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1 Introduction

Symmetries are arguably one of the most important properties of physical systems. In

particular, when spontaneously broken, they lead to model-independent predictions for

the low-energy spectrum of excitations and their interactions. In relativistic theories with

spontaneously broken internal symmetries, Goldstone’s theorem ensures the existence of

one gapless mode — a Goldstone boson — for each broken symmetry generator. More-

over, spontaneously broken symmetries are still symmetries of the effective action (barring

anomalies), and they constrain the dynamics in a subtle way by acting non-linearly on the

Goldstone fields. A systematic method to build an effective action for the Goldstone modes

that is invariant under the non-linearly realized symmetries was developed by Callan, Cole-

man, Wess and Zumino in the late sixties and it is known as the coset construction [1, 2].

The virtue of this method is that it relies solely on symmetry considerations and it allows

one to be agnostic about the symmetry breaking mechanism, which in general could be

very complicated and even strongly coupled. The coset construction was later extended to

the breaking of space-time symmetries [3, 4], in which case several interesting subtleties

arise. It is well known, for instance, that in this case the number of Goldstone modes does
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not need to equal that of broken symmetries [5, 6]. Moreover, Goldstone excitations do

not need to be massless [7–10] or stable, the UV completion in these systems may occur in

non-standard ways [11] and even the issue of superluminality becomes subtle [12–15].

The spontaneous breaking of space-time symmetries is an interesting phenomenon not

only because of the aforementioned subtleties, but also because of its ubiquity: any state

of matter which is not the vacuum must break at least some space-time symmetries. For

instance, even a state with a single point particle at rest breaks boosts by selecting a pre-

ferred reference frame. On the contrary, while it is certainly possible to consider states that

spontaneously break any given internal symmetry, one is not forced to do so: for example,

if the above point particle is charged under a U(1) symmetry, the corresponding state is an

eigenstate of the charge and does not break U(1). Internal and space-time symmetries also

differ in another respect: while Nature has provided us with both global and gauged inter-

nal symmetries, there is no ambiguity when it comes to space-time symmetries - they are

gauged by gravity. The overarching goal of this paper is to illustrate how an appropriate

extension of the coset construction can be used to describe the coupling between gravity

and those systems whose ground state breaks some space-time symmetries.

In an effort to make the paper as self-contained as possible, we review the coset con-

struction for both internal and space-time symmetries in section 2. Then in section 3, we

show how the coset construction can be fruitfully employed to formulate ordinary General

Relativity from an “algebraic” point of view.1 After that we move on to consider a few

instructive examples of systems with broken space-time symmetries. In section 4 we show

how to use the coset construction to couple relativistic superfluids to gravity.2 Such sys-

tems have been studied extensively in the context of cosmology as a possible mechanism

to generate inflation [18] or to modify the large distance behavior of gravitational interac-

tions [19]. From our perspective, the interesting aspect about superfluids is that they are

possibly the simplest system in which a combination of space-time and internal symmetries

is broken down to a diagonal subgroup.

The second example that we will consider is that of relativistic membranes (section 5).

These objects have attracted a great amount of theoretical interest in the last few decades

and have appeared in a variety of different contexts: as D-branes [20] in string theory or

as domain walls [21], in models of extra-dimensions [22, 23] and in connection to Galileon

theories [24, 25], etc. We will show how gravity in the bulk can be coupled to Gold-

stones bosons that propagate on a lower-dimensional submanifold, and how the geometric

language usually employed to describe membranes arises naturally from the coset con-

struction. In the case where the lower-dimensional submanifold is one-dimensional and

its only tangent vector is time-like, one easily recovers the correct action for a relativistic

point-particle (section 6).

Finally we turn to the study of relativistic spinning particles coupled to gravity (sec-

tion 7). These are objects of great astrophysical importance as they provide a long-

wavelength effective description of compact objects, such as spinning black holes and neu-

1A similar approach was used in [16] to study modified theory of gravity with spontaneous breaking of

local Lorentz symmetry.
2For a recent application of coset techniques to relativistic superfluids in the absence of gravity, see [17].
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tron stars and constitutes the most important application of these techniques. To the best

of our knowledge, relativistic spinning objects in a gravitational field were first studied us-

ing effective field theory techniques in refs. [26, 27] (and later improved upon in ref. [28]),

by extending the results of Hanson and Regge’s [29] to a curved space-time.3 In this ap-

proach, some covariant constraints are imposed on the low-energy effective Lagrangian in

order to eliminate spurious degrees of freedom [29]. These constraints have a clear physical

interpretation, but become cumbersome to implement at higher order in the derivative

expansion. It is here where the usefulness of the coset construction becomes most clear.

In our approach, all unphysical degrees of freedom are systematically removed by im-

posing the appropriate inverse Higgs constraints, which can be solved exactly and whose

simple solutions are valid to all orders. After that, it becomes straightforward to systemati-

cally write down a relativistic effective action for spinning particles coupled to gravity. The

derivative expansion is controlled by the ratio ωR/ωN between the frequency of rotation

and the typical normal mode frequency of the rigid body. For completeness, a quick sum-

mary of our notation and conventions as well as some technical details have been included

in the appendices.

2 The coset construction

We start with a brief review of the coset construction, which can be safely omitted by the

reader already familiar with this formalism. For later convenience, we will adopt a notation

that applies to the breaking of internal [1, 2] and space-time symmetries [3, 4] alike. For

a thorough discussion of the coset construction for internal symmetries only, we refer the

reader to [31].

The coset construction provides a systematic method of writing down an effective

action for Goldstone bosons using the pattern of symmetry breaking as the only input. For

definiteness, let us therefore consider a symmetry group G (which includes Poincaré as a

subgroup) and assume that the ground state spontaneously breaks it down to a subgroup

H. We can then subdivide the generators of G into three groups:

Xα = broken generators

P̄a = unbroken translations

TA = other unbroken generators.

Notice that both the X’s and the T ’s will in general contain some space-time and some

internal generators. The effective action for the Goldstone bosons must be invariant under

the whole symmetry group G. However, the broken symmetries generated by the Xα’s

and the unbroken translations P̄a’s will be realized nonlinearly on the Goldstone fields.

Hence, it is a non-trivial task to write down all possible G-invariant combinations of the

Goldstones and derivatives. The coset construction is designed precisely to address this

problem.

3See also ref. [30] for a different approach to relativistic spinning particles in gravitational fields (with

torsion).
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The starting point of the coset construction is a local parametrization of the coset

G/H0, where H0 is the subgroup of H generated by the TA’s. This parametrization reads4

Ω(y, π) ≡ eiya(x)P̄aeiπ
α(x)Xα , (2.1)

and can be thought of as the most general group element generated by the Xα’s and the P̄a’s

using coordinate-dependent parameters. The transformation properties of the Goldstones

under a generic element g of the symmetry group G can be derived from the relation [4]

gΩ(y, π) = Ω(y′, π′)h(y, π, g), (2.2)

where h(y, π, g) is a Goldstone- and coordinate-dependent element of the unbroken sub-

group H0 that guarantees that the form of eq. (2.1) is preserved by the g transformation.

The unbroken element h(y, π, g) can be calculated for any given g using only the algebra of

the group G, but for our practical purposes this will not be necessary. Equation (2.2) then

defines the transformation rules for the y’s and the π’s. In particular, the Goldstones π will

usually transform nonlinearly, while the y’s will transform like cartesian coordinates un-

der unbroken Poincaré transformations.5 In fact, on a Minkowski background it is always

possible to choose the x coordinates in such a way that ya(x) ≡ xa everywhere. However,

on a curved background this will not always be possible, and in this case the y’s should be

thought of as locally inertial coordinates at some point within the patch described by the

x coordinates (see appendix B for more details).

Starting from the coset parametrization (2.1), we can define the Maurer-Cartan form

Ω−1dΩ. Its components can be calculated explicitly using only the commutation relations

among the various generators, and the result can be expressed as a linear combination of

all the generators:

Ω−1∂µΩ = Eµ
a(P̄a +∇aπαXα +ABa TB). (2.3)

One can derive the transformation properties of the coefficients that appear in the above

linear combination starting from the transformation rule (2.2). In particular, it can be

shown [4] that the coefficients Eµ
a play the role of a vierbein, in the sense that the integra-

tion measure ddx detE transforms like a scalar under all the symmetries and is covariant

under an arbitrary change of the x coordinates. In other words, the factor detE ensures

that the coset construction can be carried out using an arbitrary coordinate system (i.e.

not necessarily Cartesian). Notice that the vierbein Eµ
a becomes trivial when all the Xα’s

are generators of internal symmetries and the x’s are Cartesian coordinates.

The quantities∇aπα can be thought of as covariant derivatives for the Goldstone fields,

since they transform covariantly under all symmetries:

∇aπα(x)
g−→ ∇aπ′α(x) = ha

b(y, π, g)hβ
α(y, π, g)∇bπβ(x) , (2.4)

4Notice that the pre-factor eiy
a(x)P̄a on the r.h.s. of equation (2.1) is usually omitted when considering

only internal broken symmetries [31], because in that case it does not play any role. It becomes however

important when dealing with broken space-time symmetries.
5For instance, the simplest case one can consider is the one in which g is simply an unbroken translation,

i.e. g = eiε
aP̄a . In this case, it is easy to see that the y’s transform like Cartesian coordinates under

translations, i.e. y′(x) = y(x)+ε, while the π’s do not transform, i.e. π′(x) = π(x), and h(y, π, g) = 1. These

transformations rules are particularly simple due to the fact that we included the unbroken translations in

the coset parametrization.
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where the ha
b and hβ

α matrices are some representations of the group element

h(y, π, g) ∈ H0. Thus, the covariant derivatives ∇aπα transform according to a field-

and coordinate-dependent representation of the unbroken subgroup H0.

Finally, it can be shown that the coefficients ABa transform like a connection [4], and

can be used to define higher covariant derivatives of the Goldstone fields:

∇Ha ≡ [(E−1)a
µ∂µ + iABa TB] . (2.5)

These covariant derivative can also act on additional matter fields that transform in some

linear representation of the unbroken group H0.

One can then build the most general Lagrangian density that is invariant under the

full symmetry group G and independent of the particular choice of coordinates x simply

by taking contractions of all the possible covariant derivatives (e.g. ∇aπα,∇Ha ∇bπα, . . . )

that are manifestly invariant under the unbroken subgroup H0.

Gauge symmetries. The coset construction reviewed above can be appropriately mod-

ified to describe gauge symmetries as well. If a subgroup G′ ⊆ G with generators VI is

gauged, then one must simply replace the partial derivative in the definition of the Maurer-

Cartan form with a covariant derivative, i.e.

Ω−1∂µΩ → Ω−1DµΩ ≡ Ω−1(∂µ + iÃIµVI)Ω. (2.6)

This modified Maurer-Cartan form can be decomposed like on the r.h.s. of equation (2.3),

and the vierbein Eµ
a, the covariant derivatives ∇aπα and the connection ABµ will now

depend also on the gauge fields ÃIµ. It is easy to see that Ω−1DµΩ is indeed invariant

under a local transformation

Ω→ g(x)Ω, Ãµ → g(x)Ãµg
−1(x)− ig(x) ∂µg

−1(x) with g(x) ∈ G′. (2.7)

If the gauged generators VI contain some of the broken generators Xα, then one can make a

gauge transformation and set to zero some of the Goldstones πα: this amounts to working

in the unitary gauge. In this paper, we will use the procedure defined by (2.6) to introduce

gravitational interactions by gauging the Poincaré group.

Inverse Higgs constraints. In the coset parametrization (2.1), we have assigned one

Goldstone field to each broken symmetry generator Xα. However, it is well known that

whenever space-time symmetries are broken, the counting of Goldstone modes becomes

subtle and the usual Goldstone theorem does not apply [6]. Within the context of the

coset construction, the possible mismatch between the number of broken generators and

that of Goldstone modes follows from what is known as the inverse Higgs mechanism [5].

Such phenomenon can be summarized as follows: whenever

i. the commutators between an unbroken translation P̄ and a broken generator X contains

another broken generator X ′, i.e. [P̄ ,X ′] ⊃ X, and

ii. X and X ′ do not belong to the same multiplet under H0,
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one can set to zero the covariant derivative of the Goldstone of X in the direction of P̄

(denoted as ∇̄π) and solve such a condition — which is known as an inverse Higgs constraint

— to eliminate the Goldstones of X ′ from the low energy spectrum of excitations in a way

which is compatible with all the symmetries. Since this kind of constraints will play a

crucial role for the systems that will be discussed in this paper, we conclude this section

by briefly discussing their physical origin.

From a UV perspective, there are two complementary ways of understanding the in-

verse Higgs phenomenon. When provided with an explicit order parameter, it can be the

case that the Goldstones associated with the broken generators do not describe independent

degrees of freedom. That is, there is a non-trivial solution to the equation(
πX + π′X ′

)
〈Φ〉 = 0 , (2.8)

where 〈Φ〉 is the expectation value of the order parameter [6]. From this perspective,

imposing an inverse Higgs constraint is equivalent to “fixing a gauge” in order to elim-

inate redundant degrees of freedom [10]. However, this is not always the case as there

are symmetry breaking patters where it is consistent to impose such a constraint but no

such redundancy can exist [11]. This leads us to a second possiblity: if there is no such

overcounting of degrees of freedom, one can instead view the inverse Higgs constraints as

arising dynamically in the low energy limit. Indeed, conditions i. and ii. guarantee that

the covariant derivative of the Goldstone of X contains a term linear in π′ and with no

derivatives, which means that a generic action will contain a “mass term” for π′, i.e. π′ is

gapped. Hence, at energies below this gap we can integrate out π′ to obtain an effective

action for the remaining Goldstones. In this picture, the inverse Higgs constraint can be

interpreted as coming from the equation of motion for π′. In general, such equation of

motion will not be simply ∇̄π = 0, but rather it will be equivalent to setting to zero a

generic linear combination of ∇̄π, other covariant derivatives that transform in the same

representation as ∇̄π [5] as well as higher order covariant derivatives. From the gauge fixing

perspective this would seem like an overly complicated gauge fixing condition, but from

the gapped Goldstone perspective it is clearly the most natural constraint to impose. The

important point, though, is that the effective theory does not depend on the exact form

of the inverse Higgs constraints: once the derivative expansion is correctly implemented,

the difference between imposing a “generalized inverse Higgs constraint” or the simplest

possible one corresponds only to a redefinition of the coupling constants in the effective

Lagrangian. Hence, throughout this paper we will always impose the simplest possible

inverse Higgs constraints without any loss of generality.

3 General relativity from a coset perspective

Before introducing gravity in theories with spontaneously broken space-time symmetries,

it is instructive to review how ordinary General Relativity (GR) can be derived from a

coset construction where the Poincaré group ISO(3, 1) is gauged6 and translations are non-

6Other backgrounds, such as those with a large cosmological constant in comparison with the typical

energies we are interested in, can be studied using (anti-) deSitter group as starting point [32–34].
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linearly realized [32].7 Therefore, the coset construction we will carry out will be based on

the coset ISO(3, 1)/SO(3, 1), which can be conveniently parametrized as

Ω ≡ eiya(x)Pa . (3.1)

Notice, that the action of diffemorphisms amounts to relabeling the space-time coordinates

xµ, which do not transform under translations (for more details, see appendix B). Following

the discussion in the previous section, we now introduce the Maurer-Cartan form associated

with the coset parametrization (3.1) and we introduce gauge fields for translations (ẽaµ) and

for Lorentz transformations (ωabµ ). The Maurer-Cartan form then reads

Ω−1DµΩ ≡ e−iya(x)Pa

(
∂µ + iẽµ

aPa +
i

2
ωabµ Jab

)
eiy

a(x)Pa = ieµ
aPa +

i

2
ωabµ Jab , (3.2)

where in the last step we defined

eµ
a = ẽµ

a + ∂µy
a + ωabµ yb . (3.3)

According to the previous section, the fields eµ
a should now be regarded as a vierbein.

In particular, they can be used to build an invariant volume element ddx det e. As a

matter of fact, we will see that eµ
a is indeed the usual vierbein that appears in the tetrad

formalism [38], in the sense that it defines the metric via gµν ≡ ηabeµaeνb.
Following the standard coset “recipe” we can now use the coefficients that appear

in front of the unbroken Lorentz generators in (3.2) to define the covariant derivative of

matter fields that transform linearly under Lorentz transformations:

∇La ≡ (e−1)a
µ(∂µ +

i

2
ωbcµ Jbc) . (3.4)

By now, it should be clear that ωabµ is nothing but the spin connection that is usually in-

troduced in the tetrad formalism [38]. The vierbein (3.3) and the covariant derivative (3.4)

are the only necessary ingredients to describe the non-linear realization of translations and

the local action of the Poincaré group. Then, neglecting for simplicity additional matter

fields, the most general action that is Poincaré and diffeomorphism invariant takes the

simple form

S =

∫
d4x det eL(∇La ) , (3.5)

where it is understood that the indices of the covariant derivatives∇La must be contracted in

a Lorentz-invariant fashion. From here on, one can identify the usual curvature invariants

by proceeding as usual. In particular, one can use the fact that the commutator of two

covariant derivatives acting on, say, a vector field gives

[∇La ,∇Lb ]V c = RcdabV
d − Tabd∇LdV c, (3.6)

7Notice that our approach differs form that of [35, 36] and, more recently, [37] which treat the gauge

fields as Goldstone bosons associated with the breaking of local symmetries down to global ones.

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
0
0
8

where Rcdab and Tab
d are the components of the Riemann and torsion tensor respectively

w.r.t. the orthonormal frame defined by the vierbein eµ
a (see appendix B for more details).

Then, at lowest order in the derivative expansion the effective action (3.5) reduces to

S =
1

16πG

∫
det(e)d4x

[
Rabab + c1 Tab

cT abc + c2 TabcT
acb + c3 Tab

bT acc + · · ·
]
, (3.7)

where eµa is defined as the inverse of eµ
a and, comparison with experiments would reveal

that G corresponds to Newton constant; c1, c2, and c3 denote dimensionless coefficients

and the dots stand for higher-order terms in the derivative expansion.

The action eq. (3.7) has more degrees of freedom than those associated with standard

GR. However, the equations of motion for ωabµ to lowest order in derivatives, are

ωabµ (e) =
1

2

[
eνa(∂µeν

b − ∂νeµb) + eµce
νaeλb∂λeν

c − (a↔ b)
]
, (3.8)

and give a non-dynamical condition on ωabµ that is precisely the standard relation between

a tetrad and a spin connection for gravity in the vierbein formalism [38].8 With this, the

action (3.7) reduces to the famous Einstein-Hilbert action (at lowest order in derivatives).

Alternatively, the condition eq. (3.8) can be derived directly by noticing that it is consistent

— for it transforms in a covariant way — to enforce the torsion tensor to zero, i.e. Tab
c = 0

(somewhat in analogy with the inverse Higgs procedure discussed in the previous section).9

Solving this constraint equation one finds again the relation eq. (3.8).

4 Superfluids

A zero-temperature superfluid is a system with a finite density of a spontaneously broken

global U(1) charge Q. From our perspective, it is an interesting example of the interplay

between spontaneously broken internal and space-time symmetries. As such, it is instruc-

tive to see how the coset construction is able to reproduce the correct coupling with gravity.

Since the low energy description of a superfluid is well known [41], and a derivation based

on the coset construction was already discussed in [17] in the absence of gravity, we will

keep this section fairly short and focus mainly on the key technical details.

The ground state of a superfluid breaks local boosts, time translations and the global

U(1) symmetry, but is invariant under the action of P̄0 ≡ P0 + µQ, where µ is the chem-

ical potential [42]. Thus, from a coset construction perspective, the pattern of symmetry

8Notice that even in the presence of additional matter fields, the equation of motion for the spin con-

nection can still be solved algebraically at lowest order in the derivative expansion. The solution will in

general differ from the one in equation (3.8), but upon plugging the new solution into the effective action,

one obtains a torsion-free theory with shifted coefficients in the matter effective action. Therefore, in our

context, treating the spin connection ω as an independent variable is equivalent to imposting the torsion

free condition.
9One could alternatively choose to set the curvature tensor to zero, in which case one obtains a teleparallel

theory of gravity [39, 40].
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breaking associated with a superfluid is as follows [17]:

Unbroken =


P̄0 ≡ P0 + µQ time translations

P̄i ≡ Pi spatial translations

Jij spatial rotations

Broken =

{
Ki ≡ J0i boosts

Q internal shifts ,

(4.1)

Therefore, the coset representative can be chosen as

Ω = eiy
aP̄aeiπQeiη

iKi ≡ eiyaPa Ω̃ . (4.2)

The relevant low-energy degrees of freedom are contained in the covariant version of the

Maurer-Cartan form which, using eq. (3.2), can be written as

Ω−1DµΩ = Ω̃−1

(
∂µ + ieaµPa +

i

2
ωabµ Jab

)
Ω̃

= ieµ
bΛ a

b P̄a + i(∂µψ − µeµbΛb0)Q+
i

2
Jab

[
(Λ−1∂µΛ)ab + ωcdµ Λc

aΛd
b
]

≡ iEµa
(
P̄a +∇aπQ+∇aηiKi +

1

2
JijA

ij
a

)
,

(4.3)

where in the first equality we have used eq. (3.2), while in the second we have introduced

the field ψ ≡ µy0 + π and the boost matrix

Λa b(η) ≡ (eiη
iKi)ab . (4.4)

eq. (4.3) contains all the building blocks of the low-energy Lagrangian. In particular, one

can see immediately that the “coset vierbein” is given by Eµ
a ≡ eµbΛ a

b , and then read off

the covariant derivatives for the Goldstones π and ηi:

∇aπ ≡ eµbΛba∂µψ − µδ0
a, ∇aηi ≡ eµbΛba

[
(Λ−1∂µΛ)0i + ωcdµ Λ 0

c Λ i
d

]
. (4.5)

It is possible to check explicitly that ∇0π transforms as a singlet, ∇iπ and ∇0η
i as

triplets, and ∇jηi as a 1⊕3⊕5 under the unbroken SO(3), and that all are singlets under

diffeomorphisms. Moreover, following the discussion in section 2, we conclude that the field

Aa = eµbΛ
b
a

[
(Λ−1∂µΛ)ij + ωcdµ Λ i

c Λ j
d

]
Jij (4.6)

behaves like a connection of the SO(3) unbroken group and can be used to define covariant

derivatives of matter fields as well as higher covariant derivatives of the Goldstones.

Equations (4.5) and (4.6) are the necessary ingredients to write down an effective

Lagrangian for superfluids. It is well known however that the low-energy description of

superfluids contains a single degree of freedom [41]. From a coset construction perspec-

tive, this result is recovered by noticing that the boost Goldstones ηi can be removed from
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the low-energy spectrum of excitations by imposing the appropriate inverse Higgs con-

straints [17]. In fact, the commutator between unbroken spatial translations and broken

boosts gives [P̄i,Kj ] ⊂ iδijµQ. Based on the discussion in section 2, this means that we can

set to zero the spatial covariant derivatives of the Goldstone of Q and solve this constraint

to express the η’s in terms of derivatives of π:

0 = ∇iπ = Λci (ec
µ∂µψ) , ⇒ βi = − ei

µ∂µψ

e0
µ∂µψ

, (4.7)

where we have introduced for simplicity the velocity10

βi ≡
ηi
η

tanh η . (4.8)

By plugging this result into ∇0π we obtain the following lowest order building block of the

effective Goldstone boson action:

∇0π = Λ c
0 ec

µ∂µψ − µ =
√
−ηabeaµebν∂µψ∂νψ − µ =

√
−gµν∂µψ∂νψ − µ, (4.9)

where in the last step we introduced the inverse space-time metric gµν ≡ eµae
ν
bη
ab [38].

Then, the measure of integration d4x detE = d4x
√
−g is invariant under diffeomorphisms

and therefore the relevant Lagrangian at low energies is given by:

S =

∫
d4x detE [a0 + a1∇0π+ a2(∇0π)2 + · · · ] =

∫
d4x
√
−g F (

√
−gµν∂µψ∂νψ) . (4.10)

The function F was introduced in the last step in order to match the more standard

notation in flat space-time [41]. This function is defined by the requirement that its n-th

derivative evaluated at µ is equal to an, i.e. F (n)(µ) = an.

As already emphasized in the previous sections, the advantage of the coset construction

hinges on the systematics of the derivative expansion. Indeed, higher order terms can

be easily constructed from eqs. (4.5) and (4.6). In particular, the first higher derivative

corrections to the low-energy effective action eq. (4.10) are ∇0∇0π and ∇iηi. After lengthy

but straightforward calculations, one can show that these terms can also be written solely

in terms of ψ and its derivatives, and in particular

∇0∇0π =
∂µψ∂

µ∂ρψ∂
ρψ

2∂λψ∂λψ
, ∇iηi = −

(
∂ρψ∂

ρψ�ψ + 1
2∂µ∂ρψ∂

ρψ∂µψ
)

(−∂λψ∂λψ)3/2
. (4.11)

From the perspective of [41] these are just particular linear combinations (with some nor-

malization) of the expected additional higher derivative term.

10With our conventions, the components of the boost matrix Λab can be expressed in terms of the velocity

βi as follows:

Λ0
0 = γ , Λ0

i = γβi , Λi 0 = γβi , Λi j = δi j + (γ − 1)
βiβj
β2

.
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5 Membranes

We will now use the coset construction to re-derive the effective action for a d − 1 brane

in (d + 1) dimensions [43]. The same procedure can be used for higher-codimension

branes [44, 45], extended to superbranes [46, 47], and was employed in ref. [48] to de-

scribe non-relativistic branes and strings as objects that break the Galilei group. In this

section only, our convention for the indices will differ from the one used in the rest of the

paper: we adopt a notation that has become standard in the literature on extra-dimensions

(see for instance ref. [43]),

• A,B,C,D, . . . will indicate Lorentz indices in d+ 1 dimensions.

• M,N,P,Q, . . . will indicate space-time indices in d+ 1 dimensions.

• α, β, γ, δ, . . . will indicate Lorentz indices in d dimensions.

• µ, ν, ρ, σ, . . . will indicate space-time indices in d dimensions.

For simplicity, let us start by neglecting gravity — and so for the moment we will not

differentiate between Lorentz and space-time indices — and consider the fluctuations about

a flat brane. A static brane breaks spatial translations in the direction perpendicular to the

brane and Lorentz transformations that mix coordinates on the brane with coordinates in

the bulk. Therefore, we can parametrize the coset associated with this symmetry breaking

pattern as

Ω = eiy
α(x)Pαeiπ(x)Pdeiξ

α(x)Jαd ≡ eiY A(x)PAeiξ
α(x)Jαd , (5.1)

where we find it convenient to introduce the (d + 1)-dimensional vector Y A(x) =

(yα(x), π(x)). These functions describe the familiar embedding of the brane in the bulk,

once the reparametrization invariance of the brane is fixed by demanding that the coordi-

nates on the brane are aligned with d coordinates in the bulk. Using the coset parametriza-

tion of eq. (5.1), we can write the Maurer-Cartan form as:

Ω−1∂µΩ = i∂µY
AΛA

B(ξ)PB +
i

2
(Λ−1)AC ∂µΛCBJAB (5.2a)

≡ iEµ
α
(
Pα +∇απPd +∇αξβJβd

)
+ iAµ

αβJαβ, (5.2b)

where ΛA
B(ξ) denotes a bulk Lorentz transformation parametrized by the Goldstones ξα.

The commutation relations [Jαd, Pβ] = iηαβPd tell us that at low energies to impose the

inverse Higgs constraint ∇απ ≡ 0 to express the Goldstones ξβ in terms of derivatives of π.

As in the previous example, the covariant derivative ∇αξβ will enter the action only at

higher order in the derivative expansion. Thus, at lowest order in derivatives, the effective

action for a brane is

S = −T
∫
ddx detE = −T

∫
ddx
√
−det(EET ) det(η) =

= −T
∫
ddx
√
−det(∂µY AΛAγ∂νY BΛBγ) = −T

∫
ddx
√
−det(∂µY A∂νYA) (5.3)
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where T , the brane tension, is an energy per unit area and we have used the fact that the

inverse Higgs constraint ∇απ = 0 implies ∂µY
AΛA

d = 0.

While our approach has been purely algebraic, it maps nicely to the usual geometric

interpretation. To begin with, eq. (5.3) reproduces a familiar result: the low-energy effective

action for a brane is given by the square root of the determinant of the induced metric

hµν ≡ ηAB∂µY A∂νY
B = ηµν + ∂µπ∂νπ. (5.4)

Furthermore, from the geometrical point of view, the constraint ∂µY
AΛA

d = 0 identifies

ΛA
d(ξ) ≡ nA as a unit vector perpendicular to all the ∂µY

A s and therefore to the surface

itself. Supplied with this unit vector we can calculate its change as we move around the

world volume projected on the vectors tangent to the world volume — this is the extrinsic

curvature. After some manipulations one can show that the higher derivative covariant

objects, ∇αξβ, are proportional to the extrinsic curvature:

∇αξβ = EµαE
ν
β∂µY

A∂νY
B∂AnB = EµαE

ν
βKµν . (5.5)

Similarly, to compute derivatives along the world volume one has to take into account

the spin connection associated with the induced metric. This should be precisely related

to the covariant derivative (2.5) supplied by the algebraic construction, and indeed it is

easy to show that this is the case. In this sense, there is a one-to-one mapping between

the algebraic objects constructed above and the more standard geometrical ones of the

extrinsic curvature, the induced metric and its spin connection. For the interested reader

a more lengthy and explicit discussion can be found in appendix C.

5.1 Coupling with gravity

We can now introduce gravity in the bulk, in the language of the coset construction,

following section 3. First, now that we are dealing with curved space, we must differentiate

the position of the membrane in the local Lorentz frame and the global space-time. We do

so with Y A(x) and YM (x) respectively. Proceeding in several steps, we first parametrize

the coset as

Ω = eiY
A(x)PAeiξ

α(x)Jαd , (5.6)

and then rewrite the covariant version of the Maurer-Cartan form as follows:

Ω−1DµΩ ≡ ∂µYMΩ−1DMΩ, (5.7)

where we have expressed the derivatives along the coordinates in the brane as projected

derivatives of the space-time coordinates, which include the Poncaré gauge fields, as dis-

cussed in section 3. Then,

∂µY
MΩ−1DMΩ = i∂µY

MeM
AΛA

BPB +
i

2
(Λ−1)AC(ηCD∂µ + ∂µY

MωCDM )ΛD
BJAB

= iEµ
α
(
Pα +∇απPd +∇αξβJβd

)
+ iAµ

αβJαβ (5.8)

As in section 3, we defined eM
A ≡ ∂MY A+ ẽM

A+ ω̃ACM YC and ω̃ACM = ωACM . Here however,

they are evaluated on the membrane itself. By comparing eqs. (5.8) and (5.2a), we see that

the coupling with gravity modifies the results we obtained previously in two ways:
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1. it replaces ∂µY
A with ∂µY

MeM
A

2. it replaces every partial derivative ∂µ in ∇αξβ and Aµ
αβ with ∂µ + ∂µY

MωM ,

which is what one could have guessed by examining eq. (5.3). The low-energy effective

action now becomes

S = −T
∫
ddx
√
−det(∂µYMeMA∂νY NeNA) = −T

∫
ddx
√
−det(hµν) . (5.9)

Similar to our discussion in the flat space case, the higher order covariant derivatives can

be related to the extrinsic curvature

∇αξβ = EµαE
ν
β∂µY

MeM
A∂νY

NeN
B∇AnB = (Λ−1)α

C(Λ−1)β
B∇CnB

= EµαE
ν
βKµν , (5.10)

where nA ≡ ΛA
d(ξ) is again, by the constraint equation, the unit normal vector perpen-

dicular to the membrane in the local Lorentz frame.

Furthermore, the covariant derivative of matter fields living on the brane is now

∇αψ = (E−1)α
µ

[
∂µψ +

i

2
(Λ−1)βB (ηBC∂µ + ∂µY

MωBCM )ΛC
γJβγψ

]
. (5.11)

One can show that the connection term (Λ−1)βB (ηBC∂µ + ∂µY
MωBCM )ΛC

γ is indeed the

spin connection associated with the induced metric. Hence, we see that the one-to-one

correspondence between the objects generated by our algebraic approach and the usual

geometrical one persists even when the bulk geometry is curved.

6 Point particles

In this section we describe a free pointlike particle coupled to gravity, using coset-

construction techniques. This is of course the limiting case of the low energy theory for a

general membrane developed in the preceding section, but we report it here for two reasons.

First, for its simplicity and its easy interpretation in terms of familiar physics. Second,

because it will serve as an opportunity to develop the notation for the case of spinning

point-like objects which we discuss in the next section.

The symmetry breaking pattern for the point particle can be read from the membrane

case of section 5, in the limit where the brane is one-dimensional and oriented in the

time-like direction:

Unbroken =

{
P0 time translations

Jij spatial rotations

Broken =

{
Pi spatial translations

J0i ≡ Ki boosts,

(6.1)

and all translations are non-linearly realized, as discussed in section 3. We parametrize our

coset by

Ω = eiy
a(λ)Paeiη

i(λ)Ki ≡ eiya(λ)PaΩ̃ , (6.2)
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where λ is some monotonic parameter that traces out the worldline of the particle. Just

as in the membrane case, the covariant version of the Maurer-Cartan form projected onto

the particle’s worldline is:

ẋµΩ−1DµΩ = ẋµΩ̃−1

(
∂µ + ieµ

aPa +
i

2
ωµ

abJab

)
Ω̃ (6.3)

≡ iE(P0 +∇πiPi +∇ηiKi +AijJij) .

and the dot denotes a derivative with respect to λ. Explicit computation gives

E = ẋνeν
aΛa

0 (6.4)

∇πi = E−1ẋνeν
aΛa

i (6.5)

∇ηi = E−1
(

(Λ−1)0
cΛ̇

ci + ẋµωµ
abΛa

0Λb
i
)

(6.6)

Aij =
E−1

2

(
(Λ−1)icΛ̇

cj + ẋµωµ
abΛa

iΛb
j
)

(6.7)

where the boost matrix Λab ≡ Λab(η) is a function of the Goldstone bosons defined in

eq. (4.4). As discussed in section 2, we can deduce the existence of an inverse Higgs con-

straint from the fact that the commutator between unbroken time translations and boosts

gives broken spatial translations. We can therefore set to zero the covariant derivative

∇πi = E−1
(
ẋνeν

0Λ0
i + ẋνeν

jΛj
i
)

= 0 . (6.8)

Expressing the boost matrix in terms of velocities, as defined in eq. (4.8), this equation

takes the simple form:

βi =
ẋνeν

i

ẋνeν0
. (6.9)

In flat space-time, one can choose coordinates such that eν
a = δν

a, and the constraint above

gives βi = ∂0x
i. The physical interpretation of this solution is then clear: ~β (or equivalently

~η) parametrizes the boost necessary to get into the moving particle rest frame. A similar

interpretation holds in curved space, as will become clear in what follows.

From equations (6.4)–(6.6) we see that,

|E| =
√
E2 =

√
(E∇πi)2 − (ẋνeνaΛa cẋµeµbΛbc) =

√
−(ηabeνaeµbẋν ẋµ)

=
√
−gµν ẋµẋµ ≡

dτ

dλ
, (6.10)

where in the third equality we have utilized the constraint (6.8). This result allows us to

rewrite the constraint itself in a way that makes its physical interpretation manifest:

uaΛa
i(η) = 0, (6.11)

where ua ≡ eµa∂τxµ is the Lorentz velocity as measured in the local inertial frame defined

by the vielbein (in the flat space case, with eµ
a = δaµ, this reduces to the usual definition

of the four-velocity).
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Similarly to the membrane case, as discussed in the previous section as well as in

appendix C, there is a simple geometrical interpretation of the quantities defined above.

The set of local Lorentz vectors{
n̂a(0) ≡ ua = Λa0(η) , n̂a(i) ≡ Λai(η)

}
, (6.12)

define an orthonormal (w.r.t. the local Minkowski metric defined by the vielbeins) basis in

the comoving frame of the particle, where orthogonality follows from the property of boost

matrices, Λa
bΛac = δbc. In other words, the n̂a(b) is itself a set of vielbeins that defines

the local inertial frame on the particle trajectory (alternatively, the set n̂µ(b) ≡ eµan̂a(b) is

orthonormal w.r.t. the full metric gµν and defines an orthonormal comoving basis in terms

of space-time vectors — with index µ). Now, the covariant derivatives ∇iη of the boost

Goldstones given in eq. (6.6) can be rewritten as

∇ηi = n̂a
(i) (∂τu

a + uµωµ
a
cu
c) = n̂a

(i)uµ∇µua = n̂a
(i)eµ

aaµ, (6.13)

where the ∇µ introduced in the second step is the usual covariant derivative of GR, and

in the third step we have used the standard definition of the acceleration aµ ≡ ∂τu
µ +

Γµλσu
λuσ. As one can see, the physical meaning of the covariant derivatives ∇ηi is that

they correspond to the component of the acceleration aa ≡ eµ
aaµ (as measured in a local

inertial frame on the particle trajectory) projected on the i-th vector of the basis defined in

eq. (6.12). From a geometrical point of view, the ∇ηi correspond to the extrinsic curvature

of the world line, defined as the covariant derivative of the normal vectors projected onto

the worldline:

K(i) ≡ ∂τxν(∂τ n̂
(i)
ν + Γν,λσ∂τx

λn̂σ (i)) = uνeaν∇τ n̂ (i)
a = ua∇τ n̂ (i)

a = −∇ηi , (6.14)

where in the last step we have utilized the constraint (6.11).

We are now ready to build the leading order action for the point particle using the

covariant objects of eqs. (6.4) – (6.7). Since ∇πi = 0, ∇ηi is a higher derivative term and

there is nothing in the field content to build any leading order objects with the covariant

derivative formed from Aij , we are left with the simple action

S = −m
∫
dλE = −m

∫
dτ , (6.15)

which matches the well known expression for the action for the point particle, when the

dimensionful coefficient m is identified with the particle’s mass.11 It is interesting to note

that, in the absence of external fields or gravity, the lowest order equations of motion are

equal to aµ = 0, and so higher-derivative terms proportional to ∇ηi in the full action are,

in fact, proportional to the lowest order equations of motion. This means that they will not

contribute to any physical observable and can simply be removed by a field redefinition,

11From the perspective of the previous section, the low-energy effective action is given by the square

root of the determinant of the induced (in this case 1-dimensional) metric on the particle trajectory:

h00 = gµν ẋ
µẋν . Then, the “coset einbein” e0

0 ≡ E behaves really like a einbein for the induced metric, i.e.

h00 = e0
0e0

0η00.
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implying that eq. (6.15) is the correct action at all orders to describe the free point particle.

This seems odd from an EFT perspective as one would expect a tower of terms in the low

energy Lagrangian that encode effects of the integrated out UV-physics.12 This peculiarity

is an accident of the simplicity of our construction and it follows from the fact that the

extrinsic curvature is related to the equations of motion by equations (6.13) and (6.14).

This is however not the case for higher dimensional objects such as membranes, for which

the extrinsic curvature gives rise to physical effects. Higher derivative terms in the action

can also appear in the effective action by adding external fields (for instance with the

inclusion of non-minimal couplings to gravity [49]) or when orientational (spin) degrees of

freedom are taken into account, as we will discuss in the next section.

When we do include gravity, there are indeed operators that can be added to eq. (6.15)

that encode the finite size extent of the point particle and are absolutely necessary from

an EFT point of view [49]. As discussed in section 3, with gravity in the picture we

have the additional field given by the Riemann curvature tensor Rabcd. However, at the

moment Rabcd transforms linearly under Lorentz, a symmetry which the point particle

instead realizes nonlinearly. We can remedy this situation by defining, schematically,

R̃ ≡ Ω−1
L (π) ·R . (6.16)

Where ΩL(π) = Ω̃ is the Lorentz part of eq. (6.2). One can easily check that R̃ transforms

under a Lorentz transformation as R̃→ hR̃ where h is an element of the unbroken rotation

group. Explicitly writing out the indices we have

R̃abcd =
(
Λ−1(η)

)a
e

(
Λ−1(η)

)b
f

(
Λ−1(η)

)
c
g
(
Λ−1(η)

)
d
hRef gh (6.17)

where the η’s in the boost matrices are, of course, those satisfying the inverse Higgs con-

straint given by eq. (6.8). Or more physically, R̃ is simply the Riemann curvature tensor in

the local rest frame of the moving particle. As the reader familiar with the coset construc-

tion may have already noticed, this is just the usual procedure used to dress “matter fields”

that transform in a linear representation of the full group G into fields that transform in a

linear representation of the unbroken group H [31].

Furnished with these correctly transforming fields we can now form rotationally invari-

ant objects out of R̃ and integrate them along with our invariant measure. In particular,

we have that

R̃00 = uµuνRµν while R̃ii = R+ uµuνRµν . (6.18)

These terms describe finite size effects, as they are proportional to the curvature variation

on scales given by the size of the object [49].13

12The mass of the object is an IR quantity that can be measured for a given particle at infinity (in

asymptotically flat space) and carries no information of the UV-physics: therefore it cannot be related with

the scale appearing in the EFT expansion. Indeed, the (ADM) mass of the object is defined at infinity and

so there is no way to tell the difference between a black hole of one earth mass or the earth itself.
13Where we instead to consider a point particle coupled to a U(1) gauge field we could have begun instead

with the field strength tensor Fab. Upon application of Ω̃−1 we would have generated an appropriately

transforming F̃ . Finite size terms would take the form of rotationally invariant contractions such as F̃0i · F̃0i

which can be written in the explicitly Lorentz invariant fashion as uµuνFµσFν
σ.
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7 Spinning objects

What is the symmetry breaking pattern of a generic finite-size object, like a black hole or a

lumpy asteroid? Generically one expects that the full Poincaré group is now broken and the

system can be described similarly to the point particle case but with the additional breaking

of rotations.14 However, extended objects can have their own additional symmetries, and

these must be taken into account to properly characterize the behavior of the system at

low-energy. We will refer to this additional symmetry group S ⊆ SO(d) as an internal

symmetry so that G = ISO(3, 1)× S, is the fundamental global symmetry of the system.

For example, S = SO(d) for a (d−1)-dimensional sphere, while S = ∅ for a lumpy asteroid.

Notice that S could also be a discrete group, and this would be appropriate to describe a

regular polyhedron. Our choice of coset parametrization will be such that we can seamlessly

treat both continuous and discrete internal symmetries.

In the rest frame of the object, G is broken down to a linear combination of internal

rotations (with generators Sij) and spatial rotations (with generators Jij). The symmetry

breaking pattern is then the following

Unbroken =

{
P0

J̄ij

Broken =

{
Pi
Jab

(7.1)

where J̄ is the unbroken linear combination of the internal and space-time rotations. For

instance, for a spherical object J̄ij = Sij + Jij where Sij are the generators of the internal

SO(d) group. The coset can be parametrized by

Ω = eiy
aPaeiαabJ

ab/2 = eiy
aPaeiη

iJ0ieiξijJij/2 , (7.2)

where in the second equality we have used the fact that any Lorentz transformation can

be written uniquely as the product of a rotation and a boost, implying a one-to-one corre-

spondence between the Goldstone fields αab and their alternative representation as ηi, ξij .

Notice that we chose to define our coset parametrization (7.2) using the generators of

broken spatial rotations (as opposed to the internal ones). This choice is particularly con-

venient because it allows us to calculate the Maurer-Cartan form without specifying the

exact form of the unbroken generators J̄ij .

The relevant degrees of freedom can now be identified by projecting the covariant

Maurer-Cartan form on the worldline of the object. Similarly to eq. (6.3), this can be

written as

ẋµΩ−1DµΩ = iE(P0 +∇πiPi +
1

2
∇αcdJcd) . (7.3)

14A similar point of view was adopted in ref. [50] to derive an effective theory for atomic nuclei.

– 17 –



J
H
E
P
1
1
(
2
0
1
4
)
0
0
8

We can then write the relevant objects that describe the low-energy dynamics explicitly:

E = ẋνeν
aΛa

0

∇πi = E−1ẋνeν
aΛa

i (7.4)

∇αab = E−1
(

Λ a
c Λ̇cb + ẋµωµ

cdΛc
aΛd

b
)
,

where here Λ is once again a Lorentz transformation either parametrized by α or, equiva-

lently, by η and ξ. On general grounds, one would have also expected a connection term

proportional to J̄ on the right hand side of eq. (7.3). As alluded to earlier, one of the

benefits of the coset parametrization (7.2) is precisely that such a connection will not ap-

pear. Moreover, it is worth stressing the fact that the covariant building blocks (7.4) are

independent of the residual symmetry group.

The presence of the unbroken rotations will manifest itself in the way we contract the

indices of the objects in eq. (7.4) to build the invariant terms that appear in the Lagrangian.

In general as [J̄ij , Jkl] 6= 0 (recall that if
{
J̄ij
}

is not empty it will include a non-vanishing

contribution from Jij) the objects of eq. (7.4) will transform linearly under H = {J̄ij}. If

our residual symmetry is SO(d) then we will contract all the spacial indices in an SO(d)-

invariant manner. For less symmetrical objects there are simply more possibilities restricted

only by the form of H. This procedure makes it clear how to describe objects with inherent

multipole moments (e.g. Saturn’s non-spherical moon, Hyperion); we simply contract the

indices in the necessary fashion.

Just as in the the point-particle case, the low-energy effective theory can be derived

by imposing the covariant constraint ∇πi = 0. Utilizing the fact that, for rotations,

Λ0
a(ξ) = δ0

a and Λi j(ξ) = Ri j(ξ), with R(ξ) an SO(d) matrix, the constraint reads

uaΛa
i(η)Rj

i(ξ) = 0 . (7.5)

Since Rk i(ξ) is invertible, this gives

uaΛa
i(η) = 0. (7.6)

This is the same constraint equation that we encountered in the case of the featureless

point particle, eq. (6.11). As such, it can be solved identically and it admits the same

geometrical interpretation: the Λ(η)a b as a set of local orthonormal vectors {n̂a(b)}. In the

spinning case, however, we now have an additional set of orthonormal vectors

m̂b
(a) ≡ Λba(α) = Λb c(η)Λc a(ξ). (7.7)

The 0-th vector m̂b
(0) = n̂b(0) = ub coincides with the velocity of the particle in the

free-falling rest frame, while the other vectors differ by a rotation Λ(ξ). That is, the

set of vectors {m̂b
(a)} encode the additional information of rotation, paramatrized by the

d(d− 1)/2 independent degrees of freedom of ξ.

After imposing the constraint ∇πi = 0, it is easy to show that the covariant derivatives

∇α0i can always be removed from the action order by order in the derivative expansion.

Indeed, from eq. (7.4) and (7.7) we obtain

∇α0i = Λj
i(ξ)n̂a

(j)∇τua , (7.8)
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which is merely a rotated version of the ∇ηi encountered in the featureless point particle

case — see eq. (6.13). By the same arguments (see below eq. (6.15)), these terms are

proportional to the leading order equations of motion aµ = 0, and as such can be eliminated

through a field redefinition. As a consequence, the effective action at lowest order in the

derivative expansion reads

S =

∫
dλE

(
−m+

Iijkl
4
∇αij∇αkl + · · ·

)
, (7.9)

where E and ∇α from eq. (7.4) are evaluated on the solutions of the constraint eq. (7.6), we

have discarded the linear term in ∇α by time reversal symmetry and the dots denote higher

order terms.The explicit form of the coefficients Iijkl are invariant under the unbroken group

H and encode the residual symmetries of the object.15

Physically, we expect the coefficients Iijkl to be related to the moments of inertia.

This is made most clear by considering the 3 + 1 dimensional case where we can define

the rotations as vectors via the epsilon tensor, θi = 1
2εijkξ

jk. These can be thought of as

the angles describing the instantaneous orientation of our spinning object.16 Expressing

the above in these variables, the moment of inertia takes the more familiar form with two

indices: 1
2Iij∇θ

i∇θj where Iij is the usual two-index moment of inertia tensor for rotations

of arbitrary rigid body in 3 + 1 dimensions. The curious reader might then wonder what is

the physical interpretation of the coefficients that appear in front of the higher order terms

denoted by the dots in eq. (7.9).

To simplify the discussion, let us consider a spherical object. In this case H = SO(d)

and we must contract the indices accordingly, which means that without loss of generality,

we can set Iijkl ∼ Iδikδjl. The action is simply

S =

∫
dτ

(
−m+

I

4
∇αij∇αij + · · ·

)
, (7.10)

where the dots stand for higher derivative terms suppressed by some UV scale. How does

this action make contact with our usual understanding of rotational dynamics?

From classical mechanics, we know that only two physical parameters are necessary

to describe a completely rigid spherical object: the mass m and the moment of inertia I.

What degrees of freedom have been neglected by going to the “completely rigid” limit?

From the effective field theory perspective, as we go deeper into the UV we expect to

encounter the degrees of freedom associated with the elasticity of the object: the normal

15Just as in the point particle case, there will be “finite size” terms which can be constructed by first

applying Ω̃−1 to the Riemann curvature tensor as in (6.17) and then contracting it with itself and the new

structure ∇αij . Here R̃ differs from the one in the point particle case by an additional rotation contained

in the Λ’s. In this way we can generate the richer set — in comparison to the point particle case — of finite

sized terms reported in [26].
16Notice that these angles are not the usual Euler angles. Our rotation matrix is parametrized as

R(~θ) ≡ exp (iθiJi), and thus θi is more precisely the three vector about which a rotation by an an-

gle |~θ| is performed. On the contrary, the standard definitions of the Euler angles decompose the to-

tal orthogonal matrix into a product of three rotations around two different axes, such as for instance

R(α, β, γ) ≡ exp (iαJz) exp (iβJx) exp (iγJz).
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modes. And so, as the action given in eq. (7.10) is the action obtained after integrating

out all these degrees of freedom. Hence, we expect the higher order terms to be suppressed

by inverse powers of the characteristic frequency ωN of these modes.

As an explicit example, let’s consider a solid material body of large enough size that

the surface tension can be neglected but is nevertheless bound by its own intermolecular

forces (as opposed to gravitational ones). For instance, a sphere of iron of many meters in

diameter.17 This allows us, for simplicity, to neglect gravity and focus only on the rotational

degrees of freedom. The typical frequency of this system’s normal modes is related to the

speed of sound in the material cs and the typical length scale L of the object by18

ωN ∼ cs/L. (7.11)

For simplicity, let us restrict ourselves to the case in which the translational velocity is

zero and focus on the rotational dynamics. The covariant derivatives ∇αij of the angular

variables will be of order the rotational frequency ωR. The leading order piece of the

Lagrangian then is of order ∼ I · ω2
R.

In the simple case we are considering, enforcing time reversal symmetry, there are three

possible next to leading order terms given schematically by

[
∇α4

]
,
[
∇α2

]2
and

[(
d
dt∇α

)2]
, (7.12)

where the brackets denote the trace. Using the lowest order equations of motion, d2

dt2
Rij =

0, the third term can be rewritten as the second; leaving us with just two possible next to

leading order structures. Dimensionally, each of these terms comes with two additional time

derivatives in comparison with the leading term. As such, the coefficients accompanying

these terms, let’s call them Ξ, are down by two powers of the characteristic frequency of

the integrated out modes. That is,

Ξ (∇α)4 ∼ I

ωN 2
ω4
R ∼

ω2
RL

2

cs2
I · ω2

R ∼ δI(ωR)ω2
R. (7.13)

The physical interpretation of these higher order terms is clear: they are related to how

the body deforms under a finite rate of rotation. These deformations lead to corrections

both in the rotational energy and in the energy related to the deformation itself. One can

see from the scaling in eq. (7.13) that the tower of higher order terms is under perturbative

control as long as the rotational velocity is much less than the speed of sound of the material.

For a standard material body, this rotational frequency would be precisely that at which

the body would undergo large non-linear stresses and order-one distortions, dramatically

exiting the regime of validity of the effective theory we have constructed.

17From the effective field theory point of view, this is just a particular “UV-completion” of our theory.
18The same analysis applies to black holes. There, the characteristic time scale is given by the light

crossing time. And so, as would be expected dimensionally, the frequency of the (quasi-)normal modes of

a black hole ∼ c/L, where c is the speed of light [51], and the L is given by the Schwarzschild radius 2Gm.

– 20 –



J
H
E
P
1
1
(
2
0
1
4
)
0
0
8

8 Discussion and conclusions

By formulating GR as a gauge theory associated with local Poincaré symmetry and the

non-linear realization of translations we have been able to seamlessly extend the coset

construction to describe the coupling between gravity and systems whose ground state

breaks space-time symmetries. We have illustrated the power of our method by construct-

ing the low energy effective actions describing the coupling of gravity to three simple, but

important, systems: superfluids, membranes embedded in higher dimensional space, and

spinning objects.

The value of the first two examples is mostly pedagogical. The minimal coupling of

these systems to gravity is manifest from the formalism introduced in [41, 43] and therefore

we have shown explicitly that our construction matches exactly the known results. The

superfluid case illustrates how gravity couples to systems which break some internal and

space-time symmetries down to a diagonal subgroup. In the membrane section we instead

showed how the usual geometric picture arises naturally from an algebraic approach such

as the coset construction. We then applied the lessons learned from these examples to

the description of spinning objects — perhaps the most interesting application of our

techniques.

Physically, the point-like spinning objects that we consider provide a low-energy de-

scription for rotating astrophysical bodies like, for example, planets, black holes and neu-

tron stars. Despite their physical importance, these systems have proven difficult to de-

scribe from the low-energy perspective. The crux of the construction is the following. In

order to couple a spinning object to gravity one usually starts from a Lorentz covariant

theory and, by replacing ∂µ → ∇µ and ηµν → gµν introduces a minimal coupling with

gravity. The problem of this approach is that the rotational degrees of freedom cannot be

captured in a Lorentz covariant way without introducing redundances. In order to recover

an action that has the right number of degrees of freedom, additional constraints must be

implemented [29]. This Lorentz covariant approach can then be extended to describe the

curved space case [26].

In this article we decided to follow instead a different approach. By considering the

spacetime symmetries that are spontaneously broken by a rigid body at rest, we managed

to build an effective action which is a natural generalization of that of a non-relativistic

rigid body. Such an effective action describes bodies that rotate slowly in their center of

mass frame but move at arbitrary speeds. Put another way, the action for the spinning

object is resummed already to all orders in the translational velocity, v/c, but is organized

as a polynomial in powers of the rotational velocity over the speed of sound, vR/cs.
19

Neglecting gravity, this makes the non-relativistic limit very clear: when v → 0 we recover

an action for the rotational modes of precisely the same form as what we would have

obtained starting from the Galilei group.

If one is interested in working in the post-Newtonian approximation where v/c � 1

one can expand our effective action along the lines of non relativistic GR (NRGR) [49]

and each term in the action will scale as explicit powers of v/c and vR/cs. This is in

19For relativistic matter, cs ∼ c.
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contrast with the formulation of [26] where the spin terms in the effective action contain all

powers of vR/cs. However, this exposes a possible limitation of our approach. As written,

our approach cannot be used to describe maximally rotating objects — their rotational

frequency is precisely such that all the terms in the derivative expansion become of the

same order. This is a symptom of expanding around the wrong background — a maximally

rotating object being “maximally away” from an object at rest. In order to describe such

black holes we would need to match coefficients at every order in the EFT and notice that

we can perform a cumbersome resummation. Meanwhile, the formalism of [26] can easily

handle the maximally rotating case: precisely because the couplings of gravitons to the spin

degrees of freedom contain contributions of all orders in vR/c, which in this case is ∼ 1.

From this point of view, one can think of the action in [26] as being a resummed version

of ours. Hence, we believe that the two constructions lead to complementary results: the

effective action outlined in this paper being appropriate for working with slowly rotating

objects and that of [26] being ideal for maximally rotating ones.

Another interesting point of comparison between the algebraic method employed in

this paper and the explicitly covariant approach of [26–29] is how the redundant degrees

of freedom are eliminated. In the covariant approach, one imposes the constraint equation

Sµνpν = 0, were S and p are the conjugate momenta associated with the rotational and

translational degrees of freedom respectively. Such constraint has a clear physical inter-

pretation, but its explicit form depends on the coefficients in the Lagrangian [29] and it

must be solved anew at every order in the derivative expansion. In our algebraic approach,

the redundant degrees of freedom are eliminated by imposing the inverse Higgs constraint

∇πi = 0. It is insensitive to the details of the Lagrangian, can be solved once and for

all and its solution is valid at all orders in perturbation theory. It would be important

to understand whether it is possible to combine the advantages of both approaches and

develop a theory with a Lagrangian-independent constraint and the ability to describe

rapidly rotating objects. We leave this question for future study.

In ref. [52] we will develop further the results in this paper and implement explicitly

the NRGR expansion to describe objects that both move and rotate slowly. Additionally,

we will discuss more fully the extension of our algebraic construction to include important

higher order effects such as finite size and dissipative couplings [27, 49, 53–55]. And finally,

we will derive explicit diagrammatic rules that can be used to systematically calculate

observables to any desired order v/c and vR/cs.
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A Notation

Let us briefly summarize the major conventions and results that we will use throughout

this paper. We will often have to distinguish between space-time and local Lorentz indices.

Throughout this paper (with the notable exception of section 5):

• µ, ν, σ, δ . . . indicate (possibly curved) space-time indices in d+ 1 dimensions,

• a, b, c, d, . . . indicate (flat) Lorentz indices in d+ 1 dimensions,

• i, j, k, l . . . indicate spatial Lorentz indices in d+ 1 dimensions.

We use a space-time metric with “mostly plus” signature, i.e. ηab = diag(−,+, . . . ,+).

The algebra of the Poincaré group is then given by:

[Pa, Pb] = 0 (A.1)

[Pa, Jbc] = i(Pbηac − Pcηab) (A.2)

[Jab, Jcd] = i [(Jbdηac − (a↔ b))− (c↔ d)] . (A.3)

In the fundamental (vector) representation, the generators for the Lorentz transformation

are given by

(Jab)cd = −i (ηacηbd − ηadηbc) , (A.4)

and infinitesimal Lorentz transformations are therefore

Λa b = (e
i
2
αcdJcd)ab = (eα)ab ≈ δab + αab . (A.5)

Throughout some of the calculations done in this paper the expression

Tr
[
JabJef

]
= 2(ηaeηbf − ηafηbe) . (A.6)

is quite useful. Additionally, we define the boost vector as

Ki ≡ J i0 (A.7)

and in 3 + 1 space-time dimensions we define the rotation vector as

Ji ≡
1

2
εijkJ

jk . (A.8)

Acting on states, a unitary operator representing a Lorentz transformation U(Λ) =

e
i
2
αJ ∼= I + i

2α
abJab obeys:

U(ΛΛ′) = U(Λ)U(Λ′) (A.9)

and thus if we examine U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ) we conclude that

U(Λ)−1JabU(Λ) = Λa cΛ
b
dJ

cd (A.10)

U(Λ)−1PaU(Λ) = Λa bP
b . (A.11)
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B Poincaré as an internal symmetry

The usual geometrical description of gauge theories begins with the introduction of the

principal bundle P (M,G) with base manifold M (space-time) and a structure group G. In

the case of gravity we take the Poincaré group, G = ISO(1, 3). Matter fields are realized

as sections of different associated fiber bundles. In this approach the action of the two

symmetries of the system, namely the Poincaré group and diffeomorphisms is separated.

The coordinates xµ that describe the position on the base manifold M only transform

under diffeomorphisms, but have no action under the local Poincaré group. In other words

the diffeomorphisms can be viewed as relabeling the points on the base manifold, while

the local Poincaré transformation is a transformation along the fiber. Therefore, under

infinitesimal diffeomorphisms x′µ = xµ + ξµ(x), and we have

φ′(x) = φ(x)− iξµ(x) ∂µφ(x) . (B.1a)

To keep local G-invariance manifest, gauge fields corresponding to the Poincaré group

are introduced as in eq. (3.2) and the following transformation properties under the group G

g = eiaP :

{
ẽ
′a
µ = ẽaµ − ω̃aµ bab − ∂µaa ,
ω̃
′ab = ω̃ab ,

g = e
i
2
αJ :

{
ẽ
′a = Λa bẽ

b = ẽa + αabẽ
b ,

ω̃
′ab
µ = Λa cΛ

b
d ω̃

cd
µ + (Λ∂µΛ−1)ab = ω̃abµ + ω̃acµ α

b
c + ω̃cbµ α

a
c − ∂µαab ,

(B.2)

where indices are raised and lowered with the Minkowski metric ηab. The fields appearing

in eq. (3.2) are related by

eaµ = ẽaµ + ∂µy
a + ω̃aµ b y

b

ωabµ = ω̃abµ . (B.3)

Under local translations, both eaµ and ωabµ (defined as the coefficients of Pa and Jab in

eq. (3.2)) are singlets, while under the local Lorentz group eaµ transforms linearly, and ωabµ
as a connection:

e
′a
µ = Λabe

b
µ,

ω
′ab
µ = ΛacΛ

a
d ω

cd
µ + Λac∂µ(Λ−1)cb. (B.4)

At the same time, under the diffeomorphisms defined in eq. (B.1a) the transformation of

the eaµ field reads

δDiffseµ(x) = −eν(x)∂µξ
ν(x)− ξν(x)∂νeµ(x), (B.5)

and precisely the same for ωabµ . Eqs. (B.4) and (B.5) coincide with the transformation prop-

erties of a vierbein eaµ and a spin-connection ωabµ , when the diffeomorphisms of eq. (B.1a)

are thought of as the translational part of the Poincaré group.

The fields ẽaµ and ω̃abµ are the necessary ingredients to describe a theory invariant under

the local action of the Poincaré group. Considering the curvature tensor associated with
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G we find

Rµν = [Dµ, Dν ] = iT̃ aµνPa +
i

2
R̃abµνJab = i

(
∂µẽ

a
ν − ∂ν ẽaµ + ẽµbω̃

ab
ν − ẽνbω̃abµ

)
Pa (B.6)

+
i

2

(
∂µω̃

ab
ν − ∂ν ω̃abµ + ω̃aµcω̃

cb
ν − ω̃aνcω̃cbµ

)
Jab.

Note that under the local shifts (B.2) T̃µν and R̃µν do not transform independently,

T̃
′a
µν = T̃ aµν − R̃abµν ab,

R̃
′ab
µν = R̃abµν . (B.7)

This suggests that we define new (gauge transformed) tensors

Ω−1 [Dµ, Dν ] Ω = i(T̃ aµν + R̃abµν yb)Pa +
i

2
R̃abµνJab ≡ iT aµνPa +

i

2
RabµνJab , (B.8)

with Ω defined in eq. (3.2). Now, by construction, Tµν and Rµν transform independently

and we denote them Torsion and Curvature respectively. These are the nicely behaving

tensors which can be used to build the Lagrangian (3.7).

In the flat space-time limit Rµν = 0 and it is easy to show that

ẽaµ = −∂µaa and ω̃abµ = 0 , (B.9)

and as a result the formula (B.3) reduces to

eaµ = ∂µy
a. (B.10)

It is clear that in this case, using diffeomorphisms, one can always choose coordinates xµ

such that

e
′a
µ (x′) = eaν(x)

∂xν

∂x′µ
= ∂νy

a ∂x
ν

∂x′µ
= δaµ. (B.11)

In other words, xµ = yaδµa .

C Recovering geometry for the membrane

While the discussion in section 5 in certainly complete, it is interesting to point out the

physical, or rather, geometrical meaning of the results that have simply fallen out of our

algebraic construction. This is clearest in flat space, and the extension to curved space is

straightforward.

First note that, thanks again to the inverse Higgs constraint, the coset “vierbein”

Eµ
α = ∂µY

AΛA
α(ξ) behaves really like a geometric vierbein for the induced metric, i.e.

hµν = Eµ
αEν

βηαβ. (C.1)

The vierbein Eµ
α is not the only geometric quantity that arises naturally from the coset

construction. The constraint ∂µY
AΛA

d = 0 means that the (d+ 1)-vector ΛA
d(ξ) must be

perpendicular to all the ∂µY
As. Moreover, since Λ is a Lorentz transformation we have

ΛA
dΛAd = ηdd = 1, and thus ΛA

d is a unit vector. For a codimension-1 brane, there is only
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one unit vector nB that is perpendicular to all the ∂µY
A (and therefore to the membrane),

and it is given by nB ∼ εA1...AdBε
µ1...µd∂µ1Y

A1 . . . ∂µdY
Ad = δdB − δ

µ
B∂µπ. By requiring

that this vector has unit norm, we thus get

ΛA
d(ξ) ≡ nA =

δdA − δ
µ
A∂µπ√

1 + (∂π)2
. (C.2)

From a geometric point of view, it is natural to consider how the direction of the

normal unit vector nB varies from place to place on the membrane — or equivalently,

how the membrane is embedded in the bulk. This information is encoded in the extrinsic

curvature of the brane, which is defined as the covariant derivative of the normal vector

“projected” on the brane:

Kµν = ∂µY
A∂νY

B∇AnB = − ∂µ∂νπ√
1 + (∂π)2

. (C.3)

In the last step we used the fact that ∇A = ∂A in the absence of gravity in the bulk. This

quantity is clearly of higher order in the derivative expansion compared to the induced

metric (5.4), and it is interesting to see how it arises from the coset construction. To

this end, let us consider the covariant object ∇αξβ. After plugging in the solution to the

inverse Higgs constraint ∇απ = 0, these covariant derivatives become higher order in the

derivative expansion, and are thus a natural candidate to recover the extrinsic curvature.

From equations (5.2), we get

∇αξβ = (E−1)α
µ(Λ−1)β

B∂µnB. (C.4)

We can calculate (E−1)µ
ν explicitly by using the relation

Eµ
α(Λ−1)α

C = ∂µY
AΛA

α(Λ−1)α
C = ∂µY

AΛA
B(Λ−1)B

C = ∂µY
C , (C.5)

where in the second step we used again the inverse Higgs constraint. For C = γ, this

equation shows that (E−1)α
µ = (Λ−1)α

µ, and since the normal vector nA depends only on

the coordinates on the brane, we can rewrite equation (C.4) in a more symmetric form:

∇αξβ = (Λ−1)α
A(Λ−1)β

B ∂AnB. (C.6)

This almost looks like the definition of the extrinsic curvature (C.3), but not quite. The

reason is that, according to the coset construction procedure, we can now build invariant

quantities by contracting the covariant derivatives (C.6) with the Minkowski metric ηαβ on

the brane. Instead, in the geometric picture scalar quantities are built by contracting the

indices of the extrinsic curvature (C.3) using the induced metric hµν in (C.1). Equivalently,

we can also use the rule of thumb that “space-time” indices µ, ν, . . . should be contracted

with hµν whereas “Lorentz” indices α, β, . . . should be contracted with ηαβ. In the end,

because of equation (C.1) the difference is just a factor of Eµ
α per index, and in fact we

can use equation (C.5) to get

Eµ
αEν

β∇αξβ = ∂µY
A∂νY

B∂AnB = Kµν . (C.7)
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Finally, let us understand how to build the covariant derivatives for the matter fields

living on the brane. Once again, according to the coset construction [4], the covariant

derivatives of matter field ψ that transforms according to some (possibly reducible) repre-

sentation of the Lorentz group on the brane is

∇αψ = (E−1)α
µ

(
∂µψ +

i

2
(Λ−1)βC ∂µΛCγJβγψ

)
. (C.8)

Once again, the factor of (E−1)α
ν on the r.h.s. is there because if we contract ∇αψ with,

say, ∇αξβ using the Minkowski metric, this should correspond to a contraction between a

covariant derivative on the brane and the extrinsic curvature performed using the induced

metric. From a geometric point of view, covariant derivatives of matter fields should be

built using the connection induced on the brane. In other words, the factor (Λ−1)βC ∂νΛCγ

in equation (C.8) must be equal to the spin connection associated with the vierbein Eµ
α.

This can be proven explicitly, although it requires a few manipulations. First, we can

rewrite

(Λ−1)βC ∂νΛCγ = (Λ−1)βC ∂ν(Λ−1)γC = (E−1)βµ∂µYC ∂ν
[
(E−1)γσ∂σY

C
]

= (E−1)βµ (hµσ∂ν + ∂µπ∂ν∂σπ) (E−1)γσ.(C.9)

where in the second step we used equation (C.5), and in the last step we used the definition

of the induced metric. Now, according to [56], the Christoffel connection associated with

the induced metric obeys the following equation:

hµρΓ
ρ
νσ = ∂µY

C∂σY
B∇B∂νYC = ∂µπ∂ν∂σπ, (C.10)

where in the last step we used again the explicit form of the induced metric, together with

the fact tha ∇A = ∂A and that π depends only on the coordinates on the brane. Thus, we

can rewrite (C.9) as

(Λ−1)βC ∂νΛCγ = (E−1)βµhµρ (δρσ∂ν + Γρνσ) (E−1)γσ, (C.11)

This is precisely the form of the spin connection given in [38]. Thus, the covariant deriva-

tive (C.8) is equivalent to the one that can be defined using the spin connection associated

with the induced metric.
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