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1 Introduction

Precision studies of Higgs properties are a central part of the physics program at the CERN

Large Hadron Collider (LHC). The second LHC run at higher center-of-mass energy will al-

low to measure kinematic distributions of Higgs bosons such as the transverse-momentum

spectrum. Knowledge of the spectrum is important when dealing with backgrounds to

Higgs production, but it can also be used to search for the effects of new physics. In the

past, studies of this type were mostly concerned with light particles at low to intermediate

pT values, but more recently several papers have investigated the possibility to use infor-

mation on the shape of the spectrum at pT values larger than the top-quark mass [1–4].

For such values, finite top-quark mass effects become relevant, and it might be possible to

disentangle the top-quark contribution from the effects of new heavy particles coupling to

the Higgs boson.

On the theory side, Higgs physics is challenging, because Higgs cross sections suffer

from large perturbative corrections, so that higher-order contributions are needed to achieve

reliable theoretical predictions. For the total cross section, there are ongoing efforts to

compute the fourth-order terms in the perturbative expansion. As an important first step

towards the full next-to-next-to-next-to-leading order (N3LO) result, the N3LO terms have

recently been computed in the threshold limit [5]. At non-zero transverse momentum pT of

the Higgs boson, on the other hand, the cross section is currently only known to NLO [6–

8], with ongoing efforts to extend the result to NNLO. For the dominant, purely gluonic

partonic channel, first NNLO results were obtained about a year ago in [9], and updated,

preliminary results were presented at a recent conference [10, 11]. In the present paper,

we compute the rate for Higgs production at non-zero transverse momentum pT to NNLO

in the threshold limit. At the partonic level, the threshold cross section consists of all

the singular distributions. These yield the dominant part of the hadronic cross section,

in particular at large transverse momentum, where the contribution from regular terms is

suppressed by the fall-off of the parton distribution functions (PDFs).

We recently presented all ingredients to perform threshold resummation at next-to-

next-to-next-to-leading logarithmic (N3LL) accuracy for electroweak boson production at
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large transverse momentum [12]. At this accuracy, the resummed result includes the full

NNLO threshold cross section. Near threshold, the electroweak boson recoils against a low-

mass jet and the partonic cross section factorizes into a hard function, a jet function and

a soft function. For the channel a+ b → H + jc, the factorization formula takes the form

ŝ
dσ̂

dû dt̂
= Hab(û, t̂) (Jc ⊗ Sab)(m

2
X) , (1.1)

where the partonic Mandelstam variables are ŝ = (pa+pb)
2, t̂ = (pa−q)2 and û = (pb−q)2,

with q the Higgs boson momentum, and q2 = M2
H . The hard function Hab captures the

purely virtual corrections to the hard scattering process, while the jet and soft functions Jc
and Sab describe the real emissions, which can either be collinear to the final state jet or soft.

The convolution of the jet and soft functions depends on the invariant mass of the partonic

final state jet mX , which goes to zero in the threshold limit. The jet and soft functions

were computed to two-loop order earlier in [13, 14] and [15]. In our recent paper [12], we

extracted the final ingredient for N3LL resummation, namely the two-loop hard function,

from the results for the two-loop helicity amplitudes for theses processes [16, 17].

Our results for W and Z production have been implemented into a public code Pe-

TeR [18]. In the meantime, we have also implemented the resummation as well as the

NLO result for Higgs production into a new release of this code, and we are now in the

position to present numerical results also in this case. For vector bosons, the two-loop cor-

rections turned out to be moderate, but in contrast we find very large corrections for Higgs

production. These corrections are due to large higher-order terms in the hard function,

and they significantly change the results from threshold resummation at lower precision.

For the Higgs transverse-momentum spectrum, threshold resummation was first performed

at NLL accuracy in [19] and it was found that NLL effects increase the NLO cross section

by about 10% and reduce the scale dependence by a factor of two. At NLL accuracy, only

the tree-level hard function is included. Very recently, the resummation was performed

to NNLL accuracy, which includes the one-loop hard function [20]. The authors find that

NNLL resummation reduces the NLO result by about 10% and the scale dependence by

more than a factor of two. In contrast, after computing the full NNLO threshold result, we

find a significant increase in the cross section, as large as 50% over the NLO result. The

source of this increase are large positive two-loop corrections to the hard function which

only enter at N3LL accuracy.

In section 2, we analyze the two-loop corrections to the threshold cross section in

detail and suggest a way to improve the perturbative convergence of the hard function

using renormalization group methods. We also determine the appropriate scale choices

for the different ingredients in the factorization formula. Based on these results, we give

numerical predictions for the cross section at large transverse momentum in section 3. Our

NNLO results are valid in the large-mt limit, but we also discuss finite top mass effects

which are known at LO in section 3.
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2 Size of the perturbative corrections

One advantage of the effective theory framework [21–23] we use here is that we can evaluate

each part of the factorization formula at its natural renormalization scale, which should

be chosen to avoid large logarithmic corrections. Using renormalization group (RG) tech-

niques, the ingredients are then evolved to a common scale µf at which the PDFs are

evaluated. For the hard function Hab(û, t̂, µ), one expects the natural value of the scale µ

to be of the order of the transverse momentum pT . In order to combine the hard function

with the remaining cross section, one can solve the RG evolution equation for this function,

which yields

Hab(û, t̂, µ) = U(µh, µ)Hab(û, t̂, µh) . (2.1)

The evolution factor U(µh, µ) depends on the anomalous dimensions of the hard function.

The construction of the hard function from the results for the four-point helicity ampli-

tudes [16, 17] is discussed in detail in [12]. It is obtained by squaring renormalized helicity

amplitudes,

Hab(û, t̂, µ) =
∑

|Mab(û, t̂, µ)|2 . (2.2)

The sum indicates that one sums (averages) over outgoing (incoming) colors and helicities

of the particles. Because it will be relevant for our discussion below, we give the RG

evolution equation for the gg → Hg amplitude. Due to factorization constraints [24–27],

it has the form

d

d lnµ
Mgg(û, t̂, µ) =

[
CA

2
γcusp(αs)

(
ln

−ŝ

µ2
+ ln

−t̂

µ2
+ ln

−û

µ2

)
+ 3γg(αs)

]
Mgg(û, t̂, µ) ,

(2.3)

at least up to three-loop accuracy. Explicit three-loop results for the anomalous dimensions

γcusp and γg can be found in the appendix of [26].

The solution (2.1) provides a representation of the hard function which is free of large

perturbative logarithms as long as the starting scale µh of the RG evolution is chosen

properly. Similarly, one can obtain RG-improved versions of the jet and soft functions.

For these functions, it is not immediately clear what one should choose as an appropriate

scale. While µj = mX is a natural choice at the partonic level, the invariant mass mX

is integrated over a range from mX = 0 at the threshold up to large values when the

convolution with the PDFs is evaluated. For the hadronic cross section, we would like to

use an average value 〈mX〉 as our choice of µj . The value of 〈mX〉 will depend on the

shape of the PDFs and can in general only be determined numerically. Detailed studies

of the size of the hard, jet and soft corrections for W and Z production were performed

in [28, 29] based on the method of [30]. An interesting alternative method to choose the

proper scales was proposed recently in [31]. It determines the scale from PDF luminosities

and cannot immediately be applied in our case. However, for inclusive Higgs production,

it leads to similar numerical results to the method we adopt here.

The Higgs transverse-momentum spectrum has some interesting similarities to the Z-

boson results, but also shows a dramatic difference that we now examine in detail. To this

end, we show in figures 1 and 2 the size of the individual corrections to the Z and H cross
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Figure 1. Size of the corrections to the hard, jet, and soft function for Z-production.
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Figure 2. Size of the corrections to the hard, jet, and soft function for Higgs production.
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sections. In each of the plots, we only switch on one individual correction, either to the

hard, the jet or the soft function, and we study its size as a function of the renormalization

scale. Since we are interested in individual corrections, we do not perform any resummation

at this stage and use a common value for all the scales, i.e. we set µ = µh = µj = µs = µf .

Dividing by the LO cross section, the individual one and two-loop corrections have the form

∆σNLO(µ)/σLO(µ) = αs(µ)(c2L
2 + c1L+ c0) , (2.4)

∆σNNLO(µ)/σLO(µ) = α2
s(µ)(d4L

4 + d3L
3 + d2L

2 + d1L+ d0) ,

where L = lnµ/Λ. The scale Λ ∼ pT for the hard function, and Λ ∼ 〈mX〉 for the jet

function. For the soft function Λ ∼ 〈Es〉, the average energy of the soft radiation. Looking

at the scale dependence of the corrections allows us to choose a proper value of the scale:

if we choose the scale too low or too high, we end up with large corrections due to the

Sudakov logarithms in (2.4). The logarithmic plots in figures 1 and 2 nicely display the

second-order (fourth-order) polynomial form of the NLO (NNLO) corrections.

Looking at the corrections to Z-production, we find that the proper scale choice for

the hard function is indeed µh ∼ pT . The scale of the jet and soft functions is lower, but

not dramatically lower than pT . This implies that there are no large scale hierarchies in the

cross section. The resummation of logarithms should therefore only be a moderate effect.

This observation was made earlier in [12, 28, 29], where it was found that resummation has

a small effect on the central value but leads to somewhat reduced scale uncertainties. One

sees from the plots that the scales determined from the NLO and NNLO corrections are

almost identical, as they should be if there is a natural scale associated with the corrections.

What is also obvious from the plots is that all of the NNLO corrections to Z-production are

small as long as the scales are chosen properly. Indeed, we found in [12] that the two-loop

corrections to W and Z production are moderate, of the order of 5%.

Let us now contrast this situation with the one in Higgs production shown in figure 2.

First of all, one observes that the corrections to the jet and soft functions as well as the

associated scales are quite similar to the Z-boson case. This is not an accident, but simply

a reflection of the fact that the same jet and soft functions are relevant for both processes.

This is clear for the gluon and quark jet functions, which obviously arise in both cases,

but it is also true for the soft function. In fact, the two-loop soft functions in the different

partonic channels only differ by their color factor, which is CF − CA/2 for qq̄ → g and

CA/2 for qg → q and gg → g [15]. However, whereas the same jet and soft functions are

involved in both cases, the hard function for Higgs production is dramatically different.

One observes very large corrections, of order 100% at NLO and 50% at NNLO, even for

natural scale choices µh ∼ pT .

This pattern of large corrections is familiar from the total Higgs production cross sec-

tion. Also in this case one encounters very large virtual corrections, even for the seemingly

natural choice of the hard scale µ2
h = ŝ. For the total cross section, the hard function is

given by the square of the scalar form factor and the large corrections could be traced back

to the analytic continuation of the space-like form factor to time-like kinematics [32, 33].

The analytic continuation of Sudakov double logarithms αs ln
2(−ŝ/µ2

h) produces π
2 terms

– 5 –
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Figure 3. Size of the corrections to the hard function for real and complex µh. The results are for

pT = 0.2TeV and ŝ = (0.5TeV)2. The solid lines show the hard function Hgg(û, t̂, µh), while the

dashed lines show the result for the reduced hard function H̃gg(û, t̂).

which due to the associated color factor give large corrections to the cross section. Since

these terms are tied to Sudakov logarithms, they can be resummed as was observed a long

time ago [34, 35]. A simple way of achieving this resummation for the total cross section

is to choose a time-like value of the hard scale µ2
h = −ŝ. For this choice the Sudakov log-

arithms in the expansion are minimized and the π2 terms are resummed by RG evolution

from µ2
h = −ŝ back to positive values of µ2

h [32, 33]. Unfortunately, the same procedure

cannot immediately be applied to the hard function with a jet in the final state, relevant

for the Higgs transverse-momentum spectrum. As is obvious from equation (2.3), the hard

function contains in this case double logarithms in ŝ, t̂ and û and there will be imaginary

parts for any value of µ2
h. Indeed, plotting the hard function as a function of µh = pT eiϕ,

one finds that the corrections are roughly of the same size, no matter what value of ϕ is

chosen, as was observed in [36] and can be seen in figure 3. Note that αs(µh) and the

amplitudes are functions of µ2
h; it is thus sufficient to consider |ϕ| < π/2. In the plot we

show the result for positive arguments ϕ. The values at negative ϕ are very similar.

A simple procedure to address the problem of large corrections exploits the fact that the

anomalous dimension of the Hgg scalar form factor FS(ŝ, µ) and the gg → Hg amplitude

are closely related. The RG equation for the form factor reads

d

d lnµ
FS(ŝ, µ) =

[
CA γcusp(αs) ln

−ŝ

µ2
+ 2γg(αs)

]
FS(ŝ, µ) . (2.5)

The form factor is FS = αsCtCS and Ct and CS are given explicitly in [33]. If one defines

a reduced amplitude as

M̃gg(û, t̂) =
Mgg(û, t̂, µ)√

FS(ŝ, µ)FS(t̂, µ)FS(û, µ)
, (2.6)

this amplitude will be independent of the scale µ and one can then use the RG equa-

tion (2.5) to resum large corrections to the individual form factors in (2.6). However, such
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an approach may be overly simplistic. The problem is that the reduced function is still a

function of two variables, so it can contain terms of the form αs ln
2 t̂/ŝ which can give rise to

large corrections. In particular, at small transverse momentum the amplitude Mgg(û, t̂, µ)

factorizes into a form factor FS(ŝ, µ) times a g → gg splitting amplitude. It is clear that

the reduced amplitude (2.6) will not capture all large corrections in this region.

Let us discuss the numerical effects of the above prescription. To this end, we choose a

generic phase-space point with ŝ = 1TeV2, t̂ = −0.4TeV2 andMH = 0.1TeV. These values

imply that the transverse momentum is p2T = t̂û/ŝ ≈ (0.5TeV)2. For the renormalization

scale, we use µ = 0.6TeV and obtain

Hgg(û, t̂, µ) = HLO
gg (û, t̂, µ)

(
1 + 7.77234αs + 38.2661α2

s

)
, (2.7)

H̃gg(û, t̂) = H̃LO
gg (û, t̂)

(
1 + 1.92209αs + 8.29574α2

s

)
.

We work at the same kinematic point considered in our previous paper [12], but the above

numbers include the corrections to the Wilson coefficient Ct of the effective Hgg operator

obtained after integrating out the top quark. We find that the corrections are significantly

reduced both at NLO and NNLO. For a different phase-space point, the reduction can also

be seen by comparing the dashed to the solid lines in figure 3.

Since t̂ and û are negative, the associated form factors in (2.6) do not suffer from large

perturbative corrections and only the form factor FS(ŝ, µ) needs to be RG improved. One

can thus simply multiply the cross section by a prefactor to improve the convergence,

(
dσ

dpT

)impr.

=

∣∣∣∣
FS(p

2
T , µh)US(µh, µ)

FS(p2T , µ)

∣∣∣∣
dσ

dpT
. (2.8)

When improving the hadronic cross section, we can evaluate the form factor at the typical

momentum transfer Q2 = p2T instead of the scale Q2 = ŝ which arises at the partonic level.

Choosing µh = ipT gives a well-behaved perturbative expansion in the numerator, and the

denominator divides out the large corrections to the cross section. The RG-evolution factor

US(µh, µ), whose explicit form can be found in [32, 33], then resums the large corrections.

We can apply the same improvement also to the other partonic channels, which involve

quarks. In this case, we need to multiply the amplitudes with an appropriate combination

of vector and scalar form factors. For the qg → Hq channel, for example, the relevant

combination is

M̃qg(û, t̂) =

√
FS(û, µ)√

FS(ŝ, µ)FS(t̂, µ)FV (û, µ)
Mqg(û, t̂, µ) . (2.9)

The reason for the difference to (2.6) is that the u-channel logarithm in (2.3) now has a

color factor of CF −CA/2, whereas the color factor associated with the vector form factor

is CF . For this channel, the corrections are

Hqg(û, t̂, µ) = HLO
qg (û, t̂, µ)

(
1 + 8.38935αs + 40.0591α2

s

)
, (2.10)

H̃qg(û, t̂) = H̃LO
qg (û, t̂)

(
1 + 6.04455αs + 23.4922α2

s

)
,

– 7 –
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Figure 4. Relative contribution of different partonic channels to the NNLO correction for the

default scale choice µ = pT . The qg contribution includes all partonic channels with a single

(anti-)quark in the initial state.

and in the qq̄ channel one obtains

Hqq̄(û, t̂, µ) = HLO
qq̄ (û, t̂, µ)

(
1 + 3.60093αs + 14.8465α2

s

)
, (2.11)

H̃qq̄(û, t̂) = H̃LO
qq̄ (û, t̂)

(
1 + 3.32609αs + 11.6103α2

s

)
.

The size of the corrections is reduced, but not as much as in the gg channel. The relative

NNLO contribution of the individual channels to the cross section is shown in figure 4.

For low pT , the gg channel yields the dominant contribution to the cross section. The

contribution of the qq̄ channel is numerically negligible, but the qg channels contribute a

significant fraction of the cross section. In fact, for pT & 250GeV they give the dominant

contribution. Since the RG improvement only affects the s-channel form factor and the

dependence of the reduced amplitudes (2.6) and (2.9) on this form factor is the same, it

follows that the prescription (2.8) is relevant for both the gg and qg channels. Given that

the qq̄ channel is negligible, it is therefore appropriate to use (2.8) for the full cross section.

In figure 5, we show the scale dependence of the cross section at different orders in the

perturbative expansion. In these plots, we set the hard, jet and soft scales to a common

value, µ = µh = µj = µs, and we also set the factorization scale µf = µ. If all scales

are set equal, the resummation is switched off and we obtain the fixed-order result for the

threshold terms. To distinguish these from the full result, we denote them by NnLOsing

since they consist of singular distributions whose explicit form is given in [12]. At N3LL,

we obtain threshold terms up to NNLOsing. For our most accurate result, denoted by

NNLOsing+NLO, the threshold terms are then matched to the full NLO result. The figure

clearly shows that the higher-order corrections are large, and that the convergence is only

slightly improved for very high values of pT . In all our plots, we use NNLO PDFs. The

corrections would look smaller if we had used LO PDFs for the lowest-order cross section

because of the associated larger value of αs. However, our goal here is to assess the size of

the perturbative corrections, and to this end it is more informative to keep the PDFs and

αs fixed. In figure 5, we also give the result for the improved cross section according to our

ansatz (2.8), shown by the dashed lines. We find that the improvement is only moderate at
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Figure 5. Scale dependence of the cross section at LO (gray), NLO (purple) and NNLOsing+NLO

(black). The dashed lines show the result with RG improvement according to the prescription (2.8).

the level of the cross section, despite the fact that both the reduced hard function H̃gg and

the improved scalar form factor FS have well-behaved perturbative expansions. As can be

read off from figure 3, the corrections to the reduced amplitude are about 35% at NLO

and 15% at NNLO. For pT = 200GeV and default scale choices µh = ipT and µ = pT , the

expansion of the form factor takes the form

|FS(p
2
T , µh)US(µh, µ)|
|FLO

S (p2T , µ)|
= 1.30 (1 + 0.172 + 0.013) , (2.12)

where the three terms in the bracket correspond to LO, NLO and NNLO in RG-improved

perturbation theory, which is equivalent to NLL, NNLL and N3LL accuracy. However,

both the corrections to H̃gg and the (improved) scalar form factors FS , as well as the

ones to the jet and soft functions, happen to be positive. As a result, the expansion of the

improved cross section is not much better behaved than the standard expansion. But given

that all ingredients have well-behaved expansions and that the individual corrections may

not necessarily add up constructively at higher orders, we are led to expect that the N3LO

corrections will be significantly smaller than the NNLO terms. For the form factors, the

third-order corrections are known and indeed quite small [37–39].

Before proceeding to a detailed numerical analysis, we note that the hard function

relevant for soft-gluon resummation of the total rate is given by the square of the scalar

form factor |FS(ŝ, µ)|2. Our ansatz thus predicts that the rate for Higgs production with

a jet suffers at large pT from the same corrections as the square root of the total rate. An

alternative way to improve the predictions is thus to use the total cross section instead of

the scalar form factor, when performing the improvement as in (2.8). The RG-improved

value of the total cross section can be obtained using the code RGhiggs [40, 41] and one

needs to evaluate the cross section with mH set equal to pT . Numerically, the results

obtained in this way look quite similar to the improvement with the scalar form factor

shown in figure 5.
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In conclusion we find that the large perturbative corrections are associated with higher-

order terms in the hard function. In principle, one can pursue a similar strategy as for

the total cross section and use RG techniques to resum the corrections associated with

the analytic continuation of the scalar form factor. We find, however, that even though

the individual ingredients to the differential cross section have well-behaved perturbative

expansions in such an approach, all terms happen to add up constructively and the NNLO

correction to the cross section remains sizeable. Given the moderate improvement, we

refrain from adopting this procedure when presenting numerical results for the spectrum

in the next section.

3 Numerical results

Having discussed the size of the individual corrections, we now present numerical results

for the transverse-momentum spectrum. For our predictions, we use MSTW2008NNLO

PDFs [42] and their associated value for the strong coupling constant αs(MZ) = 0.1171.

We further set mH = 126GeV and mt = 173GeV.

Before proceeding to the results, we need to discuss one important point. The factor-

ization theorem (1.1) holds both at finite mt and in the heavy top limit mt → ∞. However,

the exact top-mass dependence has so far only been computed at leading order [43, 44]. At

NLO, one would need to compute two-loop four-point diagrams with massive top quarks,

which is quite challenging. Our NNLO results for the hard function are therefore only valid

in the heavy top limit, which is no longer adequate when the pT of the boson becomes of

the order of the top quark mass. The exact leading order result has been implemented into

the code HiggsPT [45]. In figure 6 we show a comparison of the exact LO result with its

mt → ∞ limit. The figure shows that for pT > 200GeV, the corrections to the heavy top

limit become important. In the absence of the exact higher-order hard functions, the best

way to take these effects into account is to multiply the higher-order results by the correc-

tion factor in figure 6. We note that the factor is largely independent of the scale. The

partonic cross section has identical scale dependence (given by the overall factor αs(µ)
3 at

LO), so that scale differences in the ratio only arise because the shape of the PDFs evolves

when the scale is changed and they are integrated against a different weight in the numer-

ator and denominator. The correction factor is also quite insensitive to the center-of-mass

energy of the collider. In addition to the LO results, the first order terms in an expan-

sion in 1/m2
t are known at NLO [46]. This paper concluded that for pT < 200GeV the

NLO effects are not very large and that the bulk of the effects is captured by reweighting

with the exact LO cross section, as discussed above. In addition to the finite quark mass

effects, also electroweak corrections should be considered. Both types of corrections were

analyzed in [47], and it was found that also the electroweak effects are moderate below

pT < 200GeV.

For our final results, we use a conservative approach to estimate the size of missing

higher-order corrections. We found in section 2 that there is no clear hierarchy between the

jet, soft and hard scales, at least not at values of pT which are of phenomenological interest.

We therefore do not perform any resummation, but simply set the different scales equal to
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Figure 7. Individual scale variations of the cross section at different values of the transverse

momentum.

a common scale µ. However, in contrast to a standard fixed-order treatment, we can vary

the scales separately in the different ingredients of our formula. The variation of the cross

section from changing the hard, jet, soft and factorization scales individually is displayed

in figure 7. The largest effects arise from the variation of the hard and factorization

scales. For the hard scale, this is expected since the hard function receives the largest

perturbative corrections. The factorization scale dependence provides an estimate of the

missing non-threshold terms which would be needed to make the result independent of

µf up to terms beyond NNLO. The large µf dependence at smaller pT indicates that

non-threshold corrections could play an important role in this region. From figure 7, we

observe that the variations of µh and µf tend to go in opposite directions. Varying the two

scales together might therefore not provide a reliable uncertainty estimate, and we vary
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√
s = 8TeV. Left: independent variations of µf and µ = µh = µj = µs, see text. Right:

correlated scale variations µf = µ by a factor of two.

the scales both individually and in a correlated way. Specifically, we set µ = µh = µj = µs

and vary µ and µf separately up and down by factors of two around the default value

µ = µf = pT , while constraining 1/2 ≤ µf/µ < 2. This yields seven values for the cross

section at a given value of pT and we define the scale uncertainty band by the maximum

and minimum values. From figure 7, we observe that the µf variations decrease at higher

pT values, which arises because the threshold contributions become more dominant.

The result of the uncorrelated scale variation is shown in the left panel of figure 8.

The largest variations are due to the individual µ or µf variations, which are explicitly

given in table 1. The lower boundary of the scale bands always arises from varying µ

upward, while the upper boundary is set by different variations, depending on the value of

pT . The kink in the upper edge of the NNLO band near pT = 60GeV, for example, arises

because the maximum switches to a different variation at that point. For comparison we

show in the right panel the scale bands obtained from a correlated variation of µ = µf by

a factor of two. In contrast to the more conservative approach we use here, the bands do

not fully overlap with this prescription. We adopt the more conservative prescription to

present the results for
√
s = 13TeV in figure 9. In table 1, we present values for the cross

section and the separate µ and µf variations. When computing individual scale variations,

a small amount of resummation is being performed because the RG-evolution factors in

our resummed result become nontrivial (their explicit form was given in [12, 29]). For this

reason, we need to distinguish NLOsing+NLO from standard NLO. In the NLOsing+NLO

result, the perturbative corrections to the hard, jet and soft functions are evaluated at

the scale µ and the result is RG evolved to the scale µf , where the matching corrections

are added and the convolution with the PDFs is performed. In contrast, in fixed-order

computations the dependence on the renormalization scale µ is obtained by starting with

the perturbative result computed with a single scale µf and then reexpanding in terms of a
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Figure 9. Transverse-momentum spectrum at LO (gray), NLO (purple) and NNLOsing+NLO

(black) at
√
s = 13TeV.

coupling constant at a different scale µ. As the entries in table 1 show, our prescription leads

to a more conservative error estimate. In the table, we also give PDF and αs uncertainties.

To obtain those, we have used the MSTW2008NNLO 90% confidence level error PDFs and

the associated αs(MZ) = 0.1171±0.0034. The uncertainties are given for our highest-order

result, but the relative uncertainties are largely independent of the order if the same PDF

set is used. The uncertainty on αs is larger than the PDF uncertainty and to a good

approximation simply a result of the overall α3
s prefactor.

We finally briefly compare our numbers to the NNLL results of [20]. This paper found

that higher-order corrections lower the cross section, while we find a large increase at two-

loop order. The reason for this difference is that the dominant corrections come from

the two-loop hard function, which is not included in the result of [20]. We have tried to

numerically compare results at NNLL accuracy, but the fact that the authors only show

plots and do not fully specify how the uncertainty bands are generated makes a detailed

comparison difficult. Adopting the same default scale choices as [20], we find results which

appear to be consistent with the plots in this paper. We note that [20] uses fixed values

for the jet and soft scales, while the plots in figure 2 seem to indicate that they scale with

the transverse momentum. Also, the value of the hard scale µh = 2.5
√
p2T +m2

H adopted

in [20] is quite high.

4 Conclusion

We computed the NNLO corrections to the Higgs transverse-momentum spectrum in the

threshold limit. The threshold corrections as well as the N3LL resummed results are

implemented in the public code PeTeR [18]. The NNLO corrections turn out to be sizeable,

and we gave a detailed discussion about the origin of these corrections. Similar to the

inclusive Higgs production cross section, they are associated with higher-order terms in
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dσ
dpT

[ fb/GeV]
LHC at 8TeV LHC at 13TeV

100GeV 200GeV 100GeV 200GeV

LOsing 11.0+8.4+1.8
−3.5−0.4 1.17+0.77+0.13

−0.38−0.05 30.6+22.6+5.9
−9.1−1.2 3.90+2.47+0.50

−1.19−0.16

NLOsing 25.1+8.8+3.8
−6.1−0.3 2.48+0.8+0.28

−0.6−0.07 71.2+23.2+11.5
−15.6−0.6 8.34+2.52+1.02

−1.89−0.19

NNLOsing 35.2+5.3+5.3
−6.0−0.3 3.31+0.48+0.41

−0.55−0.11 101.8+13.7+15.3
−15.3−0.1 11.23+1.52+1.47

−1.73−0.23

NLO 21.7+5.0+0.6
−4.1−0.6 2.31+0.48+0.11

−0.39−0.09 59.8+13.5+0.6
−11.1−0.6 7.63+1.55+0.23

−1.29−0.19

NLOsing+NLO 21.7+8.8+4.4
−6.1−0.6 2.31+0.80+0.29

−0.60−0.06 59.8+23.2+13.6
−15.6−1.4 7.63+2.52+1.07

−1.89−0.17

NNLOsing+NLO 31.8+5.3+5.9
−6.0−0.5 3.14+0.48+0.42

−0.55−0.09 90.5+13.7+17.4
−15.3−0.5 10.52+1.52+1.53

−1.73−0.21

PDF uncertainty +3.2%
−3.4%

+4.3%
−4.4%

+2.4%
−2.7%

+3.1%
−3.3%

αs uncertainty +11.9%
−10.9%

+10.4%
−9.7%

+11.9%
−10.9%

+10.4%
−9.7%

dσLO(mt)/dσ
LO(∞) 1.036 0.954 1.039 0.964

Table 1. Results for the cross section and its scale uncertainty using different approximations, see

text. The scale uncertainties are obtained by varying the scales µ = µh = µj = µs and µf by a

factor of two around the default value µ = µf = pT . The first uncertainty is the variation of µ, the

second one µf .

the hard function and can be resummed using RG techniques. The RG improvement turns

out, however, to be not very efficient for the transverse-momentum spectrum.

Our analysis revealed that there is no pronounced hierarchy between the hard, jet

and soft scales, and we thus refrained from resumming the threshold terms to all orders.

However, we used the scale separation to obtain a more conservative uncertainty estimate

than in fixed-order calculations which seems appropriate in view of the large corrections.

The dominance of the virtual corrections further implies that the threshold expansion

should provide a good approximation of the full NNLO result even at moderate values of pT .

Our result will serve as a check of the full NNLO Higgs plus one jet calculation once it

becomes available. It includes all partonic channels, and it turns out that the qq̄ channel is

negligible but the qg contribution is numerically significant. Our calculation also provides

an estimate of beyond NNLO corrections. The dominant N3LO terms will likely arise in

the hard function, and they can be estimated using the improvement scheme introduced

in section 2.

Interestingly, we find that the NNLO terms lead to changes in the shape of the pT
distribution which are comparable in size to finite-mt effects. This could be relevant,

for example, in the context of new physics searches at large transverse momentum using

methods such as the ones advocated in [1–4]. Preliminary experimental results for the

Higgs transverse-momentum spectrum are already available [48]. These measurements are

based on the decay H → γγ, and they reach up to transverse momenta of about 200GeV.

The higher energy and luminosity of Run II will allow to extend the measurements to

higher pT values, in particular if also larger decay channels such as H → ττ are taken into

account. We look forward to comparing our results to these measurements.
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