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1 Introduction

The gauge/gravity duality is a principle that it is well founded in string theory and connects

a strongly coupled d-dimensional conformal field theory with a (d+1)-dimensional gravity

theory that is weakly coupled [1]. This principle has been applied to many field theories

having gravity duals but its most noticeable application is in condensed matter physics.

Recently there is a lot of activity in understating the properties of quantum liquids [2, 3].

Quantum liquids arise if we put a many-body system of a finite U(1) charge density at zero

temperature. Understanding the ground states of these finite density systems at strong

coupling will give us information about the nature of these quantum liquids and will lead

us to find applications in condensed matter systems.

According to gauge/gravity duality the gravity part of these systems is described by

an extremal charged black hole in anti-de Sitter spacetime [4]. The metric of the extremal

black hole has interesting properties. In the near horizon limit when the temperature goes

to zero the horizon geometry is given by AdS2×R2 [5]. This happens because the charge of

the black hole introduces another scale. The appearance of a new horizon geometry suggests

that the boundary system could develop an enhanced symmetry. The other property is

that the black hole has a finite horizon area at zero temperature. So we can assign a

non-zero entropy at zero temperature.

The properties of the near horizon geometry were also used to explore the zero tem-

perature limit of holographic fluids and superconductors [6]. It was shown in [7] that there

is a critical temperature Tc where a charged scalar field condenses, and as Tc → 0 there is

a critical value q2
c of the charge of the scalar field attained in the zero temperature limit

and this limit is determined solely by the AdS2 geometry of the horizon. In connection to

holographic superconductors the near horizon geometry of an extremal black hole in the

presence of charged scalar fields was studied in [8]. Conditions for the existence of scalar
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hair of neutral and charged scalar fields were derived. Also exact hairy black hole solutions

were found without an electromagnetic field [9].

These developments put forward the necessity of a better understanding of the be-

haviour of matter fields near the horizon of a charged black hole at the zero temperature

limit. This can be achieved if one has a fully back-reacted solution of the Einstein-Maxwell-

scalar system. The main difficulty for such a construction is to evade the no-hair theorems

and have a healthy behaviour of the scalar field: regular on the horizon and fall off suf-

ficiently fast at large distances. The aim of this work is to study the properties and the

behaviour of the fields in the near horizon geometry of a charged black hole as the tem-

perature goes to zero. To achieve this we will use a profile for the scalar field and we will

probe the near horizon geometry solving exactly the Einstein-Maxwell-scalar coupled dif-

ferential equations. Exact solutions of this system without the electromagnetic field were

found in [10].

Hairy black holes are interesting solutions of Einstein’s Theory of Gravity and have

been extensively studied over the years mainly in connection with the no-hair theorems.

Then hairy black hole solutions were found in asymptotically flat spacetimes [11–13] but it

was realized that these solutions were not physically acceptable as the scalar field was diver-

gent on the horizon and stability analysis showed that they were unstable [14]. To remedy

this a regularization procedure has to be used to make the scalar field finite on the horizon.

The easiest way to make the scalar field regular on the horizon is to introduce a scale in

the gravity sector of the theory through a cosmological constant. Then various hairy black

hole solutions were found [15]–[20]. A characteristic of these solutions is that the parameters

connected with the scalar fields are connected in some way with the physical parameters

of the hairy solution. This implies that it is not possible to continuously connect the hairy

configuration with mass M and a configuration with the same mass and no scalar field.

Hairy solutions were also found of a scalar field coupled to a charged black holes. In [21]

a topological black hole dressed with a conformally coupled scalar field and electric charge

was studied. Phase transitions of hairy topological black holes were studied in [22, 23].

An electrically charged black hole solution with a scalar field minimally coupled to gravity

and electromagnetism was presented in [24]. It was found that regardless the value of the

electric charge, the black hole is massless and has a fixed temperature. The thermodynamics

of the solution was also studied. Further hairy solutions were reported in [25]–[34] with

various properties. More recently new hairy black hole solutions, boson stars and numerical

rotating hairy black hole solutions were discussed [35–40]. Also the thermodynamics of

hairy black holes was studied in [41].

In spite of this progress little are known on the behaviour of hairy black holes as the

temperature goes to zero. To probe the near horizon limit of a charged black hole we

introduce a profile of the scalar field that it falls off sufficiently fast outside the horizon.

Then by solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged

black hole solutions with the scalar field regular everywhere. Then we go to the zero

temperature limit and we study the effect of the scalar field on the near horizon geometry

of an extremal black hole. We find that except a critical value of the charge of the black hole

there is also a critical value of the charge of the scalar field away of which the extremal black
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hole is destabilized. We also study the thermodynamics of these solutions and we find that

if the space is flat then the Reissner-Nordström (RN) black hole is thermodynamically

preferred, while if the space is AdS the hairy charged black hole is thermodynamically

preferred at low temperature.

The work is organized as follows. In section 2 we present the general formalism and

we derive the field equations. In section 3 we find exact hairy black hole solutions and

we study their properties. In section 4 we study the effect of the scalar field on the near

horizon geometry. In section 5 we study the thermodynamics of our solutions while in 6

are our conclusions.

2 General formalism

In this section we will review the general formalism discussed in [10] of a scalar field

minimally coupled to curvature having a self-interacting potential V (φ), in the presence of

an electromagnetic field. The Einstein-Hilbert action with a negative cosmological constant

Λ = −6l−2/κ, where l is the length of the AdS which has been incorporated in the potential

as Λ = V (0) (V (0) < 0) is

S =

∫
d4x
√
−g
(

1

2κ
R− 1

4
FµνF

µν − 1

2
gµν∇µφ∇νφ− V (φ)

)
, (2.1)

where κ = 8πGN , with GN the Newton constant. The resulting Einstein equations from

the above action are

Rµν −
1

2
gµνR = κ(T (φ)

µν + T (F )
µν ) , (2.2)

the energy momentum tensors T
(φ)
µν and T

(F )
µν for the scalar and electromagnetic fields are

T (φ)
µν = ∇µφ∇νφ− gµν

[
1

2
gρσ∇ρφ∇σφ+ V (φ)

]
,

T (F )
µν = Fαµ Fνα −

1

4
gµνFαβF

αβ . (2.3)

If we use eqs. (2.2) and (2.3) we obtain the equivalent equation

Rµν − κ (∂µφ∂νφ+ gµνV (φ)) = κ

(
Fαµ Fνα −

1

4
gµνFαβF

αβ

)
. (2.4)

We consider the following metric ansatz

ds2 = −f(r)dt2 + f−1(r)dr2 + a2(r)dσ2 , (2.5)

where dσ2 is the metric of the spatial 2-section, which can have positive, negative or zero

curvature, and Aµ = (At(r), 0, 0, 0) the scalar potential of the electromagnetic field. In the

case of the metric of eq. (2.5), if we use eq. (2.4) we find the following three independent
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differential equations

f ′′(r) + 2
a′(r)

a(r)
f ′(r) + 2V (φ) = A′t(r)

2 , (2.6)

a′(r)

a(r)
f ′(r) +

((
a′(r)

a(r)

)2

+
a′′(r)

a(r)

)
f(r)− k

a(r)2
+ V (φ) = −1

2
A′t(r)

2 , (2.7)

f ′′(r) + 2
a′(r)

a(r)
f ′(r) +

(
4
a′′(r)

a(r)
+ 2(φ′(r))2

)
f(r) + 2V (φ) = A′t(r)

2 , (2.8)

where k is the curvature of the spatial 2-section. All the quantities, in the above equations,

have been rendered dimensionless via the redefinitions
√
κφ→ φ and κV → V . Now, if we

eliminate the potential V (φ) from the above equations we obtain

a′′(r) +
1

2
(φ′(r))2a(r) = 0 , (2.9)

f ′′(r)− 2

((
a′(r)

a(r)

)2

+
a′′(r)

a(r)

)
f(r) +

2k

a(r)2
= 2A′t(r)

2 , (2.10)

where the potential can be determined from eq. (2.6) if the functions a(r) and f(r) are

known. To find exact hairy black hole solutions the differential equations (2.6)–(2.8) have

to be supplemented with the Klein-Gordon equation of the scalar field and the Maxwell

equations which in general coordinates read

�φ =
dV

dφ
,

∇νFµν = 0 . (2.11)

3 A four-dimensional charged black holes with scalar hair

Following the general formalism developed in section 2 for a scalar field coupled minimally

to gravity, we consider a particular profile of the scalar field. Consider the following ansatz

for the scalar field

φ (r) =
1√
2

ln
(

1 +
ν

r

)
, (3.1)

where ν is a parameter controlling the behaviour of the scalar field and it has the dimension

of length. Then from equation (2.9) and (2.11) we can determine the functions

a (r) =
√
r (r + ν) ,

At(r) =
q

ν
ln

(
r

r + ν

)
, (3.2)

analytically. We can also determine the metric function f(r) analytically using equa-

tion (2.10). We find

f (r) = −2
q2

ν2
+ C1r(r + ν)− C2(2r + ν)

ν2
+ 2

kr(2r + ν)

ν2

−2

(
q2(2r + ν) + r(r + ν)(C2 + kν)

ν3
+
q2r(r + ν)ln r

r+ν

ν4

)
ln

r

r + ν
, (3.3)
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where k = −1, 0, 1 and C1, C2 are integration constants being proportional to the cosmo-

logical constant and to the mass respectively, and the potential is given by

V (φ) =
1

2ν4
e−2
√

2φ

[(
e
√

2φ − 1
)2 (

1 + 10e
√

2φ + e2
√

2φ
)
q2

+e
√

2φν
(
−6C2−10kν − C1ν

3−4e
√

2φν
(
4k+C1ν

2
)

+ e2
√

2φ
(
6C2 + 2kν−C1ν

3
))

+2
√

2φ

((
1 + 4e

√
2φ + e2

√
2φ
)
q2ln

ν

e
√

2φ−1

+2e
√

2φ

((
2 + cosh

√
2φ
)(

νC2 + kν2 − q2ln
e
√

2φν

e
√

2φ−1

)
+ 6q2sinh

√
2φ

))]
, (3.4)

where V (0) = Λeff as expected and also

C1 +
4k

ν2
= −Λeff

3
=

1

l2
. (3.5)

We see from the above relation that the parameter ν of the scalar field introduces a length

scale connected with the presence of the scalar field in the theory. Besides, we know that

V ′′ (φ = 0) = m2 , (3.6)

where m is the scalar field mass. Therefore, we obtain that the scalar field mass is given by

m2 =
2

3
Λeff = −2l−2 , (3.7)

which satisfies the Breitenlohner-Friedman bound that ensures the perturbative stability

of the AdS spacetime [42].

One may wander if in the limit of Λeff → 0 and ν → 0 we recover the Reissner-

Nordstrom (RN) black hole. Indeed from (3.3) if we fix the constant C1 to C1 = −4k
ν2 the

function f(r) can be written as

f(r) = −
2
(
q2 + 5ν + r(C2 + kν)

)
ν2

−
2
(
ν
(
q2(2r + ν) + r(r + ν)(C2 + kν)

)
+ q2r(r + ν)ln r

r+ν

)
ln r

r+ν

ν4
, (3.8)

and in the limit ν → 0 we recover the RN black hole

f(r) = k +
q2

2r2
− C2

3r
. (3.9)

It is interesting to investigate the case with ν 6= 0. To have a better understanding

of the resulting geometry we make a change of coordinates ρ =
√
r (r + ν). Then the

metric (3.3) can be written as

ds2 = −χ (ρ) dt2 +
4ρ2/ν2

4ρ2/ν2 + 1

1

χ (ρ)
dρ2 + ρ2dσ2 , (3.10)
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where

χ (ρ) = k − 2q2

ν2
+ ρ2

(
C1 +

4k

ν2

)
−
(
k +

C2

ν

)√4ρ2

ν2
+ 1− 2

ρ2

ν2
ln

 1 +
√

4ρ2

ν2 + 1

−1 +
√

4ρ2

ν2 + 1


+

2q2

ν2
ln

 1 +
√

4ρ2

ν2 + 1

−1 +
√

4ρ2

ν2 + 1

√4ρ2

ν2
+ 1− ρ2

ν2
ln

 1 +
√

4ρ2

ν2 + 1

−1 +
√

4ρ2

ν2 + 1

 . (3.11)

The scalar field in the new coordinates reads

φ (ρ) =
1√
2

ln

 1 +
√

4ρ2

ν2 + 1

−1 +
√

4ρ2

ν2 + 1

 . (3.12)

Then it is clear that the cosmological constant is modified having contributions from the

length scale introduced by the scalar field.

At large distances the scalar field decouples and the metric goes to

χ (ρ) =

(
C1 +

4k

ν2

)
ρ2 + k − C2 + kν

3ρ
+

q2

2ρ2
+O

(
1

ρ3

)
. (3.13)

From the above relation we can see that the asymptotic behaviour can be RN anti-de

Sitter, RN de Sitter or RN metric by depending of the sign of the term proportional to the

effective cosmological constant −Λeff
3 = C1 + 4k

ν2 , as expected.

Then we can investigate if our system has a hairy charged black hole solution for

C1 = −4k
ν2 , i.e. for Λeff = 0. In figure 1 we plot the behaviour of the metric function

f (r) of 3.3) for a choice of parameters ν = 3, C2 = 1, 10 and 100, and q = 0.1 and

k = ±1, 0. The metric function f(r) changes sign for low values of r signalling the presence

of an horizon for k = 1, while the potential asymptotically vanishes and the scalar field is

regular everywhere outside the event horizon and null at large spatial distances as can be

seen in figure 2. Also we check the behaviour of f(r) for different values of q in figure 3.

Additionally, we have checked the behaviour of the Kretschmann scalar RµνρσR
µνρσ(r)

outside the black hole horizon. As it is shown in figure 4 there is no curvature singularity

outside the horizon for k = 1.

Therefore for k = 1, ν = 3 and a small value q of the charge of the black hole we found a

well behaved charged hairy black hole solution in asymptotically flat spacetime. This is an

unexpected result. The presence of a cosmological constant in the gravity action introduces

a scale which protects the scalar field from getting infinite on the horizon. All possible

infinities are hidden behind the horizon. This is the case for most of the existing hairy

black hole solutions [16, 18, 20, 21, 24, 25]. In our case the scalar field introduces a scale by

itself which makes it regular on the horizon. Then depending on the appropriate choice of

the parameters the scale of the cosmological constant is cancelled by the scale of the scalar

field allowing in this way hairy black holes solutions in asymptotically flat spacetime. Note

that this mechanism does not work if the charge is absent as in [10], because the possible

examples of hairy black hole configurations violating the no-hair theorems and they were

– 6 –
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Figure 1. The behaviour of f(r), for ν = 3, q = 0.1, C2 = 1 left figure, C2 = 10 right figure, and

C2 = 100 bottom figure.
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Figure 2. Left figure corresponds to the behaviour of V (r), for ν = 3, C2 = 1, q = 0.1, and k = 1,

0, −1. Right figure corresponds to the behaviour of φ(r) for C2 = 1, q = 0.1, and ν = 0.1, 3, 10,

and 100.
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Figure 3. The behaviour of f(r), for ν = 3, C2 = 10 and k = 1 left figure, k = 0 right figure, and

k = −1 bottom figure for different values of q.
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Figure 4. The behaviour of Kretschmann scalar RµνρσR
µνρσ(r) as function of r for ν = 3, C2 = 1,

q = 0.1 and k = 1.

not physically acceptable as the scalar field was divergent on the horizon and stability

analysis showed that they were unstable [14].

For a massless scalar field minimally coupled to gravity it was shown in [43] that no

hairy black hole solutions exist in asymptotically flat spacetimes. In our case the scalar

field is coupled minimally to gravity but it has a non-trivial self-interaction potential. As

can be seen in the second graph of figure 2 for small values of the parameter ν for which

our system has hairy solutions, the scalar field goes to zero very fast outside the horizon

of the black hole. Non-zero values of the scalar field are attended only for large values of

the parameter ν.

A similar mechanism works in a class of Hordenski theories where a scale is introduced

in the scalar sector and hairy black hole solutions can be found in asymptotically flat

spacetime. In these theories there is a derivative coupling of a scalar field to Einstein

tensor. The derivative coupling has the dimension of length square and it was shown that

acts as an effective cosmological constant [44, 45]. Then in [30, 31] a gravitating system

of vanishing cosmological constant consisting of an electromagnetic field and a scalar field

coupled to the Einstein tensor was discussed. A RN black hole undergoes a second-order

phase transition to a hairy black hole. The no-hair theorem is evaded due to the coupling

between the scalar field and the Einstein tensor. Similar results were found in [46].

If we allow Λeff 6= 0 we find a general hairy charged black hole solution and if we take

the limit q → 0 we recover our previous solution found in [10]. Also, when ν → 0 we

recover the RN-AdS black hole. Indeed from (3.3) if C1 = −4k
ν2 − Λeff

3 the function f(r) can

be written as

f (r) = −2
q2

ν2
− (

4k

ν2
+

Λeff

3
)r(r + ν)− C2(2r + ν)

ν2
+ 2

kr(2r + ν)

ν2

−2

(
q2(2r + ν) + r(r + ν)(C2 + kν)

ν3
+
q2r(r + ν)ln r

r+ν

ν4

)
ln

r

r + ν
, (3.14)
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Figure 6. The behaviour of f(r), for ν = 3, C1 = C2 = 1, k = 1 left figure, k = 0 right figure, and

k = −1 bottom figure for q = 0.1, 0.5, 1, 1.5.

and in the limit ν → 0 we recover the RN AdS black hole

f(r) = k − Λeff

3
r2 +

q2

2r2
− C2

3r
. (3.15)

In figure 5 we plot the behaviour of the metric function f (r) of (3.14) and the potential

V (r) for a choice of parameters ν = 3, C1 = 1, C2 = 10 and q = 0.1 and k = ±1, 0. The

metric function f(r) changes sign for low values of r signalling the presence of an horizon,

while the potential asymptotically tends to a negative constant (the effective cosmological

constant), and the scalar field is regular everywhere outside the event horizon and null at

large distances. Also we consider the metric function for different values of q in figure 6.

We have also checked the behaviour of the Kretschmann scalar RµνρσR
µνρσ(r) outside the

black hole horizon. As it is shown in figure 7 there is no curvature singularity outside the

horizon for k = ±1, 0.
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4 Near-horizon geometry for extremal hairy black hole

In this section we will investigate what is the effect of the scalar field to the near horizon

geometry of the hairy black hole solutions we discussed in the previous section as the

temperature goes to zero. For the case of Λeff 6= 0 of an AdS hairy black hole solution the

temperature is

T =
f ′(rH)

4π
(4.1)

=
1

4π

−2q2ν2 + C1rHν
4(rH+ν)− 2rH(rH+ν)ln

(
rH

rH+ν

)(
kν(2rH+ν)− q2ln

(
rH

rH+ν

))
rHν(rH + ν)

(
ν(2rH + ν) + 2rH(rH + ν)ln

(
rH

rH+ν

)) .

Note that q has dimension of [L] and it is convenient to parametrize it as

q =

√√√√√νr∗(r∗ + ν)(−C1ν3 + 2k(2r∗ + ν)ln( r∗
r∗+ν ))

2

(
−ν2 + r∗(r∗ + ν)

(
ln
(

r∗
r∗+ν

))2
) , (4.2)

where r∗ is a length scale. So in the zero temperature limit T = 0 → rH = r∗ and the

constant C2 goes to

C2 =
−2kν2r∗ + r∗(r∗ + ν)ln

(
r∗

r∗+ν

)(
C1ν

3 − 2k(r∗ + ν)ln
(

r∗
r∗+ν

))
−ν2 + r∗(r∗ + ν)

(
ln
(

r∗
r∗+ν

))2 . (4.3)

Also, in this limit the lapse function develops a double zero at the horizon

f(r) = η(r − r∗)2 + . . . , (4.4)

where η is given by

η =
2kν2 − C1ν

4 − 2k
(
−ν(2r∗ + ν) + r∗(r∗ + ν)ln

(
r∗

r∗+ν

))
ln
(

r∗
r∗+ν

)
2r∗(r∗ + ν)

(
−ν2 + r∗(r∗ + ν)

(
ln
(

r∗
r∗+ν

))2
) . (4.5)
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Figure 8. The behaviour of the lapse function f(r) for different values of q, C1 = 1, C2 = 10. Left

figure for k = 1 and ν = 2. Right figure for k = 0 and ν = 2, and bottom figure for k = −1 and

ν = 3.

Now, considering the scaling limit

r − r∗ = λ
R2

χ
, t = λ−1τ , λ→ 0 , (4.6)

with χ and τ finite, where

R =
1
√
η
, (4.7)

we find that the metric (2.5) can be written as AdS2 × Ω2 [5], where Ω2 is the base

manifold

ds2 =
R2

χ2
(−dτ2 + dχ2) + r∗(r∗ + ν)dΩ2 . (4.8)

Note that the scale of the AdS2 space R depends on the charge of the scalar field ν. In

figure 8 we show the behaviour of the lapse function f(r) for different values of q for fixed

ν. We see that for each value of k there is critical value of qc above which the extremal

black hole is destabilized while below that value we depart from the extremal limit and we

go to the charged hairy black hole solution. Similar behaviour we observe for the charge ν

in figure 9, where we show the behaviour of the lapse function f(r) for different values of

ν for fixed q. Observe here that the behaviour of the lapse function f(r) is more sensitive

to k than in the q case. In summary, there is a pair of critical values of (qc, νc) where

the extremal black hole is formed and the near horizon geometry is given by AdS2 × Ω2.

Then there is a range of values of (q, ν) which lead to AdS space or to no-extremal hairy

solutions.

It is interesting to see how the temperature changes for various values of ν and for the

fixed value of q = qc of the corresponding value of k. In figure 10 we see that there is a

range of values of ν in which the temperature remains zero. Then above a critical value qc
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Figure 9. The behaviour of the lapse function f(r) for different values of ν, C1 = 1, C2 = 10. Left

figure for k = 1 and q = 1.9. Right figure for k = 0 and q = 2.23, and bottom figure for k = −1

and q = 2.75.

for k = 1, 0 the hairy black hole is thermalized while for k = −1 as ν is lower below νc the

hairy black hole researches its maximum temperature and then starts to cool down. This

behaviour is interesting and it deserves to be studied further.

In the case of Λeff = 0 i.e. C1 = −4k
ν2 , we observe a similar behaviour. In this case

a hairy black hole solution exist only for k = 1 (see figure 1). Then in figure 11 we can

see that there is a critical value of qc above which the extremal black hole is destabilized

while below that value we depart from the extremal limit and we go to the charged hairy

black hole solution. However in this case the extremal double horizon is larger than in the

case of Λeff 6= 0. Also, the same behaviour is observed for ν so there is a pair of critical

values of (qc, νc) where the extremal black hole is formed and the near horizon geometry is

given by AdS2 × Ω2. Then there is a range of values of (q, ν) which lead to flat space or

to no-extremal hairy solutions. Also, we see that there is a range of values of ν in which

the temperature remains zero, and a critical value νc above which the hairy black hole is

thermalized. Observe that in this case the temperature remains constant above νc.

5 Thermodynamics

In this section we will study the thermodynamics of the found hairy black hole solutions.

To apply the Euclidean formalism we will work in the ρ =
√
r (r + ν) coordinates in which

the metric (3.10) can be written in the following form

ds2 = N2 (ρ) g2 (ρ) dτ2 + g−2 (ρ) dρ2 + ρ2dσ2 , (5.1)

where

N (ρ)2 =
ρ2(

ν2

4 + ρ2
) , g2 (ρ) =

χ(ρ)

ρ2

(
ν2

4
+ ρ2

)
. (5.2)
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Now, we go to Euclidean time t→ it and we consider the action

I = −βσ
4π

∫ ∞
ρH

(
N(ρ)H(ρ) +Atp

′) dρ+Bsurf , (5.3)

where H(ρ) is the reduced Hamiltonian which satisfies the constraint H(ρ) = 0 and p(ρ) =
ρ2

N(ρ)A
′
t, p
′(ρ) = 0. Also Bsurf is a surface term, β = 1/T is the period of Euclidean time

and finally σ is the area of the spatial 2-section. We now compute the action when the

field equations hold. The condition that the geometries which are permitted should not

have conical singularities at the horizon imposes

T =
N(ρH)g2(ρH)′

4π
. (5.4)

So, by using the grand canonical ensemble we can fix the temperature and “voltage”

ψ = (At(∞)−At(ρH)). Then the variation of the surface term yields

δBsurf = δBφ + δBG + δBF , (5.5)

where

δBG = βσ
[
Nρδg2

]∞
ρH

, (5.6)

δBφ = βσ
[
Nρ2g2φ′δφ

]∞
ρH

, (5.7)

δBF = βσ [Atδp]
∞
ρH

. (5.8)

Now, we will apply the above formalism to the cases Λeff = 0 and Λeff 6= 0. In both cases

the variation of the fields at large distances yields

δBG∞ = βσ

[(
−1

3
+O

(
1

ρ2

))
δC2 +

(
−k

3
+O

(
1

ρ

))
δν +O

(
1

ρ

)
δq2

]
, (5.9)

δBφ∞ = O
(

1

ρ

)
δν , (5.10)

and

δBF∞ = O
(

1

ρ2

)
δq2 +O

(
1

ρ4

)
δν . (5.11)

On the other hand,

δBρH = σ

[
−1

2
N(ρH)β(g(ρH)2)′δρ2

H + βψδp

]
. (5.12)

Thus, from the above expressions in both cases we deduce the surface terms at large

distances

Bsurf∞ = −βσ
3

(C2 + kν) , (5.13)

and at the horizon

BsurfρH = −2πσρ2
H +

βψσq

2
. (5.14)
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Therefore, the Euclidean action reads

I = −βσ
3

(C2 + kν) + 2πσρ2
H −

βψσq

2
, (5.15)

and as the Euclidean action is related to the free energy through I = −βF , we obtain

I = S − βM+ βψQ , (5.16)

where the mass M is

M =
σ

3
(C2 + kν) , (5.17)

the entropy S is

S = 2πσρ2
H , (5.18)

and the electric charge Q is

Q = −σq
2
. (5.19)

We will first discuss the case of Λeff 6= 0. The temperature is given by the relation (4.1),

while the mass, entropy and electric charge can be written respectively as

M=
σ

3

ν2(−2q2+rH(C1ν
2(rH+ν)+2k(2rH+ν)))−2ln

(
rH
rH+ν

)(
rH(rH+ν)

(
kν2+q2ln

(
rH
rH+ν

))
+νq2(2rH+ν)

)
ν2(2rH + ν) + 2νrH(rH + ν)ln

(
rH
rH+ν

)
+
σ

3
kν , (5.20)

S = 2πσrH(rH + ν) , (5.21)

Q =
σ

2

νψ

ln( rH
rH+ν )

. (5.22)

We will study possible phase transitions of the hairy black hole solutions to known black

hole solutions without hair. For Λeff 6= 0 and in the absence of a scalar field the action (2.1)

has as a solution the RN-AdS black hole with temperature, entropy, mass and electric

charge given respectively by

TRN =
1

4π

(
3ρ+

l2
+

k

ρ+
− ψ2

8πρ+

)
, SRN = 2πσρ2

+,

MRN = σρ+

(
k +

ρ2
+

l2
+
ψ2

8π

)
, QRN =

σρ+ψ

4π
. (5.23)

Then, the horizon radius ρ+ = 2πl2T
3

(
1 +

√
1− 3(k−ψ2/(8π))

4π2l2T 2

)
can be written as a function

of the temperature and of the electric potential. Now in order to find phase transitions

between the charged hairy and RN-AdS black hole, we must consider both black holes in

a same grand canonical ensemble, i.e. at the same temperature T and electric potential ψ.

Equaling T and ψ for both black holes and by considering the free energy F

F = F (T, φ) = M − TS − ψQ , (5.24)
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Figure 12. The behaviour of the free energy for the charged hairy black hole and the RN anti-de

Sitter black hole as function of T and ψ with k = −1, l = 1, σ = 1, and ν = 0.5. Red surface for

charged hairy black hole and yellow surface for the RN anti-de Sitter black hole.

we plot the free energy F0 for the charged black hole with scalar hair, and F1 of the RN-

AdS black hole in figure 12, in order to see the range of values of the electric potential ψ

and of the temperature T of the black hole for which the phase transitions exist.

Thus, from figure 12, we can see that there exists a phase transition, and the charged

hairy black hole dominates for small temperatures, while for large temperatures the RN-

AdS black hole would be preferred. Also, we can observe that the critical temperature

at which this phase transition takes place depends on the ψ and as it can be seen in

figure 13 it depends also on ν the charge of the scalar field at small temperatures. At

zero temperature the RN-AdS is preferable which agrees with our previous results. This

phase transition occurs for hyperbolic horizon k = −1, in agreement with the findings

in [10, 23, 25] where only phase transitions of exact hairy black hole solutions to black hole

solutions with hyperbolic horizons.

A similar analysis can be carried out for the case of Λeff = 0. In this case the temper-

ature, mass, entropy and electric charge are given respectively by

TRN =
1

4πρ+

(
1− ψ2

8π

)
, SRN = 2πσρ2

+, MRN = σρ+

(
1 +

ψ2

8π

)
, QRN =

σρ+ψ

4π
, (5.25)

and the horizon radius is given by ρ+ = 1
4πTRN

(
1− ψ2

8π

)
. In figure 14 we plot the free

energy F0 for the charged black hole with scalar hair and F1 the free energy of the RN

black hole. Then we can see that there not exists a phase transition, and the RN black

hole dominates for all temperatures.

– 16 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
1

Figure 13. The behaviour of the free energy for the charged hairy black hole and the RN black

hole as function of T and ν with k = −1, σ = 1, l = 1, and ψ = 0.1. Red surface for charged hairy

black hole and yellow surface for the RN black hole.

Figure 14. The behaviour of the free energy for the charged hairy black hole and the RN black

hole as function of T and ν with k = 1, σ = 4π, and ν = 0.01. Red surface for charged hairy black

hole and yellow surface for the RN black hole, C1 = − 4k
ν2 .
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6 Conclusions

We have considered a gravitating system consisting of a scalar field minimally coupled

to gravity with a self-interacting potential and an U(1) electromagnetic field. We solved

exactly the coupled Einstein-Maxwell-scalar field equations with a profile of the scalar field

which falls sufficient fast outside the black hole horizon. For a range of values of the scalar

field parameter, which characterizes its behaviour, we found exact hairy charged black hole

solutions with the scalar field regular everywhere.

The presence of the scalar field introduced a scale in the system, resulting in a redefi-

nition of the cosmological constant to Λeff . If Λeff 6= 0 then hairy black hole solutions were

found for k = ±1, 0 with the potential at large distances to tend to the effective cosmolog-

ical constant, and the scalar field to be regular everywhere outside the event horizon and

null at large distances. If Λeff = 0 then a hairy charged black hole solution was found for

k = 1 in flat space. In both cases if the scalar field is decoupled then the RN black hole

solution is recovered.

Because the scalar hair is non-zero only near the horizon of the black hole, we studied

the effect of the scalar field on the near horizon limit of external black hole as the tem-

perature goes to zero. We found that except a critical value of the charge of the black

hole there exist also a critical value of scalar field beyond which the extremal black hole is

destabilized. If Λeff 6= 0 it goes to an AdS space while if Λeff = 0 it goes to flat space.

Finally, we studied the thermodynamics of our hairy charge black hole solutions. In

the case of Λeff = 0 we found that at all temperature the RN black hole solution is thermo-

dynamically preferred over the hairy charge black hole solution. In the case of Λeff 6= 0 we

found that the hairy charge black hole is thermodynamically preferred over the RN black

hole at low temperature. This picture is in agreement with the findings of the application

of the AdS/CFT correspondence to condensed matter systems. In these systems there is a

critical temperature below which the system undergoes a phase transition to a hairy black

hole configuration at low temperature. This corresponds in the boundary field theory to

the formation of a condensation of the scalar field.

It would be interesting to study the stability of our solutions. This stability analysis

will make our results robust specially in connection with the gauge/gravity applications to

condensed matter systems. Also it would be interesting to extent this study to a gravita-

tional system with a charged scalar field. In this case we expect to have a better stability

behaviour of the system, because the electromagnetic force may balance the gravitational

force. Work in this direction is in progress.
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