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1 Introduction

The recent discovery of the Higgs boson at the LHC represents a great success of the

Standard Model (SM) of elementary particles. While at the same time, the absence so far

of a clear signal of physics beyond the SM leaves a certain degree of dissatisfaction. These

two facts, together with the high quality of data that the LHC will provide in the next run,

increases the relevance of high-precision theoretical predictions for the analysis of known

phenomena and for finding innovative strategies to achieve new discoveries.

The domain of perturbative calculations in quantum field theories, e.g. the SM and

beyond, has shown an extraordinary progress in the recent years. Today, 2 → 4 processes

at next-to-leading order (NLO) are state of the art [1–5], and even higher multiplicities

are affordable [6]. Several tools for the automated calculation of NLO differential cross

sections are available [7, 8], including the merging with parton showers [9]. There has

been also a lot of advances in next-to-next-to-leading order (NNLO) calculations [10–14].

Still, besides ultraviolet singularities which are easily removed by renormalization, the

cancellation of infrared singularities by the coherent sum over different real and virtual

soft and collinear partonic configurations in the final state is at the core and the main

source of cumbersomeness of any perturbative calculation at higher orders [15–19].

The loop-tree duality method [20–23] establishes that generic loop quantities (loop

integrals and scattering amplitudes) in any relativistic, local and unitary field theory can be

written as a sum of tree-level objects obtained after making all possible cuts to the internal

lines of the corresponding Feynman diagrams, with one single cut per loop and integrated

over a measure that closely resembles the phase-space of the corresponding real corrections.

This duality relation is realized by a modification of the customary +i0 prescription of the

Feynman propagators. At one-loop, the new prescription compensates for the absence

of multiple-cut contributions that appear in the Feynman Tree Theorem [24, 25]. The

modified phase-space raises the intriguing possibility that virtual and real corrections can

be brought together under a common integral and treated with Monte Carlo techniques
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at the same time. In this paper we analyse the singular behaviour of one-loop integrals

and scattering amplitudes in the framework of the loop-tree duality method. On the one

hand, working in the loop momentum space is an attractive approach because it allows a

rather direct physical interpretation of the singularities of the loop quantities [26]. On the

other hand, the possibility to relate virtual and real corrections opens an interesting line

to understand explicitly the cancellation of infrared singularities.

The outline of the paper is as follows. In section 2 we discuss the singular behaviour

of scalar loop integrals in the loop momentum space. In section 3 we prove that there is

a partial cancellation of singularities at the integrand level among different contributions

of the dual representation of a loop integral. In section 4, collinear factorization is used to

sketch a phase-space mapping between virtual and real corrections for the local cancellation

of infrared divergences. Finally, conclusions and outlook are presented in section 5.

2 The singular behaviour of the loop integrand

We consider a general one-loop N -leg scalar integral

L(1)(p1, p2, . . . , pN ) =

∫

ℓ

∏

i∈α1

GF (qi) ,

∫

ℓ

• = −i

∫
ddℓ

(2π)d
• , (2.1)

where

GF (qi) =
1

q2i −m2
i + i0

(2.2)

are Feynman propagators that depend on the loop momentum ℓ, which flows anti-clockwise,

and the four-momenta of the external legs pi, i ∈ α1 = {1, 2, . . . N}, which are taken as

outgoing and are ordered clockwise. We use dimensional regularization with d the number

of space-time dimensions. The momenta of the internal lines qi,µ = (qi,0,qi), where qi,0 is

the energy (time component) and qi are the spacial components, are defined as qi = ℓ+ ki
with ki = p1+. . .+pi, and kN = 0 by momentum conservation. We also define kji = qj−qi.

The loop integrand becomes singular in regions of the loop momentum space in which

subsets of internal lines go on-shell, although the existence of singular points of the in-

tegrand is not enough to ensure the emergence in the loop integral of divergences in the

dimensional regularization parameter. Nevertheless, numerical integration over integrable

singularities still requires a contour deformation [27–34], namely, to promote the loop mo-

mentum to the complex plane in order to smoothen the loop matrix elements in the singular

regions of the loop integrand. Hence, the relevance to identify accurately all the integrand

singularities.

In Cartesian coordinates, the Feynman propagator in (2.2) becomes singular at hyper-

boloids with origin in −ki, where the minimal distance between each hyperboloid and its

origin is determined by the internal mass mi. This is illustrated in figure 1, where for sim-

plicity we work in d = 2 space-time dimensions. Figure 1 (left) shows a typical kinematical

situation where two momenta, k1 and k2, are separated by a time-like distance, k221 > 0,

and a third momentum, k3, is space-like separated with respect to the other two, k231 < 0

and k232 < 0. The on-shell forward hyperboloids (qi,0 > 0) are represented in figure 1 by
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Figure 1. On-shell hyperboloids for three arbitrary propagators in Cartesian coordinates in the

(ℓ0,ℓz) space (left). Kinematical configuration with infrared singularities (right). In the latter case,

the on-shell hyperboloids degenerate to light-cones.

solid lines, and the backward hyperboloids (qi,0 < 0) by dashed lines. For the discussion

that will follow it is important to stress that Feynman propagators become positive in-

side the respective hyperboloid and negative outside. Two or more Feynman propagators

become simultaneously singular where their respective hyperboloids intersect. In most

cases, these singularities, due to normal or anomalous thresholds [35, 36] of intermediate

states, are integrable. However, if two massless propagators are separated by a light-like

distance, k2ji = 0, then the overlap of the respective light-cones is tangential, as illustrated

in figure 1 (right), and leads to non-integrable collinear singularities. In addition, massless

propagators can generate soft singularities at qi = 0.

The dual representation of the scalar one-loop integral in (2.1) is the sum of N dual

integrals [20, 21]:

L(1)(p1, p2, . . . , pN ) = −
∑

i∈α1

∫

ℓ

δ̃ (qi)
∏

j∈α1

j 6=i

GD(qi; qj) , (2.3)

where

GD(qi; qj) =
1

q2j −m2
j − i0 η kji

(2.4)

are the so-called dual propagators, as defined in ref. [20], with η a future-like vector, η2 ≥ 0,

with positive definite energy η0 > 0. The delta function δ̃ (qi) ≡ 2π i θ(qi,0) δ
(
q2i −m2

i

)
sets

the internal lines on-shell by selecting the pole of the propagators with positive energy qi,0
and negative imaginary part. In the following we take ηµ = (1,0), and thus −i0 η kji =

−i0 kji,0. This is equivalent to performing the loop integration along the on-shell forward

hyperboloids. Let us mention that in the light-cone coordinates (ℓ+, ℓ−, l⊥), where ℓ± =

(ℓ0±ℓd−1)/
√
2, Feynman propagators vanish at hyperboloids in the plane (ℓ+,ℓ−) which are
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similar to those depicted in figure 1 but rotated by 45 degrees. Consequently, by selecting

the forward hyperboloids the integration limits of either ℓ+ or ℓ− are restricted and the

restrictions are different for each dual integral. For this reason, although (2.3) is valid for

any system of coordinates, we will stick for the rest of the paper to Cartesian coordinates

where all the dual integrals share the same integration limits for the loop three-momentum.

A crucial point of our discussion is the observation that dual propagators can be

rewritten as

δ̃ (qi) GD(qi; qj) = i 2π
δ
(
qi,0 − q

(+)
i,0

)

2q
(+)
i,0

1
(
q
(+)
i,0 + kji,0

)2
−

(
q
(+)
j,0

)2 , (2.5)

where

q
(+)
i,0 =

√
q2
i +m2

i − i0 (2.6)

is the loop energy measured along the on-shell hyperboloid with origin at −ki. By definition

we have Re
(
q
(+)
i,0

)
≥ 0. The factor 1/q

(+)
i,0 can become singular for mi = 0, but the integral

∫
ℓ
δ
(
qi,0 − q

(+)
i,0

)
/q

(+)
i,0 is still convergent by two powers in the infrared. Soft singularities

require two dual propagators, where each of the two dual propagators contributes with

one power in the infrared. From (2.5) it is obvious that dual propagators become singular,

G−1
D (qi; qj) = 0, if one of the following conditions is fulfilled:

q
(+)
i,0 + q

(+)
j,0 + kji,0 = 0 , (2.7)

q
(+)
i,0 − q

(+)
j,0 + kji,0 = 0 . (2.8)

The first condition, (2.7), is satisfied if the forward hyperboloid of −ki intersects with the

backward hyperboloid of −kj . The second condition, (2.8), is true when the two forward

hyperboloids intersect each other.

In the massless case, (2.7) and (2.8) are the equations of conic sections in the loop

three-momentum space; q
(+)
i,0 and q

(+)
j,0 are the distance to the foci located at −ki and

−kj , respectively, and the distance between the foci is
√
k2
ji. If internal masses are non-

vanishing, (2.6) can be reinterpreted as the distance associated to a four-dimensional space

with one “massive” dimension and the foci now located at (−ki,−mi) and (−kj ,−mj),

respectively. Then, the singularity arises at the intersection of the conic sections given

by (2.7) or (2.8) in this generalized space with the zero mass plane. This picture is useful

to identify the singular regions of the loop integrand in the loop three-momentum space.

The solution to (2.7) is an ellipsoid and clearly requires kji,0 < 0. Moreover, since

it is the result of the intersection of a forward with a backward hyperboloid the distance

between the two propagators has to be future-like, k2ji ≥ 0. Actually, internal masses

restrict this condition. Bearing in mind the image of the conic sections in the generalized

massive space so we can deduce intuitively that (2.7) has solution for

k2ji − (mj +mi)
2 ≥ 0 , kji,0 < 0 , forward with backward hyperboloids . (2.9)

The second equation, (2.8), leads to a hyperboloid in the generalized space, and there are

solutions for kji,0 either positive or negative, namely when either of the two momenta are
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set on-shell. However, by interpreting the result in the generalized space it is clear that

the intersection with the zero mass plane does not always exist, and if it exists, it can be

either an ellipsoid or a hyperboloid in the loop three-momentum space. Here, the distance

between the momenta of the propagators has to be space-like, although also time-like

configurations can fulfil (2.8) as far as the time-like distance is small or close to light-like.

The following condition is necessary:

k2ji − (mj −mi)
2 ≤ 0 , two forward hyperboloids . (2.10)

In any other configuration, the singularity appears for loop three-momenta with imaginary

components.

3 Cancellation of singularities among dual integrands

In this section we prove one of the main properties of the loop-tree duality method, namely

the partial cancellation of singularities among different dual integrands. This represents

a significant advantage with respect to the integration of regular loop integrals in the

d-dimensional space, where one single integrand cannot obviously lead to such cancellation.

Let’s consider first two Feynman propagators separated by a space-like distance, k2ji < 0

(or more generally fulfilling (2.10)). In the corresponding dual representation one of these

propagators is set on-shell and the other becomes dual, and the integration occurs along

the respective on-shell forward hyperboloids. See again figure 1 (left) for a graphical

representation of this set-up. There, the two forward hyperboloids of −k1 and −k3 intersect

at a single point. Integrating over ℓz along the forward hyperboloid of −k1 we find that

the dual propagator GD(q1; q3), which is negative below the intersection point where the

integrand becomes singular, changes sign above this point as we move from outside to inside

the on-shell hyperboloid of −k3. The opposite occurs if we set q3 on-shell; GD(q3; q1) is

positive below the intersection point, and negative above. The change of sign leads to the

cancellation of the common singularity. Notice that also the dual i0 prescription changes

sign. In order to prove analytically this cancellation, we define x = q
(+)
i,0 − q

(+)
j,0 + kji,0. In

the limit x → 0:

lim
x→0

(
δ̃ (qi) GD(qi; qj) + (i ↔ j)

)
=

(
1

x
− 1

x

)
1

2q
(+)
j,0

δ̃ (qi) +O
(
x0

)
, (3.1)

and thus the leading singular behaviour cancels among the two dual contributions. The

cancellation of these singularities is not altered by the presence of other non-vanishing dual

propagators (neither by numerators) because

lim
x→0

GD(qj ; qk) = lim
x→0

1
(
q
(+)
j,0 + kki,0 − kji,0

)2
−
(
q
(+)
k,0

)2 = lim
x→0

GD(qi; qk) , (3.2)

where we have used the identity kkj,0 = kki,0 − kji,0. If instead, the separation is time-like

(in the sense of (2.9)), we define x = q
(+)
i,0 + q

(+)
j,0 + kji,0, and find

lim
x→0

(
δ̃ (qi) GD(qi; qj) + (i ↔ j)

)
= −θ(−kji,0)

1

x

1

2q
(+)
j,0

δ̃ (qi) + (i ↔ j) +O
(
x0

)
. (3.3)

In this case the singularity of the integrand remains because of the Heaviside step function.
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We should consider also the case in which more than two propagators become simul-

taneously singular. To analyse the intersection of three forward hyperboloids, we define

λx = q
(+)
i,0 − q

(+)
j,0 + kji,0 , λ y = q

(+)
i,0 − q

(+)
k,0 + kki,0 . (3.4)

As before, we use the identity kkj,0 = kki,0 − kji,0, and thus q
(+)
j,0 − q

(+)
k,0 + kkj,0 = λ (y − x).

In the limit in which the three propagators become simultaneously singular:

lim
λ→0

(
δ̃ (qi) GD(qi; qj)GD(qi; qk) + perm.

)
=

1

λ2

(
1

x y
+

1

x (x− y)
+

1

y (y − x)

)
1

2q
(+)
j,0

1

2q
(+)
k,0

δ̃ (qi) +O
(
λ−1

)
, (3.5)

and again the leading singular behaviour cancels in the sum. Although not shown for

simplicity in (3.5), also the O(λ−1) terms cancel in the sum, thus rendering the integrand

finite in the limit λ → 0. For three propagators there are also more possibilities: two

forward hyperboloids might intersect simultaneously with a backward hyperboloid, or two

backward hyperboloids might intersect with a forward hyperboloid. In the former case, we

define λx = q
(+)
i,0 + q

(+)
k,0 + kki,0, and λ y = q

(+)
j,0 + q

(+)
k,0 + kkj,0, with kki,0 < 0 and kkj,0 < 0,

and hence q
(+)
i,0 − q

(+)
j,0 + kji,0 = λ(x− y). In the λ → 0 limit

lim
λ→0

(
δ̃ (qi) GD(qi; qj)GD(qi; qk) + perm.

)
=

θ(−kki,0) θ(−kkj,0)
1

λ2

(
1

x (y − x)
+

1

y (x− y)

)
1

2q
(+)
j,0

1

2q
(+)
k,0

δ̃ (qi) +O
(
λ−1

)
. (3.6)

Notice that the singularity in 1/(x−y) cancels in (3.6) (also at O(λ−1)). In the latter case,

we set as before λx = q
(+)
i,0 + q

(+)
k,0 + kki,0, and define λ z = q

(+)
i,0 + q

(+)
j,0 + kji,0, then

lim
λ→0

(
δ̃ (qi) GD(qi; qj)GD(qi; qk) + perm.

)
= −θ(−kki,0)

× θ(−kji,0)
1

λ2

(
1

x z

)
1

2q
(+)
j,0

1

2q
(+)
k,0

δ̃ (qi) +O
(
λ−1

)
. (3.7)

Similarly, it is straightforward to prove that four forward hyperboloids do not lead to any

common singularity and more generally that the remaining multiple singularities are only

driven by propagators that are time-like connected and less energetic than the propagator

which is set on-shell.

Thus, we conclude that singularities of space-like separated propagators,1 occurring in

the intersection of on-shell forward hyperboloids, are absent in the dual representation of

the loop integrand. The cancellation of these singularities at the integrand level already

represents a big advantage of the loop-tree duality with respect to the direct integration in

the four dimensional loop space; it makes unnecessary the use of contour deformation to

deal numerically with the integrable singularities of these configurations. This conclusion

is also valid for loop scattering amplitudes. Moreover, this property can be extended in a

straightforward manner to prove the partial cancellation of infrared singularities.

1Including light-like and time-like configurations such that (2.10) is fulfilled.
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Collinear singularities occur when two massless propagators are separated by a light-

like distance, k2ji = 0. In that case, the corresponding light-cones overlap tangentially along

an infinite interval. Assuming ki,0 > kj,0, however, the collinear singularity for ℓ0 > −kj,0
appears at the intersection of the two forward light-cones, with the forward light-cone of

−kj located inside the forward light-cone of−ki, or equivalently, with the forward light-cone

of −ki located outside the forward light-cone of −kj , Thus, the singular behaviour of the

two dual components cancel against each other, following the same qualitative arguments

given before. For −ki,0 < ℓ0 < −kj,0, instead, it is the forward light-cone of −ki that

intersects tangentially with the backward light-cone of −kj according to (2.7). The collinear

divergences survive in this energy strip, which indeed also limits the range of the loop three-

momentum where infrared divergences can arise. If there are several reference momenta

separated by light-like distances the infrared strip is limited by the minimal and maximal

energies of the external momenta. The soft singularity of the integrand at q
(+)
i,0 = 0 leads

to soft divergences only if two other propagators, each one contributing with one power in

the infrared, are light-like separated from −ki. In figure 1 (right) this condition is fulfilled

only at q
(+)
1,0 = 0, but not at q

(+)
2,0 = 0 neither at q

(+)
3,0 = 0.

In summary, both threshold and infrared singularities are constrained in the dual

representation of the loop integrand to a finite region where the loop three-momentum is

of the order of the external momenta. Singularities outside this region, occurring in the

intersection of on-shell forward hyperboloids or light-cones, cancel in the sum of all the

dual contributions.

4 Cancellation of infrared singularities with real corrections

Having constrained the loop singularities to a finite region of the loop momentum space, we

discuss now how to map this region into the finite-size phase-space of the real corrections for

the cancellation of the remaining infrared singularities. The use of collinear factorization

and splitting matrices, encoding the collinear singular behaviour of scattering amplitudes

as introduced in refs. [37, 38], is suitable for this discussion.

We consider the interference of the one-loop scattering amplitude M(1)
N with the cor-

responding N -parton tree-level scattering amplitude M(0)
N , which is integrated with the

appropriate phase-space factor

∫
dΦN (p1; p2, . . . , pN ) =

(
N∏

i=2

∫

pi

δ̃ (pi)

)
(2π)dδ(d)

(
N∑

i=1

pi

)
, (4.1)

where we assume that only the external momentum p1 is incoming (p1,0 < 0). Then, we

select the corresponding dual contribution with the internal massless line qi on-shell

I
(1)
i = 2Re

∫
dΦN (p1; p2, . . . , pN )

∫

ℓ

δ̃ (qi) θ
(
pi,0 − q

(+)
i,0

)

× 〈M(0)
N (p1, . . . , pN )|M(0)

N+2(. . . , pi,−qi, qi, pi+1, . . .)〉 , (4.2)

where the loop energy in (4.2) is restricted by the energy of the adjacent external massless

particle pi,0 to select the infrared sector, according to the discussion of the previous sections.

– 7 –
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We also consider the N + 1-parton tree-level scattering amplitude

|M(0), ir
N+1

(
p1, p

′
2, . . .

)
〉 = |M(0), ir

N+1

(
. . . , p′ir → p′i + p′r, . . .

)
〉 , (4.3)

where an extra particle is radiated from parton i, with p′ir = p′i+p′r, and the complementary

scattering amplitudeM(0)
N+1 that contains all the tree-level contributions with the exception

of those already included in M(0), ir
N+1 . The corresponding interference, integrated over the

phase-space of the final-state particles, is

I
(0)
ir = 2Re

∫
dΦN+1

(
p1; p

′
2, . . .

)
〈M(0), ir

N+1

(
p1, p

′
2, . . .

)
|M(0)

N+1

(
p1, p

′
2, . . .

)
〉 . (4.4)

For the simplicity of the presentation, we do not consider explicitly in this paper the

square of M(0), ir
N+1 , which is related with a self-energy insertion in an external leg and whose

infrared divergences are removed by wave-function remormalization [20]. The final-state

external momenta of the loop and tree amplitudes in (4.2) and (4.4), although labelled

with the same indices, are constrained by different phase-space momentum conservation

delta functions. A mapping between the primed (real amplitudes) and unprimed (virtual

amplitudes) momenta is necessary to show the cancellation of collinear divergences.

In the limit where pi and qi become collinear the dual one-loop matrix element M(0)
N+2

in (4.2) factorizes as

|M(0)
N+2(. . . , pi,−qi, qi, . . .)〉=Sp(0)(pi,−qi;−q̃i−1) |M(0)

N+1(. . . ,−q̃i−1, qi, . . .)〉+O
(√

q2i−1

)
,

(4.5)

where the reduced matrix element M(0)
N+1 is obtained by replacing the two collinear partons

of M(0)
N+2 by a single parent parton with light-like momentum

q̃µi−1 = qµi−1 −
q2i−1 n

µ

2nqi−1
, (4.6)

with nµ a light-like vector, n2 = 0. Similarly, in the limit where p′
i and p′

r become collinear

the tree-level matrix element M(0), ir
N+1 factorizes as

〈M(0), ir
N+1

(
p1, p

′
2, . . . , p

′
N+1

)
| = 〈M(0)

N

(
. . . , p′i−1, p̃

′
ir, p

′
i+1, . . .

)
|Sp(0)†

(
p′i, p

′
r; p̃

′
ir

)
+O

(√
s′ir

)
,

(4.7)

where s′ir = p′2ir, and

p̃′µir = p′µir −
s′ir n

µ

2np′ir
(4.8)

is the light-like momentum of the parent parton. A graphical representation of the collinear

limit of both virtual and real corrections is illustrated in figure 2. This graph suggests that

in the collinear limit the mapping between the four-momenta of the virtual and real matrix

elements should be such that pi = p̃′ir, pj = p′j(j 6= i), −q̃i−1 = p′i and qi = p′r. Notice that

p′r is restricted by momentum conservation but qi is not. However, the relevant infrared

region is bound by q
(+)
i,0 ≤ pi,0 in (4.2). This restriction allows to map qi to p

′
r. The mapping,
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q̃i−1
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p̃ir
′

Figure 2. Factorization of the dual one-loop and tree-level squared amplitudes in the collinear

limit. The dashed line represents the momentum conservation cut.

nevertheless, is not as obvious as can be induced from figure 2 as the propagators that

become singular in the collinear limit in the virtual and real matrix elements are different.

Reconsidering p′i as the parent parton momentum of the collinear splitting, we find the

following relation between splitting matrices entering the real matrix elements

Sp(0)†
(
p′i, p

′
r; p̃

′
ir

)
=

(p̃′ir − p′r)
2

s′ir
Sp(0)

(
p̃′ir,−p′r; p

′
i

)
, (4.9)

where (p̃′ir − p′r)
2 /s′ir = −np′i/np

′
ir. We show now that the factor−np′i/np

′
ir is compensated

by the phase-space. By introducing the following identity in the phase-space of the real

corrections

1 =

∫
ddp′ir δ

(d)
(
p′ir − p′i − p′r

)
, (4.10)

and performing the integration over the three-momentum p′
i and the energy component of

p′ir, the real phase-space becomes

∫
dΦN+1

(
p1; p

′
2, . . .

)
=

∫
dΦN

(
p1; . . . , p

′
ir, . . .

) ∫

p′r

δ̃
(
p′r
) E′

ir

E′
i

, (4.11)

where the factor (np′i/np
′
ir)(E

′
ir/E

′
i) equals unity in the collinear limit. Inserting (4.5)

in (4.2), and (4.7), (4.9) and (4.11) in (4.4) the loop and tree contributions show to have a

very similar structure with opposite sign and match each other at the integrand level in the

collinear limit. Correspondingly, soft singularities at p′r → 0 can be treated consistently as

the endpoint limit of the collinear mapping.

5 Conclusions and outlook

The loop-tree duality method exhibits attractive theoretical aspects and nice properties

which are manifested by a direct physical interpretation of the singular behaviour of the

loop integrand. Integrand singularities occurring in the intersection of on-shell forward

hyperboloids or light-cones cancel among dual integrals. The remaining singularities, ex-

cluding UV divergences, are found in the intersection of forward with backward on-shell

hyperboloids or light-cones and are produced by dual propagators that are light-like or

time-like separated and less energetic than the internal propagator that is set on-shell.

Therefore, these singularities can be interpreted in terms of causality and are restricted to
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a finite region of the loop three-momentum space, which is of the size of the external mo-

menta. As a result, a local mapping at the integrand level is possible between one-loop and

tree-level matrix elements to cancel soft and collinear divergences. One can anticipate that

a similar analysis at higher orders of the loop-tree duality relation is expected to provide

equally interesting results. We leave this analysis for a future publication.
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