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1 Introduction

In heavy ion collisions at RHIC and LHC, a novel state of QCD matter, quark-gluon

plasma, is created. The quark-gluon plasma produced at RHIC was discovered to behave

like a nearly perfect fluid reflecting strongly coupled regime of QCD [2, 3], with relativistic

hydrodynamics found to provide an accurate description of the plasma fireball expansion.

The hydrodynamic evolution of the quark-gluon plasma is characterized by a set of trans-

port coefficients, which have to be computed from the microscopic QCD. However, strongly

coupled nature of this system prevents from a first principe analytic calculation of these co-

efficients. While lattice methods are quite reliable in studying QCD thermodynamics [4–6],

they usually fail in extracting transport coefficients due to limited applicability to real-time

dynamics. Therefore, various microscopic models are indispensable to understand trans-

port properties of this QCD matter.

Fluid dynamics [7, 8] is an effective description of most interacting quantum field

theories at long wavelengths. The description is of statistical nature: it captures collective

dynamics of a large number of microscopic degrees of freedom. The collective variables

suitable for such a description are local densities of conserved charges, local fluid velocity

and temperature. Hydrodynamic equations are local conservation laws for corresponding

currents, which are specified via constitutive relations. As a low energy effective field

theory, fluid dynamics describes near-thermal equilibrium systems and is naturally defined

in terms of derivative expansion of the local fluid mechanical variables. Up to a finite
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number of transport coefficients, the derivative expansion at any given order is completely

fixed by thermodynamic and symmetry considerations. Transport coefficients, such as

viscosities and conductivities, must be determined from either experimental measurements

or theoretical computations in the underlying microscopic theory.

The stress tensor Tµν of a relativistic fluid is usually presented as a sum of two terms

Tµν = T Ideal
µν + TDiss

µν , (1.1)

where T Ideal
µν corresponds to ideal fluid dynamics and for conformal fluids has the form1

T Ideal
µν =

1

b4 (ηµν + 4uµuν), (1.2)

where ηµν is the four dimensional Minkowski metric, the fluid’s four velocity is uµ and, in

our notations, the temperature is

T =
1

πb
. (1.3)

TDiss
µν accounts for dissipative effects and is chosen to be nonzero only for spatial compo-

nents. Up to the first velocity gradient it is given by the Navier-Stokes term2

TDiss
ij = −η0 σij , (1.4)

where η0 is the shear viscosity coefficient and the tensor σij has the form3

σij =
1

2

(
∂iβj + ∂jβi −

2

3
δij∂β

)
, ui =

βi√
1− β2

. (1.5)

Theoretical foundations of relativistic dissipative fluid dynamics are not yet fully es-

tablished. The relativistic Navier-Stokes equations are a-causal and unstable [9–12]: the

irreversible currents are linearly proportional to the thermodynamic forces, which have in-

stantaneous influence on the currents, obviously violating causality. These problems can be

solved by introducing retardation into the definitions of the irreversible currents [13, 14],

leading to equations of motion for these currents, which thus become independent dy-

namical variables. Theories of this type are known as causal relativistic dissipative fluid

dynamics. Causality usually also implies stability [15]. To obtain a causal formulation,

one needs to include higher order terms in the gradient expansion of the currents, in which

case additional transport coefficients arise. Truncation at any fixed order would presum-

ably lead to violation of causality that can be fully restored only at infinite order, which we

refer to as an all-order gradient resummation. Non-trivial physical consequences imposed

by causality of relativistic fluids were investigated in [9–12, 15–17] and lead to certain

constraints on possible values of higher order transport coefficients.

AdS/CFT correspondence [18–21] emerged over a decade ago as a standard tool and

a model playground for addressing strongly coupled dynamics of gauge theories. The

1The central charge of boundary CFT was factored out by a suitable normalization of the Boltzmann

constant kB.
2The bulk viscosity vanishes for the conformal fluids to be discussed below.
3The linearization (2.7) was assumed in writing down the shear tensor σij .
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AdS/CFT correspondence relates holographically a large N strongly interacting quan-

tum field theory with dynamics of classical gravity in (asymptotically) AdS spacetime.

Fluid/gravity correspondence [22–25] is a long wavelength limit of the AdS/CFT corre-

spondence: it gives a map between black holes in asymptotically AdS spacetime and fluid

dynamics of a strongly coupled boundary field theory. The most celebrated prediction of

the fluid/gravity correspondence is a ratio of the shear viscosity η0 to the entropy density

s [22–24],

η0
s

=
1

4π
. (1.6)

The ratio (1.6) is universal for a large class of strongly coupled gauge theory plasmas for

which holographic duals are governed by Einstein gravities in asymptotically AdS space-

times. Remarkably, this small ratio is quite close to the values extracted for QCD plasma

from the RHIC experiments. Universality of this ratio was further proved in [26, 27] and

in [28] using black hole membrane paradigm. It was later found that university of the

ratio (1.6) gets violated by either modifying Einstein gravity [29–38] or breaking isotropic

invariance among spatial directions [39–42]. We refer the reader to [43] for a comprehensive

review on early literature.

A specific realization of the fluid/gravity correspondence, and the one we will closely

follow below, was established in [44]: it provides a systematic framework to construct a

universal nonlinear fluid dynamics, order by order in the boundary derivative expansion.

The stress tensor for the dual conformal fluid was explicitly constructed in [44] up to

second order in derivative expansion, which is in perfect agreement with a general form of

second order conformal hydrodynamics as analyzed in [45]. Computations of [44] were later

generalized to conformal fluids in flat [46] and also weakly curved [47] background manifolds

of various dimensions. Forced fluids in a weakly curved manifold were examined in [48] by

studying long wavelength solutions of Einstein-dilaton gravity with negative cosmological

constant. Further developments can be found in reviews [49, 50] and references therein.

Refs. [51, 52] (see also [53–55]) initiated study of generalized relativistic hydrodynamics

by considering all orders in derivatives of local fluid mechanical variables in the stress tensor.

All order or resummed hydrodynamics is found to accommodate certain contributions,

which are not present in a strict low momentum approximation. To avoid any confusion

we thus clarify the terminology: by hydrodynamics we mean an effective theory given by a

constitutive relation for the stress tensor in terms of temperature, fluid velocity and their

gradients only. Navier-Stokes or any “unresummed” hydrodynamics involves only a finite

number of gradients, while all order or “resummed” hydrodynamics means infinite number

of gradients, but no other degrees of freedom.

The higher order derivative expansion generally includes two types of terms: nonlinear

in the fluid velocity, like (∇u)2, and linear ones like ∇ · · ·∇u. The nonlinearities are

significant when amplitudes of local fluid mechanical variables are large. However, even for

fluid perturbations with small amplitudes, one can get large contributions from the linear

terms when the momenta associated with the fluid perturbations are large. Given that

these two types of terms are controlled by different parameters, it is possible to separate
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these contributions and to have the linear terms under theoretical control. We will focus

on those linear terms in the rest of this paper.

To collect all order linear terms in a self-consistent manner, the shear viscosity η0 was

generalized into momenta-dependent function η(ω, q2). This viscosity function is expressed

in momentum space which follows from the replacement ∂µ → (−iω, i~q) in the linear

gradient expansion of Tµν . By postulating a constitutive relation for Tµν in terms of the

shear viscosity function η(ω, q2), the authors of [52] attempted to extract η(ω, q2) from

thermal correlators of the stress tensor computed on the gravity side [56, 57]. While

certain progress was achieved in [52], its prime goal of complete determination of the

viscosity function was not reached. It was realized that even in the case of linearized

hydrodynamics, knowledge of retarded correlators contains insufficient information about

all transport properties of the system. In ref. [1], we succeeded to completely solve this

problem and below we provide all the details related to our computations.

In ref. [1], we reported progress, achieved via linearizing fluid/gravity correspondence,

in consistently generalizing relativistic hydrodynamics to all orders. Upon linearization,

perturbative computations of [44] can be straightforwardly extended to arbitrary order

in the boundary derivative expansion. Our procedure is, however, slightly different from

that of [44]. Particularly, the dissipative part in the stress tensor is collected in a unified

way, rather than being determined order by order in derivative expansion. The Einstein

equations in the bulk are split into two sets: dynamical equations and constraints. It turns

out that in order to derive transport coefficient functions, it is sufficient to solve dynamical

components of the bulk Einstein equations only. By solving only those we construct an “off-

shell” fluid stress tensor. The remaining constraint components of the Einstein equations

are equivalent to conservation laws of thus constructed fluid stress tensor and lead to

generalized Navier-Stokes equations. It is worth emphasizing that the bulk dynamics is

not absorptive, rather the bulk acts as a non-linear dispersive medium. Dissipative effects

emerge via absorptive boundary conditions at the black hole horizon.

We find that the dissipative part of the stress tensor has the following form

TDiss
ij = −

[
η(ω, q2)σij + ζ(ω, q2)πij

]
, (1.7)

where πij is a third order tensor structure

πij = ∂i∂j∂β −
1

3
δij∂

2∂β (1.8)

and ζ(ω, q2) is a new viscosity function, which in [52], apparently incorrectly, was argued to

be zero. We here express the viscosity functions in momentum space but with tensors σij
and πij formulated as explicit derivatives of the fluid velocity. Later, the notations η(∂v, ∂

2)

and ζ(∂v, ∂
2) will also be used to denote the viscosity functions. All these expressions are in-

terchangeable under the above rule of replacement. We will be working using dimensionless

units for all the momenta, choosing units such that the temperature is normalized to πT =

1. So all the physical momenta should be understood as in units of π T : ωπT and qiπT .

In the hydrodynamic limit ω, qi � 1, η(ω, q2) and ζ(ω, q2) are expandable in power

series and a perturbative analysis to be presented below reveals a few first terms in the
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expansions,

η(ω, q2) = 2 + (2− ln 2)iω − 1

4
q2 − 1

24

[
6π − π2 + 12

(
2− 3 ln 2 + ln2 2

)]
ω2 + · · · ,

ζ(ω, q2) =
1

12
(5− π − 2 ln 2) + · · · ,

(1.9)

where in our units, the first term in η corresponds to the ratio (1.6), while the second term

accounts for the relaxation time [44, 45, 58–60]. The remaining two terms in equation (1.9)

are new third order transport coefficients. In section 4, η(ω, q2) and ζ(ω, q2) are computed

numerically to all orders, and we will also present expansions of these viscosity functions

up to fifth order.

The remaining part of this paper is organized as follows. In section 2, we outline the

derivation of the fluid dynamics from the bulk gravity. The main results are formulated as

closed linear holographic RG flow-type equations for the generalized transport coefficient

functions and generalized Navier-Stokes equations. We then compute dispersion relations

for sound and shear modes. In section 3, to make comparison with previous studies in the

literature, we perturbatively solve these holographic RG flow-type equations and obtain

the fluid stress tensor up to third order in the derivative expansion. In section 4, we

numerically solve the RG flow-type equations and obtain generalized transport coefficient

functions, extending the perturbative analysis of section 3 to very large momenta. We

also extract the viscosity functions via an approximate matching scheme, and find perfect

agreement with the numerical results. Summary and discussion can be found in section 5.

2 Fluid dynamics from the bulk gravity

2.1 Linearized fluid/gravity correspondence

The fluid/gravity correspondence makes it possible to construct the fluid stress tensor and

prove its conservation law (Navier-Stokes equations) by solving the bulk Einstein equations

in asymptotically AdS spacetime, in the long wavelength limit. We start by considering a

universal sector of the AdS/CFT correspondence: classical Einstein gravity with a negative

cosmological constant in five dimensional spacetime,

S =
1

16πGN

∫
d5x
√
−g (R+ 12) , (2.1)

where the AdS radius is set to one for convenience. The Einstein equations which follow

from the action (2.1) are

EMN ≡ RMN −
1

2
gMNR− 6gMN = 0. (2.2)

We use upper case Latin indices {M,N, · · · } and lower case Greek indices {µ, ν, · · · } to

denote bulk and boundary directions, respectively. Lower case Latin indices {i, j, · · · } will

be used to specify spatial directions along the boundary.

Besides pure AdS5 spacetime which is dual to the vacuum state of the boundary CFT,

the action (2.1) also admits a 4-parameter family of Black Hole solutions,

ds2 = −2uµdx
µdr − r2f (br)uµuνdx

µdxν + r2Pµνdxµdxν , (2.3)
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with

uv = − 1√
1− β2

, ui =
βi√

1− β2
, β2 =

3∑
i=1

βiβi, (2.4)

and f(r) = 1− 1/r4. Hawking temperature of this black hole is

T =
1

πb
(2.5)

which is identified as the temperature of the dual CFT. The operator Pµν = ηµν + uµuν
acts as a projector onto spatial directions. Notice that so far the parameters βi and b are

held constant, so that the line element (2.3) does form a class of solutions to the Einstein

equations (2.2). As pointed out in [44], the line element (2.3) defines a metric of a uniform

black brane written in the ingoing Eddington-Finkelstein coordinate, moving at velocity βi
along spatial direction xi.

Discussing fluid dynamics we closely follow [44] and promote the constant parameters

βi and b into arbitrarily slowly varying functions of boundary coordinates xα,

ds2 = −2uµ(xα)dxµdr − r2f (b(xα)r)uµ(xα)uν(xα)dxµdxν + r2Pµν(xα)dxµdxν , (2.6)

In general, (2.6) no longer solves the Einstein equations (2.2). The method developed in [44]

is to add suitable corrections to (2.6), so that (2.2) is satisfied by the new line element. The

corrected metric is not easily found for a general configuration. The authors of [44] intro-

duced a systematic way to construct the corrected metric, expanding in the long wavelength

limit. A scale associated with this expansion should be much larger than a characteristic

scale of the system, such as inverse of the temperature 1/T . That is the velocity and temper-

ature fields are assumed to vary slowly on this scale, admitting a gradient expansion around

some arbitrarily chosen point, such as spacetime origin xα = 0. The Einstein equations (2.2)

for the metric are then solved order by order in the boundary derivative expansion. As has

been pointed out in the Introduction, the dual metric was constructed up to second order

in the velocity gradient, including nonlinear terms quadratic in the velocity gradient.

Our main goal is to perform a summation over all higher order derivative terms in

the boundary stress tensor, but as stressed employing linear approximation. Rather than

resorting to order by order derivative expansion of [44], we instead linearize the problem

in perturbations of the fluid mechanical variables uµ(xα) and b(xα). More specifically, the

fluid velocity and temperature parameters are expanded as

uµ(xα) = (−1, εβi(x
α)) +O(ε2), b(xα) = b0 + εb1(x

α) +O(ε2), (2.7)

where, as in [44], we multiply βi(x
α) and b1(x

α) by a small number ε, which is an order

counting parameter. Below we are going to systematically trace only the terms linear in

ε and set ε to one in the final expression of the fluid stress tensor. b0 corresponds to the

equilibrium temperature of the dual fluid system while b1(x
α) accounts for the dissipative

corrections. In what follows, we use conformal symmetry to set b0 to one.

Substituting (2.7) into (2.3), the “seed” metric, i.e., a linearized version of (2.6) is

ds2 = 2drdv − r2f(r)dv2 + r2d~x2

− ε
[
2βi(x

α)drdxi +
2

r2
βi(x

α)dvdxi +
4

r2
b1(x

α)dv2
]

+O(ε2),
(2.8)
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where the first line is the line element of AdS5 black hole written in the ingoing Eddington-

Finkelstein coordinate. As has been explained above, the metric (2.8) does not solve the

Einstein equations (2.2) at order ε. The term linear in ε in (2.8) is only a part of the

metric we are after, and additional corrections at this order have to be introduced. The

full metric is formally written as

g = g(0) + εg(1) +O(ε2), with g(1) = g
(1)
in + g(1)corr, (2.9)

where g(0) is the first line of (2.8) and g
(1)
in corresponds to the term linear in ε of (2.8). The

term g
(1)
corr is the added correction, whose form has to be determined via solving the bulk

Einstein equations (2.2).

In order to proceed with the computations, we fix gauge. Following [44], we work in

the “background field” gauge,

grr = 0, grµ ∝ uµ, Tr
[
(g(0))−1g(1)

]
= 0. (2.10)

We pause to explain the results of the above gauge condition. The most general form of

the undetermined metric correction g
(1)
corr could be parameterized as,

ds2corr = ε
(
grrdr

2 + 2grvdrdv + 2gridrdx
i + gvvdv

2 + 2gvidvdx
i + gijdx

idxj
)
. (2.11)

The condition grr = 0 implies grr = 0. The metric components grµ can be read off from

eqs. (2.8) and (2.11),

grµ = (1,−εβi) + ε (grv, gri) . (2.12)

Therefore, the second condition grµ ∝ uµ amounts to requiring that

(grv, gri) ∝ (1,−εβi) =⇒ gri = −εβigrv. (2.13)

In other words, up to O(ε), the vector component gri will be set to zero. The last condition

in (2.10) gives a constraint,

grv +
1

2r2

3∑
i=1

gii = 0. (2.14)

Under the gauge condition (2.10), the line element (2.11) for g
(1)
corr can be rewritten in the

similar fashion as that of [44],

ds2corr = ε

(
−3hdrdv +

k

r2
dv2 + r2hd~x2 +

2

r2
jidvdx

i + r2αijdx
idxj

)
, (2.15)

where the trace part of gij is explicitly denoted as scalar function h. Therefore, αij is a sym-

metric traceless tensor of rank two. Notice that all the metric components {h, k, ji, αij}
are functions of the bulk coordinates {xα, r}. We shall find that these functions are func-

tionals of the fluid velocity βi, which we leave as an undetermined parameter. Their precise

forms have to be determined by solving the bulk Einstein equations (2.2), supplemented

with appropriate boundary conditions to be discussed in subsection 2.2.
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Once the dual metric is found, the fluid stress tensor of the boundary CFT can be

computed via holographic dictionary [19, 20]. The dual fluid system is defined on the r =∞
hypersurface. However, in an asymptotically AdS spacetime, holographic renormalization

is needed to remove divergences near conformal boundary r =∞. To proceed, we consider

a hypersurface Σ at constant r. The outgoing normal vector nM to Σ is

nM =
∇Mr√

gMN∇Mr∇Nr
, and nM = gMNnN . (2.16)

The induced metrics γMN and γMN on the hypersurface Σ are constructed as

γMN = gMN − nMnN , γMN = gMN − nMnN . (2.17)

The extrinsic curvature tensor KMN of the hypersurface Σ is

KMN =
1

2

(
nA∂AγMN + γMA∂Nn

A + γNA∂Mn
A
)
. (2.18)

Using the formula of [61, 62], the stress tensor for the dual fluid is

Tµν = lim
r→∞

T̃µν (r) = −2 lim
r→∞

r4
(
Kµν −Kγµν + 3γµν −

1

2
Gµν

)
, (2.19)

where Gµν is the Einstein tensor constructed from the induced metric γµν and K ≡ γµνKµν .

The last two terms in eq. (2.19) are the counter-terms needed to remove divergences near

the conformal boundary r =∞.

Applied to the metric (2.15), the fluid stress tensor can be expressed in terms of the

functions {h, k, ji, αij}. We here record all the components of T̃µν ,

T̃ 0
0 = −3(1− 4εb1) +

ε

2r

{
−6rk + 4r4∂β − 4∂j − r3∂i∂jαij + 18(r5 − r)h

+6(r6 − r2)∂rh+ 2r3∂2h+ 6r4∂vh
}
,

T̃ 0
i =

ε

2r4
{

2
[
4r4βi − 4(r4 − 1)ji + r7∂vβi − r3∂ik + (r5 − r)∂rji

]
−r2

(
−∂2ji + ∂i∂j + r4∂v∂kαik − 2r4∂v∂ih− 3r5∂ih

)}
,

T̃ i0 = − ε

2r3
{

2
[
4r3βi − 4r3ji + r6∂vβi − r2∂ik + (r4 − 1)∂rji

]
+r
[
∂2ji − ∂i∂j − r4∂v∂kαik − 2r4∂v∂ih− 3(r6 − r2)∂ih

]}
,

T̃ ij = δij(1− 4εb1) +
ε

2r4
δij
{
r2
[
−∂2k + (1− r4)∂k∂lαkl + 2∂v∂j

]
−2
[
(1− r4)k − 2r7∂β + 2r3∂j − r3∂vk + (r5 − r)∂rk

]
+ r6∂2h

−2r6∂2vh+ 2
[(

3− 12r4 + 9r5
)
h+ (r3 − r7)∂vh+ (2r − 4r5 + 2r9)∂rh

]}
+

ε

2r2
{
−2r

[
2r4∂(iβj) − 2∂(ijj) + r4∂vαij + (r6 − r2)∂rαij

]
− r4∂i∂jh

+
[
∂i∂jk + (1− r4)∂2αij + 2(r4 − 1)∂k∂(iαj)k − 2∂v∂(ijj) + r4∂2vαij

]}
,

(2.20)

where the notation ∂(iβj) etc stands for symmetrization over the indices i and j. It is

important to notice that in the above expression for T̃µν , we have already dropped terms,

which explicitly vanish as r →∞.
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2.2 Dynamics: the bulk gravity and the boundary hydrodynamics

In this subsection we write down dynamical equations which determine the functions

{h, k, ji, αij} in the bulk. Having these functions at hand, we extract the fluid stress

tensor via eq. (2.20). To proceed, we have to specify proper boundary conditions for these

metric functions. The first one is a regularity requirement for the metric over the whole

range of r, in particular at unperturbed horizon r = 1. This follows from our choice of

the ingoing Eddington-Finkelstein coordinate in which the metric is free of any coordinate

singularity. The second boundary condition comes from asymptotic considerations. In the

present paper we restrict our analysis to boundary fluid dynamics in flat spacetime with

the Minkowski metric ηµν . Therefore, we require that the metric correction does not mod-

ify the asymptotic features of the metric (2.6). This condition tightly constrains the large

r behavior for metric functions {h, k, ji, αij}. Specifically, as r → ∞, their behaviors

should be restricted as

h < O(r0), k < O(r4), ji < O(r4), αij < O(r0). (2.21)

Yet some integration constants remain unfixed due to a freedom of defining fluid velocity.

We follow [44] and choose a frame for the dual fluid system. We will work in the “Landau

frame” defined by

uµT
µν
Diss = 0. (2.22)

We are now in the position to study dynamics of the bulk gravity. As pointed out

in section 3.2 of [44], there is one redundancy among the total 15 components of the

Einstein equations (2.2). Similarly to [44], we classify the remaining 14 equations into

constraint equations and dynamical ones. In order to construct the fluid stress tensor,

we only solve the dynamical equations. This will lead us to an “off-shell” fluid stress

tensor with undetermined fluid velocity but with the transport coefficient functions fixed.

The constraint equations will be shown to be equivalent to the conservation law of thus

constructed fluid stress tensor.

The first equation we are to consider is Err = 0,

5∂rh+ r∂2rh = 0. (2.23)

A generic solution to h is

h(xα, r) = s0(x
α) +

s1(x
α)

r4
, (2.24)

where s0 and s1 are arbitrary functions of the boundary coordinates xα. A nonzero function

s0 would violate the asymptotic requirement for h as specified in eq. (2.21). In addition,

s1 6= 0 will result in T 00
Diss 6= 0 as can be seen from eq. (2.20). Therefore, the constraint on

the asymptotic behavior at the infinity and the “Landau frame” convention enforce h = 0.

We proceed by considering Erv = 0,

3r2∂rk = 6r4∂β + r3∂v∂β − 2∂j − r∂r∂j − r3∂i∂jαij . (2.25)

Clearly, the function k cannot be found until the vector ji and tensor αij are computed

and we will postpone integration of eq. (2.25) until first solving for ji and αij . Fortunately,

the dynamical equations for ji and αij can be disentangled from k.
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The dynamical equation for ji follows from Eri = 0,

− ∂2r ji =
(
∂2βi − ∂i∂β

)
+ 3r∂vβi −

3

r
∂rji + r2∂r∂jαij . (2.26)

The diagonal and off-diagonal components of αij should be treated separately. We first

consider the off-diagonal components emerging from Eij = 0 with i 6= j,

0 = (r7 − r3)∂2rαij + (5r6 − r2)∂rαij + 2r5∂v∂rαij + 3r4∂vαij

+ r3
{
∂2αij − (∂i∂kαjk + ∂j∂kαik)

}
+ (∂ijj + ∂jji)− r∂r (∂ijj + ∂jji)

+ 3r4 (∂iβj + ∂jβi) + r3∂v (∂iβj + ∂jβi) .

(2.27)

The diagonal components of αij are coupled with the function k. We present the dynamical

equation for α11,

0 = (r4 − 1)∂2rα11 +
5r4 − 1

r
∂rα11 + 2r2∂v∂rα11 + 3r∂vα11

−
(
∂23α22 − 2∂2∂3α23 + ∂22α33

)
− 2

r3
(∂j − ∂1j1) +

2

r2
∂r (∂j − ∂1j1)

− 6r(∂β − ∂1β1)− 2∂v (∂β − ∂1β1) + ∂2rk,

(2.28)

where the term ∂2rk will be eliminated using eqs. (2.25) and (2.26),

∂2rk = 4r∂β +
4

3
∂v∂β +

4

3r3
∂j − 4

3r2
∂r∂j −

1

3
∂i∂jαij . (2.29)

The equation for α11 can be put into a new form,

0 = (r7 − r3)∂2rα11 + (5r6 − r2)∂rα11 + 2r5∂v∂rα11 + 3r4∂vα11

− r3
(
∂23α22 − 2∂2∂3α23 + ∂22α33 +

1

3
∂i∂jαij

)
+

(
∂1j1 + ∂1j1 −

2

3
∂j

)
− r∂r

(
∂1j1 + ∂1j1 −

2

3
∂j

)
+ 3r4

(
∂1β1 + ∂1β1 −

2

3
∂β

)
+ r3∂v

(
∂1β1 + ∂1β1 −

2

3
∂β

)
.

(2.30)

Similar equations hold for α22 and α33. Remarkably, the equations for the off- and diagonal

components of αij can be combined into a unified form,

0 = (r7 − r3)∂2rαij + (5r6 − r2)∂rαij + 2r5∂v∂rαij + 3r4∂vαij

+ r3
{
∂2αij −

(
∂i∂kαjk + ∂j∂kαik −

2

3
δij∂k∂lαkl

)}
+

(
∂ijj + ∂jji −

2

3
δij∂j

)
− r∂r

(
∂ijj + ∂jji −

2

3
δij∂j

)
+ 3r4

(
∂iβj + ∂jβi −

2

3
δij∂β

)
+ r3∂v

(
∂iβj + ∂jβi −

2

3
δij∂β

)
.

(2.31)

We are to solve these second order partial differential equations (2.26) and (2.31). As

has been outlined above, ji and αij are linear functionals of βi. They can be uniquely
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decomposed as {
ji = a(ω, q, r)βi + b(ω, q, r)∂i∂β,

αij = 2c(ω, q, r)σij + d(ω, q, r)πij ,
(2.32)

where σij and πij are defined in (1.5) and (1.8). The above decomposition is obviously in-

spired by the special structure of the source terms in (2.26) and (2.31), which are composed

of βi and its derivatives only. In writing down (2.32), we ignored the homogeneous part

of the general solutions for (2.26) and (2.31), as they would modify the definition of fluid

velocity (2.22) and the boundary requirement (2.21). In addition, the possible basis vector

and tensor constructed from the temperature variation b1 do not appear in (2.32). One

would add such structures in (2.32) with associated coefficient functions. Then, these new

coefficient functions would obey homogeneous differential equations. The boundary con-

ditions summarized in subsection 2.2, in particular the “Landau frame” convention, force

these new coefficient functions to trivially vanish. Indeed, the generalized Navier-Stokes

equations (2.40) relate temperature gradient to derivatives of fluid velocity. Therefore, the

derivatives of b1 should not be treated as linearly independent blocks in (2.32).

Eqs. (2.26) and (2.31) get converted into dynamical equations for the functions a, b, c, d

0 = r∂2ra− 3∂ra− q2r3∂rc− 3iωr2 − q2r,

0 = r∂2r b− 3∂rb+
1

3
r3∂rc−

2

3
r3q2∂rd− r,

0 = (r7 − r3)∂2r c+ (5r6 − r2)∂rc− 2iωr5∂rc

− r∂ra+ a− 3iωr4c+ 3r4 − iωr3,
0 = (r7 − r3)∂2rd+ (5r6 − r2)∂rd− 2iωr5∂rd

+
q2

3
r3d− 3iωr4d+ 2b− 2r∂rb−

2

3
r3c.

(2.33)

The dynamical equation (2.25) is rendered into the form,

∂rk =

{
2r2 − 1

3
iωr − 2

3r2
(a− q2b)− 1

3r

(
∂ra− q2∂rb

)
− q2r

9

(
−4c+ 2q2d

)}
∂β. (2.34)

The replacement rule ∂µ → (−iω, i~q) is implied in eqs. (2.32), (2.33) and (2.34). The

equations (2.33) are the holographic RG-flow type equations for the viscosity functions.

Together with corresponding solutions, these equations constitute our main results of this

paper. Through the relations (2.32) and (2.20), the fluid stress tensor of the boundary CFT

is determined by asymptotic behaviors of the functions a, b, c, d as r →∞. In section 4 we

will study these asymptotic behaviors by exploring the equations (2.33) near the boundary.

Here we summarize these studies,

a(ω, q, r) = −iωr3 +O
(

1

r

)
, b(ω, q, r) = −1

3
r2 +O

(
1

r

)
,

c(ω, q, r) =
1

r
− η(ω, q2)

8r4
+O

(
1

r5

)
, d(ω, q, r) = −ζ(ω, q2)

4r4
+O

(
1

r5

)
,

(2.35)

where the momenta-dependent functions η(ω, q2) and ζ(ω, q2) are formally introduced as

coefficients in the asymptotic expansion. The boundary conditions (2.21) and (2.22) have
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been already applied while deriving eq. (2.35). Asymptotic behaviors as r →∞ by them-

selves cannot fix the coefficients η(ω, q2) and ζ(ω, q2). To find them, we have to solve the

RG equations (2.33) in full starting from the horizon and integrating up to the boundary.

The regularity requirement at r = 1 is found to be sufficient to fix η and ζ uniquely. We

postpone completing this computation until sections 3 (analytic) and 4 (numeric).

Meanwhile, based on (2.35), as r →∞ the components ji and αij behave as
ji →− iωr3βi −

1

3
r2∂i∂β +O

(
1

r

)
,

αij →
(

2

r
− η(ω, q2)

4r4

)
σij −

ζ(ω, q2)

4r4
πij +O

(
1

r5

)
.

(2.36)

The large r behavior of the function k follows from first integrating (2.34) over r and then

making use of eq. (2.35),

k → 2

3

(
r3 + iωr2

)
∂β +O

(
1

r2

)
, as r →∞, (2.37)

where the integration constant is fixed by the “Landau frame” convention (2.22).

Substituting eqs. (2.36) and (2.37) into eqs. (2.20) and (2.19), we derive the fluid

stress tensor as summarized in eqs. (1.2) and (1.7). This establishes, fully and uniquely,

the relation (1.7) between the dissipative part of the stress tensor and the large r behaviors

of the functions c and d, as encoded in the viscosity functions η(ω, q2) and ζ(ω, q2).

2.3 Generalized Navier-Stokes equations and spectrum of small fluctuations

Generalized, all order Navier-Stokes equations follow from the bulk constraints Evv = Evi =

0. We find it more convenient to study suitable linear combinations of these constraints

and dynamical equations. More specifically, the combination r2f(r)Evr + Evv = 0 states

12∂vb1 = 4∂β +
4

r
∂2b1 −

(
1

r
+ r3

)
∂v∂β − 4∂j

− 1

r
∂2k + 3∂vk +

2

r
∂v∂j −

(
1

r3
− r
)
∂r∂j.

(2.38)

The second constraint r2f(r)Eri + Evi = 0 yields

4∂ib1 = 4∂vβi + r3∂i∂β − r3∂2βi + r3∂2vβi +
1

r
∂2ji −

1

r
∂i∂j + ∂ik

− 4∂vji − r3∂v∂jαij + (r − r5)∂r∂jαij − r∂r∂ik + r∂r∂vji.
(2.39)

Taking the large r limit of (2.38) and (2.39) results in

∂vb1 =
1

3
∂β, ∂ib1 = ∂vβi −

η(∂v, ∂
2)

24

(
∂i∂β + 3∂2βi

)
− ζ(∂v, ∂

2)

6
∂2∂i∂β. (2.40)

Eqs. (2.40) are equivalent to the boundary stress tensor conservation law ∂µT
µν = 0,

which determines the temperature and velocity profiles as functions of time, provided

initial configuration is specified.
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We close this section by studying the spectrum of small fluctuations of the local fluid

mechanical variables. We consider a plane wave ansatz for the velocity βi(x
α) and temper-

ature b(xα),

βi(x
α) = δβie

−iωv+iqjxj , b(xα) = 1 + δb1e
−iωv+iqjxj . (2.41)

Substituting this ansatz into eqs. (2.40) results in a set of four homogeneous linear equations

in the amplitudes δβi and δb1. Coefficients of these equations are functions of ω and qi.

These equations have nontrivial solutions if and only if the matrix formed out of these

coefficient functions has zero determinant. For transverse case, where ~q ⊥ ~β, we are led to

dispersion relation for shear mode,

ω +
i

8
η(ω, q2)q2 = 0. (2.42)

Similarly, we obtain dispersion relation for sound mode by taking ~q ‖ ~β,

q2 − 3ω2 − i

2
η(ω, q2)ωq2 +

i

2
ζ(ω, q2)ωq4 = 0. (2.43)

Notice that the second viscosity function ζ(ω, q2) does not contribute to the shear mode.

The dispersion relations (2.42), (2.43), are exact, namely valid for any value of ω and q.

As has been already discussed in [52], beyond small ω, q limit, these equations generate

infinitely many solutions, which are the quasinormal modes of the dual theory.

In the next section, we will determine the viscosity functions η(ω, q2) and ζ(ω, q2) in

the hydrodynamic limit ω, qi � 1. The results have been quoted in eq. (1.9). With these

expressions at hand, we consider corrections to dispersion relations due to the higher order

derivative terms. Solving the dispersion equations (2.42) and (2.43) perturbatively, we

obtain

shear wave: ω = − i
4
q2 − i

32
(1− ln 2)q4 + · · · ,

sound wave: ω = ± 1√
3
q − i

6
q2 ± 1

24
√

3
(2 ln 2− 1) q3

+
i

288

(
8− π2

3
+ 4 ln2 2− 4 ln 2

)
q4 + · · · .

(2.44)

These results can be compared with those obtained in [44, 45]. The shear mode dispersion

relation agrees with the quasi-normal mode computations of [45] up to q4 terms. This

further validates the argument of [44, 45] that the third order derivative terms in the fluid

stress tensor are crucial in correctly producing the shear wave mode at order q4. However,

the sound wave dispersion relation presented here is different from the one obtained in [44,

45]: it is being corrected by the third order derivative in the fluid stress tensor. The

analytical expressions for the dispersion relations should agree at small ω, qi with numerical

results of [63].
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3 Viscosity functions in the hydrodynamic regime: perturbative analysis

In this section we solve eqs. (2.33) and (2.34) perturbatively in the hydrodynamic regime

ω, qi � 1. We then compute the fluid stress tensor using thus constructed perturbative

metric correction, up to third order in the derivative expansion. Up to second order,

we reproduce some well-known results from the literature, validating correctness of our

formalism. We also compute new third order transport coefficients. Finally, we give a

formal construction to any order in the derivative expansion, which is fully consistent with

the numerical analysis of section 4.

To trace the order in the derivative expansion, we multiply ω and qi by a small pa-

rameter λ

ω → λω, qi → λqi. (3.1)

The functions a, b, c, d are then expanded in powers of λ,

a(ω, q, r) =
∞∑
n=0

λnan(ω, q, r), b(ω, q, r) =
∞∑
n=0

λnbn(ω, q, r),

c(ω, q, r) =

∞∑
n=0

λncn(ω, q, r), d(ω, q, r) =

∞∑
n=0

λndn(ω, q, r).

(3.2)

Correspondingly, the metric correction is counted by powers of λ,

k =

∞∑
n=1

k(n), ji =

∞∑
n=1

j
(n)
i , αij =

∞∑
n=1

α
(n)
ij , (3.3)

which follows from (3.2). Notice, however, that different orders in the coefficients an, · · · , dn
mix due to explicit derivatives in the decomposition (2.32). It is straightforward to write

down equations for an, · · · , dn at each order in λ. In what follows, we explicitly solve these

equations imposing the boundary conditions discussed in section 2.

3.1 Perturbative solution to the metric correction

Metric correction at zeroth order. To the lowest order, we have equation for a0 only,

r∂2ra0 − 3∂ra0 = 0, (3.4)

whose generic solution is

a0(ω, q, r) = Cr4 + C ′. (3.5)

In the above solution, the constant C multiplies a non-normalizable mode, which deforms

the metric of the boundary field theory. It has to vanish by the condition (2.21). The

remaining constant C ′ corresponds to a shift of the fluid velocity and is set to zero by the

“Landau frame” convention (2.22). Therefore, there exists no nontrivial solution for a0,

which is consistent with intuition that metric correction appears starting from first order

in the derivative expansion.
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Metric correction at first order. Up to the first order in the derivative expansion, it

is sufficient to consider the system of differential equations,{
0 = (r7 − r3)∂2r c0 + (5r6 − r2)∂rc0 + 3r4,

0 = r∂2ra1 − 3∂ra1 − 3iωr2,
(3.6)

where a0 = 0 was already used. We study (3.6) as an example of how to fix integration

constants. We first rewrite equation for c0 as

(r7 − r3)∂2r c0 + (5r6 − r2)∂rc0 + 3r4 = 0

=⇒ r2∂r
[
(r5 − r)∂rc0

]
+ 3r4 = 0.

(3.7)

First integration is done from 1 to r:

∂rc0 =
1

r5 − r

∫ r

1
(−3y2)dy +

]c0
r5 − r

, (3.8)

where the integration constant ]c0 is set to zero by the regularity condition at r = 1. Then,

as r →∞, the right-handed side of (3.8) falls off like ∼ 1/r2, so that it is valid to integrate

the above equation from r to ∞,

c0(ω, q, r) = −
∫ ∞
r

dx

x5 − x

∫ x

1
(−3y2)dy + \c0

=
1

4

[
ln

(1 + r2)(1 + r)2

r4
− 2 arctan (r) + π

]
+ \c0

≡ F (r) + \c0 .

(3.9)

To fix the integration constant \c0 , we consider the large r behavior of F (r),

F (r)→ 1

r
− 1

4r4
+O

(
1

r5

)
, as r →∞. (3.10)

Therefore, to keep the asymptotic requirement for αij as given in (2.21), the integration

constant \c0 = 0. So,

c0(ω, q, r) = F (r). (3.11)

A remark about the integration constant \c0 is worthy. In principle, the outer integral in

eq. (3.9) might also be done from 1 to r, but with a new integration constant different from

\c0 . This constant would have to be determined by the same asymptotic considerations.

The final result for c0 is still given by eq. (3.11).

We proceed with a1,

r∂2ra1 − 3∂ra1 − 3iωr2 = 0

=⇒ r4∂r(r
−3∂ra1) = 3iωr2

=⇒ a1(ω, q, r) = −iωr3 +A(ω, q2)r4 +A′(ω, q2).

(3.12)

The functions A(ω, q2) and A′(ω, q2) should equal zero, following the same arguments as

below eq. (3.5). We arrive at a first nontrivial expression for the function a,

a1(ω, q, r) = −iωr3. (3.13)
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Up to the first order in the derivative of the fluid velocity, equation (2.34) simplifies to

∂rk
(1) = 2r2∂β, (3.14)

and the result for k(1) is

k(1) =
2

3
r3∂β, (3.15)

where we use the convention (2.22) to set the integration constant in (3.15) to zero.

We summarize the metric correction at the first order in the derivative of the fluid

velocity,

k(1) =
2

3
r3∂β, j

(1)
i = r3∂vβi, α

(1)
ij

r→∞−−−→
(

2

r
− 1

2r4

)
σij +O

(
1

r5

)
. (3.16)

Metric correction at second order. The analysis above can be straightforwardly ex-

tended to the second order. The relevant equations are
0 = r∂2r b0 − 3∂rb0 +

1

3
r3∂rc0 − r,

0 = (r7 − r3)∂2r c1 + (5r6 − r2)∂rc1 − 2iωr5∂rc0 − 3iωr4c0 + iωr3,

0 = r∂2ra2 − 3∂ra2 − q2r3∂rc0 − q2r,

(3.17)

where the expression (3.13) for a1 has been used to simplify the equation for c1.

The function b0 obeys the same equation as a0 except for the source term,

∂r
(
r−3∂rb0

)
= r−4

(
−1

3
r3∂rc0 + r

)
, (3.18)

where the large r behavior for the source term is ∼ 1/r3. The generic solution for b0 can

be obtained by integration over r,

b0(ω, q, r) = −
∫ r

1
dx x3

∫ ∞
x

(
1

y3
− ∂yc0(y)

3y

)
dy + ]b0r

4 + \b0 . (3.19)

The outer integral is taken from 1 to r to make it well-defined. The integration constants

]b0 and \b0 will be again fixed by the asymptotic conditions and “Landau frame” convention

as done for a0,

]b0 = 0, \b0 = −3

8
.

The solution for b0 now reads

b0(ω, q, r) = −
∫ r

1
x3dx

∫ ∞
x

[
1

y3
− 1

3y
∂yc0(y)

]
dy − 3

8
,

−→ −1

3
r2 +O

(
1

r

)
, as r →∞.

(3.20)

The equation for c1 can be solved similarly to its zeroth order counterpart c0. We

present final results,

r2∂r
[
(r5 − r)∂rc1

]
= 2iωr5∂rc0 − iωr3 + 3iωr4c0,

=⇒ c1(ω, q, r) = −iω
∫ ∞
r

dx

x5 − x

∫ x

1
dy
[
2y3∂yc0(y)− y + 3y2c0(y)

]
,

(3.21)
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which, as r →∞, falls off as

c1(ω, q, r →∞) = − iω

4r4

(
1− ln 2

2

)
+O

(
1

r5

)
. (3.22)

Since the source term in the equation for a2 decays rather rapidly in the large r regime,

solution for a2 is

a2(ω, q, r) =

∫ ∞
r

x3dx

∫ ∞
x

dy

[
q2

y
∂yc0(y) +

q2

y3

]
r→∞−−−→ q2

5r
+O

(
1

r2

)
, (3.23)

where the integration constants are fixed in a similar manner as in the above cases of a0
and a1.

The second order correction k(2) is solved by,

∂rk
(2) =

{
−1

3
iωr − 2

3r2
a1 −

1

3r
∂ra1

}
∂β

=⇒ k(2) =
2

3
r2iω∂β.

(3.24)

where the integration constant is again fixed by the condition (2.22).

We are led to the large r behavior for the metric correction at second order,

k(2) = −2

3
r2∂v∂β, j

(2)
i

r→∞−−−→ −1

3
r2∂i∂β +O

(
1

r

)
,

α
(2)
ij

r→∞−−−→ 2− ln 2

8r4
∂vσij +O

(
1

r5

)
.

(3.25)

Metric correction at third order. In order to extend previous perturbative analysis

to O(∂3), we consider the following system of differential equations,

0 = (r7 − r3)∂2rd0 + (5r6 − r2)∂rd0 + 2b0 − 2r∂rb0 −
2

3
r3c0,

0 = r∂2r b1 − 3∂rb1 +
1

3
r3∂rc1,

0 = (r7 − r3)∂2r c2 + (5r6 − r2)∂rc2 − 2iωr5∂rc1 − r∂ra2 + a2 − 3iωr4c1,

0 = r∂2ra3 − 3∂ra3 − q2r3∂rc1.

(3.26)

Since the equation for d0 is of the same structure as that of c0, we can solve for it in the

very same way as we did for c0:

d0(ω, q, r) = −
∫ ∞
r

dx

x5 − x

∫ x

1

[
−2b0(y)

y2
+

2y∂yb0(y)

y2
+

2

3
yc0(y)

]
dy, (3.27)

where the integration constants are fixed by the boundary conditions (2.21) and (2.22). In

the large r limit, d0 behaves as

d0(ω, q, r →∞) = − 1

48r4
(5− π − 2 ln 2) +O

(
1

r6

)
. (3.28)
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It is straightforward to integrate the remaining equations in (3.26) over r and fix the

integration constants in the same way as has been done for the lower order counterparts.

For brevity, we only present the final results,

b1(ω, q, r) =

∫ ∞
r

x3dx

∫ ∞
x

dy

[
− 1

3y
∂yc1(y)

]
r→∞−−−→ − iω

15r

(
1− ln 2

2

)
,

c2(ω, q, r) =

∫ ∞
r

dx

x− x5

∫ x

1
dy

[
2iωy3∂yc1(y) + 3iωy2c1(y) +

∂ya2(y)

y
− a2(y)

y2

]
r→∞−−−→ 1

192r4
{

6q2 + ω2
[
6π − π2 + 12

(
2− 3 ln 2 + ln2 2

)]}
+O

(
1

r5

)
,

a3(ω, q, r) =

∫ ∞
r

x3dx

∫ ∞
x

dy

[
q2

y
∂yc1(y)

]
r→∞−−−→ iωq2

5r
.

(3.29)

We also have a third order version of eq. (2.34),

∂rk
(3) =

{
− 2

3r2
(
a2 − q2b0

)
− 1

3r

(
∂ra2 − q2∂rb0

)
+

4q2

9
rc0

}
∂β

=⇒ k(3) → − q2

10r2
∂β +O

(
1

r3

)
, as r →∞.

(3.30)

The large r behavior for metric correction at order O(∂3) is,

k(3)
r→∞−−−→ 1

10r2
∂2∂β +O

(
1

r3

)
,

j
(3)
i

r→∞−−−→ 1

5r
∂v∂

2βi +
1

15r

(
1− 1

2
ln 2

)
∂v∂i∂β +O

(
1

r2

)
,

α
(3)
ij

r→∞−−−→ − 1

96r4
{

6∂2 +
[
6π − π2 + 12

(
2− 3 ln 2 + ln2 2

)]
∂2v
}
σij

− 1

48r4
(5− π − 2 ln 2)πij +O

(
1

r5

)
.

(3.31)

Metric correction at O(∂n) with n ≥ 4. We end with a formal argument towards

arbitrarily higher order metric correction in the derivative expansion. For n ≥ 4, we have

the following system of recursive differential equations,

0 = (r7 − r3)∂2rdn−3 + (5r6 − r4)∂rdn−3 − 2iωr5∂rdn−4

+
q2

3
r3dn−5 − 3iωr4dn−4 + 2bn−3 − 2r∂rbn−3 −

2

3
r3cn−3,

0 = r∂2r bn−2 − 3∂rbn−2 +
1

3
r3∂rcn−2 −

2

3
r3q2∂rdn−4,

0 = (r7 − r3)∂2r cn−1 + (5r6 − r2)∂rcn−1 − 2iωr5∂rcn−2

− r∂ran−1 + an−1 − 3iωr4cn−2,

0 = r∂2ran − 3∂ran − q2r3∂rcn−2,

(3.32)
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where d−1 should be understood as null. It can be shown by induction that large r asymp-

totic behaviors of the coefficients an, bn, cn, dn (n ≥ 4) are of universal form,

an(ω, q, r)→ Sna (ω, q)

r
+O

(
1

r2

)
, bn−2(ω, q, r)→

Sn−2b (ω, q)

r
+O

(
1

r2

)
,

cn−1(ω, q, r)→
Sn−1c (ω, q)

r4
+O

(
1

r5

)
, dn−3(ω, q, r)→

Sn−3d (ω, q)

r4
+O

(
1

r5

)
.

(3.33)

The n-th order counterpart of (2.34) is

k(n)
r→∞−−−→

Snk (ω, q)

r2
∂β +O

(
1

r3

)
. (3.34)

The functions Sna etc. are to be determined by solving the recursive equations (3.32),

similarly as we did for the lower order metric corrections. Generically, they will take a

form of fixed order polynomials in ω and q, Sn =
∑m=n

m=0 ρm ω
m qn−m. Although we are

not able to give exact analytical expressions for Sna etc., the formal analysis presented here

is useful in obtaining the general structure of Tµν up to arbitrary order in the derivative

expansion. At any order O(∂n) with n ≥ 4, the components ji and αij fall off as

j
(n)
i → Sna (ω, q)

r
βi +

Sn−2b (ω, q)

r
∂i∂β, α

(n)
ij →

2Sn−1c (ω, q)

r4
σij +

Sn−3d (ω, q)

r4
πij , (3.35)

in the large r regime.

3.2 Fluid stress tensor up to third order and beyond

With the perturbative solutions to the metric correction at hand, we proceed by computing

the fluid stress tensor (2.20). Up to the second order O(∂2),
T00 = 3 [1− 4b1(x

α)] +O(∂3),

T0i = Ti0 = −4βi(x
α) +O(∂3),

Tij = δij [1− 4b1(x
α)]− 2σij + (2− ln 2)∂vσij +O(∂3),

(3.36)

which is exactly the results obtained in [44] when linearized as in (2.7). Let us write the

fluid stress tensor as a formal derivative expansion,

Tµν =

∞∑
n=0

T (n)
µν , (3.37)

where the zeroth order T
(0)
µν corresponds to the non-derivative terms in eq. (3.36), which

can be uplifted to the standard form of (1.2). At third order, nonzero components of the

fluid stress tensor are

T
(3)
ij =

1

24

{
6∂2 +

[
6π − π2 + 12

(
2− 3 ln 2 + ln2 2

)]
∂2v
}
σij

+
1

12
(5− π − 2 ln 2)πij ,

(3.38)
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where the tensor structure πij appears for the first time. From the expression for the stress

tensor we can immediately read off the viscosity functions η and ζ as quoted in (1.9).

Substituting eq. (3.35) into eq. (2.20), we arrive at a general form of Tµν at arbitrary

order in the gradient expansion,

T̃
(n)
ij →

1

2r2
× (−2r)(r6 − r2)∂rα(n)

ij

=⇒ T
(n)
ij = 8Sn−1c (ω, q) · σij + 4Sn−3d (ω, q) · πij .

(3.39)

This gives formal expressions for the viscosity functions as sums over the coefficients Sn:

η = −
∑

n 8Sn−1c and ζ = −
∑

n 4Sn−3d .

4 All order linearized hydrodynamics

To fully account for all order derivative terms in the fluid stress tensor, we resort to

numerical techniques for solution of the RG equations (2.33), extending validity of the

above discussed hydrodynamic regime to large momenta. It is convenient to rescale the

functions a(r) and b(r)

a(ω, q, r) = r4ã(ω, q, r), b(ω, q, r) = r4b̃(ω, q, r), (4.1)

and also use u-coordinate instead of r

u ≡ 1

r
=⇒ u ∈ [0, 1]. (4.2)

In u coordinate, the horizon is located at u = 1 while the conformal boundary is at u = 0.

In what follows, we also use notations c̃(u) = c(r) and d̃(u) = d(r) to stress that they are

functions of u. Equations (2.33) become

0 = uã′′ − 3ã′ + q2uc̃′ − 3iω − q2u,

0 = ub̃′′ − 3b̃′ − 1

3
uc̃′ +

2

3
q2ud̃′ − u,

0 = (u− u5)c̃′′ − (3 + u4 − 2iωu)c̃′ + (uã′ − 3ã)− 3iωc̃+ 3− iωu,

0 = (u− u5)d̃′′ − (3 + u4 − 2iωu)d̃′ + 2(ub̃′ − 3b̃) +

(
1

3
q2u− 3iω

)
d̃− 2

3
uc̃,

(4.3)

where prime denotes derivative with respect to u. The problem of resumming all order

derivative terms in the boundary stress tensor is reduced to a boundary value problem of

the system of ordinary differential equations (4.3).

In the rest of this section we will solve this problem by two methods. The first method

will be fully numerical while the second one is an approximate analytic scheme. Both

methods are demonstrated to converge to the same results.

4.1 Numerical results from the shooting method

We have to impose boundary conditions both at the horizon and asymptotic infinity. We

apply a shooting method to solve the system (4.3). The main idea behind the shooting
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method is to reduce the boundary value problem to an initial value problem for a system

such as (4.3). One starts from a trial solution (initial condition) at one boundary (horizon)

and integrates the system until the other boundary. Then, thus obtained solution should be

matched with boundary conditions at the end of the integration. That would not happen

for an arbitrary trial initial condition: the trial solution has to be fine tuned in order for

the boundary conditions at the end of the integration to be satisfied. This fine tuning

problem can be turned into an optimization procedure.

We are now to discuss an implementation of this method for the system (4.3) given

the boundary conditions presented in section 2. In order to fully find a solution for four

second order differential equations, we have to specify overall eight boundary conditions.

The regularity requirement at horizon, boundary conditions (2.21) and the Landau frame

convention (2.22), indeed do provide precisely eight conditions: two at the horizon and six

at the conformal boundary.

Series solution near the horizon. We start from the regularity requirement at the

unperturbed horizon u = 1. To have a regular black hole solution near u = 1, the functions

ã, b̃, c̃, d̃ have to be Taylor expandable,

ã(ω, q, u) =

∞∑
n=0

Anh(u− 1)n, b̃(ω, q, u) =

∞∑
n=0

Bn
h (u− 1)i,

c̃(ω, q, u) =

∞∑
n=0

Cnh (u− 1)n, d̃(ω, q, u) =

∞∑
n=0

Dn
h(u− 1)n,

(4.4)

where the subscript “h” indicates that eq. (4.4) is a series solution near horizon. The

regularity condition at u = 1 fixes only two integration constants in these four functions.

This is consistent with the observation that u = 1 singular point in the equations for a(u)

and b(u) is due to c(u) and d(u). Six coefficients A0
h, A1

h, B0
h, B1

h, C0
h and D0

h remain

unconstrained. The rest of the coefficients in (4.4) can be expressed in terms of these six

coefficients via substitution of the series (4.4) into the system (4.3).

Series solution near the conformal boundary. We turn to discuss near u = 0 be-

havior for these functions. At u = 0, the characteristic indices for the system (4.3) are 0

and 4. Series solution then takes the form,

ã(ω, q, u) =

∞∑
n=0

Anb u
n + u4 lnu

∞∑
n=0

AnLu
n, b̃(ω, q, u) =

∞∑
n=0

Bn
b u

n + u4 lnu

∞∑
n=0

Bn
Lu

n,

c̃(ω, q, u) =
∞∑
n=0

Cnb u
n + u4 lnu

∞∑
n=0

CnLu
n, d̃(ω, q, u) =

∞∑
n=0

Dn
b u

n + u4 lnu
∞∑
n=0

Dn
Lu

n,

(4.5)

where the subscript “b” marks the asymptotic infinity u = 0. The logarithmic branch,

whose coefficients are labeled with the subscript “L”, is necessary due to the fact that

the difference between two characteristic indices is integer. Similarly to the near horizon

expansion, by substituting (4.5) into (4.3), all the coefficients of (4.5) are related to the

following eight coefficients A0
b , A

4
b , B

0
b , B4

b , C0
b , C4

b , D0
b and D4

b .
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The boundary condition (2.21) implies that

A0
b = B0

b = C0
b = D0

b = 0. (4.6)

while the “Landau frame” convention (2.22) constrains two more expansion coefficients

A4
b = B4

b = 0. (4.7)

leaving only two undetermined coefficients, C4
b and D4

b , which have to be determined

through dynamical evolution from the horizon.

With the conditions (4.6) and (4.7) at hand, the logarithmic branch in (4.5) vanishes

identically and the large r behavior for these functions is thus ã(ω, q, u) = −iωu+O
(
u5
)
, b̃(ω, q, u) = −1

3
u2 +O

(
u5
)
,

c̃(ω, q, u) = u+ C4
b u

4 +O
(
u5
)
, d̃(ω, q, u) = D4

bu
4 +O

(
u5
)
.

(4.8)

In terms of functions a, b, c, d, we have
a(ω, q, r) = −iωr3 +O

(
1

r

)
, b(ω, q, r) = −1

3
r2 +O

(
1

r

)
,

c(ω, q, r) =
1

r
+
C4
b

r4
+O

(
1

r5

)
, d(ω, q, r) =

D4
b

r4
+O

(
1

r5

)
.

(4.9)

The coefficient functions C4
b and D4

b can be now identified with the viscosity functions

η(ω, q2) and ζ(ω, q2)

η(ω, q2) = −8C4
b , ζ(ω, q2) = −4D4

b . (4.10)

Our problem is now mapped into finding such six near horizon expansion coefficients

A0
h, A1

h, B0
h, B1

h, C0
h and D0

h that would make six boundary coefficients A0
b , A

4
b , B

0
b , B4

b , C0
b ,

D0
b to vanish in accordance with the above boundary conditions. Once this is achieved, the

coefficients C4
b and D4

b should be read off from the final solution. Therefore, the boundary

value problem for the system (4.3) is reduced to the problem of root-finding or optimization

in numerical analysis,{
A0
b , A

4
b , B

0
b , B

4
b , C

0
b , D

0
b

}
[A0

h, A
1
h, B

0
h, B

1
h, C

0
h, D

0
h] = 0. (4.11)

The procedure is repeated for each value of ω and q.

Further numerical details and results. The near-horizon series solution (4.4) makes

it possible to evaluate {
ã, ã′, b̃, b̃′, c̃, c̃′, d̃, d̃′

}
(ω, q, u) (4.12)

at some point u = 1−u?, close to the horizon (u? � 1). That helps to avoid a numerically

problematic region near horizon where the system of equations has a singular point. In our

shooting routine, we integrate the system (4.3) from this near-horizon point u = 1−u? till

some point u = u?, close to asymptotic infinity u = 0.
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Figure 1. The viscosities η(ω, q2) and ζ(ω, q2) as functions of ω and q2.

We use Newton’s method [64] for root-finding and find it works rather well. Efficient

initial guesses for the trial values of A0
h, A1

h, B0
h, B1

h, C0
h and D0

h are provided by linearly

extrapolating previously computed roots along the ω or q2-axis. The numerical procedure

is started from the point ω = q2 = 0, known exactly from section 3

A0
h = A1

h = 0,

B0
h = −3

8
, B1

h = − 1

24
(16 + π + 2 ln 2) ≈ −0.85533 · · · ,

C0
h =

1

8
(π + 6 ln 2) ≈ 0.91256 · · · ,

D0
h =

1

576

(
48C − 18π + π2 + 108 ln 2− 48 ln2 2− 24π ln 2

)
≈ −0.0055149 · · · ,

(4.13)

where C is the Catalan constant with approximate value C ≈ 0.915966. We set u? to 10−5

and checked stability of the results with respect to variations of u?.

Our numerical results for the viscosity functions η(ω, q2) and ζ(ω, q2) are shown in

figure 1. The real parts of η and ζ decrease with momenta until reaching minima around

points
{
ω ≈ 3.0, q2 = 0

}
and

{
ω ≈ 1.9, q2 = 0

}
, respectively. A sign of damped oscillations

is observed in the results, while eventually, the real parts vanish at very large ω and/or q2.

The imaginary parts of the viscosities first increase from zero up to some maxima around
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Figure 2. The generalized viscosity functions η and ζ vs ω at q2 = 0.

0 1 2 3 4 5 6

1.2

1.4

1.6

1.8

2.0

q
2

Re@ΗD

0 1 2 3 4 5 6

0.00

0.01

0.02

0.03

0.04

q
2

Re@ΖD

Figure 3. The generalized viscosity functions η and ζ vs q2 at ω = 0.

{
ω ≈ 1.7, q2 = 0

}
for η and

{
ω ≈ 1.0, q2 = 0

}
for ζ. With further increase of the momenta,

the imaginary parts decrease reaching zero at large momenta.

Vanishing of transport coefficients at very large momenta is well anticipated: there

should be no response at very short times or distances. This point is critical for the

generalized relativistic hydrodynamics to be causal. To further confirm our observation,

we focus on large momenta behavior for the viscosity functions. In figures 2 and 3, we

show our results for very large ω or q2. The imaginary parts of η and ζ are identically

zero at ω = 0. This is obvious from the eqs. (4.3), which have no imaginary terms at

ω = 0. Vanishing of the viscosity functions at large ω (and/or q2) is an important factor

for reliably addressing early time stage in heavy ion collisions [51, 55, 65].
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The imaginary part of η never turns negative. This is indeed a necessary condition for

stability of the fluid equations, as is seen from the shear mode dispersion relation (2.42).

In contrast, the imaginary part of ζ does change sign at intermediate values of ω and q2

as seen in figure 1. However, negative ζ does not mean an instability: it only contributes

as a practically negligible correction to the dispersion relation of sound mode (2.43), but

never turns any of these modes into unstable. Indeed, the absolute value of ζ(ω, q2) is

always highly suppressed as compared to that of η(ω, q2). Furthermore, the inequality

q2ζ(ω, q2) � η(ω, q2) is valid in all the kinematic range covered by our numerical results.

Therefore, for any practical applications and hydrodynamic modelings, it is probably always

safe to ignore the viscosity function ζ(ω, q2).

4.2 Approximate results from the matching method

In this subsection we provide an alternative approach to solving equations (4.3) based on

an analytic approximate scheme. This provides us with a possibility to check the numerical

results of the previous subsection. The main idea is to adopt a matching method, which

was introduced in [66] in order to provide analytical evidence for condensation phenomena

in a holographic superconductor model [67]. The method is based on the series expansions

(4.4) and (4.5), which not only exactly solve the system (4.3) but also should match over

the whole regime of u ∈ [0, 1].

The approximation we are to employ is a truncation of the series (4.4) and (4.5): we

will keep up to eleven terms in each expansion, i.e., order u10 and (u − 1)10, respectively.

While the truncated series would not any more solve the system (4.3) exactly, keeping

enough terms guarantees accurate solutions near the horizon and conformal boundary. We

then match the truncated series solutions at an intermediate point such as u = 1/2. Taking

ã(ω, q, u) as an example, the matching of its value and first order derivative at u = 1/2

results in,

10∑
n=0

Anh(u− 1)n

∣∣∣∣∣
u=1/2

=

(
10∑
n=0

Anb u
n + u4 lnu

10∑
n=0

AnLu
n

)∣∣∣∣∣
u=1/2

,

(
10∑
n=0

Anh(u− 1)n

)′ ∣∣∣∣∣
u=1/2

=

(
10∑
n=0

Anb u
n + u4 lnu

10∑
n=0

AnLu
n

)′ ∣∣∣∣∣
u=1/2

,

(4.14)

where the boundary conditions (4.6) and (4.7) should be imposed. This method casts the

system (4.3) into algebraic equations for these expansion coefficients. On the one hand,

having kept a large number (eleven) of terms in the expansions, we achieve stable and

highly accurate results. The viscosity functions obtained from the matching scheme are

displayed in figure 4.

On the other hand, the large number of terms kept in (4.14) lead to analytical but

rather lengthy and not very illuminating expressions for the viscosity functions. They are

of the type

η(ω, q2) ≈ Pη(ω, q
2)

Qη(ω, q2)
, ζ(ω, q2) ≈

Pζ(ω, q
2)

Qζ(ω, q2)
. (4.15)
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Figure 4. The viscosity functions η(ω, q2) and ζ(ω, q2) vs ω and q2 from the matching method.

where P s and Qs are finite order polynomials in ω and q2. Below, we only quote a few

terms in hydrodynamic expansion of these polynomials,

Pη(ω, q
2) = 2.00− 1.82iω − 1.01ω2 + 0.249q2 − 0.208iωq2 + 0.401iω3 − 0.103ω2q2

+ 0.124ω4 + 0.0119q4 + · · · ,
Qη(ω, q

2) = 1.00− 1.56iω − 1.24ω2 + 0.250q2 − 0.296iωq2 + 0.656iω3 − 0.189ω2q2

+ 0.255ω4 + 0.0178q4 + +0.0822iω3q2 − 0.0780iω5 + · · · ,
Pζ(ω, q

2) = 0.0396− 0.0666iω − 0.0611ω2 + 0.00772q2 + · · · ,
Qζ(ω, q

2) = 1.00− 3.13iω − 4.93ω2 + 0.526q2 − 1.44iωq2 + 5.20iω3 − 2.01ω2q2

+ 4.11ω4 + 0.107q4 + 1.89iω3q2 − 2.59iω5 + · · · .

(4.16)

The structure (4.15) implies that the viscosities have a number of poles (zeros of Qs) and

this is quite consistent with the arguments made in [52] that exact η(ω, q2) in fact has

infinitely many poles.

In the hydrodynamic limit, our approximate results for the viscosities are

ηm(ω, q2) = 2.00 + 1.31iω − 0.567ω2 − 0.252q2 − 0.337iωq2

− 0.169iω3 + 0.243ω2q2 + 0.0306ω4 + 0.0395q4 + · · · ,
ζm(ω, q2) = 0.0396 + 0.0573iω − 0.0449ω2 − 0.0131q2 + · · · ,

(4.17)
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They are in perfect agreement with the analytical results of section 3 as quoted in (1.9),

with up to 1% error. We notice that the expansion (4.17) provides an extension of our

analytical third order result to much higher order.

The obtained approximate results make it possible to explore the asymptotic behavior

of the viscosity functions in the limit of very large momenta,

η(ω, q2) ∼ i

ω
, ζ(ω, q2) ∼ − i

ω3
, as ω →∞ and q2 →∞. (4.18)

This asymptotic behavior of (4.18) provides another confirmation for vanishing of η and ζ

in the large momenta regime.

5 Summary and discussion

In this paper we have provided all the details and expanded presentation of the results

advertised in our short publication [1]. As a further development of the ideas put forward

in [51], we have consistently determined the energy-momentum stress tensor of a weakly

perturbed conformal fluid, whose underlying microscopic description is a strongly coupled

N = 4 super-Yang-Mills theory at finite temperature. The results were derived by lineariz-

ing the fluid/gravity correspondence. We have included all order derivative terms in the

boundary stress tensor, limiting the study to small amplitude perturbations only. We have

found that all order dissipative terms in the fluid stress tensor are fully accounted for by

two (generalized) momenta-dependent viscosity functions η(ω, q2) and ζ(ω, q2). η(ω, q2) is

a transport coefficient in front of the shear tensor σij while ζ(ω, q2) is a coefficient of a new

tensor πij , which is given in terms of third order derivative of the fluid velocity.

As one of our main results, we have derived a closed-form linear holographic RG flow-

type equations (2.33) for the viscosity functions. Intriguingly, an analogous holographic RG

flow equation for electrical conductivity obtained in [28] is a nonlinear one. The constraint

components of the bulk Einstein equations (2.2) have been shown to generalize the Navier-

Stokes equations, consistently with the conservation laws of the fluid stress tensor. We

have analytically computed the viscosity functions, up to third order in the hydrodynamic

gradient expansion, and the dispersion relations for the shear and sound waves. These

third order corrections are needed in order to correctly reproduce the dispersion relation

for the shear wave up to order O(q4), as emphasized in [44, 45].

To include all order dissipative effects in the fluid stress tensor, we have solved numer-

ically the RG flow-type equations (2.33). The numerical results for the viscosity functions

are displayed in figure 1. Based on our numerical calculations, we have been able to signifi-

cantly extend knowledge about the viscosity functions in the hydrodynamic limit, providing

in (4.17) an expansion up to fifth order. Consistently with physical intuition, the viscosities

vanish at very large momenta as seen in figures 2 and 3. We have verified our results by

solving the equations (2.33) using an alternative method.

Importantly, the hydrodynamic theory constructed in this work is causal and should be

free of any instabilities if implemented as a dynamical model for plasma evolution. The vis-

cosity function encodes an infinite set of quasi-normal modes [63] including corresponding

residues.
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Obviously, this is not QCD, but we hope that some generic features about momenta-

dependent transport coefficients and high gradient structures have been captured by our

results. They can help in building new models of causal relativistic hydrodynamics, beyond

Navier-Stokes or Israel-Stewart.

The stress tensor computed in this work resums all order gradients linearized in the

amplitude of fluid velocity and is not readily applicable to phenomena where nonlinearities

are important, such as Bjorken flow. Nevertheless, the results reported here might be useful

both in estimating phenomenological roles and sizes of higher gradient effects as suggested

in [51, 52] and in direct studies of experimentally observed phenomena where linear dissipa-

tive terms play an important role. Sonic booms created by jets or heavy quarks, fluctuations

in the flows and correlations are examples of applications which we have in mind.

A question of convergence of the gradient expansion has been raised in [55], and it has

been argued there that radius of convergence is in fact zero presumably due to a factorial

growth in the number of terms at high orders. We have not observed any convergence

issues, thus indirectly confirming the conclusions of [55] about a nonlinear origin of the

convergence problem.

Throughout the paper, we have been referring to equations (2.33) as holographic RG

flow-type equations for the viscosity functions. Indeed, the radial coordinate r is frequently

associated with a scale of RG flow of the boundary CFT. While we do have an evolution

in r, we identify physical quantities (viscosities) only at the infinite boundary. In the spirit

of holographic Wilsonian RG [68–73], it would be proper to introduce a finite cutoff along

radial direction and define associated physical quantities, such as η(r, ω, q2) and ζ(r, ω, q2),

at the cutoff surface. That would result in an RG evolution of these momenta-dependent

coefficients, thus extending previous results on RG flows of the shear viscosity coefficient

η0. So far, the university of the ratio (1.6) was clarified as a consequence of no RG flow

from the horizon to the boundary of the Navier-Stokes hydrodynamics [28].

As further development of this project, we plan to extend our present study to con-

formal fluids in a weakly curved background manifold, with all order derivative terms

resummed. Metric perturbations at the boundary may be taken into account follow-

ing [47, 48]. Additional transport coefficient functions associated with the boundary cur-

vature are expected to emerge [52].
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