greater

detail for a specific Spin Matrix theory below.

3 Spin Matrix theory from N = 4 SYM near critical points

In this section we show that Spin Matrix theory describes N = 4 SYM near zero-tempera-

ture critical points in the grand canonical ensemble. We begin by reviewing the partition

function of N = 4 SYM. We define then our notion of zero-temperature critical points in

the grand canonical ensemble of N = 4 SYM. There are nine critical points and we show

how Spin Matrix theory emerges near these. Finally we show that Spin Matrix theory

equivalently can be seen to emerge in the microcanonical ensemble in a low energy and

non-relativistic limit.

3.1 Partition function of N = 4 SYM

Consider N = 4 SYM on R×S3 with gauge group U(N). This theory has global symmetry

PSU(2, 2|4). The bosonic subgroup SU(2, 2) ' SO(2, 4) has Cartan generators being the

dilatation operator D, and the two angular momenta on S3 called S1 and S2. The bosonic

subgroup SU(4) ' SO(6) has the three R-symmetry generators R1, R2 and R3 here chosen

as Cartan generators of SO(6). The grand canonical partition function is

Z(β, ~Ω) = Tr
(
e−βD+β~Ω· ~J) (3.1)

– 9 –
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at temperature T = 1/β, chemical potentials ~Ω = (ω1, ω2,Ω1,Ω2,Ω3) and ’t Hooft coupling

λ = g2
YMN . In addition to the notation ~Ω for the chemical potentials we also introduce

~J = (S1, S2, R1, R2, R3) and ~Ω · ~J = ω1S1 +ω2S2 +Ω1R1 +Ω2R2 +Ω3R3. The trace in (3.1)

is over the operators of N = 4 SYM on R4 (or corresponding states of N = 4 SYM on

R× S3). These are all the operators spanned by the multi-trace operators built out of the

letters of N = 4 SYM transforming in the adjoint representation of U(N). Seen from the

point of view of states of N = 4 SYM on R× S3 the reason for the singlet condition (i.e.

that there is no free U(N) indices) is that one cannot have a net charge on a three-sphere

since flux lines of a charge need to end somewhere [20, 21].

In general the dilatation operator can be written as D = D0 + δD where D0 = D|λ=0

and δD is the anomalous dimension part. At one-loop we write δD = λD2 +O(λ3/2). The

D2 operator acts on two letters at a time, each letter being in the singleton representation

A of psu(2, 2|4). The product of two singleton representations is A⊗A =
∑∞

j=0 Vj where

Vj are irreducible representations labelled uniquely by the quadratic Casimir of psu(2, 2|4)

(see [22, 23] for details). Using this the one-loop dilatation operators has the form [24]

D2 = − 1

8π2N

∞∑
j=0

h(j)(Pj)
AB
CD : Tr[WA, ∂WC

][WB, ∂WD
] : (3.2)

where h(j) =
∑j

k=1
1
k are the harmonic numbers (h(0) = 0), Pj is the projection operator

from A⊗A to Vj , WA with A ∈ A represents all possible letters of N = 4 SYM and one

has normal ordering such that ∂W is moved to the right of W .

If one could artificially remove the interactions of N = 4 SYM beyond one-loop one

could recast the resulting theory as a Spin Matrix theory corresponding to the represen-

tation A of the group PSU(2, 2|4). For the Hilbert space one simply identifies the matrix

valued raising operator a†s with the letter Ws for all s ∈ A. This gives a one-to-one map

between the gauge theory operators in N = 4 SYM and the Hilbert space of the Spin

Matrix theory. Turning to the one-loop dilatation operator (3.2) this is equal to Hint if we

identify the label J with j, the representations VJ with Vj and

Cj =
1

8π2
h(j) , j = 0, 1, 2, . . . (3.3)

However, in the end N = 4 SYM cannot be a Spin Matrix theory since N = 4 SYM is a

quantum field theory and hence should have local relativistic invariance, including particle-

antiparticle creation, and hence it cannot be identified with a non-relativistic quantum

mechanical theory. Indeed, the above naive truncation of the higher-loop terms — keeping

only the one-loop term — is unphysical and the relativistic behavior of N = 4 SYM is

precisely a consequence of having the full dilatation operator, as one can see for example

in the planar limit from the dispersion relation for a single magnon [25] as well as in the

BMN limit [26]. Instead, as we shall see below, the limits in which one obtains Spin Matrix

theory from N = 4 SYM involve λ→ 0 and gives a natural way to only keep the one-loop

term of the dilatation operator. This is tied to the fact that the Spin Matrix theory limit

is non-relativistic, and in addition one is naturally restricted to a subsector of the space of

operators, which further simplifies the theory in comparison to N = 4 SYM.
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Critical point Spin group Cartan diagram Representation

(T, ω1, ω2,Ω1,Ω2,Ω3) Gs for algebra Rs

(0, 0, 0, 1, 1, 0) SU(2) © [1]

(0, 2
3 , 0, 1,

2
3 ,

2
3) SU(1|1)

⊗
[1]

(0, 1
2 , 0, 1, 1,

1
2) SU(1|2) ©−−

⊗
[1, 0]

(0, 0, 0, 1, 1, 1) SU(2|3) ©−−
⊗
−−©−−© [0, 0, 0, 1]

(0, 1, 0, 1, 0, 0) SU(1, 1) © [−1]

(0, 1, 0, 1, 1
2 ,

1
2) SU(1, 1|1)

⊗
−−
⊗

[0, 1]

(0, 1, 0, 1, 1, 0) SU(1, 1|2)
⊗
−−©−−

⊗
[0, 1, 0]

(0, 1, 1, 1, 0, 0) SU(1, 2|2) ©−−
⊗
−−©−−

⊗
[0, 0, 0, 1]

(0, 1, 1, 1, 1, 1) SU(1, 2|3) ©−−
⊗
−−©−−©−−

⊗
[0, 0, 0, 1, 0]

Table 1. Critical points of N = 4 SYM that can be described by Spin Matrix theory. Listed

are the spin groups, the Cartan diagram for the corresponding algebra and the representations (in

terms of Dynkin labels) that defines the Spin Matrix Theory for a given critical point.

3.2 Zero-temperature critical points in the grand canonical ensemble

Consider N = 4 SYM on R×S3 at large N in the grand canonical ensemble parametrized

by (T, ~Ω). For any coupling λ and zero chemical potentials one has a definite temperature

at which there is a phase transition from confining behavior logZ ∼ O(1) to deconfining

behavior logZ ∼ O(N2) of the partition function. This phase transition persists also

for non-zero chemical potentials ~Ω thus defining a submanifold of transition points in the

grand canonical ensemble (T, ~Ω). We define the zero-temperature critical points of the

grand canonical ensemble as the points that one can obtain by continuing this submanifold

of phase transition points to zero temperature. Thus, for a given critical point (T, ~Ω) =

(0, ~Ω(c)) there are confinement/deconfinement transition points that lie arbitrarily close to

it. In table 1 we listed nine critical points for N = 4 SYM.

One can see from the partition function (3.1) that a necessary requirement for a critical

point (0, ~Ω(c)) is that D ≥ ~Ω(c) · ~J for all operators of N = 4 SYM while at the same time

there should exist operators that saturate the bound. We restrict ourselves to critical

points for which there are protected operators that saturate the bound, indeed all the

critical points of table 1 are of this type.6 Then we can infer from the results of [14] that

the above requirement is sufficient as well.7

We now examine N = 4 SYM with partition function (3.1) as one approaches one of

the critical points of table 1. Writing the critical point as (0, ~Ω(c)) we are taking the limit

6To make the list of this type of critical points complete one should include the fact that the SU(1|1)

point is part of a larger family of critical points (0, a,−b, 1, 1 − 1
2
(a + b), 1 − 1

2
(a + b)), 0 < a, b < 1 and

that one has another SU(1|2) point (0, 1
2
, 1
2
, 1, 1, 0) as well as another SU(1, 1|1) point (0, 1, 1

2
, 1, 1

2
, 0). In

addition there are equivalent critical points obtained by interchanging ω1 and ω2, or by permuting Ω1, Ω2

and Ω3.
7With this restriction the critical points considered here are also critical points in the sense of [14], i.e.

in [14] we defined critical points (0, ~Ω(c)) to be such that D0 ≥ ~Ω(c) · ~J for all operators of N = 4 SYM

while at the same time there should exist operators that saturate the bound.
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(T, ~Ω)→ (0, ~Ω(c)). We require that β(~Ω− ~Ω(c)) is finite in the limit. We record the identity

βD − β~Ω · ~J = βδD + β
(
D0 − ~Ω(c) · ~J

)
− β

(
~Ω− ~Ω(c)

)
· ~J (3.4)

We first analyze the limit for λ = 0 hence δD = 0. Consider ∆ ≡ D0 − ~Ω(c) · ~J for the

states of N = 4 SYM on R× S3. Either ∆ = 0 or ∆ ≥ 1/2 hence only states with ∆ = 0

contributes to the partition function after the limit. One finds that the ∆ = 0 states

correspond to the Hilbert space H of Spin Matrix theory (2.7) with the spin group Gs
being a subgroup of PSU(2, 2|4) and the representation Rs being a subset of A [14]. In

table 1 we listed the representations Rs and the groups Gs corresponding to each of the

nine critical points.

Considering further the limit towards the critical point for λ = 0 one can show that

the term −β(~Ω− ~Ω(c)) · ~J in (3.4) in general is a linear combination of the length operator

of eq. (2.14) and the Cartan generators of Gs denoted Kp for the ∆ = 0 states [14]. Hence

− β(~Ω− ~Ω(c)) · ~J → β̃
(
L−

∑
p

µpKp

)
(3.5)

for the ∆ = 0 states in the limit (T, ~Ω)→ (0, ~Ω(c)) with appropriate choices of β̃ and µp.

Turning on λ we get the additional term βδD in (3.4). If we keep λ fixed and non-zero

in the β → ∞ limit we clearly get the further condition δD = 0 on the states. Hence

we only get contributions to the partition function from supersymmetric states. To get

an interacting theory we should send λ → 0 with β → ∞ such that βλ is finite in the

limit. One can write this as βλ → β̃g where we introduced the finite parameter g. Then

βδD → β̃λ̃D2 since the higher loop terms in δD go to zero. For the ∆ = 0 states, which

can be seen as states in the Hilbert space H of the Spin Matrix theory corresponding to

the representation Rs of the group Gs recorded in table 1, we have D2 = Hint with the

identification (3.3). However, since Rs is not A but instead the representations given in

table 1 one should be careful in interpreting the label j in (3.2) and (3.3). To this end, we

record that for a highest weight state one has [27]

j(j + 1) =
1

2
D2

0 + 2D0 +
1

2
(S2

1 + S2
2)− S1 −

1

2
(R2

1 +R2
2 +R2

3)− 2R1 −R2 (3.6)

For instance, for the SU(2) critical point of table 1 Rs is the spin 1/2 representation and

we can label the irreducible representations VJ in (2.12) using the casimir s(s+ 1) of the

SU(2) algebra (being either spin 0 (s = 0) or spin 1 (s = 1) representation). Hence J = s

in this case. One can check using eq. (3.6) that the spin 0 representation corresponds to

j = 1 while the spin 1 representation to j = 0. Hence, using the label J = s in (2.12) we

get for the coefficients Cs, s = 0, 1,

Cs=0 =
1

8π2
, Cs=1 = 0 (3.7)

from (3.3). We examine this particular Spin Matrix theory, which we dub SU(2) Spin

Matrix theory, below in sections 4 and 5.

– 12 –



J
H
E
P
1
1
(
2
0
1
4
)
1
3
4

We conclude that approaching one of the critical points (0, ~Ω(c)) listed in table 1 in

the limit

(T, ~Ω)→ (0, ~Ω(c)) and λ→ 0 with β(~Ω− ~Ω(c)) and βλ finite (3.8)

of N = 4 SYM one finds the partition function

Z(β̃, µp) = Tr(e−β̃(L+gHint−
∑
p µpKp)) (3.9)

which is the partition function of Spin Matrix theory with the spin group Gs, along with

the representation Rs thereof, as recorded in table 1. Moreover, the coefficients in the

interaction term Hint are given by eq. (3.3). The trace in the partition function is over the

Hilbert space H of eq. (2.7) corresponding to the subsector ∆ = 0 of N = 4 SYM.

3.3 Low energy and non-relativistic limits (microcanonical ensemble)

One can find equivalent limits of N = 4 SYM on R× S3 in the microcanonical ensemble.

Given a critical point (0, ~Ω(c)) of table 1 one has D ≥ ~Ω(c) · ~J for all states. Therefore,

it makes sense to take a low energy limit D − ~Ω(c) · ~J → 0. This means that the states

above the energy gap ∆ ≥ 1/2 (defining again ∆ ≡ D0 − ~Ω(c) · ~J) effectively decouple and

one is left with the ∆ = 0 states which correspond to the states in the Hilbert space of

Spin Matrix theory with spin group Gs and spin label in the representation Rs as given in

table 1. For states with ∆ = 0 we have D − ~Ω(c) · ~J = δD = λD2 +O(λ3/2). Hence to get

a non-trivial energy spectrum we should take the limit

D − ~Ω(c) · ~J → 0 and λ→ 0 with
D − ~Ω(c) · ~J

λ
finite (3.10)

which gives Spin Matrix theory with interaction Hint = (D − ~Ω(c) · ~J)/λ with the spin

group Gs, along with the representation Rs thereof, as recorded in table 1, and with the

coefficients in the interaction term Hint given by eq. (3.3). The limit (3.10) is equivalent

to (3.8). In the microcanonical ensemble one has, in addition to Hint, the length operator

L as well as the Cartan operators Kp held fixed. Hence one can go to the grand canonical

ensemble of Spin Matrix theory with partition function (3.9) after the limit (3.10).

While we established the limits (3.8) and (3.10) as low energy limits in which part of

the spectrum of the states of N = 4 SYM on R × S3 decouple we point out that they

in addition can be seen as non-relativistic limits. This one can see in the planar limit by

considering a magnon of the psu(2, 2|4) spin chain for N = 4 SYM which has dispersion

relation δD =
√

1 + λ
π2 sin2 p

2 − 1 where p is the momentum of the magnon on the spin

chain [25]. For small momenta this becomes the relativistic dispersion relation of a free

particle. Instead when taking the limit λ→ 0 we get a non-relativistic dispersion relation

for small momenta. For the SU(2) critical point of table 1 this limit from relativistic to

non-relativistic symmetry is considered in detail in [15].
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3.4 The g →∞ limit, supersymmetry and the AdS/CFT correspondence

In this section we consider two limits that both end at one of the zero-temperature critical

points of table 1. Employing a conjecture regarding supersymmetric states of N = 4 SYM

we can use these limits to show that the g → ∞ limit of Spin Matrix theory matches the

string theory side of the AdS/CFT correspondence.

In section 3.2 we find that approaching one of the zero-temperature critical point of

table 1 (T, ~Ω) → (0, ~Ω(c)) with λ fixed and non-zero, one obtains the condition δD = 0

which only holds for supersymmetric states. More precisely, the N = 4 SYM partition

function in the limit

(T, ~Ω)→ (0, ~Ω(c)) with β(~Ω− ~Ω(c)) finite and λ > 0 fixed (3.11)

gives the partition function

Z(β̃, µp) = Tr(e−β̃(L−
∑
p µpKp)) (Trace over SUSY states) (3.12)

Alternatively, one can take first the Spin Matrix theory limit (3.8), and then subsequently

take the limit g →∞ of the Spin Matrix theory, i.e.

Step 1: (T, ~Ω)→ (0, ~Ω(c)) and λ→ 0 with β(~Ω− ~Ω(c)) and βλ finite

Step 2: g →∞
(3.13)

Then we obtain the partition function

Z(β̃, µp) = Tr(e−β̃(L−
∑
p µpKp)) (Trace over Hint = 0 states) (3.14)

The two partition functions (3.12) and (3.14) are in fact the same partition function,

provided that it is true that D2 = 0 is equivalent to δD = 0 (for a non-zero λ) for states

with D0 = ~Ω(c) · ~J . That δD = 0 implies D2 = 0 is easy to see since δD in fact implies

all loop orders of the dilatation operator are zero. Instead the reverse statement is non-

trivial. However, this is conjectured to be true [28–30] and has been confirmed for 1/8

BPS states [28, 31]. We assume here the validity of this conjecture, thus also for 1/16 BPS

states.

A consequence of the two partition functions (3.12) and (3.14) being equal is that we

can use the g → ∞ limit of Spin Matrix theory to compute the partition function (3.12)

for any non-zero λ. Taking in particular λ � 1 this partition function can be mapped by

the AdS/CFT correspondence to the corresponding partition function on the string theory

side. This is obtained in the following limit of string theory in the grand canonical ensemble

(dual to the grand canonical ensemble of N = 4 SYM)

(T, ~Ω)→ (0, ~Ω(c)) with β(~Ω− ~Ω(c)) finite and gs , N fixed (3.15)

and gives

Z(β̃, µp) = Tr(e−β̃(L−
∑
p µpKp)) (String theory) (3.16)
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with the trace being over the supersymmetric states on the string theory side that survive

the limit (3.15).8

In conclusion, we have shown that we can quantitatively match the g → ∞ limit

of Spin Matrix theory, corresponding to one of the zero-temperature critical points of

table 1, to the limit (3.15) of string theory on AdS5 × S5. This means in particular that

for the supersymmetric sector we can map finite-N effects of Spin Matrix theory to non-

perturbative effects in string theory, in line with our philosophy illustrated in figure 2.

4 SU(2) Spin Matrix theory at low temperature (nearly planar)

In this section, as well as in section 5, we explore the phases of SU(2) Spin Matrix theory,

as illustrated in figure 1. We begin below by writing down the Hamiltonian of SU(2) Spin

Matrix theory in detail in section 4.1. We subsequently review the low temperature phases

in sections 4.2 and 4.3.

4.1 SU(2) Spin Matrix theory

SU(2) Spin Matrix theory is the theory that one obtains near the critical point (T, ~Ω) =

(0, 0, 0, 1, 1, 0) as listed in table 1. This has spin group Gs = SU(2). The representation

Rs = 1
2 is the fundamental spin 1/2 representation. We label this as spin-up and spin-down

s =↑, ↓. This specifies the Hilbert space H. The interacting Hamiltonian Hint is given by

the coefficients (3.7). From this we read that the spin part of the Hamiltonian U s
′r′
sr is

proportional to the projector from 1
2 ⊗

1
2 to the spin 0 representation. This projector is

(Ps=0)s
′r′
sr = 1

2(δr
′
r δ

s′
s − δr

′
s δ

s′
r ) and hence

U s
′r′
sr =

1

16π2
(δr
′
r δ

s′
s − δr

′
s δ

s′
r ) (4.1)

Inserting this in (2.9) we get

Hint = − 1

8π2N
Tr
(
[a†↑, a

†
↓][a
↑, a↓]

)
(4.2)

The total Hamiltonian of SU(2) Spin Matrix theory is then

H = L+ gHint (4.3)

where L is given in (2.14). In general one could also include a −µSz term in (4.3) but

we choose µ = 0 in the following. The partition function that we analyze in the following

is thus

Z(β) = Tr(e−β(L+gHint)) (4.4)

8Note that one can formulate the above just as well in the microcanonical ensemble as we did for N = 4

SYM in section 3.3, hence as a low energy and non-relativitistic limit of string theory.
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4.2 Planar limit

Consider SU(2) Spin Matrix theory in the planar limit N = ∞. As explained in sec-

tion 2.2 Spin Matrix theory is a gas of spin chains in the planar limit. For this specific Spin

Matrix theory we have U s
′r′
sr given by (4.1) from which one infers the spin chain Hamil-

tonian acting on a spin chain as in (2.19). This corresponds to the Hamiltonian for the

ferromagnetic XXX1/2 Heisenberg spin chain [5].9 The partition function for SU(2) Spin

Matrix theory (4.4) is obtained from the partition function of the Heisenberg spin chain as

follows [12]

logZ(β) =

∞∑
n=1

∞∑
L=1

1

n
e−βnLZ

(XXX)
L (nβ) (4.5)

where Z
(XXX)
L = TrL(e−βgHint) is the partition function of the Heisenberg spin chain theory

with the trace TrL being over spin chains (single-trace states) of length L.

We see that the SU(2) Spin Matrix theory partition function Z(β) is that of a non-

interacting gas of Heisenberg spin chains. Raising the temperature T = 1/β we encounter

a singularity in the partition function at a temperature T = TH(g) = 1/βH(g) which is

a function of the coupling constant g. This is the Hagedorn temperature for SU(2) Spin

Matrix theory. We call it a Hagedorn temperature since the density of states goes like eβHE

for high energies. Defining the free energy per site of the Heisenberg spin chain

F (β) = − 1

β
lim
L→∞

1

L
logZ

(XXX)
L (β) (4.6)

the Hagedorn temperature at any g satisfies F (βH) = −1 [12]. One can thus find the

Hagedorn temperature at any coupling from this. In particular for the weak and strong

coupling regimes [12]

TH =


1

log 2
+

g

24π2 log 2
− 3g2

29π4
+

(3 + 2 log 2)g3

213π6
+O(g4) for g � 1

g
1
3

(2π)
1
3 ζ(3

2)
2
3

+
4π

3 ζ(3
2)2

+O(g−
1
3 ) for g � 1

(4.7)

The resemblance between SU(2) Spin Matrix theory and the AdS/CFT correspondence

in the planar limit is evident in the sense that for finite coupling g the theory is determined

from an integrable spin chain (analog to the psu(2, 2|4) spin chain). Moreover, for weak

coupling g � 1 the spectrum of SU(2) Spin Matrix theory is that of the length operator L

plus a small perturbation from gHint. This corresponds to the spectrum of weakly coupled

planar N = 4 SYM in the SU(2) sector. For weak coupling g � 1 one can interpret the

phase below the Hagedorn temperature as a confined phase, with the confinement arising

from the singlet condition on the matrix indices of a†s.

For strong coupling g � 1 the spectrum of the Hamiltonian H = L + gHint of SU(2)

Spin Matrix theory is in terms of states with Hint � 1. For a single-trace state with

9With an extra term −µSz in (4.3) one would get the ferromagnetic XXX1/2 Heisenberg spin chain with

a magnetic field [13].
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L � 1 (i.e. a spin chain) this corresponds to scattering magnons with low momenta of

order 1/L. The low energy spectrum is expanded in powers of 1/L. To leading order

Hint = 1
2L2

∑
n 6=0 n

2Mn with
∑

n 6=0 nMn = 0 where Mn is the number of particles with

level number n. This resembles a quantum string spectrum. Note that the n2 dependence

signifies a Galilean dispersion relation E ∝ p2. Employing coherent states one can go to

a semi-classical regime of the spin chain and write down an effective action for large L.

This gives the Landau-Lifshitz sigma-model action with target space S2 (see for example

chapter 5 in [32]). Thus, one can obtain both something resembling quantum strings as well

as semi-classical strings with continous world-sheet and a geometric target space from the

SU(2) Spin Matrix theory at strong coupling g � 1. Note that while all these considerations

are for single-trace states, the full spectrum of multi-trace states takes the significance of

a free gas of strings. The Hagedorn temperature is thus the Hagedorn temperature of this

gas of strings.

The three phases with the confining phase of planar N = 4 SYM in the SU(2) sector

for g � 1, a gas of Heisenberg spin chains for finite g, and a non-relativistic string theory

for large g are depicted as the three low temperature phases in the (g, T ) phase diagram

of figure 1.

Match with string theory on AdS5 × S5. In [12, 15] it was argued that one can

match the planar N = 4 SYM on R× S3 in the SU(2) Spin Matrix theory limit for g � 1

to string theory on AdS5 × S5 in the dual limit. This is a non-trivial claim in that λ→ 0

usually means going to a quantum string regime. However, in [15] it is explained that the

limit can be taken on the string theory side since: 1) one ends up with a semi-classical

action (for large L). 2) The modes that decouple in the limit become infinitely heavy.

3) Thanks to supersymmetry the sigma-model that one starts with is robust to taking

λ → 0. 4) Zero-mode quantum fluctuations are suppressed since one is considering small

fluctuations around a half-BPS state.

Indeed, one finds that in the limit the semi-classical sigma-model of tree-level string

theory on AdS5×S5 reduces to the Landau-Lifshitz model mentioned above that one finds

for g � 1 on the gauge theory side. This can explain the otherwise mysterious one-loop

match between the gauge and string sides in the AdS/CFT correspondence [15].

Note in particular that one can take the pp-wave limit of [33] first and then afterwards

the SU(2) Spin Matrix theory limit.10 In this case one finds a direct match between the

(limit of) the Hagedorn temperature computed in string theory on the pp-wave background

and the Hagedorn temperature (4.7) for g � 1. This provided the first match of the

Hagedorn temperature in the AdS/CFT correspondence [12].

4.3 Large N and low temperature: nearly-planar regime

For large but finite N the non-planar corrections to the planar limit are small for low

temperatures or low energies. A way to see this is to start in the planar limit N = ∞.

Then the expectation value of L is finite for T < TH(g) but diverges for T → TH(g). Hence

10In this pp-wave background the dispersion relation is
√

1 + λp2

4π2 − 1 from which one sees very clearly

that the SU(2) Spin Matrix theory limit is a non-relativistic limit [15].
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reintroducing a large but finite N the expectation value of L reaches N at a temperature

Tmix(g,N) < TH(g) and above this temperature the theory becomes increasingly non-

planar since single-trace states start to mix with multi-trace states. Conversely, for low

temperatures T < Tmix(g,N) the planar limit is a good approximation for large N . Hence

one can think of the planar limit as a low temperature (or low energy) limit.

While the planar limit is a good approximation for T < Tmix(g,N) one has corrections

starting at order 1/N . Considering the action of Hint on a contracted two oscillator state

eq. (2.18) one sees that while the second term on the right hand side keeps the same matrix

index structure the three other terms, which are of order 1/N , either move the contraction

to involve only one oscillator or make it a double contraction. More generally, one can infer

from eqs. (2.9) and (2.10) that acting with Hint on a multi-trace state of the form (2.7) one

gets states with the same matrix contractions (but different spin indices) to zeroth order

in 1/N . Subleading to this are terms of order 1/N where either one of the single-traces

are broken up in two, or two of the single-traces are joined into one (with different spin

indices) [34–36]. Since to leading order the single-traces can be interpreted as individual

spin chains, the subleading 1/N terms can be interpreted as describing the splitting or

joining of spin chains, thus providing an interaction between the spin chains. Therefore,

when going from N =∞ to large but finite N the free gas of spin chains becomes a weakly

interacting gas of spin chains.11

For temperatures sufficiently above Tmix(g,N) one encounters a phase transition where

the planar limit does not anymore provide the leading large N behavior. At this phase

transition we go from a confining behavior logZ ∼ O(1) to a deconfining behavior logZ ∼
O(N2) of the partition function Z. While for g = 0 one finds that this phase transition

occurs at the Hagedorn temperature TH = 1/ log 2, for g > 0 the phase transition to

deconfining behavior might very well occur below TH(g). In section 5 we investigate the

phases of SU(2) Spin Matrix theory in the large temperature, deconfining regime.

5 SU(2) Spin Matrix theory at high temperature (non-planar)

In this section we explore the phases of SU(2) Spin Matrix theory, as illustrated in figure 1,

for high temperatures. In sections 5.1 and 5.2 we study in detail the partition function of

free SU(q) Spin Matrix theory, showing in particular that it corresponds to (q − 1)N2 + 1

harmonic oscillators at high temperatures. In section 5.3 we find a classical matrix model

that describes SU(2) Spin Matrix theory at any coupling in the high temperature limit and

we show that for g →∞ one obtains a theory of 2N harmonic oscillators.

5.1 Free SU(q) Spin Matrix theory at high temperature

For g = 0 one can compute the partition function (2.16) for Spin Matrix theory exactly

with any representation Rs for the spin indices by employing the techniques of [20, 21]. To

11Note that the so-called spin bit model of [34] is based on the same interaction as Hint for the SU(2)

Spin Matrix theory. This work focusses on the perturbative 1/N effects, and the interaction is studied in

terms of splitting and joining effects of spin chains. Note also the related work on bit strings of [37] which

considers 1/N effects from the string theory point of view.
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compute this one needs the partition function for a single spin index

z(β, µp) =
∑
s∈Rs

〈s|e−β+
∑
p βµpKp |s〉 (5.1)

The g = 0 partition function is then

Z(β, µp)|g=0 =

∫
[dU ] exp

( ∞∑
n=1

z(nβ, µp)

n
TrUn Tr(U †)n

)
(5.2)

where U ∈ U(N) is a N × N unitary matrix and [dU ] is the integration over the unitary

matrices with the Haar measure. We assumed for simplicity that Rs is bosonic (when

including fermionic states one should put an extra minus sign for even n when computing

z(nβ, µp)). Using Frobenius’ formula one can write eq. (5.2) in terms of characters of the

symmetric group [38]

Z(β, µp)|g=0 = 1 +
∞∑
n=1

∑
k

∑
r

n∏
j=1

z(jβ, µp)
kj

kj !jkj
|χ(r, k)|2 (5.3)

Here n labels the symmetric groups Sn and k = (k1, . . . ., kn) labels the conjugacy classes of

Sn with kj being the number of j-cycles. Moreover, r = [r1, . . . , rn] labels the irreducible

representations of Sn which can be represented as Young tableaux [r1, . . . , rn] with n boxes

and at most N rows since these are in correspondence to representations of U(N). Here rj
in [r1, . . . , rn] is the number of boxes in the j’th row. Finally, χ(r, k) is the character for the

symmetric group Sn for the representation r and conjugacy class k (see for example [39]

for computations of χ(r, k)).

We apply now the general formula (5.3) to free SU(q) Spin Matrix theory (Rs being

the fundamental representation). We take the special case µp = 0. Thus,

z(nβ) = qxn , x ≡ e−β (5.4)

The partition function (5.3) reduces to12

Zq,N (β)|g=0 = 1 +
∞∑
n=1

xn
∑
k

∑
r

n∏
j=1

qkj

kj !jkj
|χ(r, k)|2 (5.5)

Here we added the extra indices q and N to highlight the dependence on these parameters.

The goal in the following is to understand the behavior of this partition function for large

temperature, i.e. x→ 1, given q and N .

For q = 1 the partition function (5.5) corresponds to U(1) Spin Matrix theory (this has

Hint = 0 since Rs is one-dimensional). In this case one finds using
∑

k
1

kj !j
kj
|χ(r, k)|2 = 1

that Z1,N (β)|g=0 = 1 +
∑∞

n=1Cn,Nx
n where Cn,N is the number of Young tableaux with n

boxes and at most N rows. From this one finds

Z1,N (β)|g=0 =

N∏
n=1

1

1− xn
(5.6)

12Note that this partition function counts the number of restricted Schur polynomials [18, 19] of q variables

weighted by their lengths. This follows from the fact that the restricted Schur polynomials provides a basis

for SU(q) Spin Matrix theory as noted in section 2.1.
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In this case there is no Hagedorn singularity of the partition function for N = ∞. Hence

the planar limit of the partition function is valid for T � N . For T � N one has

1 − xn ' nβ for n = 1, 2, . . . , N and hence Z1,N (β)|g=0 ' 1
N !(1 − x)−N which is the

partition function for N indistinguishable one-dimensional harmonic oscillators. For large

N we have logZ1,N (β)|g=0 ' −N logN+N log T . We see that in fact the N logN term can

be neglected for T � N and hence logZ1,N (β)|g=0 ' N log T which is the partition function

for N distinguishable one-dimensional harmonic oscillators. Indeed, it is a general fact in

statistical physics that both the Bose-Einstein statistics and the Fermi-Dirac statistics

for indistinguishable particles asymptote for high temperatures to the Maxwell-Boltzmann

statistics in which all particles are distinguishable (this is known in statistical physics as

the classical limit). Thus, we can conclude that the high temperature phase of U(1) Spin

Matrix theory is N one-dimensional harmonic oscillators.

For q ≥ 2 a general formula that resums the infinite series over n in eq. (5.5) is not

known. Only in the special case of N =∞ one finds13

Zq,N=∞(β)|g=0 =
∞∏
n=1

1

1− qxn
(5.7)

Therefore, we have devised a method to compute Zq,N (β)|g=0 for particular values of q and

N . We assume that Zq,N (β)|g=0 is of the form P (x)/Q(x) where P (x) and Q(x) are two

polynomials. Given this assumption one can compute Zq,N (β)|g=0 by computing a finite

number of coefficents of xn in eq. (5.5) (one can obviously test the assumption by computing

extra terms as well). In appendix A we listed the results for a number of different values

of q ≥ 2 and N ≥ 2. It is not clear from the obtained partition functions what the general

form is. Nevertheless, for the high temperature limit x → 1 we find that all the partition

functions are of the form

Zq,N (β)|g=0 '
aq,N

(1− x)(q−1)N2+1
for T →∞ (5.8)

We conjecture that this is the high temperature form for all q ≥ 2 and N ≥ 2.14 As a com-

plement to the analysis of exact partition functions for finite N we study in appendix B the

partition function (5.5) numerically in the large N limit using the technique of integrating

over the eigenvalues of a unitary matrix. We find for q = 2, 3, 4, 5

lim
N→∞

1

N2
logZq,N (β)|g=0 ' − log bq + (q − 1) log T for T � 1

log q
(5.9)

where bq is a constant (for all q we find bq ' 8.9). This is in accordance with the conjec-

ture (5.8). Since bq is a number of order one, one can also infer that the classical limit,

where one obtains Maxwell-Boltzmann statistics, consists in having T � 1 even for large

13Using that the sum over r is unrestricted one has
∑
r |χ(r, k)|2 =

∏n
j=1 kj !j

kj . Then one can see that

Zq,N=∞(β)|g=0 = 1 +
∑∞
n=1 q

n(Z1,n(β)|g=0 − Z1,n−1(β)|g=0) which gives eq. (5.7).
14We listed the coefficients aq,N in table 2 in appendix A. These coefficents do not provide any obvious

interpretation in terms of the statistics of indistinguishable particles.
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N . In conclusion, in the classical limit T � 1 we can neglect the coefficient aq,N of (5.8)

(or bq in (5.9)) and hence one finds

logZq,N (β)|g=0 ' [(q − 1)N2 + 1] log T for T � 1 (5.10)

which one recognizes as the partition function of (q − 1)N2 + 1 one-dimensional harmonic

oscillators.

According to (5.10) the high-temperature phase of free SU(q) Spin Matrix theory thus

corresponds to (q − 1)N2 + 1 harmonic oscillators. Hence large N free SU(q) Spin Matrix

theory exhibits a phase transition at the Hagedorn temperature TH = 1/ log q into what we

call a partially deconfined phase since it bears resemblance to having full deconfinement, in

particular with the feature that the coupling between the (q−1)N2 +1 harmonic oscillators

goes to zero as T → ∞. Full deconfinement would mean qN2 uncoupled one-dimensional

harmonic oscillators at high temperatures since this is what SU(q) Spin Matrix theory

would correspond to without the singlet condition (i.e. using Hilbert space H′ instead of H
in eqs. (2.4) and (2.7)). However, while we do get uncoupled harmonic oscillators at high

temperatures, we get N2−1 less than what one would have with full deconfinement. Below

in section 5.2 we shall see how the number N2 − 1 emerges from the singlet condition.

Note that the high-temperature phase for N →∞ goes like (q−1)N2 log T . Instead the

confined phase below the Hagedorn temperature is of order one with respect to N . Thus,

using F/N2 as an order parameter, with F = −T logZ being the free energy, we see that

we exhibit a phase transition from the confined phase at low temperature, with F/N2 = 0,

to the partially deconfined phase at high temperature, with F/N2 = −(q − 1)T log T .

It is interesting to search for an interpretation of the partial deconfinement of the spin

chain gas. A possible explanation could be that the spin chains breaks up into smaller

independent constituents that previously were bound together in the confined phase. In

part this is true since it is known that certain single-trace configurations with lengths

exceeding N can be split up into combinations of shorter single-traces. However, this

explanation is flawed. In appendix A we consider the Plethystic logarithm [40, 41] of the

obtained partition functions. The Plethystic logarithm gives back the single-trace partition

function that can generate the full multi-trace partition function. Thus, if there were just

a few single-traces that could generate the full Hilbert-space the result of the Plethystic

logarithm should be a polynomial of low degree. This is indeed true for the cases for

(q,N) = (2, 2), (2, 3), (3, 2). However, these cases seems to be the exceptions to the rule.

For any case with higher q or N than in these three cases the result is an infinite series

in x. As an example consider (q,N) = (4, 2) for which the Plethystic logarithm gives an

infinite series. Even if this is merely 2 by 2 matrices with four different spin labels one has

to include single-traces and algebraic relations between them with arbitrarily large lengths.

This is obviously in contrast with the fact that one obtains a relatively simple theory at

high temperatures with just 13 one-dimensional harmonic oscillators. Thus, we do not

have any clear identification between the single-trace or multi-trace states and the raising

operators for the (q − 1)N2 + 1 harmonic oscillators.

In conclusion, looking at the partition functions for free SU(q) Spin Matrix theory, it

seems clear that our best hope for a regime in which one can obtain a systematic under-
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standing of the large N non-planar behavior of SU(2) Spin Matrix theory is in the high

temperature classical limit. Indeed, we achieve this below by finding a classical description

of SU(2) Spin Matrix theory, even for arbitrary coupling g.

5.2 Classical description of high-temperature regime

Above we found that in the classical limit of the partition functions of free SU(q) Spin

Matrix theory one gets the partition function of (q − 1)N2 + 1 one-dimensional harmonic

oscillators. The classical limit in thermodynamics means that we have such a highly excited

system that the quantum statistical mechanics is well approximated by classical statistical

mechanics. Thus, one should be able to find a classical description of the thermodynamics

in this regime, e.g. where one can obtain the partition function by integrating over the

classical phase space. We use here the method of coherent states to find the description

of free SU(q) Spin Matrix theory in the classical limit. In section 5.3 we generalize this

description to any coupling g in the case of SU(2) Spin Matrix theory.

Coherent state description. The coherent states of the Hilbert space H spanned

by (2.7) for free SU(q) Spin Matrix theory are given as

|λ〉 = Nλ exp

(∑
s

Tr(λsa
†
s)

)
|0〉 , 〈λ|λ〉 = 1 (5.11)

where λs, s = 1, . . . , q, are q complex N ×N matrices with entries (λs)
i
j that specify the

coherent state. We split them up in Hermitian and anti-Hermitian parts

λs =
1√
2

(Xs + iPs) , s = 1, . . . , q (5.12)

where Xs and Ps are Hermitian N × N matrices. The coherent state (5.11) has the

properties

(as)ij |λ〉 = (λs)
i
j |λ〉 , 〈λ|(a†s)ij = 〈λ|(λ†s)ij (5.13)

As such (5.11) is a state in H′. To make it into a state of H we should impose the singlet

condition (2.5). Since we are in a (semi-)classical regime it is enough to demand that the

expectation value of the operator Φi
j is zero, giving

0 = 〈λ|Φi
j |λ〉 =

(∑
s

[λ†s, λs]

)i
j =

(
i
∑
s

[Xs, Ps]

)i
j (5.14)

which we see amounts to imposing Gauss constraint∑
s

[Xs, Ps] = 0 (5.15)

Thus by imposing the Gauss constraint on λs the coherent state (5.11) is a state in H.

Turning to the Hamiltonian H = L we compute the classical Hamiltonian Hcl(Xs, Ps)

Hcl(Xs, Ps) = 〈λ|H|λ〉 = 〈λ|
∑
s

Tr(a†sa
s)|λ〉 =

∑
s

Tr(λ†sλs) =
1

2

∑
s

Tr(P 2
s +X2

s ) (5.16)
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We notice that in the absence of the Gauss constraint (5.15) the Hamiltonian (5.16) de-

scribes a system of qN2 uncoupled one-dimensional harmonic oscillators. This is the clas-

sical analog of the statement that without the singlet condition free SU(q) Spin Matrix

theory would describe qN2 uncoupled quantum harmonic oscillators.15

The classical partition function is

Zq,N (β)|g=0 =
1

(2π)(q−1)N2+1

∫
dPdXe−βHcl(Xs,Ps)δ

(
C(Xs, Ps)

)
(5.18)

where we defined C(Xs, Ps) ≡
∑

s[Xs, Ps]. In the partition function (5.18) we are approx-

imating Tr(e−βH) by integrating e−βHcl over the classical phase space while imposing the

Gauss constraint. This partition function is a good approximation to the exact partition

function (5.5) at high temperatures T � 1 (the classical limit).

We can now count the number of independent constraints included in the Gauss con-

straint in (5.15). Since the left-hand side of the constraint is an anti-Hermitian and traceless

matrix it has N2−1 independent real parameters. Hence, we propose that at high tempera-

tures in the above classical description the N2−1 real constraints from the Gauss constraint

are responsible of the fact that we have N2 − 1 less harmonic oscillators than if one did

not impose the Gauss constraint, thus providing an explanation for having (q − 1)N2 + 1

one-dimensional harmonic oscillators at high temperatures in free SU(q) Spin Matrix the-

ory. While this seems clear at the level of counting constraints and oscillators, in practise

the N2 − 1 constraints are difficult to solve in general. In other words, the above classical

constrained Hamiltonian system does not correspond to uncoupled harmonic oscillators at

finite temperatures, the uncoupled harmonic oscillators emerge only at high temperatures.

Below we give an example for (q,N) = (2, 2).16

Check of emerging uncoupled harmonic oscillators at high temperature. We

now make an explicit check for (q,N) = (2, 2) to see that one obtains a classical partition

15The Lagrangian that corresponds to the Hamiltonian (5.16) and constraint (5.15) is L =
1
2

Tr
(∑

s

[
(D0Xs)

2 − X2
s

])
with D0Xs = Ẋs + i[A0, Xs] where the Hermitian matrix A0(t) is a gauge

field. We can choose the gauge A0(t) = 0 in which case we get the Lagrangian and Gauss constraint

L =
1

2
Tr

(∑
s

[Ẋ2
s −X2

s ]

)
,

∑
q

[Xs, Ẋs] = 0 (5.17)

Note that the Gauss constraint is a non-holonomic constraint of a type that one can deal with by introducing

fictitious forces when deriving the equations of motion [42]. However, for this particular constrained theory

these fictitious forces are zero due to gauge invariance of the theory without gauge fixing and hence the

equations of motion are simply Xs + Ẍs = 0.
16For certain matrix models with a single complex matrix Z one can bring Z to the form Z = UTU†

using an SU(N) transformation U such that T is an upper diagonal matrix with N2 +1 real parameters (see

for example [43]) and subsequently show that the dependence on U drops out of the theory. However, it

does not apply to the above case for q = 2 and Z = X1 + iX2 with Lagrangian and Gauss constraint (5.17)

because of the kinetic term for Z. To see this take Z = T thus with Gauss constraint [T, Ṫ †] + [T †, Ṫ ] = 0

which is not satisfied in general for an upper-triangular matrix T . For N = 2 one can check this explicitly

for T =
( z1 m

0 z2

)
with m ∈ R and z1, z2 ∈ C.
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function corresponding to five uncoupled one-dimensional harmonic oscillators. Write

X1 =
1√
2

(
x1 + x2 x3 + ix4

x3 − ix4 x1 − x2

)
, X2 =

1√
2

(
x5 + x6 x7 + ix8

x7 − ix8 x5 − x6

)
(5.19)

The equations of motion are ẍi + xi = 0, i = 1, 2, . . . , 8, and the three Gauss constraints

are J23 + J67 = 0, J24 + J68 = 0 and J34 + J78 = 0 where we defined the angular momenta

Jij ≡ xiẋj − xj ẋi. Note that for any solution to the equations of motion one has d
dtJij = 0

thus the angular momenta are constants of motion.

We can satisfy the two constraints J24+J68 = 0 and J34+J78 = 0 by setting x4 = 0 and

x8 = 0 (which are also two constraints). Doing this, we still need to impose J23 + J67 = 0.

We make the parametrization x1 = x, x2 = r cosφ, x3 = r sinφ, x5 = y, x6 = l cosϕ and

x7 = l sinϕ. The Hamiltonian (5.16) is

Hcl =
1

2

(
p2
x + x2 + p2

y + y2 + p2
r +

p2
φ

r2
+ r2 + p2

l +
p2
ϕ

l2
+ l2

)
(5.20)

The constraint is pφ + pϕ = 0. The classical partition function is

Z2,2(β)|g=0 =
1

(2π)5

∫
dxdydrdldφdϕdpxdpydprdpldpφdpϕe

−βHδ(pφ + pϕ) (5.21)

We compute

Z2,2(β)|g=0 =
1

β3

∫
drdldpφe

− 1
2
β(
p2φ

r2
+r2+

p2φ

l2
+l2) =

1

β3

∫
dpφ

(√
π

2β
e−β|pφ|

)2

=
π

β4

∫ ∞
0

dpφe
−2βpφ =

π

2β5
(5.22)

Thus, since we are at high temperatures T � 1 we find logZ2,2(β)|g=0 ' −5 log T which

indeed is the partition function of five uncoupled one-dimensional harmonic oscillators.

5.3 Classical matrix model for SU(2) Spin Matrix theory at any coupling

In this section we use the coherent state method to find the classical Hamiltonian for SU(2)

Spin Matrix theory at any coupling g. This provides a classical description of SU(2) Spin

Matrix theory for sufficiently high temperatures (the classical limit).

The coherent states of the Hilbert space H for SU(2) Spin Matrix theory are given by

|λ〉 = Nλ exp
(

Tr(λ↑a
†
↑ + λ↓a

†
↓)
)
|0〉 , 〈λ|λ〉 = 1

λs =
1√
2

(Xs + iPs) , s =↑, ↓
(5.23)

with the Gauss constraint

[X↑, P↑] + [X↓, P↓] = 0 (5.24)

that follows from the expectation value of the singlet condition 〈λ|Φi
j |λ〉 = 0. These

coherent states are a special case of the ones of section 5.2. They have properties (5.13)
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for s =↑, ↓. Turning to the Hamiltonian H = L+ gHint we have already computed the free

part in 〈λ|L|λ〉 in (5.16). For the interacting part we have

〈λ|Hint|λ〉 = − 1

8π2N
Tr
(
[λ†↑, λ

†
↓][λ↑, λ↓]

)
= − 1

32π2N
Tr
(
[X↑, X↓]

2+[P↑, P↓]
2+[P↑, X↓]

2+[X↑, P↓]
2−2[X↑, P↑][X↓, P↓]

)
(5.25)

Using now the Gauss constraint (5.24) on the last term the classical Hamiltonian

Hcl(Xs, Ps) becomes

Hcl(Xs, Ps) = 〈λ|H|λ〉

=
1

2

∑
s

Tr(P 2
s +X2

s )

− g

32π2N
Tr
(
[X↑, X↓]

2+[P↑, P↓]
2+[X↓, P↑]

2+[X↑, P↓]
2+[X↑, P↑]

2+[X↓, P↓]
2
)

(5.26)

This Hamiltonian, together with the Gauss constraint (5.24), describes the classical limit of

the high-temperature regime of SU(2) Spin Matrix theory at any coupling g. We call this a

classical matrix model since it is a classical constrained Hamiltonian system based on four

N × N Hermitian matrices that provide an accurate description of the high temperature

physics in the classical limit of the partition function. One can compute the classical

partition function as we did in (5.18). For g = 0 we know from the above that the classical

matrix model corresponds to N2 + 1 non-interacting harmonic oscillators. As g is turned

on, the classical matrix model, given eqs. (5.26) and (5.24), describes an interacting system

of N2 + 1 harmonic oscillators.

It is interesting to consider the limit of large coupling g � 1 since this should resemble

a string theory phase. Indeed, if we take g →∞ we see from the Hamiltonian that all the

four matrices X↑, P↑, X↓ and P↓ should commute with each other. This can only be true

in general if they all are diagonal. Thus, we end up with the Hamiltonian

Hcl(Xs, Ps)
∣∣
g→∞ =

1

2

∑
s

N∑
i=1

[
(Ps)

i
i + (Xs)

i
i

]
(5.27)

which describes 2N uncoupled one-dimensional harmonic oscillators. Note that the Gauss

constraint (5.24) is solved by having the four matrices diagonal.

In the phase diagram for SU(2) Spin Matrix theory in figure 1 we have depicted the

high-temperature phases for all values of g, in addition to the low temperature phases

reviewed in section 4. We note that as a concrete result of our analysis of SU(2) Spin

Matrix theory we have found out that whereas the connecting link between weak and

strong coupling g in the planar limit N = ∞, e.g. for low temperatures, is a spin chain

theory, for high temperature it is instead a classical matrix model. Thus, whereas for low

temperatures it is the representation of the spin group SU(2) that defines the theory it is
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the matrix representation of the U(N) group that does it at high temperatures. This is a

manifestation of how the finite-N effects change the nature of the theory.

Considering the large coupling regime g � 1 of the phase diagram of figure 1 we

have a non-relativistic string theory (with small string coupling) at low temperatures and

a theory of 2N harmonic oscillators at high temperatures. We find that this is a very

interesting result since it is the first time one has been able to determine precisely what

type of degrees of freedom emerges at high temperatures when one warms up a gas of strings

to the point where it undergoes a phase transition. Normally, such a study would not be

possible to perform since it would require a quantitative understanding of non-perturbative

closed string theory. Our results relate to the long-standing discussion on the Hagedorn

temperature of string theory, e.g. in the classic paper of Atick and Witten they argue

that the Hagedorn transition should be analogous to the deconfinement transition of gauge

theory [44]. Here we see that the high-temperature phase indeed exhibits deconfinement,

and in a sense also asymptotic freedom in that the 2N harmonic oscillators are uncoupled

for sufficiently high temperatures. In view of all this it would be highly interesting to

examine more closely the phase transition at Tc.

We speculate that one can give the following physical interpretation of our results in the

g � 1 regime: for low temperatures the strings interact weakly and live on a sphere S2 (as

one can see from the Landau-Lifshitz model). As one raises the temperature the effective

interaction between the strings becomes stronger since they are more likely to meet. At

the temperature Tc one has a phase transition to a phase of N particles. For sufficiently

high temperatures these N particles live on a plane R2 since they are so energetic that

the S2 effectively looks like R2. Indeed they correspond to N two-dimensional harmonic

oscillators.

Finally, we turn to the question of how to interpret our g � 1 result on the string

theory side of the AdS/CFT correspondence. Since for g →∞ we are considering the states

for which Hint = 0 this corresponds to states with H = L = R1 + R2 where Ri are the

three R-charges of N = 4 SYM or the three angular momenta on S5 on the string theory

side. These states are 1/4 BPS states (in accordance with section 3.4). The partition

function of such 1/4 BPS states has previously been studied in [28] where it was found

that for sufficiently high energies or temperatures it corresponds to N two-dimensional

harmonic oscillators which in fact is the same as 2N one-dimensional harmonic oscillators

in the classical limit. Hence for g → ∞ we should be able to match our result with 1/4

BPS states on the string theory side at large energies or temperatures. It seems natural

to interpret the 2N harmonic oscillators in terms of a gas of 1/4 BPS Giant Gravitons at

high temperatures.

It would be highly interesting to clarify how one could possibly take the SU(2) Spin

Matrix theory limit on the string side. In [15] this limit is taken for the sigma-model of

type IIB string theory on AdS5 × S5 and one finds that it matches the g � 1 results for

the N =∞ case of SU(2) Spin Matrix theory, as mentioned in section 4.2. For the SU(2)

Spin Matrix theory in the high temperature classical regime it would be natural to imagine

that one should be able to get the Hamiltonian (5.26) from a limit of a classical action for

objects that are non-perturbative in the string coupling gs, such as D-branes.
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6 Discussion and outlook

We first make some general remarks on the relation of Spin Matrix theory to the AdS/CFT

correspondence, and subsequently list some of the open problems that would be interesting

to pursue.

General remarks. One can take two roads to Spin Matrix theory. One can study it as

a quantum mechanical theory in its own right, being a finite-N generalization of nearest-

neighbor spin chain theories, or possibly with the motivation that it shares many features

with the AdS/CFT correspondence while still being simple enough to solve, and that

studying it can lead to general observations about finite-N effects and the strong coupling

limit. This is in the same spirit as for example Berenstein’s toy model for the AdS/CFT

correspondence [45], which in our language is U(1) Spin Matrix theory, or certain matrix

models which have been employed to mimic dynamics of quantum black holes [46, 47].

Berenstein’s toy model of [45] has also been used to consider features of quantum black

holes [48]. This model is non-interacting, thus one can regard SU(2) Spin Matrix theory

as a step towards a more accurate model with a non-trivial coupling constant and a phase

transition from confining to deconfining behavior.

The other road to Spin Matrix theory is to employ it as a connecting link to the string

theory side of the AdS/CFT correspondence. We now discuss the prospects of the latter.

We briefly discussed in the Introduction our general philosophy, illustrated in figure 2,

about using Spin Matrix theory limits to get an improved understanding of the AdS/CFT

correspondence. In this we claim that one can use Spin Matrix theory as a connecting

link to non-perturbative effects in string theory on AdS5 × S5. An immediate objection

to this is that we are taking the λ → 0 limit in approaching a zero-temperature critical

point, which seems at odds with connecting to the string theory side at large λ. However,

as explained in section 3.4, it is already clear that one can match the g →∞ limit of Spin

Matrix theory to the supersymmetric sector of AdS5 × S5. In itself this can already be a

very useful result since in this paper we have found classical regimes for SU(2) Spin Matrix

theory which makes it simple to take the g → ∞ limit, and one could very well imagine

finding similar classical regimes for other Spin Matrix theories. Furthermore, as we will

mention below, there are important unresolved issues in the supersymmetric sector of the

AdS/CFT correspondence.

We believe that one can employ Spin Matrix theory as a connecting link to string

theory beyond the supersymmetric sector. Again, the challenge here is that we seemingly

are deep into the quantum regime on the string theory side by taking λ→ 0. However, we

propose that large λ is not always a necessity on the string theory side of the AdS/CFT

correspondence. Indeed, what one more precisely should consider is whether one is in a

semi-classical regime on the string theory side, or not. The Spin Matrix theory limits

can be used to identify regimes on the string theory which are semi-classical, even when

the ’t Hooft coupling is small. By considering the string theory side in such regimes, one

can take λ → 0 and still have a large action. One can then compare this action to the

corresponding regime on the gauge theory side, which then is in terms of the Spin Matrix
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theory. Our assertion is that by having large g in Spin Matrix theory one should be able to

completely, or at least closely, match to the mentioned semi-classical regime on the string

theory side. As already noted the leading g →∞ behavior is protected by supersymmetry,

and hence this should suppress zero-mode quantum fluctuations. Moreover, the modes

that decouple in the Spin Matrix theory limit become infinitely heavy. Indeed, we have

shown in [15] that this reasoning works well for tree-level string theory (i.e. the planar

limit).

On a more general note we would like to emphasize that it seems to us that one

can employ Spin Matrix theory to identify (semi-)classical regions on both sides of the

correspondence. Thus, even if one considers examples where the above reasoning does not

hold, we believe that having dual classical regions to match between is a very good starting

point for building a more detailed match.

Open problems. One of the most interesting future directions is to study Spin Matrix

theories with non-compact spin group (see table 1). For these Spin Matrix theories one

would get a quantum mechanical theory that for large temperatures effectively has a num-

ber of continuous directions, e.g. for the SU(1, 2|3) Spin Matrix theory one would have two

continous directions. One should be able to find an analog of the classical matrix model of

section 5.3 that would have dependence on spatial directions as well. SU(1, 2|3) Spin Ma-

trix theory is particularly interesting since it should contain the 1/16 BPS supersymmetric

states that are dual to black holes on the string side of the AdS/CFT correspondence [49, 50]

(since they satisfy M = S1 + S2 + R1 + R2 + R3 where M is the mass of the black hole).

In this case one should be able to relate the g →∞ and large T regime of SU(1, 2|3) Spin

Matrix theory to the black hole thermodynamics (and possibly also for g large). Under-

standing the 1/16 BPS states that underlies these supersymmetric black holes from the

point of view of N = 4 SYM is an outstanding problem in the literature that has proven

to be quite difficult to solve [30, 51].

Regarding the high-temperature phase of SU(2) Spin Matrix theory one of our key

results is that free SU(q) Spin Matrix theory at high temperature behaves like (q−1)N2 +1

uncoupled one-dimensional harmonic oscillators. As remarked in section 5.1 it is unclear

what the underlying description in terms of the states of the Hilbert space is for these

emerging harmonic oscillator degrees of freedom. Indeed, even in the classical description

using coherent states of section 5.2 it is unclear. This would be interesting to study further

in order to clarify the emergence of these harmonic oscillators. We emphasize that one of

the interesting features is that these emerging degrees of freedom are uncoupled.

Another key result for the high-temperature phase of SU(2) Spin Matrix theory is the

classical matrix model description for any coupling g, as well as the result that for large

coupling g →∞ one obtains a phase described by 2N uncoupled one-dimensional harmonic

oscillators. As remarked in section 5.3 the classical matrix model is the high-temperature

equivalent to the Heisenberg spin chain of a connecting link between weak and strong

coupling, and it would be highly interesting to study if and how such a matrix model can

be obtained on the string theory side of the AdS/CFT correspondence (see section 5.3 for

remarks on this).
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One can easily translate the results of section 5 to SU(2) Spin Matrix theory based

on the adjoint representation of SU(N) (rather than U(N)). Starting from the classical

matrix model of section 5.3 one notices that the traces of the four matrices Xs and Ps
decouple from the other matrix components. The SU(N) case corresponds to setting these

traces to zero, which means one should remove two oscillators at high temperature. Hence

for g = 0 we obtain instead N2 − 1 harmonic oscillators while for g →∞ we have 2N − 2

harmonic oscillators.

There are several other interesting problems to investigate for SU(2) Spin Matrix

theory. One can turn on the chemical potential µ conjugate to Sz which measures the total

spin. For the low temperature phases this was investigated in [13]. It could be interesting

to examine the high temperature phases for non-zero chemical potential as it would reveal

more information on the nature of the emergent N2 + 1 harmonic oscillators for g = 0.

Instead for non-zero coupling one would presumably find a straightforward generalization

of the classical matrix model of section 5.3.

Furthermore, one could investigate free SU(q) Spin Matrix theory by taking a large q

limit. In this limit the leading large q behavior could be classical which could help shed

some light on the high temperature phase of uncoupled harmonic oscillators.

It could also be interesting to explore the connection to the work of [8, 9] where evidence

for integrability symmetry in excitations of N = 4 operators dual to Giant Gravitons is

found. For the one-loop dilatation operator this is a result which is part of SU(2) Spin

Matrix theory and hence one could explore this further within this framework.

Finally, one can investigate the partial deconfinement transition that separates the

low- and high-temperature phases, i.e. the phase transition that occurs at Tc, where we go

from confining logZ ∼ O(1) behavior to deconfining logZ ∼ O(N2) behavior. While for

g = 0 one finds that the phase transition occurs at the Hagedorn temperature TH = 1/ log 2

it is likely that Tc lies lower than the Hagedorn temperature above g > 0 in which case

this phase transition would be a first order transition. However, as pointed out in [21], one

can also first encounter the Hagedorn phase transition as a second order phase transition

and subsequently a continuous phase transition at a higher temperature into the high-

temperature phase.
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A Partition functions of free SU(q) Spin Matrix theory

Using eq. (5.3) we have computed the partition function of free SU(q) Spin Matrix theory

for general q and for 2 ≤ N ≤ 5 up to order x40. Employing the assumption that the

partition functions are of the form P (x)/Q(x) we have subsequently resummed the series

for specific values of (q,N). With N = 2 we have resummed the series for 2 ≤ q ≤ 5, with

N = 3 for 2 ≤ q ≤ 5, with N = 4 for q = 2 and with N = 5 for q = 2. The resummed

expressions for the partition functions are17

Zq,2(β)|g=0 =
P2,2q−4(x)

(1− x)2q−2(1− x2)2q−1
for 2 ≤ q ≤ 5 (A.1)

Zq,3(β)|g=0 =
P3,10q−16(x)

(1− x)2q−2(1− x2)4q−4(1− x3)3q−2
for 2 ≤ q ≤ 5 (A.2)

Z2,4(β)|g=0 =
P4,14(x)

(1− x)3(1− x2)4(1− x3)5(1− x4)5
(A.3)

Z2,5(β)|g=0 =
P5,39(x)

(1− x2)6(1− x3)8(1− x4)6(1− x5)6
(A.4)

with the polynomials

P2,0 = 1 , P2,2 = 1− x+ x2 , P2,4 = 1− 2x+ 4x2 − 2x3 + x4

P2,6 = 1− 3x+ 9x2 − 9x3 + 9x4 − 3x5 + x6
(A.5)

for N = 2 and

P3,4 = 1− x2 + x4

P3,14 = 1− x− 2x2 + 6x3 + 6x4 − 9x5 + x6 + 17x7 + x8 − 9x9

+ 6x10 + 6x11 − 2x12 − x13 + x14

P3,24 = 1− 2x− x2 + 18x3 + 6x4 − 30x5 + 75x6 + 150x7 − 30x8 + 30x9

+ 410x10 + 238x11 − 76x12 + 238x13 + 401x14 + 30x15 − 30x16

+ 150x17 + 75x18 − 30x19 + 6x20 + 18x21 − x22 − 2x23 + x24

P3,34 = 1− 3x+ 2x2 + 34x3 − 4x4 − 18x4 + 421x6 + 624x7 + 251x8

+ 2107x9 + 5377x10 + 4766x11 + 6384x12 + 16031x13 + 19327x14

+ 14592x15 + 21381x16 + 29839x17 + 21381x18 + 14592x19 + 19327x20

+ 16031x21 + 6384x22 + 4766x23 + 5377x24 + 2107x25 + 251x26

+ 624x27 + 421x28 − 18x29 − 4x30 + 34x31 + 2x32 − 3x33 + x34

(A.6)

17Z2,2(β)|g=0 and Z2,3(β)|g=0 have previously been computed in [52].
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aq,N q = 2 q = 3 q = 4 q = 5

N = 2 1
23

1
25

1
26

5
29

N = 3 1
2434

7
2836

409
210310

5·14159
216312

N = 4 1
21335

N = 5 193
2183855

Table 2. Table of aq,N coefficients.

for N = 3 and

P4,14 = 1− x− x2 + 2x4 + 2x5 − 4x7 + 2x9 + 2x10 − x12 − x13 + x14

P5,39 = 1 + 2x− 6x3 − 9x4 + 2x5 + 25x6 + 38x7 + 17x8 − 34x9 − 68x10

− 34x11 + 73x12 + 176x13 + 171x14 + 34x15 − 127x16 − 156x17 − 2x18

+ 218x19 + 322x20 + 218x21 − 2x22 − 156x23 − 127x24 + 34x25

+ 171x26 + 176x27 + 73x28 − 34x29 − 68x30 − 34x31 + 17x32 + 38x33

+ 26x34 + 2x35 − 9x36 − 6x37 + 2x38 + x39

(A.7)

for N = 4 and N = 5. Notice that all of the polynomials are palindromic.

For x → 1 all the resummed partition functions eqs. (A.1)–(A.4) have a limit of

the form

Zq,N (β)|g=0 '
aq,N

(1− x)(q−1)N2+1
for T →∞ (A.8)

where the coefficient aq,N is given in table 2.

The Plethystic logarithm of a partition function Z(x) is defined as [40, 41]

(
PE−1(Z)

)
(x) =

∞∑
k=1

µ(k)

k
logZ(xk) (A.9)

where µ(k) is the Mobius function which is 0 for repeated primes, 1 for k = 1 and (−1)n

when k is a product of n distinct primes. Considering the Plethystic logarithms of the

partition functions eqs. (A.1)–(A.4) we find that the following three cases are finite18

PE−1(Z2,2) = 2x+ 3x2 , PE−1(Z3,2) = 3x+ 6x2 + x3 − x6

PE−1(Z2,3) = 2x+ 3x2 + 4x3 + x4 + x6 − x12
(A.10)

For all the other cases, so for N = 2 with q = 4, 5, N = 3 with q = 3, 4, 5 and (q,N) =

(2, 4), (2, 5), one can see that the Plethystic logarithm gives an infinite series in x. This

follows from the fact that one cannot put the partition functions in the so-called Euler

form
∏∞
k=1(1− xk)−bk with a finite number of non-zero integers bk [40, 41].

For our purposes the interpretation of the Plethystic logarithm is that given a partition

function Z(x) over multi-trace states the Plethystic logarithm returns the corresponding

18PE−1(Z2,2) and PE−1(Z2,3) have previously been computed in [52].
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single-trace partition function ZST(x) from which one can generate Z(x), hence [40, 41]

logZ(x) =

∞∑
k=1

1

k
ZST(xk) , ZST(x) =

(
PE−1(Z)

)
(x) (A.11)

This relation requires that the Hamiltonian does not affect the multi-trace structure when

acting on a state. This is indeed the case for the partition functions (A.1)–(A.4) since we

are considering g = 0.

The result PE−1(Z2,2) = 2x+ 3x2 means that one can generate the full Hilbert space

by combining two single-traces of length one (Tr(a†↑) and Tr(a†↓)) and three single-traces of

length two (Tr(a†↑a
†
↑), Tr(a†↑a

†
↓) and Tr(a†↓a

†
↓)). For PE−1(Z3,2) in (A.10) it means one has

single-traces up to length 3 but in addition an algebraic relation of length 6 between these

single-traces.

B Free SU(q) Spin Matrix theory using eigenvalue description

In section 5.1 we conjecture that the partition function (5.5) for free SU(q) Spin Matrix

theory in general has the high temperature behavior (5.8) based on computations of the

partition function for low values of N . In this appendix we check this result in the large N

regime by applying the method of eigenvalues for the unitary matrix U in (5.2) with (5.4)

(see for instance ref. [21]). In this approach we write eiθj as the N eigenvalues of U . Then

the partition function (5.5) can be written for large N as

Zq,N (β)|g=0 =

∫ ∏
i

[dθi]e
−I , I = 2πN2

∑
n=1

1

n
(1− qxn)|ρn|2 (B.1)

where I[ρ(θ)] is the effective action for a continuous distribution ρ(θ) of eigenvalues with∫ π
−π dθρ(θ) = 1 and ρn =

∫ π
−π dθρ(θ) cos(nθ) where we assume without loss of generality

that the distribution is symmetric around θ = 0. For temperatures above the Hagedorn

temperature TH = 1/ log q one has logZq,N (β)|g=0 = −Imin(β) where Imin(β) is the mini-

mum of the effective action.

The method presented in ref. [21] to find Imin(β) to a good approximation is to include

the first k modes ρ1, . . . , ρk, and setting the rest to zero ρn = 0 for n > k. However, since

we want to approach x→ 1 we have to choose k with care. Namely, each time x passes a

point (1/q)1/n for some n a new mode ρn becomes massless and hence cannot be ignored

for larger x. To accomodate this we increase k with one each time we pass such a point.

We find that one obtains reliable results starting with k = 4 at x = 1/q. We then compute

Lq(x) up to the value x = (1/q)1/11 with k = 13 in the final interval. According to the

conjecture (5.8) one should have for large N

Lq(x) ≡ lim
N→∞

exp

(
−

logZq,N (β)|g=0

(q − 1)N2

)
' (bq)

1
q−1 (1− x) for x→ 1 (B.2)

where bq is a constant which is subleading for x → 1. Thus, if the quantity Lq(x) goes to

zero approximately linearly for x→ 1 then it is in line with the conjecture (5.8). In figure 3
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Figure 3. Above Lq(x) is plotted as function of x for q = 2, 3, 4, 5. These plots are found

numerically starting from x = 1/q and ending at x = (1/q)1/11. The linear curve (bq)
1

q−1 (1 − x)

has been plotted as estimate for the behavior of Lq(x) for x→ 1.

x x

x x

L2 L3

L4 L5

q = 2 q = 3

q = 4 q = 5

we have plotted Lq(x) for q = 2, 3, 4, 5. We see that one indeed gets a linear behavior of

the form (bq)
1
q−1 (1− x) as x→ 1, thus giving evidence to the conjecture (5.8).

The constant bq in (B.2) is related to the constant aq,N in (5.8) as follows

bq = lim
N→∞

exp

(
−

log aq,N
N2

)
(B.3)

We find graphically in the diagrams of figure 3 that bq ' 8.9 with uncertainty ±0.05.19

Note that we find the same value for bq for all q = 2, 3, 4, 5 within the uncertainty. It could

be interesting to pursue this further in order to understand if bq is the same for all q.

19If one takes the values for a2,N of table 2 for N = 2, 3, 4, 5 one finds (a2,2)−1/22 ' 1.7, (a2,3)−1/32 ' 2.2,

(a2,4)−1/42 ' 2.5 and (a2,5)−1/52 ' 2.6. This behavior is consistent with what we find for b2.
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