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Abstract: We modify Einstein’s theory of gravity, isolating the conformal degree of free-

dom in a covariant way. This is done by introducing a physical metric defined in terms of

an auxiliary metric and a scalar field appearing through its first derivatives. The resulting

equations of motion split into a traceless equation obtained through variation with respect

to the auxiliary metric and an additional differential equation for the trace part. As a

result the conformal degree of freedom becomes dynamical even in the absence of matter.

We show that this extra degree of freedom can mimic cold dark matter.
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Consider a physical metric gµν to be a function of a scalar field φ and an auxiliary

metric g̃µν , defined by

gµν =
(

g̃αβ∂αφ∂βφ
)

g̃µν ≡ P g̃µν . (1)

It is obvious that in this case the metric gµν is invariant with respect to the conformal

transformation of the auxiliary metric g̃µν , that is, gµν → gµν when g̃µν → Ω2g̃µν . The

action is constructed in terms of the physical metric gµν , which will be considered as a

function of the scalar field φ and the auxiliary metric g̃µν , that is,

S = −1

2

∫

d4x

√

−g (g̃µν , φ) [R (gµν (g̃µν , φ) ) + Lm] , (2)

where we set 8πG = 1 and Lm is the Lagrangian for matter. The action above is obviously

invariant under conformal transformation g̃µν → Ω2g̃µν because it depends only on gµν

which is conformally invariant by itself.1

Variation of the action is given by

δS =

∫

d4x
δS

δgαβ
δgαβ = −1

2

∫

d4x
√
−g

(

Gαβ − Tαβ
)

δgαβ , (3)

where Gµν = Rµν − 1

2
Rgµν is the Einstein tensor and Tµν is the energy momentum tensor

for the matter. However, the variation δgαβ can be expressed in terms of the variation of

the auxiliary metric δg̃αβ and δφ, and takes the form

δgαβ = Pδg̃αβ + g̃αβδP

= Pδg̃αβ + g̃αβ

(

−g̃κµg̃λνδg̃µν∂κφ∂λφ+ 2g̃κλ∂κδφ∂λφ
)

= Pδg̃µν

(

δµαδ
ν
β − gαβg

κµgλν∂κφ∂λφ
)

+ 2gαβg
κλ∂κδφ∂λφ, (4)

which implies that

δS =− 1

2

∫

d4x
√
−g

(

Gαβ − Tαβ
)

×
(

Pδg̃µν

(

δµαδ
ν
β − gαβg

κµgλν∂κφ∂λφ
)

+ 2gαβg
κλ∂κδφ∂λφ

)

. (5)

The corresponding equations of motion thus become

(Gµν − Tµν )− (G− T ) gµαgνβ∂αφ∂βφ = 0, (6)

1√−g
∂κ

(√
−g (G− T ) gκλ∂λφ

)

= ∇κ ((G− T ) ∂κφ) = 0, (7)

1We stress that our considerations are different from other works on tensor-scalar gravity such as dis-

formal gravity which are extensions of Brans-Dicke type theories, where the scalar field is dynamical (See

e.g. J. D. Bekenstein, Phys. Rev. D48 (1993) 3641 and for later developments and references therein M.

Zumalacarregui and J. Garcia-Bellido, arXiv:1308.4685) . In our case, and because of invariance under

conformal transformations of the physical metric, we will show that the scalar field φ is equivalent to the

scaling factor up to an integrating constant, and thus is not a new dynamical degree of freedom.
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where ∇κ denotes the covariant derivative with respect to the metric gµν . Notice that the

auxiliary metric g̃µν does not appear in these equations by itself but only via the physical

metric gµν , while the scalar field φ enters the equations explicitly. As it follows from (1) that

gµν =
1

P
g̃µν ,

and therefore the scalar field satisfies the constraint equation

gµν∂µφ∂νφ = 1. (8)

Taking the trace of equations (6) we find that

(G− T ) (1− gµν∂µφ∂νφ) = 0, (9)

and this equation is satisfied identically due to (8) even for G − T 6= 0. In fact the trace

G − T is determined by equations (7) and (8) and even in the absence of matter, when

Tµν = 0, the equations for the gravitational field have nontrivial solutions for the confor-

mal mode. The field φ satisfies the Hamilton-Jacobi equation for a unit mass relativistic

particle in a gravitational field (8) with the action identified with φ [1]. After solving

it for φ equation (7) determines G − T. Thus the gravitational field, in addition to two

transverse degrees of freedom, describing gravitons, acquires extra longitudinal degree of

freedom shared by the scalar field φ and a conformal factor of the physical metric. This

system however, is constrained by conformal invariance. To understand what this extra

degree of freedom describes we rewrite equations (6) in the following form

Gµν = Tµν + T̃µν , (10)

where

T̃µν = (G− T ) gµαgνβ∂αφ∂βφ, (11)

Now compare this expression with the energy momentum tensor for a perfect fluid

Tµν = (ε+ p)uµuν − pgµν , (12)

where ε is the energy density, p is the pressure and uµ is four-velocity which satisfies the

normalization condition uµuµ = 1. If we set p = 0 and make the following identification

ε ≡ G− T, uµ ≡ gµα∂αφ, (13)

the energy momentum tensor (12) becomes equivalent to T̃µν . Thus, the extra degree of

freedom imitate the potential motions of “dust” with the energy density G − T and the

scalar field plays the role of the velocity potential. In the absence of matter this energy

density is equal to −R, which does not vanish for generic solutions. As one can see the

normalization condition for the four-velocity, uµuµ = 1, is equivalent to the scalar field

equation (8) and the conservation law for T̃µν gives

0 = ∇µT̃
µ
ν = ∂νφ∇µ ((G− T ) ∂µφ) + (G− T ) ∂µφ∇µ∂νφ. (14)
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The second term here vanishes because by differentiating gµν∂µφ∂νφ = 1 we get

∂µφ∇ν∂µφ = 0 and ∇ν∂µφ = ∇µ∂νφ. Therefore the conservation law for T̃µν leads to

equation (7).

To find the explicit solution of this equation it is convenient to work in synchronous

coordinate system where the metric takes the form

ds2 = dτ2 − γijdx
idxj , (15)

with γij being a three dimensional metric. Moreover taking the hypersurfaces of constant

time to be the same as the hypersurfaces of constant φ (see ([1]) for details), that is,

φ (xµ) ≡ τ, (16)

we find that (8) is satisfied. In turn equation (7) becomes

∂0

(

√

det γ (G− T )
)

= 0, (17)

and hence

G− T =
C
(

xi
)

√
det γ

, (18)

where C
(

xi
)

is constant of integration depending only on spatial coordinates. In particular

in flat Friedman universe, where

γij = a2 (τ) δij , (19)

we have

G− T =
C

a3
,

that is, we have a “dark matter” without dark matter, which is imitated by extra scalar

degree of freedom of the gravitational field. With respect to the gravitational interaction

this new mimetic dark matter behaves precisely in the same way as the usual dark matter

(in particular, it is influenced by the gravitational instability), but it does not participate

in any other interaction besides of the gravitational one. The “amount” of this mimetic

dark matter is determined by the constant of integration C
(

xi
)

.

To make the model above realistic in inflationary cosmology it must be modified. In

fact, if inflation lasts longer than 70 e-folds, then for those initial conditions of C
(

xi
)

which do not spoil inflation, the “amount” of mimetic dark matter remaining at the end

of inflation will be completely negligible. To protect its energy density from decay during

the exponential expansion, a = H−1 exp (Ht) one can, for example, introduce the coupling

of field φ with the inflaton field ϕ of the form

φF (ϕ) , (20)

where F (ϕ) is some function of the inflaton field. In this case equation (17) is modified

during inflation as
1

a3
∂0

(

a3 (G− T )
)

= F (ϕ) . (21)
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Because the inflaton field is changing slowly the function F (ϕ) can be taken as a constant

and the approximate general solution of this equation is

G− T ≈ −F (ϕ)

3H
+ C exp (−3Ht) (22)

and at the end of inflation when the second term decays

G− T ≈ −F (ϕ)

3H
(23)

It is clear from here that if the inflaton field is slightly inhomogeneous then the produced

mimetic dark matter will also be inhomogeneous and the resulting perturbations will be

similar to adiabatic perturbations in case of real cold dark matter.

Acknowledgments

We thank Lars Brink and Costas Bachas for useful discussions. The work of AHC is

supported in part by the National Science Foundation Phys-1202671 and by the Humboldt

Foundation. The work of VM is supported by “Chaire Internationale de Recherche Blaise

Pascal financée par l’Etat et la Région d’Ile-de-France, gérée par la Fondation de l’Ecole

Normale Supérieure”, by TRR 33 “The Dark Universe” and the Cluster of Excellence EXC

153 “Origin and Structure of the Universe”.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] L. Landau and E. Lifshitz, The Classical Theory of Fields, section 97, fourth edition,

Butterworth, Heinemann (1980).

– 4 –


