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Abstract: Supersymmetry (SUSY) has been proposed to be a central concept for the

physics beyond the standard model and for a description of the strong interactions in the

context of the AdS/CFT correspondence. A deeper understanding of these developments

requires the knowledge of the properties of supersymmetric models at finite temperatures.

We present a Monte Carlo investigation of the finite temperature phase diagram of the

N = 1 supersymmetric Yang-Mills theory (SYM) regularised on a space-time lattice. The

model is in many aspects similar to QCD: quark confinement and fermion condensation

occur in the low temperature regime of both theories. A comparison to QCD is therefore

possible. The simulations show that for N = 1 SYM the deconfinement temperature has a

mild dependence on the fermion mass. The analysis of the chiral condensate susceptibility

supports the possibility that chiral symmetry is restored near the deconfinement phase

transition.
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1 Introduction

Gauge theories at finite temperatures have been explored intensively by means of Monte

Carlo simulations on a lattice. For Yang-Mills theories without fermions many calculations

have been done for different gauge groups, see for example [1, 2]. A phase transition has

been found, separating a low-temperature phase with confinement of static quarks from

a high-temperature deconfined phase. In full QCD, including also up, down, and strange

quarks, a crossover separates the confined nuclear matter phase at low temperatures from

the quark-gluon plasma in the high temperature regime [3–5]. The realisation of chiral

symmetry in QCD is another temperature dependent phenomenon. At low temperatures

chiral symmetry is broken, while it is restored at high temperatures. This provides an-

other (pseudo-)critical temperature. Recent numerical investigations have shown that the

restoration of chiral symmetry takes place near the deconfinement transition [6]. The phys-

ical relation between the two critical temperatures remains, however, unclear due to the

lack of an exact order parameter [7].

For supersymmetric Yang-Mills theory (SYM) there are only few non-perturbative re-

sults about its behaviour at finite temperatures. A great interest in the subject comes

from the application of the AdS/CFT conjecture [8] to the description of the deconfine-

ment transition of QCD. The AdS/CFT conjecture is a duality between low-energy string
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theory in ten dimensions and strong coupling N = 4 SYM in four dimensions [9]. N = 4

SYM is a conformal theory and therefore reductions are needed in order to relate the re-

sults to a theory like QCD with a mass-gap. Finite temperature is a possibility to break

both supersymmetry and conformal invariance of N = 4 SYM [9] and therefore it could

be possible that many fundamental properties are shared between the weakly interacting

quark-gluon plasma and supersymmetric models at finite temperature.

Supersymmetric models at finite temperatures have a different behaviour than other

models, due to the difference between the thermal statistic of Bose and Fermi particles.

In the Euclidean time direction periodic and anti-periodic boundary conditions must be

imposed on fermionic and bosonic fields, respectively. At zero temperature, in the in-

finite volume limit, this difference can be neglected and exact SUSY can be formulated

consistently. At finite temperatures, the temporal direction is compactified and boundary

conditions will break the supersymmetry between fermions and bosons [10]. Therefore

there is no high temperature limit in which a possible spontaneously or explicitly broken

supersymmetry can be effectively restored [11]. This intriguing property was subject of

many studies in the past, in particular for understanding the nature and the pattern of

this temperature induced SUSY breaking, see [12] for a review.

Supersymmetry opens the possibility to study the relation between the deconfine-

ment transition and chiral symmetry restoration. Dual gravity calculations proved that

confinement implies chiral symmetry breaking for a class of supersymmetric Yang-Mills

theories [9, 13].

The object of our investigations is N = 1 SYM at finite temperatures. This theory de-

scribes the strong interactions between gluons and their superpartners, the gluinos, which

are Majorana fermions in the adjoint representation of the gauge group. At zero temper-

ature the theory is in a confined phase and chiral symmetry is spontaneously broken by a

non-vanishing expectation value of the gluino condensate. This theory has been subject of

intensive theoretical investigations. Relations between SYM and QCD have been found in

terms of the orientifold planar equivalence [14]. They have lead to conjectures about SYM

relics in QCD [15]. N = 1 SYM has also a crucial role in the context of the gauge/gravity

duality of the N = 4 theory [16]. Numerical simulations of N = 1 SYM are possible with

the Monte Carlo methods [17] and they provide an important non-perturbative tool for

exploring the phase diagram at finite temperatures.

A mass term for the gluinos is added in our numerical simulations and the results are

extrapolated to the chiral limit. The gauge group chosen is SU(2). The results obtained

show clearly that deconfinement occurs at a temperature which decreases with decreasing

gluino mass. The distribution of the order parameter and the finite size scaling support

the possibility that the order of the associated phase transition is the same for a pure

gauge theory and its supersymmetric extension, at least for the range of masses considered.

Possible scenarios for the relation between chiral symmetry breaking and deconfinement

are also discussed. The chiral symmetry is found to be restored near the temperature of

the deconfinement phase transition, even if it requires a more careful extrapolation to the

chiral limit. A chiral phase transition of the same order of the deconfinement transition is

argued considering the general symmetries of the model.
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2 Supersymmetric Yang-Mills theory

TheN = 1 SYM theory is the supersymmetric extension of pure gauge theory. The model is

constructed imposing SU(Nc) gauge invariance and a single conserved supercharge, obeying

the algebra

{Qα, Qβ} = (γµC)αβPµ (α, β = 1, . . . , 4), (2.1)

where the generators of the supersymmetry Qα are Majorana spinors, C is the charge

conjugation matrix and Pµ the momentum operator. The theory contains gluons as bosonic

particles, and gluinos as their fermionic superpartners. The gluino is a spin-1/2 Majorana

fermion in the adjoint representation of the gauge group. A Majorana fermion obeys the

“reality” condition

λ̄(x) = (λ(x))TC. (2.2)

Supersymmetry relates the gauge fields Aµ(x) and gluino fields λ(x):

Aµ(x) → Aµ(x)− 2 i λ̄(x)γµε (2.3)

λa(x) → λa(x)− σµνF aµν(x)ε, (2.4)

where ε is a global Majorana fermion, parametrising the transformation.

The Euclidean on-shell action for N = 1 SYM theory in the continuum is

S(g,m) =

∫
d4x

{
1

4
(F aµνF

a
µν) +

1

2
λ̄a(γ

µDab
µ +m)λb −

Θ

16π
εµνρσF

µνF ρσ
}
. (2.5)

The Θ-term can be added to the action as in QCD without violating the underlying sym-

metries of the model. The operator εµνρσF
µνF ρσ is topologically invariant and the theory

is periodic in the parameter Θ, i. e. Θ and Θ + 2nπ are equivalent. In the following Θ = 0

will be assumed.

The additional parameter m introduces a bare mass for the gluino. This mass in the

fermionic sector breaks supersymmetry softly, i. e. this kind of breaking guarantees that the

main features of the supersymmetric theory, concerning the ultraviolet renormalisability,

remain intact.

At zero temperature, gluons and gluinos can be found only in colourless bound states.

Those bound states are expected to form supermultiplets of equal masses if exact super-

symmetry is realised. A low-energy effective Lagrangian has been formulated [18, 19],

predicting a bound spectrum of mesons, glueballs and gluino-glueballs, which has been

subject of many numerical lattice investigations [20, 21].

3 Lattice discretisation

On the lattice, the gauge fields Abµ(x) are associated with the links of the lattice using the

exponential map

URµ (x) = exp (igaAbµ(x)τRb ), (3.1)

where τRb are the Lie group generators in the representation R. In the following, Uµ(x) and

Vµ(x) will denote the link variables in the fundamental and in the adjoint representation,
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respectively. The adjoint links Vµ(x) are related to the fundamental links Uµ(x) through

the well-known formula

Vµ(x)ab = 2 tr(Uµ(x)†τFa Uµ(x)τFb ). (3.2)

In our investigations the gauge group is SU(2), therefore Uµ(x) ∈ SU(2) and Vµ(x) ∈ SO(3).

The generators in the fundamental representation are normalised such that:

tr(τFa τ
F
b ) =

1

2
δab. (3.3)

In our simulations, the gauge part of S in eq. (2.5) is discretised with a tree-level

Symanzik improved action:

Sg =
∑
x

Re tr

 β

Nc

∑
µ 6=ν

(
5

3
Pµν(x)− 1

12
Rµν(x)

) , (3.4)

where Pµν(x) is the standard plaquette term formed out of four links, and Rµν(x) represents

a rectangle with lower left corner on the point x. The gluino part of S in eq. (2.5) is

represented on the lattice using the discretised version of the Dirac operator, depending

on the links in the adjoint representation Vµ(x):

Sf =
∑
x,y

λ̄(y)DW [Vµ](y, x)λ(x). (3.5)

The action of the Wilson-Dirac operator DW on the gluino field λ is given by (Dirac and

colour indices suppressed)

DW (x, y)λ(y) = λ(x)− κ
∑
µ

{
(1− γµ)Vµ(x)λ(x+ µ) + (1 + γµ)Vµ(x− µ)†λ(x− µ)

}
,

(3.6)

where κ = 1
2m+8 is the hopping parameter. Supersymmetry and chiral symmetry are

explicitly broken using this discretisation scheme.

Euclidean invariance is explicitly broken on the lattice and therefore it is impossible to

construct a local action invariant under supersymmetry transformations for finite lattice

spacing a [22, 23]. A fine tuning is needed to recover the broken supersymmetry and chiral

symmetry in the continuum limit. In supersymmetric Yang-Mills theory the tuning of a

single parameter, namely the bare gluino mass m, is enough to recover both symmetries [24,

25]. The tuning to the chiral limit can be defined by the vanishing of the adjoint pion mass,

which is defined in a partially quenched setup [26]. We use it here to define different lines

of constant physics for theories with a softly broken supersymmetry.

4 The finite temperature phase diagram

The N = 1 SYM is an asymptotically free theory, expected to behave at high temperatures

as a conformal gas of free gluons and gluinos [27]. At zero temperature confinement and

gluino condensation take place. The possible phases are characterised by the expectation

value of their related order parameters considered as a function of the temperature.
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4.1 Deconfinement phase transition

A useful order parameter for the deconfinement transition is the Polyakov loop

PL =
1

V

∑
~x

Tr

{
Nτ∏
t=0

U4(~x, t)

}
. (4.1)

The expectation value of the Polyakov loop has the physical meaning of the exponential of

the negative free energy of a single static Dirac quark in the fundamental representation

〈PL〉 = exp

(
−Fq
T

)
. (4.2)

Therefore a non-vanishing value of 〈PL〉 means that a state with a single isolated quark

exists, i. e. deconfinement. Deconfinement is associated with the spontaneous breaking of

the center symmetry, defined by the following transformation of the gauge fields in a fixed

time-slice at t = t′:

U4(~x, t′)→ U4(~x, t′)′ = exp

(
2πi

n

Nc

)
U4(~x, t′), n ∈ {0, 1, . . . , Nc − 1}. (4.3)

In contrast to QCD with fermions in the fundamental representation, this transformation

leaves invariant both the gauge and the fermionic part of the action of N = 1 SYM. The

Wilson-Dirac operator is written in terms of links in the adjoint representation that are

unaffected by the complex rotation. On the other hand, the Polyakov loop transforms

non-trivially under the center transformations:

PL → P ′L = exp

(
2πi

n

Nc

)
PL . (4.4)

It is thus an exact order parameter for the deconfinement transition at any value of the

gluino mass m. The pattern for the center symmetry breaking is hence the same as in pure

SU(Nc) gauge theories, and it is possible that the Svetitsky-Yaffe conjecture [28] is valid

for N = 1 SYM. This conjecture implies a deconfinement transition of second order for

the gauge group SU(2), corresponding to the universality class of the Z2 Ising model in

three dimensions.

4.2 Chiral phase transition

The N = 1 SYM has a classical U(1)A axial symmetry, meaning that the transformation

λ→ λ′ = exp (−iωγ5)λ (4.5)

leaves the action invariant when the gluino mass is exactly zero. This symmetry is known

as the R-symmetry U(1)R and it corresponds to the relative rotation of the left- and the

right-handed Weyl components of the gluino field λ.

Beyond the classical level, quantum fluctuations break chiral symmetry by a term

proportional to the gauge coupling and to the number of colours:

∂µJ
µ
5 = ∂µ(λ̄γµγ5λ) = Nc

g2

32π2
εµνρσF

µνF ρσ. (4.6)
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Figure 1. Expected phase diagram for chiral symmetry breaking of N = 1 SYM with gauge group

SU(2). The chiral condensate 〈λ̄λ〉 is the order parameter of the chiral phase transition. Each non-

zero value of the renormalised gluino mass MR introduces a source of chiral symmetry breaking. At

low temperatures, moving from positive to negative gluino mass MR, the chiral condensate jumps

from a positive to a negative expectation value. The phase transition is therefore of first order with

a coexistence of two phases. The line of first order phase transitions is expected to terminate in a

second order endpoint.

The dependence on Nc is absent in QCD, and it is typical of gauge models with fermions

in the adjoint representation.

The anomalous contribution to the axial transformations can be absorbed in the peri-

odicity of the parameter Θ:

Θ→ Θ− 2Nc ω, (4.7)

if the angle ω assumes one of the values ω = nπ
Nc

, n = 0, . . . , 2Nc − 1. The remaining chiral

symmetries thus from the group Z2Nc . Numerical investigations [29] have confirmed the

conjecture [27, 30, 31] that this invariance is spontaneously broken at zero temperature by

a non-vanishing expectation value of the gluino condensate 〈λ̄λ〉 6= 0 to a remaining Z2

symmetry corresponding to the sign flip λ→ −λ. The complete pattern of chiral symmetry

breaking is thus

U(1)A → Z2Nc → Z2. (4.8)

The phase transition associated with the spontaneous breaking Z2Nc → Z2 is of first

order at zero temperature, related to the jump of the expectation value of the chiral con-

densate. The system is in this respect similar to a ZNc Ising model (ZNc = Z2Nc/Z2),

with the gluino condensate corresponding to the spontaneous magnetisation and the renor-

malised gluino mass to the external magnetic field. This similarity suggests that for the

gauge group SU(2) there is a critical temperature T chiral
c of a second order phase transition

and a phase with restored Z4 symmetry at high temperatures, see figure 1.

There are three possible scenarios for the relation of deconfinement and chiral sym-

metry restoration. T chiral
c might coincide with the deconfinement transition temperature

T deconf.
c , but there is no restriction to this scenario from first principles. If they do not

– 6 –
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(a) Coincident phase transitions (b) Mixed phases allowed

(c) Mixed phases allowed

Figure 2. Possible scenarios for the phase diagram of N = 1 SYM. The two chiral phases are

separated by a crossover for MR 6= 0 (dashed red lines) and by a phase transition in the massless

limit. The orange line represents the deconfinement phase transition, present for any value of MR.

(a) In the supersymmetric limit chiral and deconfinement transition coincide. (b) A mixed confined

phase occurs with chiral symmetry restored. (c) A mixed deconfined phase occurs with chiral

symmetry broken.

coincide either a mixed deconfined phase with broken chiral symmetry or a mixed confined

phase with restored chiral symmetry exists, see figure 2.

In addition, the remaining part of the U(1)R symmetry broken by the anomaly could

be effectively restored in high temperature limit.

5 Simulation algorithms

In order to perform Monte Carlo simulations of N = 1 SYM, the gluino field is integrated

out in the path integral. For Majorana fermions the result is the Pfaffian of the Wilson-

Dirac operator

Z =

∫
DU Pf(CDW ) exp (−Sg). (5.1)

The Pfaffian of an antisymmetric matrix is related to the square root of the determinant by

Pf(CDW ) = sign(Pf(CDW ))
√

det(DW ). (5.2)

The additional factor leads to the notorious sign problem of this theory. At a fixed lattice

spacing, configurations with a negative Pfaffian sign can appear. This happens in particular

at small residual gluino masses close to the supersymmetric limit. These contributions

are reduced moving to smaller lattice spacings and the Pfaffian is strictly positive in the

continuum limit. It is hence possible to stay in the region where the sign problem is

irrelevant. On the other hand, a reliable extrapolation to the supersymmetric limit requires

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
0
4
9

small gluino masses, and negative Pfaffian signs cannot be excluded. We have monitored the

Pfaffian signs for the runs with the most critical parameters using the method introduced

in [32] to keep this effect under control.

Our simulations have been performed using the Hybrid Monte Carlo algorithm (HMC).

We have applied two different approaches for the approximation of the square root of the

determinant: an exploratory study was done with a code based on the polynomial (PHMC)

approximation; the second, and main part of the work, was performed instead using a new

code, based on the rational (RHMC) approximation. The PHMC algorithm is used with

one-level stout links in the Wilson-Dirac operator, while the RHMC is used with unsmeared

links.

When the renormalised gluino mass is sent to zero, the Wilson-Dirac operator becomes

ill-conditioned and the computational demand for the numerical integration of the classical

trajectory in the HMC increases drastically. The most reliable approach is therefore to

perform the simulations for several non-zero values of the gluino mass and obtain the

supersymmetric limit by extrapolation of the results.

6 Scale setting in supersymmetric Yang-Mills theory

The phase diagram of N = 1 SYM theory is investigated on lattices of finite size N3
s ×Nτ

for different values of the bare couplings κ and β. The boundary conditions are anti-

periodic in the Euclidean time direction for fermions and periodic in all other cases. In

order to convert the bare parameters into physical units the size of the lattice spacing in

physical units is needed. This is done by means of the Sommer parameter r0 [33] and the

w0 parameter [34]. The calculation of the scale is based on results of simulations at zero

temperature.

At fixed β and κ the temperature is proportional to the inverse of the number of lattice

sites in the temporal direction Nτ ,

T =
1

Nτa
. (6.1)

The continuum limit is obtained when a → 0 at fixed T . The phase transitions are

determined as a function of the renormalised value of the residual gluino mass MR that

breaks supersymmetry softly. The extrapolation of the transition temperatures to the

supersymmetric limit MR → 0 is the final result of our calculation. It has been shown in

a partially quenched setup that MR is proportional to the square of the adjoint pion mass

ma–π [26]. For several critical couplings βdec
c and κdec

c of the deconfinement transition the

adjoint pion mass is measured in zero temperature simulations on lattices of size N3
s ×2Ns.

These results are summarised in table 4. At small values of ma–π the dependence of MR

on 1/κ for fixed β is approximately linear. In cases, where zero temperature results at βdec
c

and different values of κ were present from previous investigations we apply a linear fit to

interpolate MR at κdec
c .

In the continuum the scaling function is given by the Novikov-Shifman-Vainshtein-

Zakharov beta-function [35] to all orders in perturbation theory. From this beta-function

the one-loop perturbative scaling of the lattice spacing as a function of the coupling β in

– 8 –
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1 2 3 4 5
t

0.2

0.4

0.6

0.8

t2<E >

(a) Wilson flow energy

1.0 1.1 1.2 1.3 1.4 1.5
Hw0ma-ΠL2

1.20

1.25

1.30

1.35

1.40

w0�a

(b) Mass dependence of w0/a

Figure 3. a) Expectation value of the gauge energy as a function of the Wilson flow time t on a

144 lattice at β = 1.65 and κ = 0.1875. b) Dependence of w0/a on the gluino mass for β = 1.62,

see table 4. In a mass independent renormalisation scheme, the scale is fixed at a reference gluino

mass (in our case (w0ma–π)2 = 1, purple point), extracted from a linear fit of the available data.

the supersymmetric limit is given by

a(β) =
1

Λ
exp

(
−π

2

3
β

)
. (6.2)

However, at finite lattice spacings it is more feasible to consider a non-perturbative scale

setting based on measurable scale parameters.

We consider two different observables for the scale setting. The first one is the Sommer

parameter r0/a obtained from the static quark-antiquark potential [33]. Since in SYM there

is no string breaking for static quarks in the fundamental representation, this scale can be

measured in the same way as for pure Yang-Mills theory. The second observable is the

recently proposed alternative w0/a [34]. This observable is obtained from the gradient flow

of the gauge action density E with Gaµν represented by clover plaquettes,

E =
1

4
GaµνG

a
µν . (6.3)

The gradient flow is defined as continuous smearing procedure using, in our case, the

functional derivative of the Wilson plaquette action. The scale parameter w0/a is defined

by the flow time t, where

t
d

dt

[
t2〈E(t)〉

]∣∣∣∣
t=w2

0

= 0.3 . (6.4)

The dependence of the observable on the flow time is shown in figure 3(a). As expected,

the dependence of t2E on t is approximately linear for large t.

An advantage of r0/a and w0/a is their weak dependence on the residual gluino mass.

In both cases a mild, but not negligible, linear dependence is observed, see figure 3(b). As

a consequence two different approaches can be applied to set the scale: in a mass dependent

renormalisation scheme the scale is set separately at each value of MR and consequently

the lattice spacing depends on the gluino mass,

a ≡ a(β,MR). (6.5)

– 9 –
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/
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)
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❡①tr❛♣♦❧❛t❡❞ ❞❛t❛
✜t

Figure 4. The scale setting of supersymmetric Yang-Mills theory. The figure shows the values of

r0/a extrapolated to the chiral limit (MR = 0).

In the second approach the lattice spacing is taken to be independent of the gluino massMR,

a ≡ a(β) . (6.6)

Therefore, in this case the linear behaviour of w0/a and r0/a is interpreted as a physical

dependence of their value on the fermion mass [36]. This approach is called mass indepen-

dent renormalisation scheme and it requires an extrapolation of r0/a and w0/a to a fixed

reference value of MR, as shown in figure 3(b).

In our exploratory study, where the PHMC approximation with one-level of stout

smearing has been used, the mass independent approach has been applied. From previous

investigations1 we have already some zero temperature results at β = 1.6, 1.75, 1.9, and

2.1, see table 2. In these studies the Sommer parameter r0/a has been extrapolated to

the value re0/a at the supersymmetric limit, corresponding to a reference scale of MR = 0.

We have completed the data with additional simulations at β = 1.5, see table 1. The

dependence of the scale re0/a on β is fitted with a similar parametrisation as used in [37],

log(a/re0) = a1 + a2(β − 2) + a3(β − 2)2 + a4(β − 2)3 . (6.7)

Due to the limited amount of data the error of the coefficients a1, a2, a3, and a4 is not

reliably obtained from a single fit. To get a better estimate we have assembled several

samples of data points by taking values within the given error bounds of each point. With

the fits of these samples one obtains a set of curves that determines the error bound of

the interpolation, see figure 4. This result determines the values of re0/a for the β values

without enough data from zero temperature simulations.

1The details of the simulations performed at β = 1.9 and β = 2.1 will be presented in a paper which is

in preparation.
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In the second part of the work, where the simulations have been performed with the

RHMC algorithm and without stout smearing, the scale has been set by the parameter w0

and both the mass dependent and independent schemes. In the mass independent scheme

w0 is extrapolated to the chosen reference point (w0ma–π)2 = 1, see figure 3(b). This refer-

ence point can be accurately extrapolated already from a small number of zero temperature

simulations. The obtained value we0(β) is used to fix the scale for all the simulations with

the same value of β. In order to exclude possible systematic errors with this approach we

have also applied a mass dependent scale setting prescription, see table 4. In that case

the scale at β and κ is set with the value of w0 measured at the same combination of the

parameters in a zero temperature simulation.

7 The confinement-deconfinement phase transition

We have done the first scan of the phase diagram of supersymmetric Yang-Mills theory

with the same parameters and settings as in our zero temperature studies of the particle

spectrum [21]. One level of stout smearing has been applied in these simulations. They

have been performed at fixed lattice size of Ns = 8 and Nτ = 4. A few runs, to check the

finite volume effects, have been done using Ns = 12. We have collected for each value of

β the critical value κdec
c determined by the peak in the Polyakov loop susceptibility. The

results can be found in table 3 and are represented by the red symbols in figure 5(a). The

value of re0T = (re0/a)/Nτ is calculated with the value of re0/a, for each value of β, obtained

from an interpolation based on eq. (6.7).

The red line indicates the transition between confined and deconfined phase for a

residual gluino mass MR different from zero. In the limit of κ = 0, i. e. infinite MR, the

result of pure SU(2) Yang-Mills theory is obtained. Lowering the mass, i.e. increasing κ,

towards the chiral limit the phase transition temperature decreases. Since Nτ is fixed these

lower temperatures correspond to a smaller value of β and a larger lattice spacing.

The blue symbols in figure 5(a) indicate the lines of constant M r0
R

.
= (re0ma–π)2 in zero

temperature simulations. They are based on the results of simulations at β = 1.5, 1.6, 1.75,

1.9, and 2.1, where theses five values correspond to the five points along each blue line. A

linear interpolation of ma–π as a function of 1/κ has been used. Each of the intersections

between the (blue) lines of constant MR and the phase transition (red) line corresponds to

the phase transition at temperature re0Tc of a theory with softly broken supersymmetry.

The phase transition of the supersymmetric Yang-Mills theory would correspond to

the intersection between the red line and the MR = 0 line. From these results it can only

be estimated to be around 0.5 . re0Tc . 1.0. A systematic extrapolation can be done as a

function of the physical parameter MR instead of the bare parameter κ. We take the four

largest values of κ, corresponding to β = 1.55, 1.50, 1.45, 1.40. They are converted to M r0
R

using the values of ama–π of table 1. We can perform a linear fit to determine the critical

temperature, see figure 5(b). Already with these rough data the phase transition point can

thus be estimated to be around

re0Tc = 0.577(81) . (7.1)
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(a) Temperature versus κ

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20 25 30 35 40

re 0
T

(re0mπ)
2

linear fit

(b) Extrapolation of Tc

Figure 5. a) The confinement-deconfinement phase transition as a function of the bare parameter

κ (red line). The simulations are done with one level of stout smearing on 83 × 4 and 123 × 4

lattices. The blue lines indicate the lines of constant physics, corresponding to a fixed residual

mass Mr0
R = (re0ma–π)2. The chiral limit is approached at the line MR = 0. In these data the

scale re0 is fixed to the extrapolated value in the chiral limit. b) Linear extrapolation of the critical

temperature to the chiral limit.

– 12 –



J
H
E
P
1
1
(
2
0
1
4
)
0
4
9

0.12 0.14 0.16 0.18
Κ

0.10

0.15

0.20

0.25

0.30

<ÈPLÈ>

(a) Polyakov loop 〈PL〉

0.10 0.12 0.14 0.16 0.18
Κ

1

2

3

4

5

6

ΧP

(b) Polyakov loop susceptibility χP

Figure 6. The expectation value of the Polyakov loop and of its susceptibility on a 123 × 4 lattice

at β = 1.65.

In these first investigations it turned out that much larger statistics and a more precise

scale estimation is necessary. Compared to these uncertainties the improvement by stout

smearing of the links is not important. We have therefore developed a new more flexible

update program and performed a careful investigation in the region with small MR at

the phase transition. In that way we have obtained a more reliable extrapolation of the

supersymmetric limit without stout smearing.

As explained above, the parameter w0 is used as a more recent alternative scale setting.

Different spatial and temporal lattice extents are considered with lattice sizes N3
s ×Nτ =

83×4, 123×4, 163 × 4, and 103×5 to estimate the influence of finite size effects and lattice

artifacts. For each lattice size, simulations are done with different bare gauge couplings β

and gluino masses (κ). The details of the simulations, done at the critical value κdec
c , are

summarised in table 5. The autocorrelations between consecutive configurations generated

by the HMC algorithm increase drastically near the critical point of the deconfinement

transition. We have increased the statistics near the phase transition in order to compensate

this effect, and we have investigated accurately the finite volume effects and the scaling

behaviour. Hence these points require a huge amount of computer time.

The bare gluino mass (κ) is varied for each Nτ and for each β to locate the point of the

deconfinement phase transition κdec
c . Figure 6(a) demonstrates this approach for a lattice

size 123× 4 and β = 1.65, where the Polyakov loop starts to rise at κdec
c ' 0.15. The point

of the phase transition can be determined more clearly by the maximum of the Polyakov

loop susceptibility

χP = V (〈|PL|2〉 − 〈|PL|〉2). (7.2)

Here the susceptibility is defined in terms of the modulus of the Polyakov loop. While this

choice does not alter the position of the peak, it introduces a non-zero value of χP below

the critical point.

As can be seen in figure 6(b), the location of the transition is found at κdec
c = 0.160(5),

where the susceptibility shows a clear peak. We have found that κdec
c defined in this way has
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Figure 7. Finite size scaling for the susceptibility χ(|PL|) at β = 1.65 and κ = 0.160. The red line

is the expected scaling for a second order phase transition in the universality class of the Z2 Ising

model, the purple and the green lines represent instead a first order phase transition and a cross-

over, respectively. The coloured shadows indicate the errors from the extrapolation of eq. (7.3).

(a) κ = 0.100 (b) κ = 0.125 (c) κ = 0.145

(d) κ = 0.150 (e) κ = 0.160 (f) κ = 0.165

Figure 8. Polyakov loop distribution on a 123 × 4 lattice at β = 1.65 and various κ.

only a mild finite volume dependence, which is impossible to distinguish with our current

precision.

The finite size scaling of the susceptibility χP contains information about the nature of

the phase transition in the infinite volume limit. The susceptibility has a scaling dependence

on the volume,
χP (V1)

χP (V2)
=

(
V1

V2

)x
, (7.3)
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Figure 9. The critical temperature of the deconfinement phase transition is extrapolated to the

supersymmetric limit by extrapolating the results to the point where (w0ma–π)2 is equal to zero.

The four points plotted in the two figures can be found in table 4.

which is linear for a first order phase transition (x = 1), flat for a crossover behaviour

(x = 0), and non-linear, with x = 0.657(4), for a second order phase transition in the

universality class of three-dimensional Z2 Ising model [38]. We have obtained the ratios

of the Polyakov loop susceptibility for V2 = 83 and V1 = 123, 163 with Nτ = 4. The

resulting volume dependence is shown in figure 7. The Svetitsky-Yaffe conjecture is in good

agreement with the data and a possible change from the second order phase transition of

pure gauge theory to first order induced by gluinos seems to be excluded.

As a further evidence for this statement the distributions of the Polyakov loop at

different values of κ demonstrate the slow continuous emergence of a new peak in addition

to the central distribution of the absolute value, see figure 8. This is in accordance with

the divergence of the correlation length at a second order phase transition.

The peak of the Polyakov loop susceptibility, eq. (7.2), defines a critical combination

of bare parameters (κdec
c , βdec

c ), see table 5. At these values new simulations have been

performed at zero temperature, see table 4, to determine the value of the adjoint pion

mass in lattice units ama–π and to set the scale. Note that in table 4, for each βdec
c ,

in addition to the result obtained at the corresponding κdec
c , other values determined at

different κ are present: these are necessary to extrapolate the mass independent scale we0/a

as explained in section 6. With the previous determinations, the critical temperature and

the adjoint pion mass are obtained in dimensionless units, i. e. we0Tc and we0ma–π.

In the mass independent scheme the points ((we0ma–π)2, we0Tc) are linearly interpolated,

and the deconfinement temperature is extrapolated to

M
we0
R

.
= (we0ma–π)2 = 0. (7.4)

The linear fit shown in figure 9(a) clearly indicates that the deconfinement transition occurs

at lower temperatures when the gluino mass is decreased,

we0 Tc(M
we0
R ) = 0.0190(22)M

we0
R + 0.2432(45). (7.5)

The final extrapolation to the supersymmetric limit M
we0
R = 0 leads to

we0 Tc = 0.2432(45), (7.6)

where the quoted error is only statistical.
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As an alternative we employ a mass-dependent renormalisation scheme. The points

((w0ma–π)2, w0Tc) with w0 determined at the same value of the bare parameters κ and β

at the phase transition are linearly interpolated,

w0 Tc(M
w0
R ) = 0.01234(7)Mw0

R + 0.2441(26), (7.7)

where Mw0
R

.
= (w0ma–π)2. The interpolation is shown in figure 9(b). The slope is different

due to the change of renormalisation scheme. However, the final extrapolation to the

supersymmetric limit leads to the compatible result

w0Tc = 0.2441(26), (7.8)

but with a smaller error due to the more precise determination of the scale for points with

heavier gluino masses.

This result of the critical temperature can be compared with the rough estimate ob-

tained with the one-level stout smeared action translated into units of w0. The ratio r0/w0

has been computed on the configurations used for the study of ref. [21] generated with a

stout smeared action. The result extrapolated to the continuum limit is r0/w0 = 2.38(13).

From eq. (7.1) we have

r0Tc = 0.577(81) =
r0

w0
w0Tc = 2.38(13)w0Tc (7.9)

and therefore the final value of the one-level stout smeared simulations

w0Tc = 0.242(37) (7.10)

is consistent with the data obtained without stout smearing (7.6).

For a comparison of N = 1 SYM and pure gauge theory, we computed the scale w0/a

at infinite gluino mass on a lattice 184 and β = 1.829. The chosen β is the critical value for

the deconfinement transition of pure SU(2) Yang-Mills theory with a Symanzik improved

gauge action at Nτ = 6 [39]. The measured value of

w0/a = 1.7649(78) (7.11)

leads to

w0Tc = 0.2941(13) (7.12)

for pure SU(2) Yang-Mills theory.

The ratio of the deconfinement temperatures for pure and supersymmetric Yang-Mills

theory is thus
Tc(SYM)

Tc(pure Yang-Mills)
= 0.826(18). (7.13)

Note that we are comparing two different theories and this ratio depends on the common

observable chosen to fix the scale, i.e. in this case w0.

In the analysis of the deconfinement transition we have found no evidence for contri-

butions from negative Pfaffians even at the largest values of κ.
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8 The chiral phase transition

The order parameter of the chiral phase transition is the gluino condensate. A non-zero

expectation value of this parameter signals the breaking of the Z2 remnant of the U(1)R
symmetry. The bare gluino condensate is defined as the derivative of the logarithm of the

partition function with respect to the bare gluino mass parameter,

〈λ̄λ〉B
.
= −T

V

∂

∂m
log(Z(β,m)). (8.1)

Chiral symmetry is broken by our lattice action with the Wilson-Dirac operator for the

fermions, and the bare gluino condensate 〈λ̄λ〉B acquires an additive and multiplicative

renormalisation:

〈λ̄λ〉R = Zλ̄λ(β)(〈λ̄λ〉B − b0). (8.2)

At zero temperature a first order transition is expected when the bare gluino mass is

changed, crossing a critical value corresponding to MR = 0. Close to such a transition

the histogram of 〈λ̄λ〉 shows a two peak structure in a finite volume. The transition

can be identified with the point where the symmetry of the two peaks changes, as done

in [29]. Such an analysis is independent of the renormalisation described in eq. (8.2). At

finite temperatures the first order chiral phase transition extends to a phase transition line

at MR = 0, terminating in a second order end-point. Beyond that point the transition

changes from first order to a cross over, see figure 2. For this reason, considerations on

the renormalisation procedure become important for the precise localisation of the phase

transition.

The additive renormalisation is removed by a subtraction of the zero temperature

result:2

〈λ̄λ〉S = 〈λ̄λ〉T=0
B − 〈λ̄λ〉TB . (8.3)

The calculation of the renormalisation constant Zλ̄λ(β) can be avoided in a fixed scale

approach, where the bare coupling β and κ are fixed and the temperature is changed by a

variation of Nτ .

The bare gluino condensate is obtained from the trace of the inverse Wilson-Dirac

operator,

−T
V

∂

∂m
log(Z(β,m)) = − 1

Z(β,m)

T

V

∂

∂m

〈
exp

(
1

2
tr log(DW (m))

)〉
Sg

= −T
V

〈
1

2
tr(D−1

W )

〉
. (8.4)

Here and in the following 〈O〉Sg denotes the functional integral with respect to the gauge

part of the action, i. e. Z(β,m) =
〈
exp

(
1
2tr log(DW (m))

)〉
Sg

, where a positive Pfaffian

is assumed. The trace of the inverse Wilson-Dirac operator is evaluated with 20 random

noise vectors using the stochastic estimator technique.

2Notice that with this convention the chiral condensate will be zero at zero temperature and non-zero

at higher temperatures.
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The simulations are done on a lattice 123×Nτ , with Nτ ∈ {4, . . . , 11}, β = 1.7, and κ =

0.192. A simulation at zero temperature, i. e. Nτ = 12, has been performed to determine

the adjoint pion mass ama–π = 0.388(9) and the value of the scale w0/a = 2.070(38).

The subtracted chiral condensate starts to rise at Nτ ' 7, but its behaviour is quite

smooth due the crossover nature of the transition away from the supersymmetric limit, see

figure 10(a). For a better identification of the pseudo-critical transition point, we determine

the peak of the chiral susceptibility χc. This observable is proportional to the derivative

of the gluino condensate and it has connected and disconnected contributions:

χc = −T
V

∂2

∂m2
log(Z(g,m)) = −T

V

∂

∂m

〈
1

2
tr(D−1

W ) exp

(
1

2
tr log(DW (m))

)〉
Sg

= −T
V

{〈
1

4
tr(D−1

W )2

〉
−
〈

1

4
tr(D−1

W )

〉2

−
〈

1

2
tr(D−2

W )

〉}
. (8.5)

The connected contribution is expected to vanish in the supersymmetric limit. In the range

of parameters that we have considered in this investigation the disconnected contribution

is already dominant and the connected contribution can be neglected for a localisation of

the peak, see figure 11. In that respect the relevant dynamics of the phase transition is

already similar to the one at a vanishing residual gluino mass. Even though the connected

contribution is negligible, we consider the complete observable in the following. In that

way we ensure that absence of additional systematic uncertainties in our extrapolations.

The results of our simulation are shown in figure 10(b). Even though there is quite a

broad central region, a visible peak can be identified corresponding to the value at Nτ = 9.

For comparison, the Polyakov loop is shown in figure 10(c). It acquires a non-vanishing

expectation value at Nτ = 8. This small deviation is still consistent with the scenario of a

chiral symmetry restoration and a deconfinement phase transition at the same temperature.

In order to provide an upper limit for the chiral symmetry restoration temperature,

we have done new simulations approximately at the supersymmetric limit, i. e. around

the value of κ where the adjoint pion mass is expected to vanish, following the approach

of [29]. This corresponds to κ = 0.194 at β = 1.7. The lattice sizes were chosen to be

123×Nτ with Nτ ∈ {5, 6, 7, 8}. Note that these simulations cannot be done at large values

of Nτ , due to the long time needed for a convergence of the conjugate gradient algorithm

in that limit. The distributions are displayed in figure 12. At high temperatures, like

Nτ = 5, the distribution is close to a Gaussian without any indications for a double peak

in the gluino condensate. At Nτ = 8, on the other hand, we observe a small second peak

emerging from the distribution. Therefore, at these low temperatures the transition, close

to the supersymmetric limit, becomes consistent with a first order chiral phase transition.

Moreover, this suggests that the transition happens in the region between Nτ = 7 and

Nτ = 8. It is another indication that the chiral phase transition and the deconfinement

transition are close to each other: assuming that the value of w0 does not change so

much going from κ = 0.192 to κ = 0.194 we are able to estimate an upper limit for the

supersymmetric chiral critical temperature: Tχ(MR = 0) . 1.5Tc.

We have checked our assumption of a positive Pfaffian by a measurement of its sign

on 200 configurations. At κ = 0.192 we have found no contribution, whereas at κ = 0.194
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Figure 10. a-b) Chiral condensate and its susceptibility on a 123×Nτ lattice at β = 1.7, κ = 0.192;

c-d) Polyakov loop and its susceptibility at the same parameters. Tc refers to the deconfinement

transition temperature obtained from an extrapolation to the supersymmetric limit using eq. (7.7).
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Figure 11. Comparison of connected (left) and disconnected (right) contributions to the chiral

susceptibility on a 123 ×Nτ lattice at β = 1.7, κ = 0.192.
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(a) Nτ = 5 (b) Nτ = 6

(c) Nτ = 7 (d) Nτ = 8

Figure 12. Distributions of the chiral condensate on 123 ×Nτ lattices at β = 1.7 and κ = 0.194.

For Nτ = 5 the distribution is compatible with a single Gaussian, while for Nτ = 8 a second peak

emerges.

around 8% of the configurations have a negative sign on the 123 × 8 lattice. Hence the

simulations at the supersymmetric limit provide only an estimate of the transition point.

In further studies the contributions with a negative sign have to be taken into account

more carefully; alternatively, with a larger amount of computing time, the supersymmetric

limit can extrapolated from a region without a relevant sign problem.

9 Conclusions

We have presented in this contribution the first exploratory study of the thermodynamic

properties of N = 1 supersymmetric Yang-Mills theory. Further simulations will provide

stronger evidences for our claims. Larger volumes, smaller lattice spacings and gluino

masses will reduce the systematic uncertainties of our results. An extrapolation of the

critical temperatures to the continuum limit will be possible and a more definite and a

conclusive picture for the phase diagram will arise.

We have investigated the deconfinement and the chiral phase transitions in N = 1

SYM. Different from the case of QCD, the Polyakov loop is a well-defined order parameter

at all values of the gluino mass, and the deconfinement transition can be identified in an
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unambiguous way. The U(1)R chiral symmetry is only partially broken by the anomaly

and a remnant Z2Nc symmetry survives. The expectation value of the gluino condensate

is the order parameter for the breaking of this remnant symmetry down to Z2.

We have investigated the dependence of both order parameters on the temperature and

on the gluino mass. We have determined the temperature, where the deconfinement phase

transition takes place, with a good accuracy, and extrapolated the transition temperature

in the supersymmetric limit. Different scale setting prescriptions lead to consistent results,

indicating the reliability of the result. The transition happens at a temperature, which is

around 80% of the transition temperature in pure Yang-Mills theory.

The identification of the chiral phase transition point, on the other hand, needs more

effort, since the transition becomes a crossover at finite gluino masses. In a fixed scale

approach we have identified the transition region taking also the renormalisation into ac-

count. We were able to narrow the range for the chiral transition down to a region close

to the deconfinement transition. This situation can be compared with Nf = 2 adjoint

QCD (aQCD), a theory similar to SYM. In the case of aQCD, there exists a mixed phase

with deconfinement but a broken chiral symmetry. The deconfinement temperature is eight

times smaller than the point of chiral symmetry restoration [40]. From this perspective,

SYM appears to be more similar to QCD, where the deconfinement and chiral symmetry

restoration seem to occur at the same temperature.

In order to confirm scenario (a) of figure 2 with coincident phase transitions, it will be

necessary to perform simulations in more parameter points, with higher statistics, and on

larger lattices. A study of the finite size scaling is of great importance to test the existence

of a second order endpoint for the chiral phase transition in the supersymmetric limit.

Presently we have been able to study the phase transitions only at rather low values of

β, i. e. at relatively large lattice spacings. At these parameters there is still a considerable

deviation from the degeneracy of the particle masses in supermultiplets. Hence studies

at larger values of Nτ are needed for reliable extrapolations to the supersymmetric limit.

This is the largest source of a systematic uncertainty for our current determination of the

deconfinement transition point.

In the future we also plan to study different numbers of colours Nc, and different

boundary conditions, since the phase transitions seem to be sensitive to these parameters.
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(JSC), and by the Leibniz-Rechenzentrum (LRZ) in München provided on the super-

computer SuperMUC. Further computing time has been provided by the compute cluster

PALMA of the University of Münster.

A Details of the simulations

– 21 –



J
H
E
P
1
1
(
2
0
1
4
)
0
4
9

Nτ Ns β κ r0/a ama–π Nconf.

32 16 1.65 0.1150 – 2.206(14) 600

32 16 1.55 0.1475 – 1.2770(24) 621

32 16 1.5 0.155 – 1.1316(34) 800

32 16 1.5 0.158 2.68(6) 0.97863(84) 2036

32 16 1.5 0.160 2.85(3) 0.8570(20) 2177

32 16 1.5 0.162 3.11(9) 0.7085(19) 2076

32 16 1.5 0.163 3.15(8) 0.6199(12) 2001

32 16 1.5 0.164 3.34(8) 0.5066(26) 1720

24 12 1.45 0.1625 – 0.9865(25) 1000

24 12 1.40 0.145 – 1.722(40) 1199

24 12 1.40 0.150 – 1.563(72) 1599

24 12 1.40 0.153 – 1.501(13) 1800

24 12 1.40 0.155 – 1.434(18) 1999

24 12 1.40 0.160 – 1.2858(13) 1240

Table 1. Parameters for the additional zero temperature simulations with one level of stout

smearing. At β = 1.5 the value of r0/a is extrapolated to the supersymmetric limit.

β 1.5 1.6 1.75 1.9 2.1

re0/a 3.81(12) 5.93(5) 9.02(18) 12.20(12) 16.56(39)

Table 2. Values of re0/a determined for different values of β. The values for β = 1.6 and 1.75 can

be found in our previous publications; the others are presented here for the first time. The value

at β = 1.5 is determined from the extrapolation of the zero temperature results in table 1.

Nτ Ns β Nconf. κdecc

4 12 1.60 2500 0.140(15)

4 12 1.50 2500 0.155(10)

4 8 1.70 20000 0.0000(25)

4 8 1.65 20000 0.1150(50)

4 8 1.60 20000 0.1350(50)

4 8 1.55 20000 0.1475(50)

4 8 1.50 20000 0.1550(50)

4 8 1.45 20000 0.1625(25)

4 8 1.40 20000 0.1650(25)

Table 3. The number of measured configurations Nconf., produced at the κdecc value, used for

estimating the deconfinement transition, using one level of stout smearing. The parameters are the

same as in our zero temperature investigations of the particle spectrum [21].
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Nτ Ns β κ ama–π w0/a we0/a

20 10 1.65 0.1600 1.7182(09) 1.179(02) 1.428(36)

20 10 1.65 0.1825 1.1138(20) 1.310(09) 1.428(36)

20 10 1.65 0.1850 1.0277(24) 1.340(09) 1.428(36)

20 10 1.65 0.1875 0.9342(22) 1.326(13) 1.428(36)

20 10 1.62 0.1900 0.9398(26) 1.258(23) 1.359(34)

20 10 1.62 0.1925 0.8331(29) 1.297(23) 1.359(34)

20 10 1.62 0.1950 0.7067(44) 1.384(31) 1.359(34)

20 10 1.60 0.1950 0.8159(62) 1.277(20) 1.307(30)

20 10 1.60 0.1975 0.6868(40) 1.351(26) 1.307(30)

20 10 1.60 0.2000 0.4980(58) 1.553(31) 1.307(30)

Table 4. The table summarises the zero temperature measurements done for setting the scale

without stout smearing. w0/a is the mass dependent value while we0/a is the mass independent one,

i. e. obtained by extrapolation to (w0ma–π)2 = 1.

Nτ Ns β Nconf. τ κdecc

4 8 1.65 150000 400 0.1600(50)

4 12 1.65 80000 1100 0.1600(50)

4 16 1.65 40000 1600 0.1580(50)

5 15 1.65 20000 1500 0.1850(25)

5 15 1.62 20000 1500 0.1925(20)

5 15 1.60 20000 1500 0.1950(20)

Table 5. The table summarises the number of measurements Nconf., produced at the κdecc value,

for estimating the deconfinement transition using the action without stout smearing. The autocor-

relation time τ is computed for the Polyakov loop at the critical point.
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