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1 Introduction

The celebrated Flato-Fronsdal theorem [1] is at the very core of the kinematics underlying

Vasiliev’s four-dimensional nonlinear field equations for higher-spin gravity [2, 3].1 This

theorem is also crucial for the higher-spin holographic conjectures [6–8] involving the free

and critical 3-dimensional vector models of scalar and spinor fields living at the conformal

infinity of AdS4.

From the purely group-theoretical point of view, the Flato-Fronsdal theorem can be

stated as the decomposition of the tensor product of two Dirac singletons [9] (either bosonic

or fermionic) into an infinite direct sum of irreducible representations (irreps) of so(2, 3) .

The latter representations can either be viewed as on-shell Fronsdal fields propagating in the

bulk of AdS4 or as conserved currents of the CFT3 . Correspondingly, the Dirac singletons

(scalar and spinor) can be viewed as AdS4 fields whose physical degrees of freedom live at

its conformal infinity or as free conformal fields propagating in 3-dimensional Minkowski

space. The infinite sum of so(2, 3) -irreps corresponds, from the bulk point of view, to

an infinite tower of higher-spin gauge fields building up the spectrum of Vasiliev’s theory.

From the boundary point of view, the infinite sum corresponds to the single-trace sector

of the corresponding vector models.

The Flato-Fronsdal theorem has been extended to higher-dimensional conformal alge-

bras so(2, d) in [10–12]. In the work [11], the corresponding generalisations suggest the

1For a non-technical review explaining the key mechanisms at work in Vasiliev’s 4D equations, see [4].

For a recent technical review, see e.g. [5].
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existence of extended (supersymmetric) nonlinear higher-spin theories in AdSd+1, where

mixed-symmetry fields, on top of the totally-symmetric ones, are propagating, together

with some massive p-forms. In the latter work [12], the whole analysis is based on charac-

ters of so(2, d) and incorporates singletons of spin s > 1 (for d even). Yet another class of

generalisations features the so-called higher-order scalar singletons,2 that are non-unitary,

ultra-short irreducible representations of the conformal algebra. The spectrum of AdSd+1

fields appearing upon tensoring out higher-order scalar singletons comprises partially mass-

less gauge fields of odd depths [14]. Totally-symmetric partially-massless fields were in-

troduced in [15–17] (the frame-like formulation was given in [18]) and their holographic

duals are partially-conserved currents [19]. Gauge fields always turned out to be of crucial

importance, thereby it can be suspected that partially-massless field could be relevant in a

unified framework for fundamental interactions, e.g. in a cosmological scenario [20] around

dSd+1 where they are unitary.

In [14], a version of higher-spin holography was proposed where a vector model at

an isotropic Lifshitz fixed point is conjectured to be dual to a higher-spin gravity with

spectrum given by a tower of massless and partially massless fields of unbounded integer

spins — see also [21] for a review of the conjecture. As we will explain below, we are lead

to extend this conjecture to spinor CFT’s.

In the present note, we give a proof of the fusion rules presented in [14] using char-

acter formulae and generalise them to include higher-order spinor singletons. We actually

compute the general case of the tensor product of two (scalar and spinor) singletons of

different orders. A novelty in the case of the tensor product of two higher-order spinor

singletons is that the resulting spectra contain even-depth partially-massless fields. The

spectra also contain mixed-symmetry fields that are massless, partially-massless or mas-

sive. Somewhat less expected, we find extra degeneracies in the spectrum of massless and

partially-massless (both symmetric and mixed-symmetric) fields.3 Along the lines of the

holographic conjectures proposed in [8] and [14], we expect that the isotropic Liftshitz

point of the Gross-Neveu model should be dual to a bulk theory containing the spectrum

of fields found in the present paper.

If unbroken higher-spin gravity theories are indeed dual to free CFTs, they should

therefore receive no quantum corrections. This is manifest in the non-standard off-shell

proposal given in [24, 25]. Several one-loop checks of this expectation were performed

in [26–28] where the total vacuum energy was shown to cancel. As a first test of the

validity of the holographic proposal we have made above with the isotropic Lifshitz fixed

points, we find the cancellation of the total Casimir energy for all the spectra considered

in the present note.

The paper is organised as follows: after we explain, in section 2, our methodology

and notation, in section 3 we compute the so(2, d) characters of higher-order scalar and

spinor singletons, as well as the characters of symmetric and mixed-symmetric fields, either

(partially) massless or massive. The main tools employed in this section is a combination of

2Also called here multi-linetons in accordance with the terminology of [13] to which we refer for more

details.
3Mixed-symmetry, partially-massless fields seem to have been first considered in [22, 23].
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the analyses presented in [12] and [29]. In section 4, we take the product of the characters

of ℓth-order scalar and spinor singletons found in the previous section and decompose the

result into a sum of characters of indecomposable so(2, d)-representations. The central

result of our paper is given in a theorem that generalises the Flato-Fronsdal theorem in

the way explained above. A corollary of our theorem is the computation, presented in

section 5, of the total Casimir energy corresponding to the resulting spectra. We conclude

in section 6 with some perspectives of future works. Finally, for the sake of completeness, in

the appendix we give a more general result compared to our theorem presented in section 4,

in the sense that it concerns products of singletons (scalar and spinor) of distinct orders.

The structure of the fusion rule is similar to the case presented in section 4, but the depths

of partially-massless fields run over different values and is more cumbersome to enunciate,

which is the reason why we relegate that general result to the appendix. This general

case can fit with a Vasiliev-like higher-spin gravity construction by considering the tensor

product of a direct sum of distinct multi-linetons with itself.4

2 Notation and methodology

In this section, we spell out the approach that we followed in order to compute characters

of so(2, d) and their fusion rules. We also present our notation. The computation of the

characters of the highest-weight representations we are interested in proceeds following a

three-step procedure:

(1) We use the method explained in [12] to compute the character of a Verma module. We

then apply on it the so(d) Weyl group symmetrizer in order to obtain the character

of the corresponding generalised Verma module;5

(2) The structure of possible (sub)singular modules of the resulting generalised Verma

module is obtained upon inspection of the sequences given in the subsection 4.4.

of [29]. It turns out that, for all the highest-weights we consider in detail, there is

only one submodule which happens to be a generalised Verma module. The character

of the latter is computed following the step 1;

(3) We finally subtract the characters obtained in the previous two steps in order to get

the character of the corresponding irreducible module.

Notation. The rank of the orthogonal subalgebra so(d) ⊂ so(2, d) is denoted by r , i.e.

Dr
∼= soC(2r) and Br

∼= soC(2r + 1). In the present note, we will be only interested in

so(2, d) representations with highest-weight Λ = (−∆, ~s ) , where ∆ is, in AdSd+1/CFTd

language, the scaling dimension of the corresponding primary operator or the minimal

energy of the corresponding bulk field, and ~s = (s1, . . . , sr) is a dominant-integral weight

4Note that higher tensor products of singletons were considered in [30, 31] and in the appendix E of [23]

where the non-compositeness of a generic Metsaev [32] mixed-symmetry gauge field was shown.
5For more details on the notions of Verma modules and generalised Verma modules relevant to our

discussion, see e.g. [13, 29].
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of so(d) in the orthonormal basis. More precisely,

s1 > . . . > sr > 0 for d = 2r + 1 ,

s1 > . . . > sr−1 > |sr| for d = 2r , (2.1)

where the si’s are either all integers or all half-integers. In the case where d = 2r , the

Dirac spinor can be decomposed into left and right irreducible Weyl spinors (12 , . . . ,
1
2 ,

1
2 )

and (12 , . . . ,
1
2 ,−

1
2 ) , and it will be denoted 1

2
.

We denote by V(∆, ~s ) (resp. D(∆, ~s )) the generalised indecomposable (resp. irre-

ducible) Verma module associated with the highest-weight Λ = (−∆, ~s ) . The character

of V(∆, ~s ) is denoted by A
(2,d)
[∆,~s ](q, x1, . . . , xr) while the character of D(∆, ~s ) is denoted by

χ
(2,d)
[∆,~s ](q, x1, . . . , xr) , where we used xi := eµi with a generic weight ~µ =

∑r
i=1 µi~ei in the

orthonormal basis for so(d) . Similarly, q := e−e0(µ) =: e−µ0 where µ = µ0 e0 is a weight of

so(2) ⊂ so(2, d) . The character of an irreducible representation of so(d) with dominant-

integral weight ~s is denoted by χ
(d)
~s (x1, . . . , xr) . We use the following shortening notation

for the following specific cases:

• (s1, . . . , sj , s) is used to denote the following so(d) -weight (s1, . . . , sj , s, . . . , s) for

which sj+1 = sj+2 = . . . = sr = s ;

• In the previous rule, when several last components of a weight are all null, we will

sometimes omit the symbol 0 . For example (s1, . . . , sj , 0, . . . , 0) will sometimes be

denoted (s1, . . . , sj) instead of (s1, . . . , sj ,0) , for the sake of brevity;

• The weights (s1, . . . , sj , 1, . . . , 1
︸ ︷︷ ︸

m

, sj+m+1, . . . , sr) will be denoted (s1, . . . , sj ,1
m,

sj+m+1, . . . , sr) .

3 Characters of partially-massless fields and higher-order singletons

In this section we first review some results of [12, 29] and use them to compute the char-

acters of partially-massless fields and higher-order singletons.

3.1 Review of general results

We recall the following two results spelled out in [29]:

(1) For (µ1, . . . , µr) a so(d) dominant-integral weight, and for

– d = 2r +1

If ∆ is given by either ∆ = r − 1
2 − n (for n ∈ N ) when µ1, . . . , µr are all

integers, or by ∆ = r−n (for n ∈ N ) when µ1, . . . , µr are all half-integers, then

the irreducible module D(∆, µ1, . . . , µr) is given by the following quotient:

D(∆, µ1, . . . , µr) ∼=
V(∆, µ1, . . . , µr)

D(d−∆, µ1, . . . , µr)
, (3.1)

– 4 –
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– d = 2r

If ∆ is given by ∆ = n− µn for a given n ∈ {1, 2, . . . , r} , and obeys the condi-

tions ∆ 6= r and −∆±µr+ r ∈ N , then the irreducible module D(∆, µ1, . . . , µr)

is given by the same quotient as in (3.1).

In these two cases, D(d−∆, µ1, . . . , µr) ∼= V(d−∆, µ1, . . . , µr) , meaning that there

is no singular sub-module in V(d−∆, µ1, . . . , µr) .

(2) For (λ0, λ1, . . . , λr) an so(d+ 2) dominant-integral weight, the irreducible module of

highest-weight (−λ1 − d+ 1, λ0 + 1, λ2, . . . , λr) is given by:

D(λ1 + d− 1, λ0 + 1, λ2, . . . , λr) ∼=
V(λ1 + d− 1, λ0 + 1, λ2, . . . , λr)

D(λ0 + d, λ1, λ2, . . . , λr)
(3.2)

with D(λ0 + d, λ1, λ2, . . . , λr) ∼= V(λ0 + d, λ1, λ2, . . . , λr) .

3.2 Character of a generalised Verma module

The character of an so(2, d) Verma module is given by [12]

C
(d,2)
[∆,~s ](q, x1, . . . , xr) = q∆ P(d)(q, x1, . . . , xr) C

(d)
~s (x1, . . . , xr) (3.3)

where

P(d)(q, x1, . . . , xr) =







1

(1− q)

∏

16i6r

1

(1− qxi)(1− qx−1
i )

when d = 2r + 1 ,

∏

16i6r

1

(1− qxi)(1− qx−1
i )

when d = 2r ,

(3.4)

and

C
(d)
~s (x1, . . . , xr) =







∏

16i6r

x
si+r+1/2−i
i (x

1/2
i − x

−1/2
i )∆−1(x1 + x−1

1 , . . . , xr + x−1
r )

when d = 2r + 1 ,

∏

16i6r

xsi+r−i
i ∆−1(x1 + x−1

1 , . . . , xr + x−1
r ) when d = 2r ,

(3.5)

for ∆(x1, . . . , xr) =
∏

16i<j6r(xj − xi) the Vandermonde determinant. It turns out that

the rational function P(d)(q, x1, . . . , xr) is invariant under the action of the Weyl group

of so(d) .6

In order to obtain the character of the corresponding generalised Verma module, since

the so(d) part of the initial weight is always taken to be dominant integral, it suffices

to apply the Weyl-group symmetrizer of so(d) on C
(d,2)
[∆,~s ](q, x1, . . . , xr) , resulting in the

following formula for the character of the corresponding generalised Verma module:

A
(d,2)
[∆,~s ](q, x1, . . . , xr) = q∆P(d)(q, x1, . . . , xr)χ

(d)
~s (x1, . . . , xr) , (3.6)

6The action of the Weyl group is reviewed e.g. in the appendix B of [12]. The Weyl group acts on the

variables xi by permutations and changes of signs.
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where, introducing

ki := si + r +
1

2
− i , (3.7)

the irreducible characters of so(d) are

χ
(d)
~s (x1, . . . , xr) =







det
(

x
kj
i − x

−kj
i

)

∆−1(x1 + x−1
1 , . . . , xr + x−1

r )
∏

16i6r

(x
1/2
i − x

−1/2
i )

when d = 2r + 1 , and

1

2

(

det
(

x
kj
i − x

−kj
i

)

+det
(

x
kj
i + x

−kj
i

))

∆−1(x1 + x−1
1 , . . . , xr + x−1

r )

when d = 2r .

(3.8)

3.3 Characters of various specific highest-weight modules

Multi-linetons Di and Rac. Analogously to the terminology of Flato and Fronsdal, we

call Di (resp. Rac) ℓ-lineton the irreducible so(2, d) module given by ℓ semi-infinite lines

in compact weight space based on the lowest-energy states |d+1
2 − ℓ, 1

2
〉 (resp. the state

|d2 − ℓ,0〉 ). Indeed, for ℓ = 1 and d = 3 they correspond to the Di (resp. Rac) singleton

of Dirac [1].

Using the results summarised in the subsection 3.1, item (1), one finds that the ir-

reducible modules corresponding to the Rac and Di ℓ-linetons are given in terms of the

following quotients:

D

(
d

2
− ℓ,0

)

∼=
V(d2 − ℓ,0)

D(d2 + ℓ,0)
(3.9)

and

D

(
d+ 1

2
− ℓ,

1

2

)

∼=
V(d+1

2 − ℓ, 1
2
)

D(d−1
2 + ℓ, 1

2
)

(3.10)

with D(ℓ + d
2 ,0)

∼= V(ℓ + d
2 ,0) and D(ℓ + d−1

2 , 1
2
) ∼= V(ℓ + d−1

2 , 1
2
) . The characters of the

corresponding modules are

χ
(d,2)

[ d
2
−ℓ,0]

(q, x1, . . . , xr) = q
d
2 (q−ℓ − qℓ)P(d)(q, x1, . . . , xr) , (3.11)

χ
(d,2)

[ d+1

2
−ℓ,1

2
]
(q, x1, . . . , xr) = q

d
2

(

q−(ℓ− 1

2
) − qℓ−

1

2

)

χ
(d)
1

2

(x1, . . . , xr)P
(d)(q, x1, . . . , xr) . (3.12)

In the case d = 2r , there is a restriction on ℓ for the modules to be irreducible. It

turns out that, for the scalar case, irreducibility implies ℓ < r and, for the spinor case,

ℓ 6 r . This being said, when ℓ does not satisfy these inequalities, the corresponding

highest-weights are dominant integral. In order to make the latter modules irreducible,

one has to further quotient them and the resulting irreducible modules happen to be finite-

dimensional. They correspond to so(2, d) spherical harmonics, e.g. of spin (or degree)

ℓ − r > 0 for the scalar case D (r − ℓ,0). These irreducible subspaces of solutions of the

higher-order D’Alembertian equations will not be of interest to us since they are finite-

dimensional. We will slightly abuse the notation and still use the symbols D
(
d
2 − ℓ,0

)
and

D
(
d+1
2 − ℓ, 1

2

)
for the corresponding reducible quotient modules (3.9) and (3.10).

– 6 –
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Bulk scalar fields. The structure of the module corresponding to a generic scalar field

is D(∆,0) ∼= V(∆,0) . The character for a scalar field propagating in the bulk of AdSd+1

therefore is

A
(d,2)
[∆,0](q, x1, . . . , xr) = q∆P(d)(q, x1, . . . , xr) . (3.13)

The unitarity condition is ∆ >
d−2
2 . The fields are reducible when ∆ = d−2ℓ

2 , for ℓ ∈ N0 ,

and for these values of the conformal weight, one is back to the cases of the higher-order

scalar singletons described above.

With a slight abuse of language inherited from the philosophy in higher-spin gravity,

the irreps D(d − 1 − t,0) ∼= V(d − 1 − t,0) will be called massless for t = 1 and partially

massless for t > 1 . This is justified by the fact that their scaling dimension ∆ coincides

with the scaling dimension of the corresponding spin-s irreps when s = 0. However, as

so(2, d) irreducible modules, they have a different structure compared to the (partially)

massless modules in the sense that they do not arise from a quotient of generalized Verma

modules. Actually, this is not totally correct in even dimensions d = 2r , where there exist

values of t for which V(d− 1− t,0) admits singular sub-modules, so that the isomorphism

D(d−1−t,0) ∼= V(d−1−t,0) is not true. This arises when 2r−1−t = r−ℓ ⇔ t = r−1+ℓ

for ℓ > 1 .

Totally-symmetric fields/operators. Using the results summarised in the subsec-

tion 3.1, item (2), the structure of the modules corresponding to (partially-)massless,

totally-symmetric fields/operators is

D(s+ d− t− 1, s) ∼=
V(s+ d− t− 1, s)

D(s+ d− 1, s− t)
, for 1 6 t 6 s , (3.14)

where D(s+ d− 1, s− t) ∼= V(s+ d− 1, s− t), whence the character:

A
(d,2)
[s+d−t−1,s](q, x1, . . . , xr) = qs+d−t−1χ

(d)
(s)(x1, . . . , xr)P

(d)(q, x1, . . . , xr) when t > s

(3.15)

χ
(d,2)
[s+d−t−1,s](q, x1, . . . , xr) = qs+d−1

(

q−tχ
(d)
(s) − χ

(d)
(s−t)

)

P(d)(q, x1, . . . , xr) when t 6 s .

(3.16)

Totally-symmetric, spin-s, massless fields/conserved currents correspond to t = 1 . Totally-

symmetric, depth-t, partially-massless fields/partially-conserved currents correspond to 2 6

t 6 s . Totally-symmetric, massive fields/operators correspond to t > s .

The same situation occurs for the modules V(s+d− t−1, s, 1
2
), s half-integer, t ∈ N0 ,

that possess one sub-module D(s+ d− 1, s− t, 1
2
) ∼= V(s+ d− 1, s− t, 1

2
) for s > t+ 1/2 .

We thus have:

D

(

s+ d− t− 1, s,
1

2

)

∼=
V(s+ d− t− 1, s, 1

2
)

D(s+ d− 1, s− t, 1
2
)

(3.17)

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
1
3
1

and the corresponding characters

A
(d,2)

[s+d−t−1,s,1
2
]
(q, x1, . . . , xr) = qs+d−t−1χ

(d)

(s,1
2
)
(x1, . . . , xr)P

(d)(q, x1, . . . , xr)

when t > s− 1/2 (3.18)

χ
(d,2)

[s+d−t−1,s,1
2
]
(q, x1, . . . , xr) = qs+d−1

(

q−tχ
(d)

(s,1
2
)
− χ

(d)

(s−t,1
2
)

)

P(d)(q, x1, . . . , xr)

when t 6 s− 1/2 . (3.19)

Mixed-symmetry fields/operators. Similarly, the modules with highest-weights (t+

1−s−d, s,1m) with s, t ∈ N0, possess one sub-module with highest-weight (1−s−d, s−t,1m)

for s > t . We thus have:

D(s+ d− t− 1, s,1m) ∼=
V(s+ d− t− 1, s,1m)

D(s+ d− 1, s− t,1m)
(3.20)

with D(s+ d− 1, s− t,1m) ∼= V(s+ d− 1, s− t,1m). The characters are

A
(d,2)
[s+d−t,s+1,1m](q, x1, . . . , xr) = qs+d−tχ

(d)
(s+1,1m)(x1, . . . , xr)P

(d)(q, x1, . . . , xr)

when t > s (3.21)

χ
(d,2)
[s+d−t,s+1,1m](q, x1, . . . , xr) = qs+d

(

q−tχ
(d)
(s+1,1m) − χ

(d)
(s−t+1,1m)

)

P(d)(q, x1, . . . , xr)

when t < s . (3.22)

Hook-shaped, spin-s, massless fields/conserved currents correspond to t = 1 .7 Hook-

shaped, depth-t, partially-massless fields or partially-conserved currents correspond to 2 6

t 6 s− 1 . Hook-shaped, massive fields/operator correspond to t > s .

In the previous three cases, namely the totally-symmetric fields (bosonic and fermionic)

and the mixed-symmetric ones, the massive modules can, in some sporadic cases, become

reducible so that we abuse the notation when using the symbols A and D . For example, in

the totally-symmetric, massive spin-s cases, when t > s and for d = 2r , there are sporadic

cases when the modules are reducible, in which cases we will abuse the notation when we

will write D(s+ d− 1, s− t) instead of V(s+ d− 1, s− t) .

Unitarity. The modules D(s+ d− t− 1, s), D(s+ d− t− 1, s, 1
2
) and D(s+ d− t, s,1m)

are unitary only in the case t = 1, as are the scalar and spinor ℓ-linetons D(d2 − ℓ ,0) and

D(d+1
2 − ℓ , 1

2
) only in the case ℓ = 1 .

4 Fusion rules for higher-order singletons

We now give the main result of the present note.

Theorem. The tensor product of two ℓ-linetons, scalar and spinor, decomposes as:

D

(
d

2
− ℓ,0

)

⊗D

(
d

2
− ℓ,0

)

∼=

ℓ⊕

k=1

∞⊕

s=0

D(s+ d− 2k, s,0) , (4.1)

D

(
d+ 1

2
− ℓ,

1

2

)

⊗D

(
d

2
− ℓ,0

)

∼=

2ℓ−1⊕

t=1

∞⊕

s= 1

2
, 3
2
,...

D

(

s+ d− t− 1, s,
1

2

)

. (4.2)

7The mixed-symmetry gauge fields corresponding to t = 1 were first discussed by Metsaev in [32].
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In the cases d = 2r + 1 , we have

D

(
d+ 1

2
− ℓ,

1

2

)

⊗D

(
d+ 1

2
− ℓ,

1

2

)

(4.3)

∼=

2ℓ−2⊕

t=2−2ℓ

D
(
d− 1− t,0

)
⊕

∞⊕

s=1

r−1⊕

m=0

D (s+ d− 2ℓ, s,1m)

⊕
2ℓ−2⊕

t=1

∞⊕

s=1

r−1⊕

m=0

2D (s+ d− t− 1, s,1m) ,

while in the cases d = 2r ,

D

(
d+ 1

2
− ℓ,

1

2

)

⊗D

(
d+ 1

2
− ℓ,

1

2

)

∼=

2ℓ−2⊕

t=2−2ℓ

2D
(
d− 1− t,0

)
⊕

⊕
∞⊕

s=1

r−2⊕

m=0

2D (s+ d− 2ℓ, s,1m)

⊕
∞⊕

s=1

[
D(s+ d− 2ℓ, s,1r−2, 1)⊕D(s+ d− 2ℓ, s,1r−2,−1)

]

⊕

2ℓ−2⊕

t=1

∞⊕

s=1

r−2⊕

m=0

4D (s+ d− t− 1, s,1m)

⊕
2ℓ−2⊕

t=1

∞⊕

s=1

[
2D

(
s+ d− t− 1, s,1r−2, 1

)
⊕ 2D

(
s+ d− t− 1, s,1r−2,−1

)]
.

(4.4)

We interpret these 3 decompositions as follows.

• In the decomposition (4.1), the tensor product of two Rac ℓ-lineton gives [14] a sum

over all integer-spin, partially massless, totally-symmetric fields of odd depths t going

from t = 1 to t = 2ℓ − 1 , where strictly speaking the cases t = 1 correspond to the

massless fields and the cases t > s correspond to massive fields;

• In the decomposition (4.2), the tensor product of a Di ℓ-lineton with a Rac ℓ-lineton

gives a sum over all half-integer-spin, partially massless, totally-symmetric fields of

all depths t going from t = 1 to t = 2ℓ− 1 ;

• In the decomposition (4.3), three types of fields appear:

– a finite multiplet of scalar fields, among which we find 2ℓ − 1 massive fields

D(d−1− t,0) for 2−2ℓ 6 t 6 0 and 2ℓ−2 partially massless for 0 < t 6 2ℓ−2;

– a finite collection {D (s+ d− 2ℓ, s,0)}s=1,2,...,2ℓ−2 of massive spin-s fields;

– an infinite collection {D (s+ d− 2ℓ, s,0)}s=2ℓ−1,... of partially-massless spin-s

fields of depth t = 2ℓ− 1;

– a finite collection {D (s+ d− 2ℓ, s,1m)}s=1,2,...,2ℓ−1; m=1,...,r−1 of mixed-

symmetry (hook) massive fields;
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– an infinite collection {D (s+ d− 2ℓ, s,1m)}s=2ℓ,...; m=1,...,r−1 of partially-

massless mixed-symmetry (hook) fields of depth t = 2ℓ− 1; and

– a multiplicity-two tower of fields containing massive, partially-massless and

massless fields, either totally symmetric (m = 0) or hook-shaped (m > 0) of

various depths below 2ℓ− 2 .

• In the even-dimensional case the product of two Di ℓ-linetons (4.4) differs from the

odd-dimensional case (4.3) by the overall multiplicity of two, apart from the hook-

like mixed-symmetry fields for which the first column has maximal height r . We can

track back the origin of this multiplicity by remembering that we actually consider

the tensor product of two Dirac, not Weyl, ℓ-linetons. The product of two left (resp.

right) ℓ-linetons will produce hook fields with a number of boxes in the first column

with the parity of r, the tallest hook field having chirality left (resp. right). The

product of a left (resp. right) Di ℓ-lineton with a right (resp. left) Di ℓ-lineton gives

the hook fields with a number of boxes in the first column with the parity of r + 1 .

Remark. The proof of the above theorem amounts to decomposing a product of char-

acters, namely rational functions of variables q, x1, . . . , xr , into a sum of characters. The

method of characters does not allow one to identify, in the aforementioned decomposi-

tion, whether the resulting characters are associated with decomposable or indecomposable

modules. Since some of the representations considered here are non-unitary, they can be

reducible but indecomposable, i.e. not fully reducible. Therefore, the symbols ⊕ appearing

in the theorem should be understood in the weak sense, i.e. either direct or semi-direct

sums. Only an explicit realisation of the modules can allow the precise distinction, for

example in a holographic context where the various modules are realised as fields with

prescribed boundary behaviours.

5 Casimir energy

Let us briefly recall the standard relations between characters of so(2, d), canonical par-

tition functions of CFTd and the Casimir energy on R × Sd−1 (see e.g. [28, 33] for

more explanations).

The canonical partition function Z(β) for a free boundary conformal field theory on R×

Sd−1 (or for a free field in the anti-holographic bulk dual) in a thermal bath of temperature

T = 1/β is equal to the corresponding so(2, d)-character evaluated at q = exp(−β) and

x1 = . . . = xr = 1 . The Hamiltonian zeta-function can be defined in terms of the Mellin

transform of the canonical partition function

ζE(z) :=
1

Γ(z)

∫ ∞

0
dβ βz−1Z(β) , (5.1)

whose value at z = −1 is twice the Casimir energy EC = 1
2ζE(−1).

As pointed out in [28], the vanishing of the Casimir energy can sometimes be shown

without computing explicitly the Hamitonian zeta-function due to the following property:

when the canonical partition function is an even function of the temperature, Z(−β) =

Z(β) ⇔ Z(1/q) = Z(q), the Casimir energy automatically vanishes, EC = 0 . Let us
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shortly review the heuristic reasoning behind this fact. As Γ(z) has a pole at z = −1 ,

the function 1
Γ(z) has a zero at z = −1 , so for ζE(−1) to be non-zero, the integral has to

have a pole at z = −1 . The expansion in Laurent series around β = 0 of an even function

Z(β) of course only contains even powers of β . Thus, the integral in (5.1) can only have

poles at even integer values of z . So the pole at z = −1 of the Gamma function at the

denominator in (5.1) cannot be compensated by a pole from the integral. Consequently,

the Hamiltonian zeta-function vanishes at z = −1: EC = 1
2 ζE(−1) = 0 .

As we will show below, the canonical partition functions for any product of two (scalar

or spinor) higher-order singletons happen to be even in β , thereby implying the vanishing

of the total Casimir energy for the infinite tower of fields displayed in our theorem. More

rigorously, we have checked this in two ways: on the one hand, we have computed the

Hamitonian zeta function for the square of the ℓ-lineton partition function; on the other

hand, we computed the infinite sum of the individual Casimir energies. Both ways give zero.

Using P(d)(q, 1 . . . , 1) = (1 − q)−d , we have the following expression for the partition

function of a single Rac ℓ-lineton:

Z(q) = χ
(d,2)

[ d
2
−ℓ,0]

(q, 1, . . . , 1) =
q

d
2 (q−ℓ − qℓ)

(1− q)d
. (5.2)

This partition function Z(β) is an even/odd function of β when d is odd/even:

Z(q−1) =
q−

d
2

(1− q−1)d
(qℓ − q−ℓ) = (−1)d+1Z(q) . (5.3)

The same parity property holds for the partition function of a single Di ℓ-lineton. Therefore

the partition functions for the tensor product of any two scalar or spinor higher-order

singletons (possibly of distinct orders) are even functions of β , implying the vanishing of

the corresponding Casimir energies. One can check that this is indeed the case by a direct

calculation. Here we show it for two Rac ℓ-lineton, the calculation being similar for the

other cases.

Using (1− x)−α =
∑+∞

n=0

(
n+α−1
α−1

)
xn , one finds that the Hamiltonian zeta-function of

the square of Z(β) given in (5.2) is equal to

ζE(z) =
1

Γ(z)

∫ +∞

0
dββz−1 e

−βd(e2ℓβ + e−2ℓβ − 2)

(1− e−β)2d

=
1

Γ(z)

+∞∑

n=0

(
n+ 2d− 1

2d− 1

)∫ +∞

0
dββz−1e−β(d+n)

(

e2ℓβ + e−2ℓβ − 2
)

.

(5.4)

Now using
∫ +∞
0 dββz−1e−aβ = a−zΓ(z), we have :

ζE(z) =
+∞∑

n=0

(
n+ 2d− 1

2d− 1

)
[
(d+ n− 2ℓ)−z + (d+ n+ 2ℓ)−z − 2(d+ n)−z

]
. (5.5)

For z = −1 , the sum of the three terms in square brackets vanishes for any fixed value of

n . As a result, EC = 0 .

Notice that, contrarily to the odd-dimensional case, the partition function of individual

multi-linetons in even dimension d are odd functions of β and their Casimir energy are

nonvanishing. Nevertheless, the Casimir energy vanishes for the tensor product of two

of them.
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6 Conclusions and perspectives

In this note, we generalised the Flato-Fronsdal theorem to the cases of higher-order sin-

gletons, scalar and spinor, in arbitrary dimensions d > 3 . We found novelties in the case

of the tensor product of two spinor ℓ-linetons, such as degeneracies and partially-massless

mixed-symmetry fields of any depth. The tensor product of two scalar or spinor multi-

linetons of any two different orders has been decomposed as well. This result is presented

in the appendix.

Our theorem in section 4 suggests the existence of a higher-spin, unbroken Vasiliev-

like theory that should be the bulk dual of a Gross-Neveu model at an isotropic Lifshitz

fixed point. The spectrum of this conjectured higher-spin gravity theory is encoded in the

decomposition of two Di ℓ-linetons given in our theorem. A first check of this holographic

conjecture and the one in [14] is the vanishing of the total Casimir energy at 1 loop for both

spectra. These conjectures and their corresponding one-loop checks admit a straightforward

generalisation for a direct sum of free scalar and spinor singletons of various orders.

An interesting generalisation of our results is to look at tensor products of higher-order

spin-s singletons for s > 1 (in even dimensions d ). It would also be interesting to under-

stand how the results obtained by the method of so(2, d) characters can be “continued”

to the signature so(1, d+1) . This is motivated by the unitarity of partially-massless fields

in de Sitter geometries. For the same reason that the bosonic Vasiliev theory is unitary in

de Sitter spacetime, the higher-spin gravity theories whose spectra we found in the present

note should also be unitary in de Sitter background.
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A General theorem

The tensor product of two higher-order singletons, scalar and spinor, decomposes as:

D

(
d

2
− ℓ,0

)

⊗D

(
d

2
− ℓ′,0

)

∼=

ℓ+ℓ′

2⊕

k=
|ℓ−ℓ′|

2
+1

∞⊕

s=0

D(s+ d− 2k, s,0) , (A.1)

D

(
d+ 1

2
− ℓ,

1

2

)

⊗D

(
d

2
− ℓ′,0

)

∼=

ℓ+ℓ′−1⊕

t=|ℓ−ℓ′− 1

2
|+ 1

2

∞⊕

s= 1

2
, 3
2
,...

D

(

s+ d− t− 1, s,
1

2

)

. (A.2)
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In the cases d = 2r + 1 , we have, for ℓ 6= ℓ′ :

D

(
d+ 1

2
− ℓ,

1

2

)

⊕D

(
d+ 1

2
− ℓ′,

1

2

)

∼=

ℓ+ℓ′−2⊕

t=|ℓ−ℓ′|

[
D
(
d− 1 + t,0

)
⊕D

(
d− 1− t,0

)]

⊕
∞⊕

s=1

r−1⊕

m=0

[
ℓ+ℓ′−2⊕

t=|ℓ−ℓ′|+1

2D (s+ d− t− 1, s,1m)

⊕D
(
s+ d− |ℓ− ℓ′| − 1, s,1m

)
⊕D

(
s+ d− ℓ− ℓ′, s,1m

)

]

,

(A.3)

while in the cases d = 2r and for ℓ 6= ℓ′ :

D

(
d+ 1

2
− ℓ,

1

2

)

⊗D

(
d+ 1

2
− ℓ,

1

2

)

∼=

ℓ+ℓ′−2⊕

t=|ℓ−ℓ′|

[
2D

(
d− 1 + t,0

)
⊕ 2D

(
d− 1− t,0

)]

⊕
∞⊕

s=1

r−2⊕

m=0

[
ℓ+ℓ′−2⊕

t=|ℓ−ℓ′|+1

4D (s+ d− t− 1, s,1m)

⊕ 2D
(
s+ d− |ℓ− ℓ′| − 1, s,1m

)
⊕ 2D

(
s+ d− ℓ− ℓ′, s,1m

)

]

⊕
∞⊕

s=1

[
ℓ+ℓ′−2⊕

t=|ℓ−ℓ′|+1

(

2D
(
s+ d− t− 1, s,1r−2, 1

)
⊕ 2D

(
s+ d− t− 1, s,1r−2,−1

))

⊕D
(
s+ d− |ℓ− ℓ′| − 1, s,1r−2, 1

)
⊕D

(
s+ d− ℓ− ℓ′, s,1r−2,−1

)

]

.

(A.4)
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