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1 Introduction

Nearly two decades after the formulation of holographic duality [1], the question of how

a gravitational spacetime is assembled from field theoretic degrees of freedom remains

mysterious. The most intriguing aspect of this problem is the radial direction, which is

not present in the field theory and, therefore, must have an emergent character. Starting

from different initial points, one can derive a number of qualitative conclusions about the

radial direction, many of which are contradictory or counter-intuitive. For example, the

UV/IR relation [2] suggests that traveling along the radial direction toward the center

of a holographic spacetime is dual to following the field theory RG flow toward the deep

infrared [3–5]. On the other hand, low energy effective field theory in the bulk, which

assumes that radially separated regions of the spacetime contain independent degrees of

freedom, implies that a spacetime dual to an excited pure state ends abruptly at a radial

scale, which is the horizon of the corresponding black hole [6, 7]. To shed light on this

problem — to understand how space emerges and what happens when one jumps into a

black hole — it is necessary to study the radial direction in a quantitative way.

The present paper is part of an effort to study this problem using the relation between

spacetime and quantum entanglement in the boundary theory. The cornerstone of this

relation is the Ryu-Takayanagi proposal [8], which posits that the entanglement entropy of
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a spatial region R in the field theory equals the area of a bulk minimal surface that asymp-

totes to the boundary of R in Planck units. This proposal has profound consequences.

A simple argument due to Van Raamsdonk [9] (see also [10, 11]) shows that quantum

entanglement in the field theory is a necessary condition for the connectedness of space-

time: when entanglement between complementary field theory regions is tuned to zero, the

spacetime appears to pinch off into disconnected components. Adopting this viewpoint,

Bianchi and Myers [12] conjectured that the relation

Area

4G
= Sent (1.1)

extends to arbitrary surfaces and serves to define the spacetime from field theoretic degrees

of freedom. In three-dimensional anti-de Sitter space (AdS3), a modified version of this

conjecture was recently made quantitative in [13]. Starting from a family Ij of boundary

intervals with corresponding Ryu-Takayanagi minimal surfaces (geodesics) mj , the circum-

ference of the spatial region lying outside all the curves mj is given by a novel boundary

quantity dubbed ‘differential entropy’:

circumference

4G
=
∑
j

(
Sent(Ij)− Sent(Ij ∩ Ij+1)

)
. (1.2)

While the differential entropy is assembled from entanglement, each differential length

element in formula (1.2) arises from entanglement of a distinct region Ij of the boundary

theory. The union of these regions covers a Cauchy slice of the field theory. This suggests

that radially separated regions of the bulk spacetime only appear to contain independent

degrees of freedom in the low energy approximation, while in fact they are microscopically

built up of the same fundamental ingredients.

This lesson is not particular to AdS3. As shown in [14], a generalization of formula (1.2)

characterizes codimension-2 bulk surfaces in non-AdS holographic backgrounds, in other

theories of gravity including Lovelock theories, and in higher dimensional setups in which

the bulk surfaces have planar symmetry. This wealth of examples was explained in [15] (see

also [16]), which gave a robust, background-independent proof of the generalized version

of eq. (1.2). In the present paper, we use this proof to extend the scope of the differential

entropy formula to those general surfaces in more than 3 bulk dimensions, which admit a

1-parameter foliation over a closed manifold. Part of our motivation is to identify insights

that may guide us toward a covariant version of differential entropy, which does not rely

on a special foliation of the bulk surface.

In section 2, we write down our generalization of differential entropy (eq. (2.2)) and

specify the class of bulk surfaces whose areas it computes. The surfaces must admit a 1-

parameter foliation over a closed manifold, so that the technique of the proof of [15] applies.

We review this proof and extend it to our case of interest in section 3. In section 4 we present

an example, which involves a numerical computation. For many bulk surfaces formula (2.2)

involves not minimal but merely extremal surfaces, whose areas do not compute boundary

spatial entanglement entropies. We characterize when this happens in section 5. Our

results contain hints, which will likely be useful for writing down a fully covariant formula

for the differential entropy. We discuss these hints in section 6. For completeness, in

appendix A we describe the numerical methods used in the example.
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2 Proposal

2.1 Setup

We work in a (d+1)-dimensional bulk geometry dual to a d-dimensional field theory on the

boundary. Consider a (d− 1)-dimensional surface in the bulk. We assume that the surface

is closed, spacelike, and sufficiently differentiable. Our goal is to compute the generalized

area of this surface using boundary ingredients. By generalized area we mean the integral

over the bulk surface of the same density, which — if integrated over a minimal surface

— would have given a boundary entanglement entropy according to the Ryu-Takayanagi

proposal [8]. In the case of Einstein gravity this density is a constant and the generalized

area is ordinary surface area.

In principle, the boundary ingredients we use are entanglement entropies of spatial

regions in the field theory. These correspond to generalized areas of minimal surfaces in

the bulk. However, we also allow extremal rather than strictly minimal surfaces, even

though their boundary interpretation is not known. We shall not distinguish minimal

surfaces from extremal surfaces until section 5, where we characterize when the latter make

an appearance. We comment on a possible boundary interpretation of extremal but not

minimal surfaces in section 5.3, but refer the reader to [17] for a more thorough discussion.

2.2 Strategy

The main idea is to foliate the bulk surface by codimension-1 “loops.” Here and below we

use “surfaces” to refer to (d − 1)-dimensional manifolds and “loops” to refer to (d − 2)-

dimensional ones, even though they are actual loops only in d = 3. In Poincaré coordinates

they could also look like infinite lines. Note that these lines are not required to be straight,

but if they are, we are in the special case considered in [14].

This codimension-1 foliation allows us to construct coordinates (λ, ηa) on the surface

such that each loop K(λ) is specified by a constant λ. Here a runs from 1 to d − 2. Our

goal is to reconstruct

A =

∫
dλ dd−2η L(xµ, ∂λx

µ, ∂ηαx
µ) , (2.1)

where xµ denotes all bulk coordinates and L is the generalized area element that depends

only on xµ and their first derivatives. The holographic entanglement entropy is given by

minimizing the integral of L subject to the usual homology constraint. We call L the gener-

alized area element because we allow both Einstein gravity and any theory of higher deriva-

tive gravity with an action principle for the holographic entanglement entropy [18, 19].

As a next step, construct for each λ an extremal surface M(λ) that is tangent to the

original surface precisely at the loop K(λ). In other words, we need to extend the loop K(λ)

in one additional dimension. We shall use s to denote a coordinate in this new direction

and for simplicity reuse the ηa coordinates as the other coordinates on the extremal surface

M(λ). Finding an extremal surface requires solving an elliptic partial differential equation;

demanding that M(λ) meet K(λ) and be tangent to the given bulk surface sets a Cauchy

boundary condition. In its most general form, this problem is not guaranteed to have a solu-
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Figure 1. A minimal surface M tangent to the original surface (not drawn) at a loop K. The

choice of which side is left/right is fixed by demanding that the coordinate λ increase from left to

right. In other words, the intersection of the minimal surfaces M(λ) and M(λ+dλ) happens inside

MR(λ) and ML(λ+ dλ).

tion and if it does, the solution may not depend continuously on the Cauchy data.1 In what

follows we assume that the solution M(λ) exists. This assumption holds for a variety of

shapes in the bulk; we discuss a representative series of examples in section 4. Discontinuous

dependence of solutions on the Cauchy data adds additional boundary terms to the differ-

ential entropy. Our example in section 4.2 illustrates this complication while section 5.1

discusses an example “phase structure” of discontinuously varying extremal surfaces.

Since each loop K(λ) is closed by construction, the extremal surface M(λ) generically

encloses a ring-shaped region R(λ) on the asymptotic boundary. (In general, the topology

of the “ring” R(λ) depends on the topology of the “loop” K(λ).) For our purposes, it

is important that the loop K(λ) separates the minimal surface M(λ) into two regions —

left ML(λ) and right MR(λ) — and that they intersect the asymptotic boundary at loops

BL(λ) and BR(λ), respectively. Let us write the field theory region between any two loops

BL and BR on the asymptotic boundary as [BL, BR]. Then the ring-shaped region R(λ)

mentioned earlier can be written as [BL(λ), BR(λ)]. See figure 1 for an illustration of this.

The differential entropy associated with a one-parameter family of regions R(λ) =

[BL(λ), BR(λ)] is defined as:

Sdiff =

∫
{SEE [BL(λ), BR(λ)]− SEE [BL(λ+ dλ), BR(λ)]} . (2.2)

Here SEE [BL(λ), BR(λ)] is the generalized area of the extremal surface M(λ). When M(λ)

is minimal, and [BL(λ), BR(λ)] is a well-defined boundary region, SEE [BL(λ), BR(λ)] is

the entanglement entropy of the ring R(λ) (in units where 4GN ≡ 1). Our claim is that

formula (2.2) reconstructs the generalized area (2.1) of the original surface:

Sdiff = A . (2.3)

1We thank the reviewer for clarifying this point to us.
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Figure 2. Nomenclature used in the proof. Unprimed symbols denote quantities at λ while primes

mark quantities at λ+ dλ. The other d− 2 dimensions are denoted by ~η.

3 Proof

The quantity SEE [BL, BR] is computed as the generalized area of the extremal surface

stretched between BL and BR, or the on-shell action of

S =

∫
ds dd−2η L(xµ, ∂sx

µ, ∂ηαx
µ) (3.1)

subject to the initial and final conditions BL and BR. We may write this extremal surface

as M [BL, BR] and this on-shell action as Son[BL, BR]. As we vary λ, the minimal surfaces

M(λ) and M(λ+dλ) generically intersect on a loop in the bulk. Let us call this loop K̃(λ);

see figure 2. By construction we have:

SEE [BL(λ), BR(λ)] = Son[BL(λ), K̃(λ)] + Son[K̃(λ), BR(λ)] . (3.2)

First, we claim that

SEE [BL(λ+ dλ), BR(λ)] = Son[BL(λ+ dλ), K̃(λ)] + Son[K̃(λ), BR(λ)] (3.3)

up to terms that are second-order or higher in dλ and can therefore be neglected. To

prove this, we note that the extremal surface M [BL(λ + dλ), BR(λ)] stretched between

BL(λ + dλ) and BR(λ) is different from the union of two extremal surfaces M [BL(λ +

dλ), K̃(λ)] and M [K̃(λ), BR(λ)] only by terms that are linear or higher-order in dλ. After

all, these surfaces come from extremal surfaces stretched at the asymptotic boundary whose

boundary conditions vary by O(dλ). It follows that the difference between the left- and

right-hand side of (3.3) vanishes at the linear order in dλ, because the linear term is

proportional to the equation of motion, which is satisfied.

– 5 –
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We may now plug (3.2) and (3.3) into the differential entropy (2.2):

Sdiff =

∫ {
Son[BL(λ), K̃(λ)]− Son[BL(λ+ dλ), K̃(λ)]

}
. (3.4)

We may further rewrite the integrand as:

Son[BL(λ), K̃(λ)]−Son[BL(λ+dλ), K̃(λ)]=Son[BL(λ),K(λ)]−Son[BL(λ+dλ),K(λ+dλ)]

+Son[K(λ), K̃(λ)]+Son[K̃(λ),K(λ+dλ)] . (3.5)

Since the minimal surface M(λ) at each λ is tangent to the original surface at K(λ) by

construction, the second line of (3.5) may be replaced by the generalized area swept out

between K(λ) and K(λ+ dλ) on the original surface,

Son[K(λ), K̃(λ)] + Son[K̃(λ),K(λ+ dλ)] =

∫
dd−2η L(xµ, ∂λx

µ, ∂ηαx
µ)

∣∣∣∣
K(λ)

dλ , (3.6)

up to terms second-order or higher in dλ. Therefore, (3.5) becomes:

Son[BL(λ), K̃(λ)]−Son[BL(λ+dλ), K̃(λ)] = −dSon[BL(λ),K(λ)]

dλ
dλ

+

∫
dd−2η L(xµ, ∂λx

µ, ∂ηαx
µ)

∣∣∣∣
K(λ)

dλ . (3.7)

Integrating over λ, we recover the desired result

Sdiff =

∫
dλ dd−2η L(xµ, ∂λx

µ, ∂ηαx
µ) = A (3.8)

as long as the first term in (3.7) does not produce boundary terms. When the 1-parameter

foliation of the given surface by K(λ) is nondegenerate so that λ is periodic, this is au-

tomatic. In section 4.2 we explain the circumstances, under which the same conclusion

extends to degenerate foliations, where λ varies over an interval.

4 Examples

4.1 Torus

We start with an example where the foliation by K(λ) is nondegenerate. The simplest

instance is a torus on a constant time slice of AdS4; see figure 3.

We employ pseudo-spectral methods to numerically solve the partial differential equa-

tions that determine the embedding of various extremal surfaces. Assuming Einstein grav-

ity, we find the differential entropy (2.2) via the Ryu-Takayanagi formula. We verify that

this gives the area of the torus by numerically showing the infinitesimal form of the claim

SEE [BL(λ), BR(λ)]− SEE [BL(λ+ dλ), BR(λ)] = −dSon[BL(λ),K(λ)]

dλ
dλ

+

∫
dd−2η L(xµ, ∂λx

µ, ∂ηαx
µ)

∣∣∣∣
K(λ)

dλ (4.1)
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Figure 3. Left: reconstruction of a torus on a constant time slice of AdS4. Middle: the infinitesimal

version where the loop K(λ) sweeps out a small area. Right: we have exploited the symmetry of

AdS and moved the loop K(λ) to the center of AdS.

as we vary the loop from K(λ) to K(λ + dλ). Using the maximal symmetry of AdS, we

may move the loop K(λ) to a more symmetric point such as the center of AdS simply

for the purpose of easing our numerical computation. A torus with a generic shape and

a generic foliation would translate into the statement that the loops K(λ) and K(λ+ dλ)

are not necessarily perfect circles, of the same size, or parallel to each other.

To give a concrete example, let us focus on a torus that is specified in the following

way. We choose the coordinates of AdS4 such that its metric is

ds2 =
1

z2

[
−(1 + z2)dt2 +

dz2

1 + z2
+ dθ2 + sin2 θdφ2

]
, (4.2)

where we have set the radius of curvature to 1 for simplicity. Let us start with the circle at

{z = z0, θ = π/2}, where z0 is a constant. Intuitively, we would like to generate a torus by

moving the circle to the “right” and rotating it in the orthogonal direction. This is most

easily specified by embedding the constant time slice of AdS4, which is a 3-dimensional

hyperbolic space, in a 4-dimensional Minkowski space with coordinates Xµ, µ = 0, 1, 2, 3.

Explicitly, the embedding map is:

X0 =

√
1 + z2

z
, X1 =

1

z
sin θ cosφ , X2 =

1

z
sin θ sinφ , X3 =

1

z
cos θ . (4.3)

We move the circle to the “right” by applying a boost in the (X0, X1) directions with

rapidity τ and then rotate the circle in the (X1, X3) directions. This gives us a torus in

the bulk. In particular, we get an infinitesimal piece of the torus by rotating the circle by

an angle δψ. The boundary of this infinitesimal piece consists of the two loops we have

been calling K(λ) and K(λ+ dλ). The relative magnitude of τ and δψ controls the size of

the second cycle of the torus.

As mentioned before, we boost this infinitesimal problem to the center of AdS4 to

simplify the computation. We have numerically solved the infinitesimal case with the

following parameters:

z0 =
1

2
, τ = 2 , δψ = 10−3 , zc = 10−1 , (4.4)

– 7 –
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where zc is the cutoff near the AdS boundary. We find numerically that the differential

entropy is

SEE [BL(λ), BR(λ)]− SEE [BL(λ+ dλ), BR(λ)] ≈ 0.1066 , (4.5)

and the total derivative term is

dSon[BL(λ),K(λ)]

dλ
dλ ≈ 0.0486 . (4.6)

Adding these two contributions, we predict that the area swept out between the two loops

K(λ) and K(λ+ dλ) is

δApredicted ≈ 0.1552 , (4.7)

which agrees with the actual area

δAactual ≈ 0.1530 (4.8)

within numerical errors including those from ignoring higher order terms in δψ. Details of

the numerical computation are collected in appendix A. We have numerically verified the

infinitesimal claim (4.1) in tori of other shapes, which generally have no symmetry.

It should be noted that we may foliate a torus in more than one way. Each foliation

gives a different reconstruction of the area of the torus. For example, we may foliate the

torus by cycles dual to the K(λ) used in the discussion above.

4.2 Sphere

In this subsection we consider examples where the bulk surface is topologically a sphere.

This case differs from the torus in that any foliation by lower-dimensional “loops” neces-

sarily degenerates at two points.

Let us first consider the example of a perfect (d − 1)-dimensional sphere inside the

AdSd+1 bulk. It is natural to foliate the perfect sphere by “loops” K(λ), which are perfect

(d−2)-dimensional spheres. One might worry that the extremal surfaces M(λ) constructed

from K(λ) behave badly by developing caustics as K(λ) approaches a degeneration point.

However, a caustic is inconsistent with the extremality condition. As K(λ) approaches a

degeneration point, the associated extremal surface M(λ) develops an increasingly narrow

“neck”. In the limit that K(λ) shrinks to zero size, M(λ) pinches off at the neck and

splits up into two copies of a special, uniquely determined extremal surface. The latter is

selected by two conditions: it is tangent to the bulk sphere at the degeneration point and

its extrinsic curvature tensor vanishes identically (not just in the trace). The variation of

the surfaces M(λ) with λ is illustrated in figure 4.

The infinitesimal form (3.7) of our claim naturally holds in this case. We may there-

fore use the differential entropy to reconstruct the generalized area of the sphere. This

conclusion is subject to two caveats discussed below.

First, due to the degeneration points the λ direction is no longer closed, so we pick up

a boundary term at each degeneration point:

Sdiff = A− Son[BL(λ),K(λ)]
∣∣∣λ=λR

λ=λL
, (4.9)

– 8 –
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Figure 4. Left: foliation of a sphere by circles that degenerate at two points. Middle and right:

the extremal surfaces M(λ) constructed from circles K(λ) as they approach a degeneration point.

where λL and λR are the coordinates of the two degeneration points. According to our

earlier discussion, the boundary term Son[BL(λ),K(λ)] at a degeneration point is simply

the on-shell action of the unique extremal surface that is tangent to the sphere at the

degeneration point and has a component-wise vanishing extrinsic curvature tensor. For a

perfect sphere it is obvious that the boundary terms cancel between the two degeneration

points (as long as the UV cutoff of the theory also respects the spherical symmetry). We

therefore obtain the desired result:

Sdiff = A . (4.10)

More generally, we may go beyond perfect spheres and consider any surface that is

topologically a sphere. If the surface admits a Z2 symmetry, we can choose a foliation that

respects the Z2 symmetry in the sense that any loop K(λ) is mapped to some other loop

K(λ′) under the Z2. Then the two degeneration points must be mapped to each other

under the Z2 symmetry, so their boundary terms cancel (as long as the UV cutoff of the

theory is Z2 symmetric) and eq. (4.10) follows. Note that the same argument applies to

Z2-symmetric surfaces of arbitrary topology: if we choose a foliation and UV cutoff that

respect the Z2 symmetry, and none of the degeneration points is Z2-invariant (so that

they are mapped pairwise by Z2), the boundary terms arising at the degeneration points

necessarily cancel and we have eq. (4.10) for these surfaces including higher-genus Riemann

surfaces and their higher-dimensional generalizations.

Without any symmetry, we may still locate the degeneration points at two distinct

points on the surface with canceling boundary terms. Indeed, the boundary term Sbdy ≡
Son[BL(λ),K(λ)] at a degeneration point is completely determined by the location and

tangent plane of that point, independent of the details of the foliation elsewhere. Therefore

Sbdy is a continuous function on a closed surface and it is always possible to find two distinct

points with equal values of Sbdy. We may then construct a foliation, which degenerates

at exactly these two points. This construction ensures that eq. (4.10) holds. It should be

noted, however, that the determination of Sbdy and the selection of two points with equal

Sbdy is sensitive to the choice of the geometric cutoff surface near the asymptotic boundary

of the bulk geometry.

– 9 –
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Figure 5. Three possible extremal surfaces that asymptote to the same ring-shaped region on the

asymptotic boundary: thick, thin, and disconnected.

The second caveat is that the extremal surfaces M(λ) cease to be minimal as the circle

K(λ) comes close to a degeneration point. We discuss this in detail in the next section.

5 Extremal but not minimal surfaces

As illustrated in figure 5, in AdS4 there are up to three extremal surfaces that asymptote

to the same ring-shaped region. Of course, only one of them — that with the smallest area

— computes the entanglement entropy of a spatial region in the boundary field theory.

The boundary interpretation of the others is not currently known. Ref. [17] addresses this

question in the context of conical defect and BTZ spacetimes in three bulk dimensions,

where extremal but nonminimal curves first arise. In this section, we discuss briefly the

“phase structure” of extremal surfaces in AdS4, the circumstances under which extremal

nonminimal surfaces are necessary to describe a given bulk surface, as well as generaliza-

tions beyond AdS4. We will also comment briefly on possible boundary interpretations of

extremal surfaces. For a fuller discussion consult [17].

5.1 Phase structure of extremal surfaces

Figure 5 displays the extremal surfaces in AdS4, which asymptote to longitudinal circles

located at latitudes θ and π − θ on the asymptotic boundary (see metric 4.2). Starting

from θ = π/2 (the equatorial plane), there are three extremal surfaces, two of which are

connected. According to the diameter of the connecting cylindrical region, we call the

connected surfaces “thick” or “thin”. The area of the thin surface is always larger than

the area of the thick surface resting on the same boundary region. As we vary θ away

from π/2, the thick and thin surfaces approach the same limiting shape with diameter of

order LAdS (zc = 0.700), which is reached at the critical value θ ≈ cos−1 0.46. Beyond

that (for θ < cos−1 0.46) there is only one extremal surface, which consists of two identical,

disconnected pieces. This type of surface exists for all values of θ, but it is minimal only for

θ < cos−1 0.41, where a first order transition occurs. For cos−1 0.41 < θ < π/2 the area of

the disconnected surface lies between the thick and thin connected areas, equaling the latter

at π/2, where the thin connected surface pinches off into two disconnected components. The

full phase structure of extremal surfaces in AdS4 is summarized in the diagram in figure 6.

– 10 –
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0.0 0.1 0.2 0.3 0.4 0.5

340

350

360
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380

390

400

cosHΘ L

A

Figure 6. Plots of the areas of various extremal surfaces in AdS4 as functions of the width of the

boundary region. The right plot is a magnification of the upper-left corner of the left plot. To

show the different curves clearly, we have slightly exaggerated their differences without changing

the qualitative features of the plots. The cutoff is set to zc = 5× 10−3.

When the boundary “ring” does not lie between two identical circles but assumes a

generic shape, the extremal surfaces depend on all the parameters of the boundary shape.

In this case, drawing a complete phase diagram is not possible. Nevertheless, the phase

structure is qualitatively the same as in figures 5–6.

5.2 Relevance of extremal but nonminimal surfaces

Consider a bulk surface foliated by loops K(λ), which degenerate at finitely many points.

We discussed the simplest example, a sphere, in section 4.2. If the characteristic size of

the surface is comparable or larger than the AdS curvature scale, we can assume that a

generic loop K(λ) selects a tangent extremal surface, which is of the thick type. As seen on

figure 6, the thick extremal surface is generically minimal, so it computes the entanglement

entropy of a spatial region on the boundary. Thus, the integrand in eq. (2.2) at generic λ

involves entanglement entropies of spatial regions in the boundary field theory.

This conclusion does not hold in a neighborhood of a degeneration point of the foliation.

In the limit that λ approaches a degeneration point, the loops K(λ) shrink down to a point.

Following this shrinkage, the extremal surfaces that are tangent to the given bulk surface

at K(λ) cannot remain in the thick regime. Instead, in a neighborhood of a degeneration

point the tangent extremal curves are of the thin, nonminimal type. At the degeneration

point itself, the tangent surface is the limiting surface on which the thin and disconnected

branches meet up (θ = π/2 in figure 6). In this way, a degeneration of the foliation neces-

sarily involves nonminimal surfaces in the differential entropy formula. Although the same

bulk curve can be captured by formula (2.2) in many ways, the degeneration of a foliation

is mandated by topology, so it cannot be evaded by a clever redefinition of the foliation.

In the preceding paragraphs, we assumed that a generic loop K(λ) is no smaller than

the AdS curvature scale. Another context in which nonminimal extremal surfaces make an

appearance is when we attempt to localize a bulk surface in a region much smaller than

LAdS. Such small regions are not covered by thick extremal surfaces, so thin extremal

surfaces again become necessary. This case is distinct from degenerate foliations, as ex-

– 11 –
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Figure 7. A surface, which is large and has a nondegenerate foliation, whose differential entropy

description nevertheless involves a nonminimal extremal surface. The leaf of the foliation highlighted

in red is tangent to an extremal surface in the disconnected phase, which (for a generic choice of

parameters) is nonminimal.

emplified by a small bulk torus whose both fundamental cycles are much smaller than the

curvature scale of the ambient AdS space.

One may imagine more general scenarios, in which extremal but not minimal surfaces

enter eq. (2.2). For example, figure 7 shows a topological torus with a nondegenerate

foliation, which is everywhere large compared to LAdS and nevertheless becomes tangent

at a loop K(λ) to a nonminimal extremal surface. While it may be possible to eliminate

extremal but not minimal tangent surfaces from formula (2.2) by redefining the foliation,

degenerate foliations and surfaces confined to a small bulk region are two cases, where this

is definitely not possible.

To avoid dealing with nonminimal surfaces, it is possible to start from the field theory

side and construct bulk surfaces holographically. To do so, consider a family of field theory

regions parameterized by λ, each of which has two disconnected boundaries BL,R(λ). Their

“outer envelope” [14] is a bulk surface, which may fail to be differentiable in two ways.

First, the extremal surfaces M(λ) may not vary continuously with λ; this happens when

there is a first order phase transition in entanglement entropy (see [20, 21] for examples).

Second, the “outer envelope” may develop caustics (cusps); for examples see [15, 22–24].

At caustics, the differential entropy may undergo a sign change, which can be understood

as trading the boundary regions parameterized by λ for their complements [15, 24]. The

problem of reconstructing the bulk surface starting from a family of boundary regions has

been discussed in [15, 23]. Note that such a construction has an added bonus: we need not

assume that the Cauchy problem discussed in section 2.2 has a solution for all λ.

5.3 Boundary interpretation

A common lore in AdS/CFT is that it is difficult to achieve bulk locality on scales smaller

than the AdS curvature radius. To holographically zoom in on a sub-AdS region, one must

study a sector of the field theory, which contains no data about the spatial organization

of its degrees of freedom, namely a matrix quantum mechanics. How to reconcile this

with the Ryu-Takayanagi proposal and formula (2.2), which relates surface areas to en-

tanglement entropies — quantities, which were invented to quantify correlations between

spatially separated degrees of freedom?

– 12 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
5

We anticipate that extremal but nonminimal surfaces bridge the gap between these

two points of view. The success of formula (2.2) in reproducing sub-AdS scale areas using

nonminimal surfaces provides partial evidence for this qualitative statement. Another

piece of evidence comes from considering RG flows: the distinction between a minimal and

a merely extremal surface can depend on the large scale cutoff in gravity. We infer from

this that the field theory contains quantities, which (a) are computed in holography by

areas of extremal yet nonminimal surfaces and (b) reduce to entanglement entropies when

the field theory flows to the deep infrared. These putative quantities should characterize

how internal (matrix) degrees of freedom depend on large scales in field theory, reducing

to a complete description of the matrix quantum mechanics.

For a more complete discussion of nonminimal extremal surfaces, we refer the reader

to [17]. Set in the context of AdS3/CFT2, it gives a definition of a novel boundary quantity

called “entwinement,” whose bulk dual is the area of an extremal (not necessarily minimal)

surface. Qualitatively, it captures (an analogue of) the entanglement between gauge equiv-

alent subsectors of the field theory, compounded over the entire asymptotic boundary. The

definition of entwinement relies on special properties of 1+1-dimensional conformal field

theories, so it is not clear how to lift it to higher dimensions. The results of the present paper

motivate the problem of extending entwinement to higher-dimensional holographic theories.

6 Discussion

The Ryu-Takayanagi proposal [8] brought to light a new way of thinking about the emer-

gence of the gravitational spacetime in holography, which treats boundary entanglement

as the basic ingredient. The differential entropy formula

Sdiff =

∫
{SEE [BL(λ), BR(λ)]− SEE [BL(λ+ dλ), BR(λ)]} = A/4G (6.1)

combines these ingredients (and their appropriate generalizations, viz. section 5) to re-

produce the area of an arbitrary surface in the bulk. It was originally written for pure

AdS3 [13] and later extended to a variety of holographic contexts [14]. This paper, which

draws on a proof of eq. (6.1) given in [15], shows that the relation between differential en-

tropy and areas of arbitrary surfaces extends to all bulk curves, which admit a 1-parameter

foliation over a closed manifold. Subtleties associated with possible degeneration points of

the foliation were discussed in section 4.2.

Before closing, we highlight some aspects of formula (6.1), which have become apparent

in the present, higher-dimensional context.

Beyond unions and intersections of boundary regions. Assuming that the subtlety

discussed in section 4.2 does not arise, the first term in the integral (6.1) computes the

entanglement entropy of a ring-like regionRλ, which lies between two boundary loopsBL(λ)

and BR(λ). In AdS3/CFT2, we can write the second term as the entanglement entropy of

the intersection (resp. union) of Rλ and Rλ+dλ, depending on the sign of dBL,R/dλ [14]:

Sdiff =

∫ (
SEE(Rλ)−

{
SEE(Rλ ∩Rλ+dλ) if B′L(λ), B′R(λ) > 0

SEE(Rλ ∪Rλ+dλ) if B′L(λ), B′R(λ) < 0

)
(6.2)
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Figure 8. The region [BL(λ + dλ), BR(λ)] is same as the intersection of R(λ) and R(λ + dλ) on

the left, but they are different on the right. Here the blue loops are BL,R(λ) and the purple ones

are BL,R(λ+ dλ).

Here we point out that in higher dimensions a rewriting of this type may not in general

be possible. It applies only when BL(λ + dλ) and BR(λ) do not intersect. In more than

three bulk dimensions, it is easy to envision an example where these two loci do in fact

intersect, see figure 8. When this occurs, the intersection of the surfaces SEE [BL(λ), BR(λ)]

and SEE [BL(λ + dλ), BR(λ + dλ)], which we dubbed K̃(λ), extends all the way to the

boundary. Because K̃(λ) for infinitesimal dλ defines the bulk surface, this is the case of a

generic foliation of a surface that reaches all the way to the boundary.

Degenerate foliations. Eq. (6.1) depends on the foliation K(λ) of the bulk surface. If

the foliation is degenerate, as in the case of a sphere discussed in section 4.2, an additional

subtlety arises. In this situation the equality (6.1) applies only up to boundary terms eval-

uated at degeneration points. Where symmetry cannot be used to guarantee the vanishing

of boundary terms at the degeneration points, this must be added as an additional con-

straint on the choice of foliation. Our construction can accommodate any such foliation

that degenerates at only finitely many λ. A foliation with infinitely many degenerate leaves

does not necessarily locally generate the area of the surface as in eq. (3.7).

Integrand need not be finite. The canceling of boundary terms at degeneration points

is sensitive to the choice of UV cutoff. This fact illustrates another general lesson about

differential entropy: that the integrand in eq. (2.2) need not be finite. It is equal to the area

element on the bulk surface only up to a total derivative term, which is generically divergent.

For example, at a degeneration point it equals the divergent area of a certain tangent

extremal surface. Even if the integrand of eq. (2.2) is made finite in one regularization

scheme, it will diverge in different regularization schemes.

Nonminimal extremal surfaces. In section 5 we discussed at length the appearance

of extremal but nonminimal surfaces in differential entropy. That point carries a salient

lesson: entanglement entropies of spatial regions in the boundary theory are not enough
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to reconstruct the bulk spacetime. Here we add to this discussion another, related caveat:

formula (2.2) applies only when the tangent extremal surfaces M(λ) are of the form

M [BL(λ), BR(λ)], so that left and right boundary conditions in the field theory can be

independently varied. In a spacetime with horizons, the horizon also represents a bound-

ary on which an extremal surface may end. Thus, it may happen that as we follow the

foliation parameter λ, the requisite boundary condition BL(λ) for tangent surfaces “jumps”

from the asymptotic boundary onto the horizon. The simplest example of this occurs for

nearly radial curves in the BTZ geometry [24], whose differential entropy description in-

volves geodesics with one end on the asymptotic boundary and the other on the horizon.

Such geodesics are known to compute two-sided correlators in the thermofield double de-

scription of the thermal state [25]. The relevance of two-sided quantities to reconstructing

bulk objects in a single asymptotic region is puzzling. We hope to return to this problem

in the future.

A coordinate-independent differential entropy? Arguably the least satisfactory as-

pect of formula (2.2) is that it singles out a specific foliation of the bulk surface. Said

differently, the integral in (2.2) sweeps over only one variable of integration, treating the

entanglement entropies SEE [BL(λ), BR(λ)] and their corresponding minimal surfaces as

given. It would be more satisfying to covariantize (2.2), so that the integral is done over

d− 1 parameters that stand on an equal footing. One could try to iterate our construction

and rewrite SEE [BL(λ), BR(λ)] itself as an integral over a parameter λ2, but this approach

does not lead to simplifications.

At the same time, we believe that a covariant generalization of formula (2.2) exists.

One hint is that for a given bulk surface, any 1-parameter foliation satisfying our (relatively

lax) assumptions gives an independent way to recover the area of the surface from boundary

data. This means that in more than three bulk dimensions we have an enormous freedom

of how to represent a bulk surface in the boundary theory. It would be surprising if this

freedom could not be exploited to obtain a covariant prescription.
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A Numerics

Here we briefly describe the methods and results of numerical computation outlined in

section 4. In particular, we will see numerical stability.

We employ pseudo-spectral methods to solve the partial differential equation govern-

ing the embedding of the minimal surface, z(y ≡ cos θ, φ), subject to Dirichlet boundary

conditions. We use the Fourier basis in the φ direction and keep the lowest nφ = 32 modes.
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Figure 9. Plot of the predicted area versus the number of kept modes in the y direction. The

horizontal line denotes the actual area.
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Figure 10. Log plot of δzmax/δny versus the number of kept modes in the y direction. The

approximately exponential behavior shows numerical stability.

We choose the Chebyshev basis in the y direction and allow the number of kept modes ny
to vary.

For each ny we may solve the partial differential equation and calculate the differential

entropy. The predicted area δApredicted approaches the actual area δAactual as we increase

ny within the window 32 ≤ ny ≤ 192, as may be seen from figure 9.

To see numerical stability, we plot δzmax/δny as a function of ny, where zmax denotes

the maximum of the solution z(y, φ) for a given ny. We expect that for stable numerics,

δzmax/δny should decrease exponentially as a function of ny. This is indeed true, as may

be seen from figure 10.
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