
J
H
E
P
1
1
(
2
0
1
4
)
0
5
2

Published for SISSA by Springer

Received: September 26, 2014

Accepted: October 24, 2014

Published: November 11, 2014

Updated fit to three neutrino mixing: status of

leptonic CP violation

M.C. Gonzalez-Garcia,a,b Michele Maltonic and Thomas Schwetzd
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1 Introduction

Thanks to remarkable discoveries by a number of neutrino oscillation experiments it is now

an established fact that neutrinos have mass and leptonic flavors are not symmetries of Na-

ture [1, 2], see ref. [3] for an overview. Ignoring controversial indications for the existence of

neutrino mass states at the eV scale (see ref. [4] and references therein) a consistent descrip-

tion of global data on neutrino oscillations is possible by assuming mixing among the three

known neutrinos (νe, νµ, ντ ), which can be expressed as quantum superpositions of three

massive states νi (i = 1, 2, 3) with masses mi. This implies the presence of a leptonic mixing

matrix in the weak charged current interactions [5, 6] which can be parametrized as [7]:

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 , (1.1)

where cij ≡ cos θij and sij ≡ sin θij . In addition to the Dirac-type phase δCP, analogous to

that of the quark sector, there may also be two physical phases associated to a possible Ma-

jorana character of neutrinos, which however are not relevant for neutrino oscillations [8, 9]

and are therefore omitted in the present work. Given the observed hierarchy between the
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solar and atmospheric mass-squared splittings there are two possible non-equivalent order-

ings for the mass eigenvalues, which are conventionally chosen as

∆m2
21 � (∆m2

32 ' ∆m2
31 > 0) ; (1.2)

∆m2
21 � −(∆m2

31 ' ∆m2
32 < 0) , (1.3)

with ∆m2
ij ≡ m2

i −m2
j . As it is customary we refer to the first option, eq. (1.2), as Normal

Ordering (NO), and to the second one, eq. (1.3), as Inverted Ordering (IO); in this form

they correspond to the two possible choices of the sign of ∆m2
31. In this convention the

angles θij can be taken without loss of generality to lie in the first quadrant, θij ∈ [0, π/2],

and the CP phase δCP ∈ [0, 2π]. In the following we adopt the (arbitrary) convention of

reporting results for ∆m2
31 for NO and ∆m2

32 for IO, i.e., we always use the one which has

the larger absolute value. Sometimes we will generically denote such quantity as ∆m2
3`,

with ` = 1 for NO and ` = 2 for IO.

In this article, we present an up-to-date (as of summer 2014) global analysis of solar,

atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino

oscillations. Alternative recent global fits have been presented in refs. [10, 11]. In section 2

we describe the data used in our analysis (listed also in appendix A) and we present the

results of the global analysis and the allowed ranges of the oscillation parameters. In

section 3 we focus on our knowledge on CP violation, discussing the present status of

the leptonic Jarlskog invariant and displaying the results of our fit in terms of leptonic

unitarity triangles. In section 4 we comment on various “tensions and tendencies” in the

global data, including the reactor anomaly, the tension in the ∆m2
21 determination from

solar experiments versus KamLAND, the determination of ∆m2
31, tendencies in fit results

for θ23 and δCP, and statistical issues related to the determination of the CP violating

phase δCP. Finally in section 5 we present our conclusions.

The numerical results of our analysis as well as figures are available at the website [12],

where also one- and two-dimensional χ2 tables are available for download. Furthermore,

this website will be kept up-to-date when new data becomes available.

2 Oscillation parameters: results of the global analysis

2.1 Data included in our analysis

We include in our global analysis the results from Super-Kamiokande atmospheric neutrino

data from phases SK1–4 [13], adding the 1775 days of phase SK4 to their published results

on phases SK1–3 [14]. Concretely, we consider sub-GeV and multi-GeV e-like and µ-like

fully contained events, as well as partially contained, stopping and through-going µ data,

each divided into 10 angular bins. Hence we have a total of 70 energy and zenith angle

bins. For what concerns disappearance results from long baseline accelerator experiments

(LBL) we use the energy distribution of events from MINOS in both νµ (ν̄µ) disappearance

with 10.71 (3.36) × 1020 protons on target (pot) [15], which amounts to 39 (14) data

points, and from T2K in νµ disappearance [16] with 6.57 × 1020 pot (16 data points).

For LBL appearance results we include both the neutrino and antineutrino events from

– 2 –



J
H
E
P
1
1
(
2
0
1
4
)
0
5
2

MINOS [17], with exposure 10.6× 1020 and 3.3× 1020 pot, respectively, and from T2K in

νe appearance [18] with 6.57× 1020 pot; each of these samples contributes 5 data points.

In the analysis of solar neutrino experiments we include the total rates from the ra-

diochemical experiments Chlorine [19], Gallex/GNO [20] and SAGE [21]. For real-time

experiments we include the results from on electron scattering (ES) from the four phases

in Super-Kamiokande: the 44 data points of the phase I (SK1) energy-zenith spectrum [22],

the 33 (42) data points of the full energy and day/night spectrum in phase II (III), SK2 [23]

(SK3 [24]), and the 24 data points of the energy spectrum and day-night asymmetry of

the 1669-day of phase IV, SK4 [25]. The results of the three phases of SNO are included

in terms of the parametrization given in their combined analysis [26] which amount to 7

data points. We also include the main set of the 740.7 days of Borexino data [27] as well as

their high-energy spectrum from 246 live days [28]. In the analysis of solar neutrino data

we use the GS98 version of the solar standard model [29] (see section 4.2).

For oscillation signals at reactor experiments we include data from the finalized ex-

periments CHOOZ [30] (energy spectrum data, 14 data points) and Palo Verde [31] (total

rate) together with the spectrum from Double Chooz with 227.9 days live time [32] (18

data points), and the 621-day spectrum from Daya Bay [33] (36 data points), as well as the

near and far rates observed at RENO with 800 days of data-taking [34] (2 data points with

free normalization). We also include the observed energy spectrum in KamLAND data sets

DS-1 and DS-2 [35] with a total exposure of 3.49×1032 target-proton-year (2135 days). Al-

though reactor experiments with baselines . 100 m do not contribute to oscillation physics,

they play an important role in constraining the unoscillated reactor neutrino flux. For this

purpose we consider also data from Bugey4 [36], ROVNO4 [37], Bugey3 [38], Krasno-

yarsk [39, 40], ILL [41], Gösgen [42], SRP [43], and ROVNO88 [44], to which we refer as re-

actor short-baseline experiments (RSBL). Details on the RSBL analysis can be found in [4].

For convenience a detailed list of all the data used in our global analysis can also be

found in appendix A.

2.2 Description of the results

The results of the global analysis are presented in figures 1 and 2 where we show different

projections of the allowed six-dimensional parameter space. To account for the possible

effect of the so-called reactor anomaly [45–47], we follow the approach of refs. [48, 49] and

study the dependence of the determined value of the parameters on the assumptions about

the reactor fluxes. To bracket the possible impact of the anomaly, the results in figures 1

and 2 are shown for two extreme choices. The first option is to leave the normalization

of reactor fluxes free and include data from short-baseline (less than 100 m) reactor ex-

periments. This corresponds to the colored regions in figure 1 and the solid curves in

figure 2 (labeled “Free+RSBL”). The second option is not to include short-baseline reactor

data but assume reactor fluxes as predicted in [45] (including their uncertainties). This

corresponds to the black contours in figure 1 and the dashed curves in figure 2 (labeled

“Huber”). From the results in these figures we conclude that:
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Figure 1. Global 3ν oscillation analysis. Each panel shows a two-dimensional projection of the

allowed six-dimensional region after minimization with respect to the undisplayed parameters. The

different contours correspond to 1σ, 90%, 2σ, 99% and 3σ CL (2 dof). Full regions correspond to

the analysis with free normalization of reactor fluxes and data from short-baseline (less than 100

m) reactor experiments included. For void regions short-baseline reactor data are not included but

reactor fluxes as predicted in [45] are assumed. Note that as atmospheric mass-squared splitting

we use ∆m2
31 for NO and ∆m2

32 for IO. The regions in the lower 4 panels are based on a ∆χ2

minimized with respect to NO and IO.
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Figure 2. Global 3ν oscillation analysis. The red (blue) curves are for Normal (Inverted) Ordering.

For solid curves the normalization of reactor fluxes is left free and data from short-baseline (less than

100 m) reactor experiments are included. For dashed curves short-baseline data are not included

but reactor fluxes as predicted in [45] are assumed. Note that as atmospheric mass-squared splitting

we use ∆m2
31 for NO and ∆m2

32 for IO.
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1. for either choice of the reactor fluxes the global best fit corresponds to IO with

sin2 θ23 > 0.5, while the second local minima is for NO and with sin2 θ23 < 0.5;

2. the statistical significance of the preference for Inverted versus Normal ordering is

quite small, ∆χ2 . 1σ;

3. the present global analysis disfavors θ13 = 0 with a ∆χ2 ≈ 500. Such impressive result

is mostly driven by the reactor data from Daya Bay with secondary contributions from

RENO and Double Chooz;

4. the uncertainty on θ13 associated with the choice of reactor fluxes is reduced to the

level of 0.5σ in the global analysis. This is so because the most precise results from

Daya Bay and RENO are reactor flux normalization independent, as further discussed

in section 4.1;

5. a non-maximal value of the θ23 mixing is slightly favored, at the level of ∼ 1.4σ for

Inverted Ordering at of ∼ 1.0σ for Normal Ordering;

6. the statistical significance of the preference of the fit for the second (first) octant of

θ23 is ≤ 1.4σ (≤ 1.0σ) for IO (NO);

7. the best fit for δCP for all analyses and orderings occurs for δCP ' 3π/2, and values

around π/2 are disfavored with ∆χ2 ' 6. A discussion on the corresponding CL can

be found in section 4.5.

In what follows we will consider our default analysis choice the one with “Free Fluxes

+ RSBL”. It is for this choice of fluxes that the best fit values and the derived ranges

for the six parameters at the 1σ (3σ) level are given in table 1. For each parameter the

ranges are obtained after marginalizing with respect to the other parameters. We show the

results for three scenarios. In the first and second columns we assume that the ordering of

the neutrino mass states is known “a priori” to be Normal or Inverted, respectively, so the

ranges of all parameters are defined with respect to the minimum in the given scenario.

In the third column we make no assumptions on the ordering, so in this case the ranges

of the parameters are defined with respect to the global minimum (which corresponds to

Inverted Ordering) and are obtained marginalizing also over the ordering. For this third

case we only give the 3σ ranges. Of course in this case the range of ∆m2
3` is composed of

two disconnected intervals, one one containing the absolute minimum (IO) and the other

the secondary local minimum (NO).

Let us define the 3σ relative precision of a parameter by 2(xup − xlow)/(xup + xlow),

where xup (xlow) is the upper (lower) bound on a parameter x at the 3σ level. From the

numbers in the table we then find 3σ relative precisions of 14% (θ12), 32% (θ23), 15% (θ13),

14% (∆m2
21) and 11% (|∆m2

3`|) for the various oscillation parameters.

3 Mixing matrix and leptonic CP violation

From the global χ2 analysis described in the previous section and following the procedure

outlined in ref. [50] one can derive the 3σ ranges on the magnitude of the elements of the

– 6 –
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Normal Ordering (∆χ2 = 0.97) Inverted Ordering (best fit) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270→ 0.344 0.304+0.013

−0.012 0.270→ 0.344 0.270→ 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29→ 35.91 33.48+0.78
−0.75 31.29→ 35.91 31.29→ 35.91

sin2 θ23 0.452+0.052
−0.028 0.382→ 0.643 0.579+0.025

−0.037 0.389→ 0.644 0.385→ 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2→ 53.3 49.5+1.5
−2.2 38.6→ 53.3 38.3→ 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186→ 0.0250 0.0219+0.0011

−0.0010 0.0188→ 0.0251 0.0188→ 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85→ 9.10 8.51+0.20
−0.21 7.87→ 9.11 7.87→ 9.11

δCP/
◦ 306+39

−70 0→ 360 254+63
−62 0→ 360 0→ 360

∆m2
21

10−5 eV2 7.50+0.19
−0.17 7.02→ 8.09 7.50+0.19

−0.17 7.02→ 8.09 7.02→ 8.09

∆m2
3`

10−3 eV2 +2.457+0.047
−0.047 +2.317→ +2.607 −2.449+0.048

−0.047 −2.590→ −2.307

[
+2.325→ +2.599

−2.590→ −2.307

]

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014

conference. The results are presented for the “Free Fluxes + RSBL” in which reactor fluxes have

been left free in the fit and short baseline reactor data (RSBL) with L . 100 m are included. The

numbers in the 1st (2nd) column are obtained assuming NO (IO), i.e., relative to the respective

local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note

that ∆m2
3` ≡ ∆m2

31 > 0 for NO and ∆m2
3` ≡ ∆m2

32 < 0 for IO.

leptonic mixing matrix to be:

|U | =


0.801→ 0.845 0.514→ 0.580 0.137→ 0.158

0.225→ 0.517 0.441→ 0.699 0.614→ 0.793

0.246→ 0.529 0.464→ 0.713 0.590→ 0.776

 . (3.1)

By construction the derived limits in eq. (3.1) are obtained under the assumption of the

matrix U being unitary. In other words, the ranges in the different entries of the matrix are

correlated due to the constraints imposed by unitarity, as well as the fact that, in general,

the result of a given experiment restricts a combination of several entries of the matrix. As

a consequence choosing a specific value for one element further restricts the range of the

others.

The present status of the determination of leptonic CP violation is illustrated in figure 3

where we show the dependence of the ∆χ2 of the global analysis on the Jarlskog invariant

which gives a convention-independent measure of CP violation [51], defined as usual by:

Im
[
UαiU

∗
αjU

∗
βiUβj

]
≡

∑
γ=e,µ,τ

∑
k=1,2,3

JCP εαβγ εijk ≡ Jmax
CP sin δCP . (3.2)

Using the parametrization in eq. (1.1) we get

Jmax
CP = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 . (3.3)
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Figure 3. Dependence of the global ∆χ2 function on the Jarlskog invariant. The red (blue) curves

are for NO (IO).

From the left panel of figure 3 we see that the determination of the mixing angles yields at

present a maximum allowed CP violation

Jmax
CP = 0.033± 0.010 (± 0.027) (3.4)

at 1σ (3σ) for both orderings. The preference of the present data for non-zero δCP implies

a best fit Jbest
CP = −0.033, which is favored over CP conservation at the ∼ 1.3σ level. These

numbers can be compared with the size of the Jarlskog invariant in the quark sector, which

is determined to be Jquarks
CP = (2.96+0.20

−0.16)× 10−5 [7].

In figure 4 we recast the allowed regions for the leptonic mixing matrix in terms of

leptonic unitarity triangles, which are obtained as different combinations of the entries of

the U matrix.1 Since in our analysis U is unitary by construction, any given pair of rows

or columns can be used to define a triangle in the complex plane. On the left (right) panels

we show the triangles corresponding to the unitarity conditions∑
i=1,2,3

UαiU
∗
βi = 0 with α 6= β (left),

∑
α=e,µ,τ

UαiU
∗
αj = 0 with i 6= j (right).

(3.5)

In drawing these triangles we have rescaled and rotated their sides so that two of their

vertices always coincide with (0, 0) and (1, 0) in the complex plane. To this aim we have

defined a complex variable z as follows:

z = −
UαiU

∗
βi

UαkU
∗
βk

= 1 +
UαjU

∗
βj

UαkU
∗
βk

with α 6= β and i 6= j 6= k (left),

z = −
UαiU

∗
αj

UγiU∗γj
= 1 +

UβiU
∗
βj

UγiU∗γj
with i 6= j and α 6= β 6= γ (right)

(3.6)

1See, e.g., refs. [52–55] for discussions of leptonic unitarity triangles.
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Figure 4. Six leptonic unitarity triangles. After scaling and rotating each triangle so that two of

its vertices always coincide with (0, 0) and (1, 0) (see text for details) we plot the 1σ, 90%, 2σ, 99%,

3σ CL (2 dof) allowed regions of the third vertex. Note that in the construction of the triangles

the unitarity of the U matrix is always explicitly imposed.

and then we have plot the 1σ, 90%, 2σ, 99%, 3σ CL (2 dof) allowed regions of the third

vertex of the triangle as the real and imaginary parts of z. For convenience in each panel

we have chosen the normalization side (the one which lies on the horizontal (0, 0)→ (0, 1)

segment) as the best determined of the two longer sides of each triangle. In this way all the

triangles have more or less the same size, and the uncertainty in the position of the third

vertex is not too much affected by the uncertainty of the normalization side. Note that the

most common unitarity triangle in the quark sector is the one based on the d-quark and

b-quark columns [7], which corresponds to the 1st and 3rd column in the leptonic matrix,

i.e., to the triangle in the middle-right panel in figure 4.

In this kind of diagrams the absence of CP violation implies a flat triangle, i.e., Im(z) =

0. As can be seen, in all the panels the horizontal axis marginally crosses the 1σ allowed

region, which for 2 dof corresponds to ∆χ2 ' 2.3. This is consistent with the present

preference for CP violation, χ2(JCP = 0)− χ2(JCP free) = 1.7.
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Figure 5. Contours (1σ, 90%, 2σ, 99%, 3σ CL for 2 dof) in the plane of θ13 and the reactor

flux normalization fflux. Full regions correspond to the combined analysis of all reactor neutrino

experiments with the exception of KamLAND, but including the RSBL experiments. The green

contours correspond to only the RSBL experiments and red contours include RSBL + medium-

baseline reactors without a near detector (i.e. without including Daya Bay and RENO).

4 Tension and tendencies

4.1 Impact of reactor flux uncertainties

Within the 3-flavor framework the so-called reactor anomaly leads to a “tension” of about

2.7σ between the predicted reactor neutrino fluxes [45, 46] and the event rates observed in

short-baseline reactor experiments. By adopting two extreme approaches in dealing with

this tension we have shown in section 2.2 that the impact on the determination of the

oscillation parameters in the global fit is quite small, at the level of 0.5σ for sin2 θ13 (see

figures 1 and 2). This is further illustrated in figure 5 where we show the allowed regions

in the plane of θ13 and the flux normalization fflux (relative to the one predicted in [45])

for several combinations of the reactor experiments. Short-baseline data (green contours)

essentially determine the flux normalization. Adding also data from experiments at around

1 km without a dedicated near detector (red contours) provides already a signal for non-zero

θ13, but such result is affected by significant correlation with the flux normalization. How-

ever, once the precise data on near-far comparison from Daya Bay and RENO are included

(colored regions) no correlation is left between the determination of θ13 and fflux. Thus in

the 3ν analysis the unexplained reactor anomaly mostly translates in an overall increase

of the χ2 in the analysis with fluxes from ref. [45] with χ2(fflux = 1) − χ2(fflux free) ' 7.

Details of our analysis in this respect can be found in ref. [4], where a discussion of a

possible explanation in terms of sterile neutrinos is also given.
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Figure 6. Left: allowed parameter regions (at 1σ, 90%, 2σ, 99% and 3σ CL for 2 dof) from the

combined analysis of solar data for GS98 model (full regions with best fit marked by black star) and

AGSS09 model (dashed void contours with best fit marked by a white dot), and for the analysis of

KamLAND data (solid green contours with best fit marked by a green star) for fixed θ13 = 8.5◦.

We also show as orange contours the results of a global analysis for the GS98 model but without

including the day-night information from SK (see text for details). Right: ∆χ2 dependence on

∆m2
21 for the same four analysis after marginalizing over θ12.

4.2 Determination of ∆m2
21: solar and KamLAND

We show in figure 6 the results of the analysis of the solar experiments and of KamLAND

which give the dominant contribution to the determination of ∆m2
21 and θ12. Here θ13 is

fixed to the present best fit value of the global analysis. For the sake of completeness the

solar neutrino results are shown for two different versions of the Standard Solar Model,

namely the GS98 and the AGSS09 models [29]. Let us remind that GS98 is based on

the older solar abundances leading to high metallicity and which perfectly agreed with

helioseismological data, whereas AGSS09 uses the new precise determination of the solar

abundances which imply a lower metallicity and cannot reproduce the helioseismological

data. This conflict constitutes the so-called “solar composition problem”. Although it is a

pretty serious problem in the context of solar physics, its impact in the determination of

the relevant oscillation parameters is very small, as can be seen clearly from figure 6.

The left panel in figure 6 illustrates the complementarity of solar and KamLAND in

the determination of the “12” parameters. Solar experiments provide the best precision of

θ12 while KamLAND gives a better determination of ∆m2
21. We remind the reader that

the relevant survival probabilities for these experiments in the framework of three neutrino

oscillations can be written as:

P 3ν
ee = sin4 θ13 + cos4 θ13P

2ν
ee (∆m2

21, θ12) , (4.1)
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where we have used the fact that Losc
31 = 4πEν/∆m

2
31 is much shorter than the distance

traveled by both solar and KamLAND neutrinos, so that the oscillations related to Losc
31

are averaged. In presence of matter effects P 2ν
ee (∆m2

21, θ12) should be calculated taking

into account the evolution in an effective matter density neff
e = ne cos2 θ13. For 10−5 .

∆m2/eV2 . 10−4, P 2ν
ee (∆m2

21, θ12) presents the following asymptotic behaviors [56]:

P 2ν,sun
ee ' 1− 1

2
sin2(2θ12) for Eν . few× 100 KeV (4.2)

P 2ν,sun
ee ' sin2(θ12) for Eν & few× 1 MeV (4.3)

P 2ν,kam
ee = 1− 1

2
sin2(2θ12) sin2 ∆m2

21L

2Eν
. (4.4)

At present most of the precision of the solar analysis is provided by SNO and SK for which

the relevant MSW survival probability [57, 58] provides a direct measurement of sin2 θ12,

as seen in eq. (4.3). In the MSW regime the determination of ∆m2
21 in solar experiments

comes dominantly from the ratio between the solar potential and the ∆m2
21 term required

to simultaneously describe the CC/NC data at SNO and the undistorted spectra of 8B

neutrinos as measured in both SK and SNO. Conversely KamLAND ν̄e survival probability

proceeds dominantly as vacuum oscillations and provides a most precise determination of

∆m2
21 via the strong effect of the oscillating phase in the distortion of the reactor energy

spectrum. On the contrary it yields a weaker constraint on θ12 as the vacuum oscillation

probability depends on the double-valued and “flatter” function sin2(2θ12).

As seen in the left panel in figure 6 for either version of the solar model the best

fit points of solar and KamLAND analysis lie at very similar values of θ12. As it was

pointed out in ref. [59] and widely discussed in the literature [60–64], the matching in the

determination of θ12 requires the presence of a non-zero value of θ13. With the present

determination of θ13 provided by the medium baseline reactor experiments, the agreement

between the best fit point values of θ12 is remarkable.

From the same figure, however, we see that the value of ∆m2
21 preferred by KamLAND

is higher than the one from solar experiments. At present this is about a 2σ effect, as can

be seen in the right panel where we show the ∆χ2 dependence as a function of ∆m2
21 when

marginalized over θ12. This tension has been present during the last two years and it arises

from a combination of two effects: (a) the well-known fact that none of the 8B measurement

performed by SNO, SK and Borexino show any evidence of the spectrum low energy turn-

up expected in the standard LMA-MSW solution, and (b) the indication of a non-vanishing

day-night asymmetry in SK, which disfavors the KamLAND ∆m2
21 best fit value for which

Earth matter effects are too small. The relevance of these effects is illustrated in figure 6

where we show the results of our analysis both with and without the inclusion of the SK

day-night information. As can be seen, once the SK day-night information is removed

the solar best-fit point shifts upwards and the solar allowed region extends to much larger

values of ∆m2
21, as expected, so that the tension with KamLAND is reduced to about 1.4σ.

Modified matter potential due to non-standard interactions [65, 66] and super-light sterile

neutrinos [67] have been proposed as extended scenarios which could relax this tension.
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Figure 7. Determination of ∆m2
3` at 1σ and 2σ (2 dof), where ` = 1 for NO (upper panels)

and ` = 2 for IO (lower panels). The left panels show regions in the (sin2 θ23,∆m
2
3`) plane using

both appearance and disappearance data from MINOS (green) and T2K (black), as well as SK

atmospheric data (green) and a combination of them (colored regions). Here θ13 is constrained

to the 3σ range from the global fit. The right panels show regions in the (sin2 θ13,∆m
2
3`) plane

using data from Daya Bay (black), reactor data without Daya Bay (violet), and their combination

(colored regions). In all panels solar and KamLAND data are included to constrain ∆m2
21 and θ12.

Contours are defined with respect to the local minimum in each panel.

4.3 Determination of ∆m2
3`: νµ and νe disappearance

Figure 7 illustrates the determination of ∆m2
3` from different data sets. In the left panels

we focus on long-baseline νµ disappearance data. It is clear that in this case the final

precision on |∆m2
3`| emerges from the combination of T2K and MINOS data, while the

determination of sin2 θ23 is dominated by T2K.

Concerning νe disappearance data, eq. (4.8) in section 4.4 implies that the rates ob-

served in reactor experiments at different baselines can provide an independent determina-

tion of ∆m2
3` [49, 68]. On top of this, the observation of the energy-dependent oscillation

effect of θ13 in Daya Bay [69] allows a rather precise determination of |∆m2
3`|. In the right

panels of figure 7 we show therefore the allowed regions in the (θ13,∆m
2
3`) plane based on

global data on νe disappearance. The blue contours are obtained from all the medium-

baselines reactor experiments with the exception of Daya Bay. Those regions emerge from

the baseline effect mentioned above. The black contour are based on the energy spectrum

in Daya Bay, whereas the colored regions show the combination.

By comparing the left and right panels we observe that νµ and νe disappearance ex-

periments by now provide a consistent determination of |∆m2
3`| with similar precision.
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4.4 Mass ordering, θ23 octant and CP phase: role of different data sets

As we have seen in section 2, several 1-2σ “tendencies” appear in the global analysis in

the determination of the mass ordering, the octant of θ23, and the CP violating phase. To

illustrate the role of the different data sets on such tendencies, we show in figure 8 the

∆χ2 as a function of ∆m2
3`, θ23, and δCP for different combinations of experiments. In

each panel the results have been marginalized with respect to all undisplayed parameters

except the mass ordering, which is fixed to Inverted (Normal) for the left (right) panels.

Note, however, that for each combination of experiments the ∆χ2 is defined with respect

to the absolute minima between the two orderings. In this way the difference between the

“height” of the minimum of the curve on the left and the corresponding one on the right

gives the contribution of that set of observables to the determination of the mass ordering.

All the lines plotted in figure 8 include “by default” solar and reactor data, which take

care of precisely determining the undisplayed parameters ∆m2
21, θ12 and θ13. To this basic

set we progressively add more and more data, to see how each new piece of information

affects the results of the fit. Let us then start with the dotted purple (and dot-dashed blue)

curve, which shows the dependence of ∆χ2 on the analysis of solar, reactor and MINOS

(plus T2K) νµ and ν̄µ disappearance data. Being all disappearance experiments they

provide very weak information on δCP, as clearly visible in the bottom panels. Comparing

the minima in the left and right panels we note a relative difference of χ2(NO)−χ2(IO) ∼
0.2, which means that this combination of data “favors” Inverted Ordering by ∼ 0.5σ.

More interestingly, from the central panels we see that MINOS disappearance data favors

a non-maximal θ23 with ∆χ2(θ23 = 45◦) = 2.8 (2.2) for IO (NO). Neglecting subleading

∆m2
21 and matter effects, the relevant survival probability in MINOS is given by

Pνµ→νµ ≈ 1− sin2 2θdis sin2 ∆m2
31L

4Eν
, sin2 θdis ≡ sin2 θ23 cos2 θ13 , (4.5)

where L is the baseline and Eν is the neutrino energy. Hence, the probability is symmetric

under θdis → π/2 − θdis. In the limit θ13 = 0 the effective angle θdis reduces to θ23, and a

preference for non-maximal θdis mixing leads to the appearance of two symmetric minima

in the first and second octant of θ23. Such degeneracy persists also for θ13 6= 0, and is re-

sponsible for the presence of two quasi-degenerate minima at sin2 θ23 = 0.63 and 0.39. On

the other hand, T2K disappearance data are better fitted with maximal θdis, so once they

are included in the analysis (dot-dashed blue line) the positions of the two minima move

to values sin2 θ23 = 0.58 and 0.44 while the preference for non-maximal mixing reduces to

∆χ2(θ23 = 45◦) = 1. The comparison of the dotted purple and dot-dashed blue curves also

shows the impact of the inclusion of T2K disappearance data on the overall determination

of θ23 and ∆m2
3`.

The short-dashed green line shows the effect of further adding to the analysis the

T2K νe appearance data. First, we see that the absolute minima now occurs for NO with

∆χ2(IO) = 0.6. In the central panels we see that the quasi-degeneracy of the octant of

θ23 is now broken and the second octant becomes favored with ∆χ2(θ23 ≤ 45◦) = 2.5 (1.5)

for IO (NO). The lower panels show that after the inclusion of T2K νe appearance data

a minimum appears for δCP = 270◦ (300◦) for IO (NO) with CP conservation disfavored
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Figure 8. Contribution of different sets of experimental results to the present tendencies in the

determination of the mass ordering, the octant of θ23 and of the CP violating phase. Left (right)

panels are for IO (NO). See text for details.
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at ∆χ2(sin δCP = 0) = 2.5 (1.0). This can be understood from the relevant νe appearance

probability at T2K and MINOS, which, at the second order in the small parameters sin θ13

and α ≡ ∆m2
21/∆m

2
31 and assuming a constant matter density, takes the form [70–72]:

Pνµ→νe ≈ 4 sin2 θ13 sin2 θ23
sin2 ∆(1−A)

(1−A)2
+ α2 sin2 2θ12 cos2 θ23

sin2A∆

A2

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(∆± δCP)
sin ∆A

A

sin ∆(1−A)

1−A
, (4.6)

with

∆ ≡ ∆m2
31L

4Eν
, A ≡ 2EνV

∆m2
31

. (4.7)

Here L is the baseline, Eν is the neutrino energy, and V is the effective matter potential [57]

which for T2K yields |A| ∼ few %. The first term in eq. (4.6) (which dominates for large

θ13) depends on sin2 θ23 and therefore is sensitive to the octant. Reactor experiments with

L ∼ 1 km, on the other hand, provide a measurement of θ13 independent of θ23

Pνe→νe = 1− sin2 2θ13 sin2 ∆m2
31L

4Eν
+O(α2) . (4.8)

At present the νe appearance results from T2K points towards an excess with respect

to what is expected for the best fit value of sin2 θ13 determined by the reactor experi-

ments for maximal θ23 (i.e., for 2 sin2 θ23 = 1), hence the tendency towards the θ23 > 45◦

minimum. The matter effects in eq. (4.6) make this tendency different for NO and IO,

while the last term introduces a δCP modulation of the effect. For fixed θ13 and θ23,

Pνµ→νe(δCP) − Pνµ→νe(π) ≥ 0 (≤ 0) for δCP ≥ π (≤ π). For the best fit values of θ13 and

θ23 from the previous reactor and LBL νµ disappearance results, the T2K νe appearance

signal is better fitted with δCP values which enhance the corresponding appearance prob-

ability. Conversely we see that adding the less significant MINOS νe appearance data in

the analysis (long-dashed red curves) tends to slightly reduce the size of these effects for

NO and it shifts the global minimum from NO to IO.

Finally the solid orange curves show the impact of including the atmospheric data in the

analysis. Comparing the solid orange and long-dashed red curves we see that atmospheric

data contributes positively to the significance of the tendency towards IO and δCP > π.

While for IO it does not affect the tendency towards second θ23 octant, for NO it “shifts”

this tendency to the first octant. The preference for θ23 < 45◦ for NO is related to an excess

of sub-GeV e-like events, an effect which has already been discussed since many years (see,

e.g., [73–76]). The fact that this preference is not visible for IO is probably related to multi-

GeV data, which are affected by matter effects and therefore provides some sensitivity to

the mass ordering. Identifying the relevant bins is difficult, given the large amount of data

points entering the atmospheric fit. We stress that such effects happen at the level of 1-2

units in χ2 and hence are not statistically significant.2

2In this respect it is also important to stress that already since SK2 the Super-Kamiokande collaboration

has been presenting its experimental results in terms of a large number of data samples. The rates for some

of those samples cannot be theoretically predicted (and therefore included in a statistical analysis) without
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Figure 9. Allowed regions from the global data at 1σ, 90%, 2σ, 99% and 3σ CL (2 dof) in the

(θ23, δCP) plane, after minimizing with respect to all undisplayed parameters. The left (right)

panel corresponds to IO (NO). Contour regions in both panels are derived with respect to the

global minimum which occurs for IO and is indicated by a star. The local minimum for NO is

shown by a black dot.

In order to highlight the pattern of correlations between δCP and sin2 θ23 we show in

figure 9 the allowed regions of the global analysis projected into the plane of these two

parameters. Correlations between δCP and other oscillation parameters are mostly trivial

and are therefore omitted.

4.5 Remarks on confidence levels for δCP

In order to study the information from data on the CP phase we consider the quantity

∆χ2(δCP) ≡ min
x 6=δCP

χ2(δCP, x)− χ2
min , (4.9)

where the first term on the right hand side is minimized with respect to all oscillation

parameters except δCP (x = θ12, θ13, θ23,∆m
2
21,∆m

2
31) and the last term is the χ2 minimum

with respect to all oscillation parameters. We have shown ∆χ2(δCP) for various data sets

in the lower panels of figure 8, as well as in the corresponding panel in figure 2 for the

global data. The standard way to derive confidence intervals for δCP is to assume that

∆χ2(δCP) follows a χ2-distribution with 1 dof, and then apply cuts corresponding to, e.g.,

∆χ2 = 0.99, 2.71, 3.84, 6.63 for 68%, 90%, 95%, 99% CL, respectively. This procedure

relies on Wilks theorem to hold [77]. However, in the case of δCP some of the hypothesis

of this theorem may be violated [78, 79]. One reason for this is the complicated non-

linear dependence of the event rates on δCP. Present sensitivity is so poor, that those

non-linearities (as well as the periodic character of δCP) become relevant already at very

a detailed simulation of the detector, which can only be made by the experimental collaboration itself.

Hence, although our results represent the most up-to-date analysis of the atmospheric neutrino data which

can be performed outside the collaboration, such an analysis has unavoidable limitations. For details on

our simulation of the data samples and the statistical analysis see the appendix of ref. [3].
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Figure 10. Black curves show the ∆χ2 levels corresponding to 68%, 90%, 95%, 99% CL

obtained from a Monte Carlo simulation of T2K appearance and disappearance data. Dashed lines

correspond to the canonical values based on the χ2 distribution with 1 dof. The blue curve shows

the observed ∆χ2 using T2K data. The shaded regions indicate the 90% confidence interval for

δCP based on the distribution from simulated pseudo-data (brown) and on the χ2 approximation

(gray). The three panels correspond to different assumptions on the true value of θ23 used to

generate the pseudo-data. In the fit all parameters except δCP and θ23 are fixed to the global best

fit values, assuming normal mass ordering.

low CL. Furthermore, parameter degeneracies (especially with θ23, see discussion in the

previous sub-section) affect the distribution of the test statistic ∆χ2 from eq. (4.9).

In order to address such concerns we have performed a Monte Carlo study of T2K data

(appearance and disappearance). We consider a test statistic similar to the ∆χ2 given in

eq. (4.9); however, in order to keep calculation time manageable we fix all oscillation

parameters except δCP and θ23 to their best fit values from the global fit assuming normal

mass ordering. Hence, in the notation of eq. (4.9) we have only x = θ23. In particular, since

we keep also θ13 fixed, the main feature of the complementarity of long-baseline appearance

and medium-baseline reactor data is maintained. We have checked that allowing θ13 to vary

imposing the constraint from Daya Bay data has a negligible impact on ∆χ2(δCP) compared

to fixing it to the best fit value. The resulting ∆χ2(δCP) is shown as blue curve in figure 10

(identical in all three panels). It differs somewhat from the global result displayed in

figures 2 or 8, which include more data, but it captures the essential features and suffices

for the purpose of studying the statistical properties of the test statistic.

In order to estimate the probability distribution for ∆χ2(δCP) we proceed as follows.

We scan the parameter space of δCP and sin2 θ23 and for a given point of assumed true

values we generate a large number of pseudo-data samples for T2K. For each data set we

calculate the value of the test statistic ∆χ2(δCP) and in this way we obtain a distribution
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for it. We scan 41 points in δCP and 3 points for sin2 θ23, and for each of those points

we generate 5000 pseudo-data samples. The black curves in figure 10 show the values of

∆χ2(δCP) which are larger than 68%, 90%, 95% and 99% of all generated data samples. We

observe quite large deviations from the corresponding values based on the χ2-distribution

for 1 dof, shown by the dashed lines in the figure. Interestingly we find also a rather strong

dependence on the assumed true value of θ23.

The behavior of the curves can be understood qualitatively. Due to the non-linearity

of δCP (its cyclic nature) and the poor sensitivity mentioned above it actually counts as less

than 1 full degree of freedom, which implies distributions more concentrated at lower values

than the χ2-distribution for 1 dof, as observed in figure 10. The rather strong variations for

non-maximal values of θ23, including a flipped behavior for δCP smaller or larger π between

sin2 θ23 = 0.4 and 0.6 can be understood in terms of a degeneracy. For θ23 < π/4 and

δCP ∼ 3π/2 as well as for for θ23 > π/4 and δCP ∼ π/2 there is a degeneracy between the

two octants of θ23 which effectively enhances the number of degrees of freedom in the fit.3

Now we can compare ∆χ2(δCP) obtained from the observed data to the expected

distribution. If the observed ∆χ2(δCP) is larger than the values obtained for x% of the

pseudo-data samples for that true value of δCP we exclude this value of δCP at the x% CL.

In figure 10 we show as an example the resulting 90% confidence interval for δCP as brown

shaded area. This corresponds to the confidence interval according to the Feldman-Cousins

(FC) prescription [80]. It has to be compared to the corresponding interval based on the

χ2-approximation, indicated by the gray area in the plot.

We can draw the following conclusions from the exercise shown in figure 10:

1. the confidence intervals based on the Monte Carlo simulation are smaller than the

ones based on the χ2-approximation. Hence, the latter is conservative;

2. for confidence levels . 90% the confidence intervals are similar, whereas for higher

confidence levels differences become significant. In particular, at 99% CL all values

of δCP are allowed using the χ2-approximation, whereas a region around δCP ∼ π/2

remains excluded by the 99% CL FC interval;

3. the CL with which δCP ∼ π/2 can be disfavored depends strongly on the unknown

true value of θ23. For sin2 θ23 = 0.6, δCP ' π/2 is excluded at about 99% CL, whereas

for sin2 θ23 = 0.4 it is excluded at very high CL. In all cases, the CL based on the

Monte Carlo is higher than in the χ2-approximation which again can be considered

conservative.

Let us conclude this section by commenting that ideally such a simulation should be

performed also for the global analysis. Unfortunately this is currently out of question, in

particular due to atmospheric neutrino data, which is very computational intensive and

does play a non-negligible role in the global fit for ∆χ2(δCP), see figure 8. However, we

believe that the above results based on T2K are approximately representative also for the

3The presence of this degeneracy can be understood from eq. (4.6) considered at fixed θ13 and ∆ ' π/2
(first oscillation maximum).
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global fit. One may expect that, with more statistics, distributions become more close

to the expected χ2-distribution. However, preliminary estimates indicate that parameter

degeneracies may lead to deviations also in a high-statistics scenario.

5 Summary

We have presented the results of an updated (as of summer 2014) global analysis of solar,

atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino os-

cillations. Quantitatively the present determination of the oscillation parameters is listed

in table 1, and the corresponding leptonic mixing matrix is given in eq. (3.1). From the

present analysis we have derived the maximum allowed CP violation in the leptonic sector

as parametrized by the Jarlskog determinant, JCP = 0.033±0.010 (± 0.027) at 1σ (3σ). All

these results have also been shown in terms of unitarity triangles in figure 4 which further il-

lustrate the ability of global oscillation data to obtain information on leptonic CP violation.

The global analysis presents a series of tensions between data sets as well as some 1-2σ

effects in the determination of less known parameters (θ23, mass ordering, and δCP) which

we denote as “tendencies” and we discuss in section 4. We can summarize these results as

follows:

• due to the very precise determination of the flux-independent near-far ratio from Daya

Bay and RENO, the so-called reactor neutrino anomaly (i.e., the tension between the

predicted reactor fluxes in refs. [45, 46] and the event rates observed in short-baseline

reactor experiments) results only in a 0.5σ uncertainty on the determination of θ13;

• the long-standing ∼ 2σ tension between the best fit values of ∆m2
21 as determined

from the analysis of KamLAND and solar data is still unresolved. This tension

is driven by both the indication of a non-zero day-night effect at SK, and by the

lack of evidence of a low energy turn-up in the 8B energy spectrum as measured by

SNO, SK4 and Borexino. In both cases the ∆m2
21 value favored by KamLAND is in

disagreement with the expectations from the standard LMA-MSW solution;

• the uncertainty on the determination of ∆m2
21 and θ12 due to the choice of Standard

Solar Model associated with the “solar composition problem” is negligible;

• at present the precision on the determination of |∆m2
3`| from νµ disappearance ex-

periments (mainly T2K and MINOS) is comparable to that from νe disappearance

experiments (i.e. reactor experiments including, in particular, the spectral informa-

tion from Daya Bay);

• for Inverted Ordering, the “tendency” towards non-maximal mixing and second oc-

tant of θ23 is driven mainly by two effects: (a) the non-maximality favored by MINOS

νµ disappearance, and (b) the “mismatch” between the best fit θ13 obtained from ν̄e
disappearance at reactors and from νµ → νe at T2K. Atmospheric results do not alter

this;
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• for Normal Ordering, such preference for non-maximal θ23 mixing is considerably

weaker than for IO; also, in this case the global best-fit occur in the first θ23 octant,

mostly driven by atmospheric data;

• the “mismatch” between reactor and T2K results is the driving effect in the present

dependence of the global ∆χ2 on the CP violating phase with a best fit value close

to δCP = 3
2π. Inclusion of the atmospheric results adds positively to this effect for

both orderings;

• the tendency towards IO or NO in the present analysis does not seem to result from

any consistent effect and it shifts in sign depending on the data sets considered.

Finally in section 4.5 we have addressed the issue of the “gaussianity” of the confidence

levels attributed to ∆χ2(δCP) by performing a Monte Carlo study of T2K data, and we

have compared the resulting probability distribution to that of a χ2-distribution as usually

assumed. Deviations are expected due to the cyclic nature of δCP and to the presence of

parameter degeneracies. The conclusion is that, within the present data, the use of the

χ2-distribution approximation is slightly conservative in the determination of the excluded

range of δCP at confidence levels & 90%. The differences however are not very significant

as illustrated in figure 10.

Future updates of this analysis will be provided at the website quoted in ref. [12].
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A List of data used in the analysis

Solar experiments

• Chlorine total rate [19], 1 data point.

• Gallex & GNO total rates [20], 2 data points.

• SAGE total rate [21], 1 data point.

• SK1 full energy and zenith spectrum [22], 44 data points.

• SK2 full energy and day/night spectrum [23], 33 data points.
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• SK3 full energy and day/night spectrum [24], 42 data points.

• SK4 1669-day energy spectrum and day/night asymmetry [25], 24 data points.

• SNO combined analysis [26], 7 data points.

• Borexino 740.7-day low-energy data [27], 33 data points.

• Borexino 246-day high-energy data [28], 6 data points.

Atmospheric experiments

• SK1–4 (including SK4 1775-day) combined data [13], 70 data points.

Reactor experiments

• KamLAND combined DS1 & DS2 spectrum [35], 17 data points.

• CHOOZ energy spectrum [30], 14 data points.

• Palo Verde total rate [31], 1 data point.

• Double Chooz 227.9-day spectrum [32], 18 data points.

• Daya Bay 621-day spectrum [33], 36 data points.

• RENO 800-day near & far total rates [34], 2 data points (with free normalization).

• SBL reactor data (including Daya-Bay total flux at near detector), 77 data points [33,

36–44].

Accelerator experiments

• MINOS 10.71× 1020 pot νµ-disappearance data [15], 39 data points.

• MINOS 3.36× 1020 pot ν̄µ-disappearance data [15], 14 data points.

• MINOS 10.6× 1020 pot νe-appearance data [17], 5 data points.

• MINOS 3.3× 1020 pot ν̄e-appearance data [17], 5 data points.

• T2K 6.57× 1020 pot νµ-disappearance data [16], 16 data points.

• T2K 6.57× 1020 pot νe-appearance data [18], 5 data points.
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