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Abstract: We use recent results for the γ∗L → ρL and γ∗T → ρT impact factors, computed

in the impact parameter representation within the collinear factorization scheme, to get

predictions for the polarized cross-sections σT and σL of the diffractive leptoproduction of

the ρ meson at high energy. In this approach the helicity amplitude is a convolution of

the scattering amplitude of a color dipole with a target, together with the virtual gamma

wave function and with the first moments of the ρ meson wave function (in the transverse

momentum space), given by the distribution amplitudes up to twist 3 for the γ∗T → ρT
impact factor and up to twist 2 for the γ∗L → ρL impact factor. Combining these results

with recent dipole models fitted to DIS data, which include saturation effects, we show that

the predictions are in good agreement with HERA data for photon virtuality (Q2) larger

than typically 5 GeV2, without free parameters and with a weak dependence on the choice

of the factorization scale, i.e. the shape of the DAs, for both longitudinally and transversely

polarized ρ meson. For lower values of Q2, the inclusion of saturation effects is not enough

to provide a good description of HERA data. We believe that it is a signal of a need for

higher twist contributions in the ρ meson DAs. We also analyze the radial distributions of

dipoles between the initial γ∗ and the final ρ meson states.

Keywords: QCD Phenomenology, Phenomenological Models

Open Access doi:10.1007/JHEP11(2013)062

mailto:besse@th.u-psud.fr
mailto:Lech.Szymanowski@fuw.edu.pl
mailto:wallon@th.u-psud.fr
http://dx.doi.org/10.1007/JHEP11(2013)062


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

Contents

1 Introduction 1

2 Helicity amplitudes of the hard ρ meson leptoproduction in the impact

factor representation 5

3 Helicity amplitudes and polarized cross-sections 8

3.1 Impact factors γ∗L,T → ρL,T 8

3.2 From impact factors to helicity amplitudes and polarized cross-sections 10

4 Dipole models 12

5 Comparison with the HERA data 15

6 The radial distributions of dipoles involved in the overlap of the γ∗

L(T )

and ρL(T )−meson states 19

6.1 The radial distribution of the γ∗L → ρL transition 24

6.2 The radial distribution of the γ∗T → ρT transition 28

6.3 Comparison with the radial distributions obtained from models of the ρ

meson wave function. 32

7 Conclusions 33

A Distribution amplitudes in the LCCF parametrization 35

B Evolutions of DAs and coupling constants with the renormalization scale 38

C Dipole-proton scattering amplitude in the GS-Model 39

D Results using the GBW and AAMQSb models 40

1 Introduction

In the high energy limit, exclusive processes and more particularly the diffractive lepto-

production of vector mesons, provide a nice probe to study the hadronic properties. From

the experimental side, data have been extracted in a wide range of center-of-mass energies,

from a few GeV at JLab to hundreds of GeV at the HERA collider. The kinematical

range which is at the heart of the present paper is the large energy in the center-of-mass

of γ∗p, denoted W , for which the HERA collaborations H1 and ZEUS measured ρ-meson

electroproduction starting from the early period of HERA activity [1, 2] till now, with an

increasing precision leading to a complete analysis [3, 4] of spin density matrix elements,
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polarized and total cross-sections describing the hard exclusive productions of the ρ and

the φ vector mesons V in the process

γ∗(λγ) p→ V (λV ) p . (1.1)

These matrix elements and polarized cross-sections can be expressed in terms of helicity

amplitudes TλV λγ (λγ , λV : polarizations of the virtual photon and of the vector meson).

The ZEUS collaboration [3] has provided data for different photon virtualities Q2, i.e.

for 2 < Q2 < 160GeV2, 32 < W < 180GeV ( |t| < 1GeV2), while the H1 collaboration [4]

has analyzed data in the range 2.5 < Q2 < 60GeV2, 35 < W < 180GeV (|t| < 3GeV2) .

The high virtuality of the exchanged photon allows the factorization of the amplitude into

a hard sub-process described within the perturbative QCD approach and suitably defined

hadronic objects, such as the dipole-nucleon scattering amplitude or the vector meson

wave functions and distribution amplitudes (DAs) [5–7]. HERA data are thus interesting

observables to test the properties of these non-perturbative objects such as the saturation

dynamics of the nucleon or the transverse momentum dependence of the vector meson

wave functions.

On the theoretical side, three main approaches have been developed. The first two,

a kT -factorization approach and a dipole approach, are applicable at high energy, W ≫
Q ≫ ΛQCD. They are both related to a Regge inspired kT -factorization scheme [8–14],

which basically writes the scattering amplitude in terms of two impact factors: one, in

our case, for the γ∗ − ρ transition and the other one for the nucleon to nucleon tran-

sition, with, at leading order, a two “Reggeized” gluon exchange in the t-channel. The

Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution, known at leading order (LLx) [15–18]

and next-to-leading (NLLx) order [19–22], can then be applied to account for a specific

large energy QCD resummation. The dipole approach is based on the formulation of sim-

ilar ideas although not in kT but in transverse coordinate space [23, 24]; this scheme is

especially suitable to account for nonlinear evolution and gluon saturation effects. The

third approach, valid down to W ∼ Q, was initiated in [25] and [26]. It is based on the

collinear QCD factorization scheme [27, 28]; the amplitude is given as a convolution of

quark or gluon generalized parton distributions (GPDs) in the nucleon, the ρ-meson DA,

and a perturbatively calculable hard scattering amplitude. GPD evolution equations resum

the collinear quark and gluon effects. The DAs are also subject to specific QCD evolution

equations [29–31].

Though the collinear factorization approach allows us to calculate perturbative cor-

rections to the leading twist longitudinal amplitude (see [32] for NLO), when dealing with

transversely polarized vector mesons related to higher twist contributions, one faces end-

point singularity problems. Consequently, this does not allow us to study polarization

effects in diffractive ρ-meson electroproduction in a model-independent way within the

collinear factorization approach. An improved collinear approximation scheme [33] has

been proposed, which allows us to overcome end-point singularity problems, and which has

been applied to ρ-electroproduction [34–37].

In this study, we consider polarization effects for the reaction (1.1) in the high energy

region, s = W 2 ≫ Q2 ≫ Λ2
QCD, working within the kT -factorization approach, where
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the helicity amplitudes can be expressed1 as the convolution of the γ∗ → ρ impact factor

Φγ∗(λγ)→ρ(λρ)(k2, Q2) with the unintegrated gluon density F(x, k2) density, which at the

Born order is simply related to the nucleon impact factor ΦN→N (k2, Q2), where k is the

transverse momentum of the t−channel exchanged gluons. An important outcome of the

kT−factorization is that for the transverse amplitude the end-point singularities are nat-

urally regularized by the transverse momenta of the t−channel gluons [38–40]. At large

photon virtuality, the γ∗ − ρ impact factors can be calculated in a model-independent

way using QCD twist expansion in the region k2 ≫ Λ2
QCD. Such a calculation involves

the ρ-meson DAs as nonperturbative inputs. The calculation of the impact factors for

Φγ∗
L→ρL , Φγ∗

T→ρL is standard at the twist-2 level [41], the next term of the expansion be-

ing of twist 4, while Φγ∗
T→ρT was only recently computed [39, 40] (for the forward case

t = tmin), up to twist-3, including two- and three-parton correlators, which contribute here

on an equal footing.

One remark is in order about the above Fock expansion. We want to emphasize

the fact that the twist expansion of the operators is not the perturbative expansion of

the hard part of the amplitude. Indeed, the quark antiquark gluon intermediate state

contribution does not contain a power suppressed hard part in g compared to the quark

anti-quark contribution. Thus, despite the fact that we include an additional gluon in the

Fock state, this contribution is still a leading order one, since the additional power of g

is absorbed inside the non-perturbative correlators. The dipole which is involved in the

scattering process is a pure lowest-order color-anticolor state, undressed by gluons. Thus

the question of the magnitude of the correction beyond leading order is beyond the scope

of the present paper.

In a previous study [42], we used the results [40, 41] for the Φγ∗
L→ρL and Φγ∗

T→ρT

impact factors and a phenomenological model [43] for the proton impact factor. It was

pointed out that the region k2 ≫ Λ2
QCD gives the dominant contribution to the helicity

amplitudes while the soft gluon (k2 < 1 GeV2) contribution cannot be neglected. The

soft gluon contribution to the amplitudes involves the interaction of large size color dipole

configuration |r| (|r| ≡ 1/|k|) in the fluctuations of the probe and saturation effects could

then play an important role.

Following this idea, we have shown in ref. [44] that the helicity amplitudes, expressed in

impact parameter space and then computed in the collinear factorization scheme, factorize

into the dipole cross-section and the wave functions of the virtual photon combined with

the first moments of the ρ meson wave functions parameterized by the DAs, given by the

twist expansion up to twist 3 for the production of a ρT and to twist 2 when producing

a ρL. The results of ref. [44] link the kT−factorization approach, in particular the results

of [40], with the calculations performed in refs. [45–49] within the dipole approach. The

main difference between our present approach and the one of refs. [45–49] is that instead

of using the light-cone wave functions φ(z, r) which in practice need to be modeled, the

amplitude of our approach involves the DAs which parameterize the first moments of the

wave functions.

1We use underlined letters for Euclidean two-dimensional transverse vectors.
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Our main point here is that one can assume the dominant physical mechanism for

production of both longitudinal and transversely polarized mesons to be the scattering

of small transverse-size quark-antiquark and quark-antiquark-gluon colorless states on the

target. This picture is justified at high center-of-mass energy of the γ∗p system, since

in this kinematics it is assured that the fluctuation of the γ∗ into a qq̄ pair and then its

interaction with the nucleon are clearly separated in time. We here consider a frame such

that the γ∗ is almost at rest, while the proton is strongly boosted. Our inclusion of both

qq̄ and qq̄g Fock states is therefore not related to the higher order Fock states produced by

the high-energy dynamics, which are included in the proton wave function (they are thus

part of the dipole-nucleon cross-section). Indeed, the additional gluon which we include

is not soft with respect to its quark or antiquark emitters. Therefore we here consider

that the fluctuation of the γ∗ into a qq̄ and qq̄g arises much before the interaction of these

Fock states with the proton. The validity of this dipole factorization is thus only based

on the large value of center-of-mass energy of the γ∗p system. The potential issues due to

the small values of k, which could lead to a diffusion into the non-perturbative domain, is

known to be controlled by the saturation effects, which we take as granted, provided by

the models which we use which detailed mechanism is not the subject of the present paper.

This picture allows to calculate corresponding helicity amplitudes in a model-indepen-

dent way, using the natural light-cone QCD language — twist-2 and twist-3 DAs. There, a

comment is in order. Indeed, within kT -factorization, the description of the impact factor

for produced meson based on the QCD collinear approach requires a modification of the

usual twist counting due to the off-shellness of the t-channel partons. For that, we assume

that the only large scale is provided by Q2. Thus, the virtualities of t−channel gluons

involved in the kT -factorization approach are considered to be large, being typically of the

order of the photon virtuality Q2 . Therefore, when here we say “up to twist 3” we only

mean twist counting from the point of view of the collinear factorization of the produced

ρ-meson, and not of the whole amplitude of γ∗p→ ρp . This means that the twist counting

considered here should be understood only based on non-local operators involved in the

definition of meson DAs.

Note that in [38] a related approach, based on the idea that color dipoles of small sizes

(r ∼ 1/Q) interact with the target, was used to expand the dipole scattering amplitude

and the ρ−meson wave function around small r. Our approach is different since it is based

only on the twist expansion of the ρ meson, governed by corrections around the dominant

light-cone direction provided by this produced meson. Therefore our framework allows for

the inclusion of the whole r−dependence of the dipole-target scattering amplitude while

the ρ meson wave function is expanded up to a given twist and parameterized by DAs.

Saturation effects, which are beyond the small r approximation, can thus be taken into

account in our study.

This paper is organized as follows. In section 2, we introduce the impact factor repre-

sentation of the helicity amplitudes as well as the kinematics of the process. In section 3,

we first recall some results for the γ∗L → ρL and γ∗T → ρT impact factors computed in mo-

mentum space respectively up to twist 2 [41] and twist 3 [40] accuracies using the collinear

approximation to parameterize the soft part associated to the production of the ρ meson
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by distribution amplitudes (DAs), calculated in ref. [50, 51]. We recall then the expression

of these impact factors in the impact parameter space according to the results of ref. [44]

allowing to decouple the dipole-nucleon scattering amplitude from the amplitude of pro-

duction of dipoles in the initial (γ∗(λγ)) and final (ρ(λρ)) states. We terminate section 3

by expressing helicity amplitudes and polarized cross-sections in terms of the dipole cross-

section. In section 4, we give a brief review of the main properties of the models for the

dipole cross-section [52–54] or the proton impact factor [43] that we use in our study. We

compare our predictions with the data of HERA [3, 4] in section 5 and we obtain a good

agreement. In this context we discuss the role of higher twist corrections for small Q2

values. Finally, we analyze the radial distribution of dipole intermediate states involved

between the virtual photon and the ρ meson, and discuss the role of the saturation models

on the specific example of the Golec-Biernat and Wüsthoff saturation model [52]. We also

compare our radial distribution with the overlap of the γ∗ and ρ meson wave functions ob-

tained in the approach of the dipole models [46, 47, 55], where the ρ meson wave function

is modeled and the parameters are fitted to HERA data.

2 Helicity amplitudes of the hard ρ meson leptoproduction in the impact

factor representation

In the impact factor representation at the Born order, the amplitude of the exclusive process

γ∗(λγ)N → ρ(λρ)N reads

Tλρλγ (∆;Q,M) = is

∫
d2k

(2π)2
1

k2(k −∆)2
ΦN→N (k,∆;M2)Φγ∗(λγ)→ρ(λρ)(k,∆;Q2) , (2.1)

as illustrated in figure 1. The γ∗(λγ) → ρ(λρ) impact factor Φγ∗(λγ)→ρ(λρ) is defined through

the discontinuity of the S matrix element for γ∗(λγ ; q)g(k) → g(k −∆)ρ(λρ; pρ) as

Φγ∗(λγ)→ρ(λρ) =
1

2s

∫
dκ

2π
Discκ

(

Sγ∗g→ρg
µν pµ2 p

ν
2

2

s

)

, (2.2)

where κ = (k + q)2 . In eqs. (2.1) and (2.2) the momenta q and pρ are parameterized via

Sudakov decompositions, in terms of two light-like vectors p1 and p2 such that 2 p1.p2 = s, as

q = p1 −
Q2

s
p2 and pρ = p1 +

m2
ρ − t+ tmin

s
p2 +∆⊥ , (2.3)

where Q2 = −q2 ≫ Λ2
QCD is the virtuality of the photon being the large scale which

justifies the use of perturbation theory, and mρ is the mass of the ρ meson. Here −tmin

denotes the minimal value of −t . The nucleon impact factor ΦN→N in eq. (2.1) cannot be

computed within perturbation theory, and is related2 at Born order to the unintegrated

gluon density F(x, k). In the forward limit ∆⊥ = 0, the helicity amplitudes read,

Tλρ,λγ

s
=
δab

2

∫
d2k

k4
Φ
γ∗
λγ
→ρλρ

ab (k,Q, µ2F )F(x, k) . (2.4)

2Normalization of the impact factors differs from [56] by a factor 2π, Φ[56] = 2πΦHere. For clarity, we

have restored in eq. (2.4) the color indices carried by the impact factor Φ
γ∗

λγ
→ρλρ

ab .
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κ

︸
︷
︷
︸

k k −∆

ρ(pρ)γ∗(q)

N N

Φγ∗→ρ

ΦN→N

Figure 1. Impact factor representation of the γ∗N → ρN scattering amplitude.

ℓ

γ∗

H Φ

ρ

+

ℓ

γ∗

Hµ Φ
µ

ρ

+ · · ·

Figure 2. Two- and three-parton correlators attached to a hard scattering amplitude in the

specific case of the γ∗ → ρ impact factor, where vertical lines are hard t− channel gluons in the

color singlet state.

The impact factors Φγ∗(λγ)→ρ(λρ)(k,Q, µ2F ) and the nucleon impact factor vanish at k → 0

or k → ∆, which guarantees the convergence of the integral in eq. (2.4) on the lower limit.3

The computation of the γ∗ → ρ impact factor is performed within collinear factoriza-

tion of QCD. The dominant contribution corresponds to the γ∗L → ρL transition (twist 2),

while the other transitions are power suppressed. The γ∗L → ρL and γ∗T → ρL impact

factors were computed a long time ago [41], while a consistent treatment of the twist-3

γ∗T → ρT impact factor has been performed only recently in ref. [40]. It is based on the

light-cone collinear factorization (LCCF) beyond the leading twist, applied to the ampli-

tudes γ∗(λγ)g(k) → g(k − ∆)ρ(λρ), symbolically illustrated in figure 2. Each of these

scattering amplitudes is the sum of the convolutions of a hard part (denoted by H and Hµ

for two- and three-parton contributions, respectively) that corresponds to the transition of

the virtual photon into the constituents of the ρ meson and their interactions with off-shell

gluons of the t channel, and a soft part (denoted by Φ and Φµ) describing the hadroniza-

tion of the constituent partons into the ρ meson. The technique is to perform a Taylor

expansion of the hard part around the dominant light-cone direction given by the ρ meson

momentum. Up to twist 3, the Taylor expansion is truncated to the first order in ℓ⊥ for

the quark antiquark intermediate state contribution. For the quark antiquark gluon inter-

mediate state contribution such expansion is not necessary. Thus, the Taylor expansion of

the hard part associated to the quark antiquark contribution up to twist 3 reads

HΓα

(y, ℓ⊥) = HΓα

(y, 0⊥) +

[

ℓ⊥ · ∂

∂ℓ⊥

]

HΓα

(y, 0⊥) , (2.5)

3This property of the impact factors is universal in the case of the scattering of colorless objects and is

related to gauge invariance [57, 58].
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where HΓα
is the hard sub-process projected on the Fierz structure Γα (see section 3 below

for details). In order to link the collinear factorization around the dominant light-cone

direction with the dipole picture we express the hard part in terms of its transverse Fourier

transform such that the Taylor expansion reads

HΓα

(y, ℓ⊥) =

∫

d2r H̃Γα

(y, r⊥) e
iℓ· r

−−−−→
twist 3

∫

d2r H̃Γα

(y, r⊥) (1− iℓ · r) . (2.6)

The term “iℓ · r” turns into a transverse derivative into the non-local correlators involved

in the soft part after integration by part. The quark antiquark contribution to the impact

factor reads

Aqq̄ = −1

4

∫

dy

∫

d2r⊥H̃
Γα

(y, r⊥) (2.7)

×
∫
dλ

2π
e−iλy

(

〈ρ(p)|ψ̄(λn)Γα ψ(0)|0〉µF
+ rµ⊥〈ρ(p)|ψ̄(λn)

←→

∂⊥µ Γα ψ(0)|0〉µF

)

,

where the subscript µF stands for the factorization/renormalization scale, under which the

transverse momenta of the partons are integrated. The Fourier transforms of the non-local

operators are parameterized by the set of twist 2 and twist 3 DAs defined in appendix A.

Here we want to pinpoint the fact that the present extended collinear approximation, when

expressed in the coordinate space, keeps the whole r⊥ dependency of the hard part while

it expands the non-local correlators around small (z⊥ < 1/µF ) relative coordinate between

the partonic constituents of the ρ−meson.

The DAs needed to parameterize the ρ meson productions involved in the results of [40]

for the impact factors with ∆ = 0 are: the twist 2 DA ϕ1(y;µ
2
F ) associated to the produc-

tion of the longitudinal ρ meson, the two-parton twist 3 DAs ϕT
1 (y;µ

2
F ), ϕ

T
A(y;µ

2
F ) and the

three-parton twist 3 DAs B(y1, y2;µ
2
F ) and D(y1, y2;µ

2
F ) that parameterize the production

of a transversely polarized ρ meson.4 Following [42, 44], we also use the combinations,

M(y1, y2;µ
2
F ) = ζV3 (µ2F )B(y1, y2;µ

2
F )− ζA3 (µ

2
F )D(y1, y2;µ

2
F ) ,

S(y1, y2;µ
2
F ) = ζV3 (µ2F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F ) , (2.8)

where ζV3 (µ2F ) and ζ
A
3 (µ

2
F ) are the dimensionless coupling constants

ζV3 (µ2F ) =
fV3ρ(µ

2
F )

fρ
, ζA3 (µ

2
F ) =

fA3ρ(µ
2
F )

fρ
. (2.9)

We recall in appendix A some basics features of the chiral even twist 2 and twist 3 DAs

present in this approach; more details can be found on the DAs in ref. [40]. We recall also

in appendix B the dependence of the DAs on the collinear factorization scale µF which is

driven by the renormalization evolution equations given in ref. [50].

4The seven chiral even twist 2 and twist 3 DAs can be reduced to a minimal set of three independent

DAs as shown in [40].
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3 Helicity amplitudes and polarized cross-sections

3.1 Impact factors γ∗

L,T → ρL,T

In the Sudakov basis, the longitudinal and transverse polarizations of the photon are5

eµγL =
1

Q

(

pµ1 +
Q2

s
pµ2

)

, ǫ± =
1√
2
(0,∓1,−i, 0) . (3.1)

For t = tmin the same parametrization will be used for the ρ-meson polarization with

obvious substitutions Q2 → −m2
ρ and Q→ mρ.

Let us introduce p and n, two light-cone vectors such that pρ ≈ p at twist 3 and

p · n = 1. The polarization of the out-going ρ meson is denoted by e∗. For further use, we

denote R∗⊥α = εαλβδ e
∗λ
⊥ p

β nδ. We use the following convention for the transverse euclidean

polarization vectors e± as in eq. (3.1)

e± =
1√
2
(∓1,−i) . (3.2)

We have recently shown in [44] that these impact factors, expressed in the impact

parameter space, read,

Φγ∗
L→ρL = −1

4
mρfρ

∫

dy

∫

d2r (e∗ · n)ϕ1(y;µ
2
F )H̃

/p1
qq̄ (y, r, k) , (3.3)

and

Φγ∗
T→ρT =−1

4
mρfρ

∫

dy2

∫

d2r
{

ϕ3(y2;µ
2
F )H̃

/e∗⊥
qq̄ (y2, r, k)+iϕ

T
1 (y2;µ

2
F ) (e

∗ · r) H̃/p1
qq̄ (y2, r, k)

+ iϕA(y2;µ
2
F )H̃

/R∗
⊥γ5

qq̄ (y2, r, k)− ϕT
A(y2;µ

2
F ) (R

∗ · r) H̃/p1γ5
qq̄ (y2, r, k)

− i

∫ y2

0
dy1

∫

d2r′
(

ζV3 B(y1, y2;µ
2
F )H̃

e∗⊥,/p1
qq̄g (y1, y2, r, r

′, k)

+iζA3 D(y1, y2;µ
2
F )H̃

R∗
⊥,/p1γ5

qq̄g (y1, y2, r, r
′, k)

)}

, (3.4)

where we have respectively denoted in the case of two-parton exchange as y and ȳ = 1− y

the longitudinal momentum fractions of the quark and the antiquark, and in the three-

parton exchange y1, ȳ2 = 1− y2 and yg = y2 − y1 the longitudinal momentum fractions of

the quark, the antiquark and the gluon. The transverse displacement vectors of the color

dipole configurations are denoted as r for the interacting dipole (two- and three-parton

Fock component) and r′ for the spectator dipole (present only in the three-parton Fock

component). Note that |r| in the case of the two-parton component is the transverse size

of the quark anti-quark colorless pair. The functions denoted

H̃
Γµbµ
qq̄ ≡ H̃Γµ

qq̄ bµ , H̃
c,Γµbµ
qq̄g ≡ H̃α,Γµ

qq̄g cα bµ , (3.5)

are the Fourier transforms in the transverse plane of the two-parton component hard parts

H and the three-parton component hard parts Hµ (illustrated in figure 2), projected on

the appropriate Fierz structures Γµ.

5In ref. [40] we took ǫ± = ∓ i√
2
(0, 1,±i, 0), which we change here for consistency with the usual experi-

mental conventions [59].
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The computations of the hard parts lead to the following generic expressions,

Φγ∗
L→ρL(k,Q, µ2F ) =

(
δab

2

)∫

dy

∫

dr ψ
γ∗
L→ρL

(qq̄) (y, r;Q,µ2F )A(r, k) , (3.6)

Φγ∗
T→ρT (k,Q, µ2F ) =

(
δab

2

)∫

dy

∫

dr ψ
γ∗
T→ρT

(qq̄) (y, r;Q,µ2F )A(r, k) (3.7)

+

(
δab

2

)∫

dy2

∫

dy1

∫

dr ψ
γ∗
T→ρT

(qq̄g) (y1, y2, r;Q,µ
2
F )A(r, k) ,

where the function

A(r, k) =
4παs

Nc
(1− exp (ik · r)) (1− exp (−ik · r)) , (3.8)

is the scattering amplitude of a quark-antiquark color dipole with the two t−channel glu-

ons, putting apart the color factor Tr(ta tb) = δab/2, with a and b color indices and Nc the

number of colors. The functions ψ
γ∗
L→ρL

(qq̄) , ψ
γ∗
T→ρT

(qq̄) , ψ
γ∗
T→ρT

(qq̄g) are respectively the amplitudes

of production of a ρ meson from a quark-antiquark (quark-antiquark gluon) system pro-

duced far upstream the target in the fluctuation of the virtual photon. These functions are

computed up to twist 3 in the collinear approximation in ref. [44] and they contain infor-

mation about the relevant color dipole system that interacts with the target. The functions

ψ
γ∗
L,T→ρL,T

(qq̄) can be expressed in terms of the virtual photon wave functions Ψ
γ∗
L,T

(h,h̄)
,

Ψ
γ∗
L

(h,h̄)
(y, r;Q2) = δh̄,−h

e

2π

√

Nc

π

µ2

Q
K0(µ |r|) , (3.9)

Ψ
γ∗
T (λγ)

(h,h̄)
(y, r;Q2) = δh̄,−h

ie

2π

√

Nc

π
(yδh,λγ + ȳδh,−λγ )

(r · e(λγ))

|r| µK1(µ |r|) , (3.10)

where h = ±1
2 , h̄ = ±1

2 denote respectively the helicities of the exchanged quark and

anti-quark, and of the combinations of DAs of the ρ meson φ
ρL,T

(hh̄)
,

φρL
(h,h̄)

(y;µ2F ) = δh̄,−h

√
π

4Nc
(e∗L · n)ϕ1(y;µ

2
F ) , (3.11)

φ
ρT , (λρ)

(h,h̄)
(y, r;µ2F ) = −δh̄,−hi

√
π

4Nc
(e(λρ)∗ · r)

×
(
ϕT
A(y;µ

2
F ) + (δh,λρ − δh,−λρ)ϕ

T
1 (y;µ

2
F )
)
. (3.12)

In the two-parton approximation, these functions φρL
(h,h̄)

(y;µ2F ) and φ
ρT , (λρ)

(h,h̄)
(y, r;µ2F ) pa-

rameterize the moments of the wave functions of the ρ meson, i.e. the first terms of the

Taylor expansion of the wave functions at small r. Note that in the approach of ref. [38]

φρL
(h,h̄)

(y;µ2F ) and φ
ρT , (λρ)

(h,h̄)
(y, r;µ2F ) are replaced by the Taylor expansion for small r of the

modeled wave functions of the vector mesons. Finally, the functions ψ
γ∗
L→ρL

(qq̄) and ψ
γ∗
T→ρT

(qq̄)

with two-parton components read

ψ
γ∗
L→ρL

(qq̄) (y, r;Q,µ2F ) =
mρfρ√

2

∑

(h,h̄)

φρL
(hh̄)

(y;µ2F )Ψ
γ∗
L

(h,h̄)
(y, r;Q2) , (3.13)

ψ
γ∗
T→ρT

(qq̄) (y, r;Q,µ2F ) =
mρfρ√

2

∑

(h,h̄)

φ
ρT , (λρ)

(h,h̄)
(y;µ2F )Ψ

γ∗
T (λγ)

(h,h̄)
(y, r;Q2) . (3.14)
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The function ψ
γ∗
T→ρT

(qq̄g) with three-parton components reads

ψ
γ∗
T→ρT

(qq̄g) (y, r;Q,µ2F ) =
mρfρ√

2

[(√
π

4Nc

S(y1, y2;µ
2
F )

2

)

Fγ∗
T (y1, y2, r;Q)

−
(√

π

4Nc

M(y1, y2;µ
2
F )

2

)

Fγ∗
T (ȳ2, ȳ1, r;Q)

]

, (3.15)

where the function Fγ∗
T describes the fluctuation of the transversely polarized photon into

a quark-antiquark-gluon color singlet. The function Fγ∗
T can be expressed in terms of the

longitudinally polarized photon wave function

Ψγ∗
L(µi, r;Q) =

∑

(h,h̄)

Ψ
γ∗
L

(h,h̄)
≡ 2

e

2π

√

Nc

π

µ2i
Q
K0(µi |r|) , (3.16)

as

Fγ∗
T (y1, y2, r;Q) =

1

2

{

2

[
Ψγ∗

L(µ1, r;Q)

ȳ1Q

]

+
NC

CF

[
Ψγ∗

L(µq̄g, r;Q)

ȳ1Q
+

(
y2 ȳ1
ȳ2 y1

)

×
(
Ψγ∗

L(µ2, r;Q)

ȳ1Q
− Ψγ∗

L(µq̄g, r;Q)

ȳ1Q

)]

+

(
NC

CF
− 2

)[(
Ψγ∗

L(µ1, r;Q)

ygQ
− Ψγ∗

L(µqq̄, r;Q)

ygQ

)

+
y2
ȳ2

(
Ψγ∗

L(µ2, r;Q)

ygQ
− Ψγ∗

L(µqq̄, r;Q)

ygQ

)]}

, (3.17)

with

µ21 = y1ȳ1Q
2 , µ22 = y2ȳ2Q

2 , (3.18)

µ2qg =
y1yg
y1 + yg

Q2 , µ2q̄g =
ȳ2yg
ȳ2 + yg

Q2 , µ2qq̄ =
y1ȳ2
y1 + ȳ2

Q2 ,

and CF = N2
c−1
2Nc

. Note, that in the large NC limit Fγ∗
T simplifies,

Fγ∗
T (y1, y2, r;Q) −−−−−→

NC→∞

1

ȳ1y1ȳ2Q
(3.19)

×
{

y1ȳ2Ψ
γ∗
L(µ1, r;Q) + y2ȳ1Ψ

γ∗
L(µ2, r;Q)− ygΨ

γ∗
L(µq̄g, r;Q)

}

.

3.2 From impact factors to helicity amplitudes and polarized cross-sections

According to eq. (2.4), the helicity amplitudes read,

Tλρ,λγ

s
=
δab

2

∫
d2k

k4
Φ
γ∗
λγ
→ρλρ

ab (k,Q, µ2F )F(x, k) . (3.20)

Inserting the expressions for the impact factor Φ
γ∗
λγ
→ρλρ of eqs. (3.6), (3.7), one gets

T00
s

=

∫

dy

∫

dr ψ
γ∗
L→ρL

(qq̄) (y, r;Q,µ2F ) σ̂(x, r) , (3.21)

T11
s

=

∫

dy

∫

dr ψ
γ∗
T→ρT

(qq̄) (y, r;Q,µ2F ) σ̂(x, r) (3.22)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗
T→ρT

(qq̄g) (y1, y2, r;Q,µ
2
F ) σ̂(x, r) ,
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where we have identified the dipole cross-section as defined in ref. [56]

σ̂(x, r) =
N2

c − 1

4

∫
d2k

k4
F(x, k)A(k, r) . (3.23)

Note that we can separate the T11 as the Wandzura-Wilczek (WW) [60] contribution and

the genuine contribution,

TWW
11

s
=

∫

dy

∫

dr ψ
γ∗
T→ρT ,WW

(qq̄) (y, r;Q,µ2F ) σ̂(x, r) , (3.24)

T gen
11

s
=

∫

dy

∫

dr ψ
γ∗
T→ρT , gen

(qq̄) (y, r;Q,µ2F ) σ̂(x, r) (3.25)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗
T→ρT

(qq̄g) (y1, y2, r;Q,µ
2
F ) σ̂(x, r) ,

The formulas (3.21), (3.22) allow us to combine various models of the scattering amplitude

of a dipole on a nucleon with the results obtained by twist expansion of the γ∗ → ρ impact

factor. At t = tmin the contribution to the cross-sections σL and σT are respectively coming

from the helicity amplitudes T00 and T11,

dσL
dt

(t = 0) =
|T00(s, t = 0)|2

16πs2
, (3.26)

dσT
dt

(t = 0) =
|T11(s, t = 0)|2

16πs2
. (3.27)

The t−dependency is expected to be governed by non-perturbative effects of the nucleon,

which can be phenomenologically parameterized by an exponential dependence of the dif-

ferential cross-section
dσL,T
dt

(t) = e−b(Q
2)t dσL,T

dt
(t = 0) . (3.28)

This results in the polarized cross-sections

σL =
1

b(Q2)

|T00(s, t = 0)|2
16πs2

, (3.29)

σT =
1

b(Q2)

|T11(s, t = 0)|2
16πs2

. (3.30)

The b(Q2) slope has been measured by ZEUS and H1. We will use here quadratic fits of

the b(Q2) slope data of ref. [4] to determine the cross-section.

In the following section, we will briefly present the dipole models we shall use to

compare our predictions with HERA data. Note that the dipole cross-section models

which we will use are determined from DIS data using the overlap of the virtual photon

wave functions at leading order where only the quark antiquark intermediate Fock state

is involved, while the higher Fock states, such as the quark antiquark gluon intermediate

state, are neglected. This is consistent with the fact that our approach is leading in the

strong coupling g, as mentioned in the introduction.
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4 Dipole models

In the dipole picture, the DIS cross-section reads [23, 24]

σγ
∗p

L,T =

∫

d2r

∫

dy

Nf∑

f

∣
∣
∣Ψ

γ∗
L,T

f (y, r;Q)
∣
∣
∣

2

σ̂(x, r) , (4.1)

with

σ̂(x, r) =

∫

d2b
dσ̂qq̄
d2b

= 2

∫

d2b N (x, r, b) . (4.2)

The low-x saturation dynamics of the nucleon target was first introduced in refs. [52, 61]

by Golec-Biernat and Wüsthoff (GBW) model to describe the inclusive and diffractive

structure functions of DIS, which inspired many phenomenological descriptions of DIS

HERA data [47, 55, 62–66]. In this model the dipole cross-section reads

σ̂(x, r) = σ0

{

1− exp

(

− r2

4R2
0(x)

)}

, (4.3)

where

R2
0(x) =

1

GeV2

(
x

x0

)λp

, (4.4)

and it involves three independent parameters {σ0, x0, λp}. One can see from eq. (4.1) that

since the wave functions are peaked at r ∼ 1
Q , the domain in which the saturation effects

are significant is given by

Q2 .
1

R2
0(x)

≡ Q2
S(x) . (4.5)

To make contact with photoproduction, it is customary [52] to make the following modifi-

cation of the definition of the Bjorken variable x

x→ x

(

1 +
4m2

f

Q2

)

=
Q2

W 2 +Q2

(

1 +
4m2

f

Q2

)

−−−−→
Q2→0

4m2
f

W 2
, (4.6)

where mf is an effective quark mass which depends on the flavor f and of the model used

to fit the data. This modification is adopted in the following.

In the GBW saturation model, light quark masses are taken to be 0.14 GeV in order

to get a good fit of the photoproduction region. The inclusion of the charm contribution,

with mc = 1.5 GeV has also been performed in ref. [52]. The normalization σ0 results from

the integration over the impact parameter b, assuming that the b−dependence of the dipole

amplitude factorizes as N (x, r, b) = T (b)N (x, r), where T (b) is related to the density of

gluon within the target, leading to

σ̂(x, r) = 2

∫

d2b T (b)N (x, r) = σ0N (x, r) . (4.7)

This model provides a good description of inclusive and diffractive structure functions for

the values of the parameters presented in table 1.
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Fits σ0 (mb) λp x0

No charm 23.03 0.288 3.04× 10−4

With charm 29.12 0.277 0.41× 10−4

Table 1. Values of the parameters entering the GBW dipole cross-section.

The small x evolution of the dipole cross-section can be modeled as in the refs. [52], or

computed numerically from the running coupling Balitsky-Kovchegov (rcBK) equation [67].

Indeed, the x−dependence is driven at small x by perturbative non-linear equations,

the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation [68–

73] and the Balitsky-Kovchegov (BK) equation [74, 75]. The solutions of the two equations

are not significantly different and the BK equation is simpler to solve numerically than the

JIMWLK equation. The LO-BK equation cannot be used to obtain the low x evolution

as it predicts a growth of the saturation scale much faster than the growth expected from

the analysis based on phenomenological models. It was shown in [53, 54] that taking into

account only the running coupling corrections of the evolution kernel allows to get the

main higher order contributions, and to solve the discrepancy between the growths of the

saturation scale.

A remark is now in order, in view of the use of the dipole for the exclusive non forward

process, which is studied in this paper. We could in principle use a dipole model taking

into account skewness effects. Indeed, the typical values of the p2 components of the two

t−channel gluons are rather asymmetric, one being much larger than the other one. This

skewness dependence can be implemented along approaches of refs. [76, 77]. However,

the way how to include skewness effects, based on the Shuvaev transform, is still under

discussion, see e.g. refs. [78, 79], since it requires certain analytical properties of conformal

moments of GPDs which are generally not satisfied. Such a treatment seems therefore to

be rather considered as an powerful ansatz, to be confronted with data. On the other hand,

in the context of saturation, the inclusion of skewness has only been performed using a

Glauber-Mueller treatment [47, 80]. To the best of our knowledge, the only available

approach using the Balitsky Kovchegov equation has only been performed in ref. [81], and

uses the Shuvaev ansatz in the initial condition at low Q2. We would like to comment on

the fact that kinematically, the notion of skewness does not exist in the Balitsky-Kovchegov

approach. One can however argue that the skewness effect is mainly important for the last

stage (i.e. the coupling with the quark loop), and can be neglected in the fan-diagrams

which underlies the BK equation. Anyway, due to the various limitation mentioned above,

we will not take into account these skewness effects in the present study.

A numerical solution of the rcBK equation was obtained in refs. [82, 83] based on

initial conditions inspired by the GBW model [52] and the McLerran-Venugopalan (MV)

model [84]. We will denote these numerical solutions for the dipole scattering amplitudes

as the Albacete-Armesto-Milhano-Quiroga-Salgado (AAMQS)-model.

NGBW (x0, r) = σGBW
0

{

1− exp

[

−
(
r2Q2

s 0

4

)γ]}

, (4.8)

NMV (x0, r) = σMV
0

{

1− exp

[

−
(
r2Q2

s 0

4

)γ

ln

(
r

ΛQCD
+ e

)]}

, (4.9)
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with x0 = 0.01 and Qs 0 the initial saturation scale at x = x0, and γ the anomalous

dimension. The coupling constant in the evolution kernel of the rcBK equation depends

on the number of active quark flavors nf ,

αs,nf
(r2) =

4π

β0,nf
ln

[

4C2

r2Λ2
nf

] , (4.10)

where β0,nf
= 11− 2

3nf , Λnf
is the QCD scale and C is one of the free parameters of the

model. As usual, the scales Λnf
are determined by the matching condition αs,nf−1(r

2
⋆) =

αs,nf
(r2⋆) at r

2
⋆ = 4C2/m2

f and an experimental value of αs. In eq. (4.9), the scale ΛQCD is

identified with Λ3.

The parameters are fitted to the experimental data for the inclusive structure function

of DIS

F2(x,Q
2) =

Q2

4π2αem
(σT + σL) , (4.11)

and give a good description for the data of the longitudinal structure function

FL(x,Q
2) =

Q2

4π2αem
σL . (4.12)

Two sets of dipole cross-sections are available for each of the initial conditions. The first

set of dipole cross-sections respectively denoted as (a) and (e) for the GBW and the MV

initial conditions, are fitted to data by taking only into account the light quarks u, d, s . The

second set, respectively denoted as (b) and (f) for the GBW and the MV initial conditions,

are fitted taking into account the dipole cross-section of the light quarks σ0N l.(x, r) and

of the heavy quarks σh0N h.(x, r) . The normalization of the dipole cross-section σh.0 for the

charm and the bottom quarks are assumed to be equal. Thus the cross-sections read

σγ
∗p

L,T ; set(a),(e) = σ0
∑

f=u,d,s

∫

d2r

∫

dy
∣
∣
∣Ψ

γ∗
L,T

f (y, r;Q,mf , ef )
∣
∣
∣

2

N l.(x, r) , (4.13)

σγ
∗p

L,T, set(b),(f) = σl.0
∑

f=u,d,s

∫

d2r

∫

dy
∣
∣
∣Ψ

γ∗
L,T

f (y, r;Q,mf , ef )
∣
∣
∣

2

N l.(x, r)

+σh.0
∑

f=c,b

∫

d2r

∫

dy
∣
∣
∣Ψ

γ∗
L,T

f (y, r;Q,mf , ef )
∣
∣
∣

2

N h.(x, r) . (4.14)

In the following parts we will focus mostly on the sets (a) and (b) using the GBW initial

condition respectively denoted as AAMQSa and AAMQSb, as the effects due to different

initial conditions do not involve significant changes in the numerical results of present study.

We present in tables 2 and 3 values of the parameters of the fits obtained in ref. [83].

For completeness, we will also display predictions using the Gunion and Soper model

(GS-model) [43]. This model was used in our first phenomenological study of ref. [42], and

it assumes that the hadron impact factor takes the form

ΦN→N (k,∆;M2) = Aδab

[

1

M2 + (∆2 )
2
− 1

M2 + (k − ∆
2 )

2

]

, (4.15)

where A andM are free parameters that correspond to the soft scales of the proton-proton

impact factor. As it was discussed in [42], the ratios of helicity amplitudes are well described
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Fits Q2
s0 σ0 (mb) γ C χ2/Ndf

(a) 0.241 32.357 0.971 2.46 1.226

(e) 0.165 32.895 1.135 2.52 1.171

Table 2. Values of the parameters entering the AAMQS sets (a) and (e) dipole cross-sections.

Fits Q2
s0 Q

(c,b) 2
s0 σl.0 (mb) σh.0 (mb) γ γ(c,b) C χ2/Ndf

(b) 0.2386 0.2329 35.465 18.430 1.263 0.883 3.902 1.231

(f) 0.1687 0.1417 35.449 19.066 1.369 1.035 4.079 1.244

Table 3. Values of the parameters entering the AAMQS sets (b) and (f) dipole cross-sections.

forM ≃ 1 GeV and the result is not very sensitive to this parameter. Note that this impact

factor indeed vanishes when k → 0 or ∆ − k → 0 in a minimal way. Such a model was

the basis of the dipole approach of high energy scattering [85] and used successfully for

describing deep inelastic scattering (DIS) at small x [86]. The dipole-proton scattering

amplitude in the two-gluon exchange approximation, computed in details in appendix C,

resulting from the GS-model for the proton impact factor is:

N (r,M) =

∫
d2k

(2π)2
1

(k2)2
Aδab

(
1

M2
− 1

M2 + k2

)(

1− eik·r
)(

1− e−ik·r
)

(4.16)

=
Aδab
πM4

(

γ + ln
M r

2
+K0(M r)

)

. (4.17)

5 Comparison with the HERA data

Our main results are the polarized cross-sections σT and σL of the process (1.1), that we

compare with the data of the H1 collaboration [4].

In the following plots, experimental errors are taken to be the quadratic sum of sta-

tistical and systematical errors. The collinear factorization scale µF only appears in the

scattering amplitudes through the DAs and the coupling constants and unless specified we

will assume that µF depends on the virtuality Q2 as

µ2F (Q
2) =

Q2 +M2
ρ

4

Q2≫M2
ρ−−−−−→ Q2

4
. (5.1)

The figures 3(a) and 3(b) show the full twist 3 predictions respectively for σT and

σL, using the different dipole models. The results of the predictions for σT (figure 3(a))

and σL (figure 3(b)) are in agreement with the data for values of Q2 larger than approxi-

mately 7 GeV2 for σT and 7 GeV2 for σL depending on the considered dipole model. The

results based on the AAMQSa model are giving a slightly better description than with

the AAMQSb although both sets give good quality fits of DIS data. The results obtained

by GBW model are close to the one obtained by the AAMQSa model; both are in good

agreement with the data for Q2 above 7 GeV2. Let us insist on the fact that the agreement

for Q2 ≥ 7 GeV2 of our predictions with data is non-trivial since all free parameters of the
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H1

W=75 GeV
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GBW
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(a) σT vs H1 data

H1
W=75 GeV
H1
W=75 GeV

AAMQSa

AAMQSb
GBW

2 5 10 20
Q2HGeV2L

1

5

10

50

100

500

ΣLHnbL

(b) σL vs H1 data

Figure 3. Predictions for σT and σL vs Q2, for W = 75 GeV, using the AAMQSa (red solid line),

AAMQSb (blue large dashed line) and GBW (green dashed line) models compared to the data of

H1 [4].

dipole cross-section (normalization, R0(x), etc. . . ) are completely fixed by the fit of DIS

data, while on the ρ side the normalizations are given by decay constants obtained from

QCD sum rules.

Keeping in mind that the results are not too sensitive to the precise choice of the dipole

model, below we will focus on the predictions of the AAMQSa model. Some results of the

GBW, AAMQSb and GS models are presented in appendix D.

In figure 4, we show separately three different contributions:

• the full twist 3 (Total) contribution, involving both the WW and the genuine solutions

of the DAs.
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(b) AS (purple dashed line) and Total (red solid line) contributions to σL.

Figure 4. Predictions for σT and σL vs Q2, forW = 75 GeV, using the AAMQSa-model, compared

to the data of H1 [4].

• the WW contribution, only involving the WW solutions of the DAs.

• the asymptotic (AS) contribution (for µF → ∞), involving the asymptotic solutions

of the DAs. In this limit the genuine contribution vanishes and the WW DAs can be

expressed as functions of the asymptotic DA ϕ1(y) = 6yȳ.

The results of the predictions for σT (figure 4(a)) and σL (figure 4(b)) are in agreement

with the data for values of Q2 respectively larger than Q2
min,T ∼ 6.5 GeV2 and Q2

min,L ∼
5 GeV2 which confirms that the amplitude factorizes into a universal color dipole scattering

amplitude and that the truncated twist expansion of the ρ meson soft part is justified.
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We remind that in our approach the skewness effects are not taken into account. The

agreement for large Q2 values of our predictions with the data suggests that the skewness

effects are small for the kinematical range of HERA data we analyzed.

The two scales Q2
min,T and Q2

min,L are close to each other. We interpret this fact as

an indication that the discrepancy between data and our predictions at low Q2 are mainly

due to the higher twist contributions to the impact factor from the meson structure rather

than an effect of the saturation dynamics of the nucleon which should be well described at

this scale by the saturation models. Let us mention, again that these saturation models

are known to fit very well inclusive DIS as well as diffractive DIS data (for GBW) at these

low Q2 values.

The saturation scale, given by QS = 1/R0(x) is of order 1 GeV in the kinematics of

HERA. Since our predictions are only consistent with data in the region Q2 > Q2
min,L(T ) >

Q2
S , this limitation do not allow us to access the domain Q2

S & Q2 where saturation effects

can be essential.

The predictions are dominated by the WW-contribution and are not very sensitive to

the choice of the collinear factorization scale. This will be further discussed in section 6.

An estimation of the error on the cross-sections caused by the error bars on the b−slope

measurements is obtained by fitting the upper and lower bounds of the b−slope as shown

in figure 5, and then by computing the predictions based on these fits as shown in figure 6.

Note that we have assumed that the longitudinal bL and the transverse bT slopes are equal

to the b−slope of the total cross-section. This assumption is supported by H1 data where

the measurements of the difference bL−bT for Q2 = 3.3 GeV2 and Q2 = 8.6 GeV2 are much

smaller than the b−slope value. Let us also emphasize that in this approach we compute

the polarized differential cross-sections in the limit t = tmin ≈ 0 where only the s-channel

helicity conserving (SCHC) amplitudes T00 and T11 are non-zero. The contributions of other

helicity amplitudes are encoded in the phenomenological t−dependence given in eq. (3.28)

and it turns out that data for the total differential cross-section are dominated by a t-region

of very small values, with a typical spread given by the scale 1
〈b〉 ≈ 1

6 GeV2.

We now compare our predictions with the data for the total cross-section σ, given by

the sum σ = σL + σT according to ZEUS convention in ref. [3] or σ = εσL + σT following

H1 notation [4], where ε is the photon polarization parameter6

ε ≃ (1− y)/(1− y + y2/2) . (5.2)

We show in figures 7(a) and 7(b), the AS, WW and Total contributions to the total cross-

section σ as function of Q2 for fixed averaged W . The predictions are larger than the

data for Q2 smaller than approximately 7 GeV2, as expected from the results of σL,T . The

figures 8(a)), (8(b)), (9(a) and 9(b) show the W dependence of the cross-section for several

values of Q2. We see again a good agreement between the predictions and the data for Q2

approximately above 6 GeV2 for H1 data and 8 GeV2 for ZEUS data, taking into account

the uncertainty on the b−slope.

6For H1 〈ε〉 = 0.98 and for ZEUS 〈ε〉 = 0.996.
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Figure 5. Quadratic fits of the b−slope H1 data.

Finally, our analysis also provides predictions for the ratios R and for the spin density

matrix element r0400

R =
σL
σT

, (5.3)

r0400 =
σL
σ
. (5.4)

Assuming to keep only the SCHC amplitudes T11 and T00, and the equality of slopes

bL = bT , the t−dependence of the cross-sections cancel in the ratios R and r0400, leading to

R =
1

x211
(5.5)

and

r0400 =
ε

ε+ x211
, (5.6)

where x11 = |T11|/|T00| . H1 and ZEUS measurements of R and r0400 = σL/σ as functions

of |t| confirm this weak dependence on |t|. Based on H1 data, we can estimate [42] the

correction to the ratio r0400 due to the amplitude T01, for the t−range of H1, to be below

1%. The results are shown in figure 10 for the ratio R and in figure 11 for the spin density

matrix element r0400, using AAMQSa model.

6 The radial distributions of dipoles involved in the overlap of the γ∗

L(T )

and ρL(T )−meson states

In the dipole picture, the overlap of the wave functions of the outgoing ρ meson Ψ
∗ρL,T (λρ)

(h,h̄)

and of the incoming virtual photon Ψ
γ∗
L,T (λγ)

(h,h̄)
represents the amplitude of probability for

these states to dissociate into a quark anti-quark color dipole of size r, the quark having
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Figure 6. Full twist 3 and asymptotic predictions with the b−slope uncertainty, using AAMQSa

model.

a longitudinal momentum fraction y. We define thus the probability amplitude Wλρλγ as

the corresponding parts of the impact factors appearing in eqs. (3.21) and (3.22),

W00(y, r;µ
2
F , Q

2) = ψ
γ∗
L→ρL

(qq̄) (y, r;Q,µ2F ) , (6.1)

for the amplitude T00 and

W11(y, r;µ
2
F , Q

2) = ψ
γ∗
T→ρT

(qq̄) (y, r;Q,µ2F ) +

∫ y

0
dy1 ψ

γ∗
T→ρT

(qq̄g) (y1, y, r;Q,µ
2
F ) , (6.2)

WWW
11 (y, r;µ2F , Q

2) = ψ
γ∗
T→ρT WW

(qq̄) (y, r;Q,µ2F ) , (6.3)

Wgen
11 (y, r;µ2F , Q

2) = ψ
γ∗
T→ρT gen

(qq̄) (y, r;Q,µ2F ) +

∫ y

0
dy1ψ

γ∗
T→ρT

(qq̄g) (y1, y, r;Q,µ
2
F ) (6.4)
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Figure 7. Predictions for σ vs Q2 compared respectively with H1 [4] data (figure (a)) for W =

75 GeV and with ZEUS [3] data (figure (b)) for W = 90 GeV, using the AAMQSa-model.

for the Total, the WW and the genuine contributions to T11. The probability amplitudes

Wλρλγ permit in turn to define the radial distributions Pλρλγ of the interacting dipole, as

Pλρλγ (r,Q
2, µ2F ) =

1

Nλρλγ

r

∫

dy
∣
∣Wλρλγ (y, r;µ

2
F , Q

2)
∣
∣ , (6.5)

where Nλρλγ are normalization factors

Nλρλγ =

∫ ∞

0
dr r

∫

dy
∣
∣Wλρλγ (y1, y, r;µ

2
F , Q

2)
∣
∣ . (6.6)
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(b) Total contribution to σ including the b−slope errors vs H1 data.

Figure 8. Predictions for σ vs W , using the AAMQSa-model, compared with H1 [4] data. Figure

(a): AS, WW and Total contributions. Figure (b): total contribution taking into account the

uncertainties on the b−slope.

Expressed in terms of these functions, the scattering amplitudes read

Tλρλγ

s
= Nλρλγ

∫ ∞

0
drPλρλγ (r,Q

2, µ2F ) σ̂(x, r) . (6.7)

The probability amplitude for a dipole of size r to scatter on the nucleon is then proportional

to Pλρλγ (r,Q
2, µ2F ) σ̂(x, r), which justifies the inclusion of the factor r in (6.5).
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(b) Total contribution to σ including the b−slope errors vs ZEUS data.

Figure 9. Predictions for σ vs W , using the AAMQSa-model, compared with ZEUS [3] data.

Figure (a): AS, WW and Total contributions. Figure (b): total contribution taking into account

the uncertainties on the b−slope.

Below we will also use the rescaled radial distributions Pλρλγ (λ, µ
2
F ),

Pλρλγ (λ, µ
2
F ) ≡

Pλρλγ (
λ
Q , Q

2;µ2F )

Q
, (6.8)

which depend on r and Q only through the variable λ = r Q and we choose to put µ2F =

µ2F (Q
2), see eq. (5.1). Note that the rescaled asymptotic distributions,

P
(AS)
λρλγ

(λ) ≡ P
(AS)
λρλγ

(λ, µ2F = ∞) , (6.9)

are independent of Q2.
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Figure 10. The full twist 3 contribution to the ratio of the cross-sections R = σL/σT in the limit

t = 0 versus W and Q2 compared to the data of H1 [4] in figure (a) and ZEUS [3] in figure (b).

This change of variable leads to the formulas

Tλρλγ

s
= Nλρλγ

∫ ∞

0
dλPλρλγ (λ, µ

2
F ) σ̃(x, λ) , (6.10)

with

σ̃(x, λ) = σ̂

(

x,
λ

Q

)

. (6.11)

The average value of a function f(y) depending of the longitudinal fraction of momen-

tum y carried by one of the partons, will be estimated by

〈f(y)〉λρλγ
=

1

Nλρλγ

∫

dr

∫

dy f(y) r
∣
∣Wλρλγ (y, r;µ

2
F , Q

2)
∣
∣ . (6.12)

6.1 The radial distribution of the γ∗

L → ρL transition

The distributions P00(r,Q
2, µ2F ) and P(AS)

00 (r,Q2) ≡ P00(r,Q
2,∞) are close to each other,

as it is shown in figures 12(a) and 12(b), which indicates that the distribution P00(r,Q
2, µ2F )

is not sensitive to µ2F . We can then restrict the study of P00(r,Q
2, µ2F ) by considering only

P(AS)
00 (r,Q2), which is also simpler for the analytic treatment. At first glance we see that

the distributions are peaked around r ∼ 1.3
Q and consequently the peak moves to the right

and the distribution becomes wider as Q2 decreases. Note that the dependency of σ̂(x, r)

with respect to Q2, which can be seen in figure 12, only occurs through the dependency of

R0(x), according to eq. (4.4).

In figure 13 we show the Total and AS rescaled radial distributions P00(λ, µ
2
F (Q

2)) and

P
(AS)
00 (λ, µ2F (Q

2)). This last one reads

P
(AS)
00 (λ) =

1

Q
P(AS)
00

(
λ

Q
,Q2

)

= 6

∫

dy (yȳ)2λK0(
√
yȳλ) . (6.13)

The average value of λ estimated with P
(AS)
00 (λ) is

〈λ〉(AS)
00 =

∫

dλλP
(AS)
00 (λ) =

3π2

8
≈ 3.7 . (6.14)
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Figure 11. Predictions for r0400 vs W and Q2 compared respectively with H1 [4] data (figures (a))

and ZEUS [3] data (figures (b)), using the AAMQSa-model.

About half of the dipoles are contained in the region 1 < λ < 〈λ〉(AS)
00 , the peak of the

distribution being at λpeak ∼ 1.3. The typical transverse scale µ =
√

yȳ Q2 entering the

wave functions overlap can be estimated using eq. (6.12),

〈µ〉(AS)
00

Q
=
〈√

yȳ
〉(AS)

00
= 6

∫

dy

∫

dλ (
√
yȳ)

(
(yȳ)2λK0(

√
yȳλ)

)
=

9π

64
≈ 0.44 . (6.15)

The choice of the factorization scale µF (Q
2) given by eq. (5.1) is then a good approximation

of the transverse dynamical scale 〈µ〉(AS)
00 involved in the process.

The dipole scattering amplitude plays the role of a filter that selects dipoles of λ >

λSat.(Q2,W ) = 2R0(x)Q. Note that the critical saturation line eq. (4.5) is given by

λSat.(Q2
S(x(Q

2
S ,W

2)),W ) = 2 , (6.16)
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Figure 12. The functions P00(r,Q
2, µ2

F ) and P(AS)
00 (r,Q2) vs the size r of the interacting dipole,

for Q2 = 1 GeV2 (12(a)) and Q2 = 10 GeV2 (12(b)), and the dipole cross-section σ̂(x, r) normalized

by the factor 4σ0 for W = 50 GeV and W = 150 GeV.
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Figure 13. Full twist 3 (Total) P00(λ, µ
2
F (Q

2)) for Q2 = 1GeV2 (solid red) and Q2 = 10GeV2

(dashed blue), AS P
(AS)
00 (λ) (dotted purple) and σ̃(x, λ) at W = 90 GeV2 for Q2 = 1 GeV2(dotted-

dashed black) and Q2 = 10 GeV2 (dashed black).

where

x(Q2,W 2) =
Q2

W 2 +Q2

(

1 +
4m2

f

Q2

)

, (6.17)

in accordance with eq. (4.6). In the kinematics of HERA, the energy in the center of mass

W varies roughly from 50 GeV to 150 GeV, leading to the following bounds for the two

values Q2 = 1 GeV2 and Q2 = 10 GeV2,

λSat.(1, 50) = 2.1 > λSat.(1,W ) > λSat.(1, 150) = 1.5 (6.18)

λSat.(10, 50) = 9.2 > λSat.(10,W ) > λSat.(10, 150) = 6.7 . (6.19)

We will fix for our purpose W = 90 GeV resulting in the values, (λSat.(1 GeV2, 90 GeV)∼
1.8) and (λSat.(10 GeV2, 90 GeV)∼ 7.7). We can then differentiate the case Q2 = 1 GeV2

– 26 –



J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

ΓL
* p ® ΡL p

Total
AS

(a) Q2 = 1 GeV2

Total
AS

(b) Q2 = 10 GeV2

2 R0
HbLHxL

2 R0
HaLHxL

0 2 4 6 8 10
rHGeV-1

L

0.1

0.2

0.3

0.4

0.5
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F ) σ̂(x, r). The Total integrand at
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2) for Q2 = 1 GeV2(blue long-dashed line) and Q2 = 10 GeV2 (red solid line), and the AS

integrand for Q2 = 1 GeV2(blue dot-dashed line) and Q2 = 10 GeV2 (red dashed line) integrands

of T00 for W = 90 GeV.

where we are in the saturation regime (λSat.(1 GeV2, 90 GeV)< 2), and the case Q2 =

10 GeV2 where saturation effect are less important (λSat.(10 GeV2, 90 GeV)> 2).

We can evaluate the percentages Nλ>λSat. of the dipoles large enough to be in the

bandwidth of the dipole cross-section, for each Q2,

Nλ>λSat.(Q2 = 1 GeV2, W = 90GeV) =

∫ ∞

λSat.(1, 90)
dλP

(AS)
00 (λ) = 70% , (6.20)

Nλ>λSat.(Q2 = 10 GeV2,W = 90GeV) =

∫ ∞

λSat.(10, 90)
dλP

(AS)
00 (λ) = 10% , (6.21)

as one can see in figure 13 (plotted in logarithmic scale). The large difference between

Nλ>λSat.(1, 90) and Nλ>λSat.(10, 90) indicates that the integrand of T00 shown in figure 14,

is very sensitive, when Q2 varies between 1 GeV2 and 10 GeV2, to the overlapping of

the dipole cross-section bandwidth (λ > λSat.(Q2,W )) and the radial dipole distribution

P
(AS)
00 (λ); we are then probing with a high accuracy the quality of the shape of the dipole

cross-section.

At high Q2 the tails of the distributions plays a dominant role. The tail of the dis-

tribution corresponds to the region where the integrand of the radial distribution can be

approximated by an exponential fall,

λK0(
√
yȳλ)

λ&λtail

−−−−→
√
λ exp(−√

yȳλ) , (6.22)

where typically

λtail ∼ 2

〈√yȳ 〉(AS)
00

≈ 4.5 . (6.23)

In the case Q2 = 1 GeV2, the bandwidth of the dipole cross-section mostly overlaps

with the peak of the distributions as λSat.(1, 90) ∼ λpeak, while it only overlaps with the

tail of the distribution when Q2 = 10 GeV2, λSat.(10, 90) ∼ λtail.
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Figure 14 shows the normalized integrand of T00. This summarize our discussion on

the respective role of the radial distribution and of the dipole cross-section. This integrand

is peaked near the saturation radius r ∼ 2R0(x). Comparing the cases Q2 = 10 GeV2 and

Q2 = 1 GeV2, we see that this peak is moving to the right as Q2 decreases, going through

the bandwidth of the dipole cross-section.

6.2 The radial distribution of the γ∗

T → ρT transition

In figure 15 are shown respectively for Q2 = 1 GeV2 and Q2 = 10 GeV2,

1. the full twist 3 (Total) rescaled radial distribution P11(λ, µ
2
F (Q

2)), where we distin-

guish the two following contributions,

• the WW contribution P̃WW
11 (λ, µ2F (Q

2)),

• the genuine contribution P̃ gen
11 (λ, µ2F (Q

2)),

such as7 P11(λ, µ
2
F ) =

∣
∣
∣P̃WW

11 (λ, µ2F ) + P̃ gen
11 (λ, µ2F )

∣
∣
∣,

2. the asymptotic rescaled radial distribution P
(AS)
11 (λ), using the asymptotic distribu-

tion amplitudes.

Contrary to the γ∗L → ρL transition, we see that the dependence on µ2F is quite strong if

one compares P11(λ, µ
2
F ) to P

(AS)
11 (λ). We cannot then restrict ourselves to only study the

asymptotic case.

It is interesting to estimate the average 〈λ〉 obtained with the different distributions

P11, P
(AS)
11 , PWW

11 and P gen
11 , where PWW

11 and P gen
11 have been normalized separately. The

explicit expression for the asymptotic distribution

P
(AS)
11 (λ) =

1

Q
P(AS)
11

(
λ

Q
,Q2

)

=
3

4

∫

dy (yȳ)3/2(y2 + ȳ2)λ2K1(
√
yȳλ) , (6.24)

leads to

〈λ〉(AS)
11 =

∫

dλλP 11,(AS)(λ) =
27π2

32
≈ 8.33 . (6.25)

The average value of λ estimated with the WW distribution is,

〈λ〉WW
11 (µ2F ) =

∫

dλλP 11,WW (λ, µ2F )

=

∫
dλλ

∫
dy
(
yȳϕWW

3 (y, µ2F )λK1(
√
yȳλ)

)

∫
dλ
∫
dy
(
yȳϕWW

3 (y, µ2F )λK1(
√
yȳλ)

)

=
9π2

512

(

48 + 13a
‖
2(µ

2
F )
)

µ2
F→∞−−−−→ 〈λ〉(AS)

11 . (6.26)

The effect of the term involving a
‖
2(µ

2
F ) in the r.h.s. of eq. (6.26) is under 4%, which

indicates that PWW
11 (λ, µ2F ) ∼ PAS

11 (λ, µ2F ) is a good approximation. The computation of

the average values of λ for the all the different contributions are given in table 4.

7The tilde is to differentiate the contributions P̃
WW (gen)
11 to the distribution P11 from the distributions

PWW
11 or P

(gen)
11 which are normalized separately.
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Figure 15. The Total P11(λ, µ
2
F (Q

2)) (red solid lines) results and their WW (blue dot-dashed lines)

and genuine (Gen) (orange dashed lines) contributions, as well as the AS (purple long-dashed line)

result P
(AS)
11 (λ) and the dipole cross-sections σ̃(x, λ) (black dot-dot-dashed lines) at W = 90 GeV2,

for Q2 = 1 GeV2 (thick lines) and Q2 = 10 GeV2 (thin lines).

Total WW genuine AS

〈λ〉11 (µ2F (1 GeV2)) 6.3 8.7 3.2 8.3

〈λ〉11 (µ2F (10 GeV2)) 7.3 8.5 3.5 8.3

Table 4. Average values of 〈λ〉 = 〈r Q〉 for the different contributions to the radial distribution for

two values of µ2
F (Q

2).

The results in table 4 show that the γ∗T → ρT transition is more sensitive to saturation

effects than the γ∗L → ρL transition as 〈λ〉11 is about twice larger than 〈λ〉00. Indeed it

means that more dipoles are produced in the bandwidth of the dipole cross-section by

the radial distribution P11(λ, µ
2
F ) than P00(λ, µ

2
F ). As a consequence the polarized cross-

section σT should be a more sensitive observable to probe features of the saturation regime

than σL.

The transverse dipole scale associated to the WW contribution, using eq. (6.12), is

〈µ〉WW
11 = Q

〈√
yȳ
〉WW

11
≈ Q

2.7
.

which is not so far from the values of the function µ2F (Q
2) =

Q2+M2
ρ

4 that is used here.

The tail of the distribution P̃WW
11 (λ, µ2F ) can be defined as,

λ2K1(
√
yȳλ)

λ>λtailWW

−−−−−−−→ λ
√
λ exp(−√

yȳλ) , (6.27)
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〈y1〉gen (qq̄g)
11 (µ2F ) 〈ȳ2〉gen (qq̄g)

11 (µ2F ) 〈yg〉gen (qq̄g)
11 (µ2F )

41.8% 41.8% 16.3%

Table 5. Average values 〈yi〉gen (qq̄g)
11 (µ2

F ) of the fraction of longitudinal momentum of the ρ meson

carried by each of the parton i.

where

λtailWW ∼ 4

〈√yȳ〉WW
11

≈ 10.9 , (6.28)

in which the average value 〈√yȳ〉WW
11 is approximated by 〈√yȳ〉AS

11 ≈ 0.37.

The genuine contribution P gen
11 (λ, µ2F ), which vanishes in the limit µ2F → ∞, depends

strongly on the factorization scale µ2F (Q
2), as one can see in figure 15. The distribution

P gen
11 (λ, µ2F ) can be split into two contributions,

P gen
11 (λ, µ2F ) = P̃

gen (qq̄)
11 (λ, µ2F ) + P̃

gen (qq̄g)
11 (λ, µ2F ) , (6.29)

where

P̃
gen (qq̄)
11 (λ, µ2F ) =

λ

Q2N11

∫

dy ψ
γ∗
T→ρT gen

(qq̄) (y, λ/Q;Q,µ2F ) , (6.30)

P̃
gen (qq̄g)
11 (λ, µ2F ) =

λ

Q2N11

∫

dy

∫ y

0
dy1 ψ

γ∗
T→ρT

(qq̄g) (y1, y, λ/Q;Q,µ2F ) . (6.31)

P̃
gen (qq̄)
11 (λ, µ2F ) involves the exchange of two-parton in the hard part and the genuine so-

lutions of the two-parton DAs, while Pgen (qq̄g)
11 (λ, µ2F ) involves the three-parton exchange

hard part Fγ∗
T (y1, y2, r;Q) defined in eq. (3.17).

The transverse scale µ present in P̃
gen (qq̄)
11 (λ, µ2F ) is of order 〈√yȳ〉gen (qq̄)

11 (µ2F ) ∼ 0.5

and is not very sensitive to µ2F . The choice of µ2F (Q
2) ∼ Q

2 is then a good choice for this

contribution.

The contribution P̃
gen (qq̄g)
11 (λ, µ2F ) have several transverse scales which are µ1, µ2, µq̄g,

µqg and µqq̄ defined by eqs. (3.18), each corresponding to a dipole configuration involv-

ing two of the three partons available in the process. In order to estimate these trans-

verse scales, we first evaluate the average fraction of momentum carried by the quark

〈y1〉gen (qq̄g)
11 (µ2F ), the antiquark 〈ȳ2〉gen (qq̄g)

11 (µ2F ) and the gluon 〈yg〉gen (qq̄g)
11 (µ2F ), defined as

〈yi〉gen (qq̄g)
11 (µ2F ) =

∫

dλλ

∫

dy2

∫ y2

0
dy1 yi ψ

γ∗
T→ρT

(qq̄g) (y1, y2, r;Q,µ
2
F )

∫

dλλ

∫

dy2

∫ y2

0
dy1 ψ

γ∗
T→ρT

(qq̄g) (y1, y2, r;Q,µ
2
F )

. (6.32)

Using the fact that 〈y1〉gen (qq̄g)
11 (µ2F ) = 〈ȳ2〉gen (qq̄g)

11 (µ2F ) due to the symmetry under the

exchange of the quark and the antiquark, the obtained values are given in table 5. An
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estimation of the transverse scales can be made, using

〈µ1〉
Q

=
〈µ2〉
Q

∼
√

〈y1〉 (1− 〈y1〉) ≈ 0.49 , (6.33)

〈µqg〉
Q

=
〈µq̄g〉
Q

∼
√

〈y1〉 〈yg〉
(1− 〈ȳ2〉)

≈ 0.34 , (6.34)

〈µqq̄〉
Q

∼
√

〈y1〉 〈ȳ2〉
(1− 〈yg〉)

≈ 0.46 , (6.35)

where we assume that the transverse scale values are roughly approximated by using the

average fractions of longitudinal momentum in eqs. (3.18).

These values are evaluated at µ2F (1 GeV2). Other values of µ2F have also been used,

leading to approximately the same results. We note that the function µF (Q
2) ≈ Q

2 is

close to the 〈µ1〉 and 〈µqq̄〉 values, and of the same order of magnitude than 〈µqg〉 but in

principle, one should adapt the choice of the factorization scale to the relevant transverse

scales at stake for each part of the process.

The WW and the genuine contributions to the radial distribution P11(λ, µ
2
F ) are of the

same order of magnitude for Q2 ∼ 10 GeV2, and the genuine contribution becomes even

more important for Q2 = 1 GeV2. At Q2 = 10 GeV2, as

〈λ〉gen11 (∼ 3.5) < λSat.(10 GeV2)(∼ 7.7) < 〈λ〉WW
11 (∼ 8.7) ,

most of the dipoles in the bandwidth of the dipole cross-section are provided by the WW

contribution, which explains why the predictions for σT are dominated by the WW pre-

dictions, as shown in figure 4(a), and consequently, why the results depend weakly on the

factorization scale.

However the fact that the genuine contribution is important even at large Q2, indicates

that the three-parton exchange between the γ∗T and ρT states is important in such relations

as the normalization eq. (6.36) of the ρmeson wave function [7, 87], and the electronic decay

width eq. (6.37) [7, 88],

1 =
∑

h,h̃

∫

dy

∫

d2r
∣
∣
∣Ψ

ρT
h,h̃

(y, r)
∣
∣
∣

2
, (6.36)

efρmρ(e
∗
γ · eρ) =

∑

h,h̃

∫

dy

∫

d2rΨρT
h,h̃

(y, r)Ψ
γ∗
T

h,h̃
(y, r) , (6.37)

where the exchange of only two-parton is assumed. Indeed, the r.h.s. of eq. (6.37), if one

expands at large Q2 the ρ meson wave function around r = 0 , is the WW approximated

result, which therefore misses the genuine contributions arising from three-parton corre-

lators, which can have a significant effect even for large Q2 values, see figure 15. These

relations are usually used to constrain the parameters of the wave function models of the ρ

meson, assuming that the meson is solely constituted of a quark and an antiquark, which

then consist in neglecting the higher Fock state contributions like the genuine contribution.

At Q2 = 1 GeV2, the peak of the genuine part of the radial distribution enters the dipole
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Figure 16. The Total contributions at µ2
F (Q

2) for Q2 = 1 GeV2 (blue long-dashed line) and

Q2 = 10 GeV2 (red solid line), and the AS contributions for Q2 = 1 GeV2 (blue dot-dashed line)

and Q2 = 10 GeV2 (red dashed line) to the normalized integrands of T11, i.e. P11(r,Q
2, µ2

F )σ̂(x, r),

for W = 90 GeV.

Model NT R2
T GeV−2 NL R2

L GeV−2 fTρ
Gaus-LC 4.47 21.9 1.79 10.4 fρ

Boosted Gaussian 0.911 0.853 12.9 R2
L 0.182

Table 6. Parameter of the “Gaus-LC” and the “Boosted Gaussian” models taken from ref. [47],

for Mρ = 0.776 GeV, fρ = 0.156 GeV, mf = 0.14 GeV and with fLρ = fρ .

cross-section bandwidth (λSat.(1, 90) < 〈λ〉gen11 ) and gives an important contribution to the

integrand of T11. When increasing Q2, as shown in figure 16 where we display the product

P11(r,Q
2, µ2F )σ̂(x, r) for Q

2 = 1 GeV2 and Q2 = 10 GeV2, we can note that the difference

between the AS and the Total results is a consequence of the genuine contribution growing

when Q2 decreases. It is the convolution with the dipole cross-section which washes-out

the effect of these genuine twist-3 contributions.

6.3 Comparison with the radial distributions obtained from models of the ρ

meson wave function.

It is instructive to compare shapes of the radial distributions P00 and P11 used in our

analysis with those used in two other approaches which involve the overlap of the virtual

photon wave functions and of the ρ meson wave functions:

• the “Boosted Gaussian” (BG) model [46],

• the “Gaus-LC” model [55].

We use here the convention and the parameter values of ref. [47], which for completeness

are shown in table 6. The scalar parts of the wave functions are given by,
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φGauss-LC
T (y, r) = NT (y ȳ)2 e

− r2

2R2
T , (6.38)

φGauss-LC
L (y, r) = NL y ȳ e

− r2

2R2
L , (6.39)

φBG
L,T (y, r) = NL,T y ȳ exp

(

−
m2

fR
2
L,T

8yȳ
− 2yȳr2

R2
L,T

+
m2

fR
2
L,T

2

)

. (6.40)

The overlaps with the virtual photon wave function are,
∑

h,h̄

ΨρT ∗

h,h̃
(y, r)Ψ

γ∗
T

h,h̃
(y, r) ∝ m2

fK0(µr)φT (y, r)− (y2 + ȳ2)µK1(µr)∂rφT (y, r) , (6.41)

∑

h,h̄

ΨρL∗

h,h̃
(y, r)Ψ

γ∗
L

h,h̃
(y, r) ∝ yȳK0(µr)

(

mρφL(y, r) + δ
m2

f −∇2
r

mρyȳ
φL(y, r)

)

, (6.42)

with δ = 0 for the Gaus-LC model and δ = 1 for the BG model. The radial distributions

thus read,

PL,T (r) =
1

NL,T
r

∫

dy
∑

h,h̄

Ψ
ρL,T ∗

h,h̃
(y, r)Ψ

γ∗
L,T

h,h̃
(y, r) , (6.43)

where the factors NL,T normalize the distributions PL,T (r). Comparing the distributions

at Q2 = 1 GeV2 (figures 17(a) and 17(c)) and Q2 = 10 GeV2 (figures 17(b) and 17(d))

we see that at large Q2, in the bandwidth of the dipole cross-section, our distributions are

converging with the distributions obtained from the Gaus-LC and BG models.

In the γ∗T → ρT case in figures 17(c) and 17(d), we see that the BG and Gaus-LC models

are closer to the distribution P11 than to the asymptotic distribution. When compared to

other distributions, the asymptotic distribution PAS
11 is shifted to the right, thus selecting

larger dipole sizes.

In the γ∗L → ρL case, in figure 17(a) we see that the distributions from the Gaus-LC

and BG models are not close to our predictions, indicating that the higher twist corrections

are presumably more important at small Q2 than in the γ∗T → ρT transition.

These qualitative remarks remains the same when using the AAMQS dipole models,

and we expect that they are model independent.

7 Conclusions

We performed phenomenological analysis of experimental data from HERA on ρ meson

electroproduction within the approach based on the recently derived [44] impact parameter

representation of γ∗ → ρ impact factor up to twist-3 accuracy. The important feature of

this representation consists in the inclusion of contributions coming from both two- and

three-partonic Fock states, maintaining a close connection with the dipole model picture.

Consequently, it was possible to include in our framework based on collinear factorization,

the saturation effects. The inclusion of saturation effects in our approach was done in a

standard way by using the existing models for the dipole cross-section, which saturate for

large dipole sizes, in the factorized form of the scattering amplitude. Our predictions show

that we can get simultaneously good predictions for the polarized cross-sections σT and σL.

The ability of the model to reproduce the data is the confirmation of the following points:

– 33 –



J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

ΓL
* ® ΡL Q2 = 1 GeV2

 Total

Σ
`
Hx, rL � H5Σ0L

AS
BG

Gaus-LC

0.1 0.2 0.5 1.0 2.0 5.0 10.0
rHGeV-1

L

0.1

0.2

0.3

0.4

0.5

0.6

(a) γ∗
L → ρL radial distributions and σ̂ at Q2 =

1 GeV2.
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(b) γ∗
L → ρL radial distributions and σ̂ at Q2 =
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(c) γ∗
T → ρT radial distributions and σ̂ at Q2 =

1 GeV2.
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(d) γ∗
T → ρT radial distributions and σ̂ at Q2 =

10 GeV2.

Figure 17. The Gauss-LC (green, long dashed), BG (blue, dot-dot-dashed), Total (red, solid)

and AS (red, dashed) radial distributions for the γ∗L → ρL transition (top) and for the γ∗T → ρT
transition (bottom), vs r for Q2 = 1 GeV2 (left) and Q2 = 10 GeV2 (right), as well as the dipole

cross-section σ̂(x, r) rescaled by the factor 5σ0 for W = 90 GeV (black, dot-dashed).

• the factorization of the dipole cross-section in the helicity amplitudes of the elec-

troproduction of the ρ meson works and, as an universal quantity, is the same for

T00 and T11, giving the good energy dependence and normalizations of the polarized

cross-sections,

• the collinear factorization procedure of the ρ meson is justified and works successfully

beyond the leading twist.

As expected the model has some limits due to the truncation of the twist expansion.

Thanks to HERA data, we have identified the virtualities Q2
min,L(T ) ∼ 5 GeV2 were the

higher twist corrections become important, which is a motivation to compute impact factors

beyond the twist 3 accuracy in order to probe the genuine saturation regime which starts

at Q2
S ∼ 1GeV2.

Other helicity amplitudes could be computed keeping the same approach, they would

be useful in the t 6= tmin regime. The kinematics of the impact factor can be also extended

to take into account the t−dependence of the impact factors, which would be a test for the

dipole models which include the impact parameter dependence, providing a probe of the

proton shape [7], in particular through local geometrical scaling [89, 90].

Data also exist for φ leptoproduction. In this case quark-mass effects should be taken

into account, in particular, because this allows the transversely polarized φ to couple
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through its chiral-odd twist-2 DA. Indeed, as it was pointed out in [42], the fact that

the ratio T11/T00 is not the same (after trivial mass rescaling) for ρ and φ mesons points

to the importance of this effect. This is also beyond the scope of our present study, but

may open an interesting way for accessing chiral-odd DAs.

The next-to-leading order effects — both on the evolution and on the impact factor -

should be studied, since it is now known that both may have a important phenomenological

effect [91–96].

On the experimental side, the future Electron-Ion Collider [97] and Large Hadron

Electron Collider [98] with a high center-of-mass energy and high luminosities, as well as

the International Linear Collider [99–101] will hopefully open the opportunity to study in

more detail the hard diffractive production of mesons [91–93, 102–106].
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A Distribution amplitudes in the LCCF parametrization

The seven chiral-even8 ρ-meson DAs up to twist 3 are defined through9 the following matrix

elements of nonlocal light-cone operators [40], for two-parton

〈
ρ(pρ)

∣
∣ψ̄(z)γµψ(0)

∣
∣ 0
〉
= mρfρ

∫ 1

0
dy eiyp.z[ϕ1(y;µ

2
F )(e

∗.n)pµ + ϕ3(y;µ
2
F )e
∗
Tµ] , (A.1)

〈
ρ(pρ)

∣
∣ψ̄(z)γ5γµψ(0)

∣
∣ 0
〉
= imρfρR

∗
⊥µ

∫ 1

0
dy eiyp.zϕA(y;µ

2
F ) , (A.2)

〈ρ(pρ)| ψ̄(z)γµi
←→

∂Tα ψ(0) |0〉 = mρfρ pµe
∗
Tα

∫ 1

0
dy eiyp.zϕT

1 (y;µ
2
F ) , (A.3)

〈ρ(pρ)| ψ̄(z)γ5γµi
←→

∂Tα ψ(0) |0〉 = imρfρ pµR
∗
⊥α

∫ 1

0
dy eiyp.zϕT

A(y;µ
2
F ) , (A.4)

8The chiral-odd twist-2 DA for the transversely polarized ρ meson does not contribute to the process

considered at the accuracy discussed here. This is also true in the approach based on collinear factorization

of generalized parton distributions [107, 108].
9In the approximation where the mass of the quarks is neglected with respect to the mass of the ρ meson.
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and three-parton correlators

〈
ρ(pρ)

∣
∣ψ̄(z1)γµgA

T
α(z2)ψ(0)

∣
∣ 0
〉
= mρf

V
3ρ(µ

2
F ) pµ e

∗
Tα (A.5)

×
∫ 1

0
dy2

∫ y2

0
dy1e

iy1p.z1+i(y2−y1)p.z2B(y1, y2;µ
2
F )

〈
ρ(pρ)

∣
∣ψ̄(z1)γ5γµgA

T
α(z2)ψ(0)

∣
∣ 0
〉
= imρf

A
3ρ(µ

2
F ) pµR

∗
⊥α (A.6)

×
∫ 1

0
dy2

∫ y2

0
dy1 e

iy1p.z1+i(y2−y1)p.z2D(y1, y2;µ
2
F ) ,

where we used the standard notation
←→
∂ρ =

1
2(
−→
∂ρ −

←−
∂ρ ) .

DAs are linked by linear differential relations derived from equations of motion and

n−independency condition [39, 40]. The solutions for ϕP (y) ≡ {ϕ3, ϕA, ϕ
T
1 , ϕ

T
A} are the

sum of the solutions in the so-called WW approximation and of genuine solutions,

ϕP (y) = ϕWW
P (y) + ϕgen

P (y) . (A.7)

The WW approximation consists in neglecting the contribution from three-parton opera-

tors, thus taking B(y1, y2;µ
2
F ) = D(y1, y2;µ

2
F ) = 0. Then, ϕWW

P (y) become functions of

ϕ1(y) only, and their explicit expressions [109] are given by

ϕWW
3 (y;µ2F ) =

1

2

[∫ y

0
du
ϕ1(u;µ

2
F )

ū
+

∫ 1

y
du
ϕ1(u;µ

2
F )

u

]

, (A.8)

ϕWW
A (y;µ2F ) =

1

2

[∫ y

0
du
ϕ1(u;µ

2
F )

ū
−
∫ 1

y
du
ϕ1(u;µ

2
F )

u

]

, (A.9)

ϕT WW
A (y;µ2F ) = −1

2

[

ȳ

∫ y

0
du
ϕ1(u;µ

2
F )

ū
+ y

∫ 1

y
du
ϕ1(u;µ

2
F )

u

]

, (A.10)

ϕT WW
1 (y;µ2F ) =

1

2

[

−ȳ
∫ y

0
du
ϕ1(u;µ

2
F )

ū
+ y

∫ 1

y
du
ϕ1(u;µ

2
F )

u

]

. (A.11)

Genuine solutions only depend on {B(y1, y2;µ
2
F ), D(y1, y2;µ

2
F )} or equivalently on the com-

binations {S(y1, y2;µ2F ),M(y1, y2;µ
2
F )} defined by eq. (2.8), namely

ϕgen
3 (y;µ2F ) =

1

2

[∫ 1

ȳ
du

A(u;µ2F )

u
+

∫ 1

y
du

A(u;µ2F )

u

]

(A.12)

ϕgen
A (y;µ2F ) =

1

2

[∫ 1

ȳ
du

A(u;µ2F )

u
−
∫ 1

y
du

A(u;µ2F )

u

]

, (A.13)

where A(u;µ2F ) has the compact form

A(u;µ2F ) =

∫ u

0
dy2

[
1

y2 − u
− ∂u

]

M(y2, u;µ
2
F ) +

∫ 1

u
dy2

1

y2 − u
M(u, y2;µ

2
F ) (A.14)

and it obeys the conditions

∫ 1

0
duA(u;µ2F ) = 0 and

∫ 1

0
du ūA(u;µ2F ) = 0 , (A.15)

– 36 –



J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

coming, respectively, from the constraints

∫ 1

0
ϕgen
3 (y; µ2F ) dy = 0 and

∫ 1

0
(y − ȳ)ϕgen

A (y; µ2F ) dy = 0 . (A.16)

Equations (A.12) and (A.13) determine the expressions of ϕgen
1T (y;µ2F ) and ϕ

gen
AT (y;µ

2
F ) as

ϕT gen
1 (y;µ2F ) =

∫ y

0
duϕgen

3 (u;µ2F ) (A.17)

−1

2

∫ y

0
dy1

∫ 1

y
dy2

S(y1, y2;µ
2
F ) +M(y1, y2;µ

2
F )

y2 − y1
,

ϕT gen
A (y;µ2F ) =

∫ y

0
duϕgen

A (u;µ2F ) (A.18)

−1

2

∫ y

0
dy1

∫ 1

y
dy2

S(y1, y2;µ
2
F )−M(y1, y2;µ

2
F )

y2 − y1
.

The correspondence between our set of DAs and the one defined in ref. [50] is achieved

through the following dictionary derived in ref. [40]. It reads, for the two-parton vector DAs,

ϕ1(y) = φ‖(y), ϕ3(y) = g
(v)
⊥ (y) , (A.19)

and for the axial DA,

ϕA(y) = −1

4

∂g
(a)
⊥ (y)

∂y
. (A.20)

For the three-parton DAs, the identification is

B(y1, y2) = −V (y1, 1− y2)

y2 − y1
and D(y1, y2) = −A(y1, 1− y2)

y2 − y1
. (A.21)

Explicit forms for ϕ1, B, andD are obtained with the help of the results of ref. [50] obtained

within the QCD sum rules approach. The first terms of the expansion in the momentum

fractions of the three independent DAs thus have the form

ϕ1(y, µ
2
F ) = 6 yȳ

[

1 + a
‖
2(µ

2
F )

3

2
(5(y − ȳ)2 − 1)

]

, (A.22)

B(y1, y2;µ
2
F ) = −5040 y1ȳ2(y1 − ȳ2)(y2 − y1) , (A.23)

D(y1, y2;µ
2
F ) = −360 y1ȳ2(y2 − y1)

[

1 +
ωA
{1,0}(µ

2
F )

2
(7(y2 − y1)− 3)

]

. (A.24)

The dependence on the renormalization scale µF of the coupling constants a
‖
2, ω

A
{1,0}, ζ

A
3 ,

and ζV3 are given in ref. [50]. In appendix B we present both the evolution equations and

the values of these constants at µ2F = 1GeV2 used in our analysis, as well as the dependence

on µF of the DAs.
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αs 0.52

ωA
{1,0} -3.0

ωV
[0,1] 28/3

a
‖
2 0.15

ζA3 0.030

ζV3 0.011

Table 7. Coupling constants and Gegenbauer coefficients entering the ρ meson DAs, at the scale

µ0 = 1GeV updated in ref. [51]. Note that in ref. [50] the normalization are such that fV,A
3ρ [50]

=

mρ f
V,A

3ρ [here].

B Evolutions of DAs and coupling constants with the renormalization

scale

The parameters entering the DAs at µ20 = 1 GeV2 are updated10 in ref. [51] and their

evolution equations are given in ref. [50], we recall in table 7 their values for the ρ meson.

For a
‖
2, the evolution equation is

a
‖
2(µ

2) = a
‖
2(µ

2
0)L(µ

2)γ2/b0 (B.1)

with

L(µ2) =
αs(µ

2)

αs(µ20)
=

1

1 + b0
π αs(µ20) ln(µ

2/µ20)
(B.2)

where b0 = (11Nc − 2Nf )/3 , γn = 4CF

(

ψ(n+ 2) + γE − 3
4 − 1

2(n+1)(n+2)

)

and ψ(n) =

−γE +
∑n+1

k=1 1/k . For the f
A
3ρ coupling constant, the evolution is given by

fA3ρ(µ
2) = fA3ρ(µ

2
0)L(µ

2)Γ
−
2 /b0 (B.3)

with Γ−2 = −CF

3 +3Cg (Cg = Nc). The couplings fV3ρ and ωA
{0,1}(µ

2)fA3ρ(µ
2) enter a matrix

evolution equation [50]. Defining

V (µ2) =






ωV
[0,1]f

V
3ρ(µ

2)− ωA
{0,1}(µ

2)fA3ρ(µ
2)

ωV
[0,1]f

V
3ρ(µ

2) + ωA
{0,1}(µ

2)fA3ρ(µ
2)




 , (B.4)

it reads

V (µ2) = L(µ2)Γ
+
3 /b0V (1) , (B.5)

with Γ+
3 given by

Γ+
3 =






8
3CF + 7

3Cg
2
3CF − 2

3Cg

5
3CF − 4

3Cg
1
6CF + 4Cg




 . (B.6)

10We use the notations of ref. [50] for the parameters, they are related to the updated parameters of

ref. [51] by the following relations, ζA3 = ζ
‖
3 , ζ

V
3 = ω

‖
3/14 and ζ

‖
3ω

A
{1,0} = ω̃

‖
3 .
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Hence we get the dependence of fV3ρ and ω
A
{0,1} by diagonalizing the system. The dependence

of the DAs on the renormalization scale is shown in ref. [42]. The DAs exhibit a non-

negligible effect of QCD evolution, in particular, for the genuine twist-3 contributions. We

recall that we chose the collinear factorization scale of production of the ρ meson µF to be

equal to the renormalization scale of the process µ, thus the dependence of the coupling

constant in µF is given by eqs. (B.1), (B.3), (B.5).

C Dipole-proton scattering amplitude in the GS-Model

In this appendix we calculate the Fourier transform of the proton impact factor. We denote

by r = |r| the transverse size of the dipole. We should thus compute

σ(r) = A

∫

d2k
1

(k2)2

(
1

M2
− 1

M2 + k2

)

(1− eik·r)(1− e−ik·r) . (C.1)

Using the notation k = |k| , the angular integration leads to

σ(r) = 4π A

∫

dk
1

k3

(
1

M2
− 1

M2 + k2

)

(1− J0(k r)) . (C.2)

Relying on the identity

1

k3

(
1

M2
− 1

M2 + k2

)

=
1

M4

(
1

k
− k

M2 + k2

)

, (C.3)

we rewrite σ(r) as

σ(r) =
4πA

M4
I (C.4)

with

I =

∫ ∞

0

dk

k
−
∫ ∞

0

dk

k
J0(k r)−

∫ ∞

0

k

M2 + k2
dk +

∫ ∞

0

k

M2 + k2
J0(k r) dk

= I1 − I2 − I3 + I4 . (C.5)

The integral I4 is UV and IR finite and reads [110]

I4 = K0(M r) . (C.6)

The integrals I1 and I2 are both IR divergent and are regularized through dimensional

regularization, while the UV divergences of I1 and I3 are regularized through a cut-off Λ .

We thus write

I1 =

∫ Λ

0

dk

k1−ǫ
∼ 1

ǫ
+ lnΛ . (C.7)

Using the relation [110]

∫ ∞

0
xµ Jν(a x) dx = 2µa−µ−1

Γ
(
1
2 + 1

2ν +
1
2µ
)

Γ
(
1
2 + 1

2ν − 1
2µ
) (C.8)
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we obtain

I2 =

∫ ∞

0

dk

k1−ǫ
J0(k r) = 2−1+ǫ r−ǫ

Γ
(
ǫ
2

)

Γ
(
1− ǫ

2

) ∼ 1

ǫ
− ln r − γ + ln 2 . (C.9)

Finally,

I3 =

∫ Λ

0

k

M2 + k2
dk ∼ ln Λ− lnM . (C.10)

Thus, combining eqs. (C.7), (C.9), (C.10), (C.6) we get

I =

(

γ + ln
M r

2
+K0(M r)

)

, (C.11)

and thus

σ(r) =
4π A

M4

(

γ + ln
M r

2
+K0(M r)

)

, (C.12)

which behaves, in the small r limit as

σ(r) ∼ π A

M4

(

1− γ − ln
M r

2

)

(M r)2 . (C.13)

D Results using the GBW and AAMQSb models

We present some of the predictions obtained by using the GBW or the AAMQSb model

for the dipole cross-section. As expected the results are not so far from the ones obtained

with the AAMQSa model. In figure 18 and 19 are respectively shown for the AAMQSb

and the GBW model, the polarized cross-sections σT and σT . The spin density matrix

element r0400 predictions using these dipole models are shown in figure 20, for completeness

we show also the prediction obtained with the GS model.
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(a) σT vs H1 data [4].
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W=75 GeV

Total
AS

2 5 10 20
Q2HGeV2L

1

5

10

50

100

500

ΣLHnbL

(b) σL vs H1 data [4].

Figure 18. AS (purple dashed lines), WW (blue long dashed lines) and Total (red solid lines)

contributions to σT and σL vs Q2, for W = 75 GeV, using the AAMQSb-model, compared to the

data of H1 [4].
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(a) σT vs H1 data [4].
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(b) σL vs H1 data [4].

Figure 19. AS (purple dashed lines), WW (blue long dashed lines) and Total (red solid lines)

contributions to σT and σL vs Q2, for W = 75 GeV, using the GBW-model, compared to the data

of H1 [4].
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(a) r0400 contributions using AAMQSb-model vs H1

data.
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(b) r0400 contributions using AAMQSb-model vs

ZEUS data.
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(c) r0400 contributions using GBW-model vs H1 data.
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(d) r0400 contributions using GBW-model vs ZEUS

data.
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(e) r0400 contributions using GS-model vs H1 data.
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(f) r0400 contributions using GS-model vs ZEUS data.

Figure 20. Predictions for r0400 vsW and Q2 compared respectively with H1 [4] and ZEUS [3] data,

the AS (purple dashed lines), WW (blue long dashed lines), Total (red solid lines) contributions

are shown separately using the AAMQSb-model, the GBW-model or the GS-model.

– 43 –



J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] ZEUS collaboration, J. Breitweg et al., Exclusive electroproduction of ρ0 and J/ψ mesons

at HERA, Eur. Phys. J. C 6 (1999) 603 [hep-ex/9808020] [INSPIRE].

[2] ZEUS collaboration, J. Breitweg et al., Measurement of the spin density matrix elements in

exclusive electroproduction of ρ0 mesons at HERA, Eur. Phys. J. C 12 (2000) 393

[hep-ex/9908026] [INSPIRE].

[3] ZEUS collaboration, S. Chekanov et al., Exclusive ρ0 production in deep inelastic scattering

at HERA, PMC Phys. A 1 (2007) 6 [arXiv:0708.1478] [INSPIRE].

[4] H1 collaboration, F. Aaron et al., Diffractive Electroproduction of ρ and φ Mesons at

HERA, JHEP 05 (2010) 032 [arXiv:0910.5831] [INSPIRE].

[5] A. Donnachie and P. Landshoff, Exclusive ρ Production in Deep Inelastic Scattering,

Phys. Lett. B 185 (1987) 403 [INSPIRE].

[6] J. Nemchik, N.N. Nikolaev, E. Predazzi and B. Zakharov, Color dipole systematics of

diffractive photoproduction and electroproduction of vector mesons,

Phys. Lett. B 374 (1996) 199 [hep-ph/9604419] [INSPIRE].

[7] S. Munier, A. Stasto and A.H. Mueller, Impact parameter dependent S-matrix for dipole

proton scattering from diffractive meson electroproduction, Nucl. Phys. B 603 (2001) 427

[hep-ph/0102291] [INSPIRE].

[8] H. Cheng and T.T. Wu, Photon-photon scattering close to the forward direction,

Phys. Rev. D 1 (1970) 3414 [INSPIRE].

[9] G. Frolov and L. Lipatov, Some processes in quantum electrodynamics at high energies, Sov.

J. Nucl. Phys. 13 (1971) 333.

[10] V. Gribov, L. Lipatov and G. Frolov, The leading singularity in the j plane in quantum

electrodynamics, Sov. J. Nucl. Phys. 12 (1971) 543 [INSPIRE].

[11] S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small x heavy flavor

production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

[12] S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy

flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

[13] J.C. Collins and R.K. Ellis, Heavy quark production in very high-energy hadron collisions,

Nucl. Phys. B 360 (1991) 3 [INSPIRE].

[14] E. Levin, M. Ryskin, Y. Shabelski and A. Shuvaev, Heavy quark production in semihard

nucleon interactions, Sov. J. Nucl. Phys. 53 (1991) 657 [INSPIRE].

[15] V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk Singularity in Asymptotically

Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

[16] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills

Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].

– 44 –

http://dx.doi.org/10.1007/s100529901051
http://arxiv.org/abs/hep-ex/9808020
http://inspirehep.net/search?p=find+EPRINT+hep-ex/9808020
http://dx.doi.org/10.1007/s100529900246
http://arxiv.org/abs/hep-ex/9908026
http://inspirehep.net/search?p=find+EPRINT+hep-ex/9908026
http://dx.doi.org/10.1186/1754-0410-1-6
http://arxiv.org/abs/0708.1478
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1478
http://dx.doi.org/10.1007/JHEP05(2010)032
http://arxiv.org/abs/0910.5831
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5831
http://dx.doi.org/10.1016/0370-2693(87)91024-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B185,403
http://dx.doi.org/10.1016/0370-2693(96)00153-0
http://arxiv.org/abs/hep-ph/9604419
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9604419
http://dx.doi.org/10.1016/S0550-3213(01)00168-7
http://arxiv.org/abs/hep-ph/0102291
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102291
http://dx.doi.org/10.1103/PhysRevD.1.3414
http://inspirehep.net/search?p=find+J+Phys.Rev.,D1,3414
http://inspirehep.net/search?p=find+J+Sov.J.Nucl.Phys.,12,543
http://dx.doi.org/10.1016/0370-2693(90)91601-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B242,97
http://dx.doi.org/10.1016/0550-3213(91)90055-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B366,135
http://dx.doi.org/10.1016/0550-3213(91)90288-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B360,3
http://inspirehep.net/search?p=find+J+Sov.J.Nucl.Phys.,53,657
http://dx.doi.org/10.1016/0370-2693(75)90524-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B60,50
http://inspirehep.net/search?p=find+Sov.Phys.JETP,44,443


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[17] E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge

Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

[18] I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics,

Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

[19] V.S. Fadin, R. Fiore and M. Kotsky, Gluon Regge trajectory in the two loop approximation,

Phys. Lett. B 387 (1996) 593 [hep-ph/9605357] [INSPIRE].

[20] G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel,

Phys. Lett. B 412 (1997) 396 [Erratum ibid. B 417 (1998) 390] [hep-ph/9707390]

[INSPIRE].

[21] M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation,

Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].

[22] V.S. Fadin and L. Lipatov, BFKL pomeron in the next-to-leading approximation,

Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].

[23] A.H. Mueller, Small x Behavior and Parton Saturation: A QCD Model,

Nucl. Phys. B 335 (1990) 115 [INSPIRE].

[24] N.N. Nikolaev and B. Zakharov, Color transparency and scaling properties of nuclear

shadowing in deep inelastic scattering, Z. Phys. C 49 (1991) 607 [INSPIRE].

[25] S.J. Brodsky, L. Frankfurt, J. Gunion, A.H. Mueller and M. Strikman, Diffractive

leptoproduction of vector mesons in QCD, Phys. Rev. D 50 (1994) 3134 [hep-ph/9402283]

[INSPIRE].

[26] L. Frankfurt, W. Koepf and M. Strikman, Hard diffractive electroproduction of vector

mesons in QCD, Phys. Rev. D 54 (1996) 3194 [hep-ph/9509311] [INSPIRE].

[27] J.C. Collins, L. Frankfurt and M. Strikman, Factorization for hard exclusive

electroproduction of mesons in QCD, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433]

[INSPIRE].

[28] A. Radyushkin, Nonforward parton distributions, Phys. Rev. D 56 (1997) 5524

[hep-ph/9704207] [INSPIRE].

[29] G.R. Farrar and D.R. Jackson, The Pion Form-Factor, Phys. Rev. Lett. 43 (1979) 246

[INSPIRE].

[30] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics:

Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons,

Phys. Lett. B 87 (1979) 359 [INSPIRE].

[31] A. Efremov and A. Radyushkin, Factorization and Asymptotical Behavior of Pion

Form-Factor in QCD, Phys. Lett. B 94 (1980) 245 [INSPIRE].

[32] D.Y. Ivanov, L. Szymanowski and G. Krasnikov, Vector meson electroproduction at

next-to-leading order, JETP Lett. 80 (2004) 226 [hep-ph/0407207] [INSPIRE].

[33] H.-n. Li and G.F. Sterman, The perturbative pion form-factor with Sudakov suppression,

Nucl. Phys. B 381 (1992) 129 [INSPIRE].

[34] M. Vanderhaeghen, P.A. Guichon and M. Guidal, Deeply virtual electroproduction of

photons and mesons on the nucleon: Leading order amplitudes and power corrections,

Phys. Rev. D 60 (1999) 094017 [hep-ph/9905372] [INSPIRE].

– 45 –

http://inspirehep.net/search?p=find+J+Sov.Phys.JETP,45,199
http://inspirehep.net/search?p=find+J+Sov.J.Nucl.Phys.,28,822
http://dx.doi.org/10.1016/0370-2693(96)01054-4
http://arxiv.org/abs/hep-ph/9605357
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605357
http://dx.doi.org/10.1016/S0370-2693(97)01073-3
http://arxiv.org/abs/hep-ph/9707390
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9707390
http://dx.doi.org/10.1016/S0370-2693(98)00551-6
http://arxiv.org/abs/hep-ph/9803389
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803389
http://dx.doi.org/10.1016/S0370-2693(98)00473-0
http://arxiv.org/abs/hep-ph/9802290
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802290
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B335,115
http://dx.doi.org/10.1007/BF01483577
http://inspirehep.net/search?p=find+J+Z.Physik,C49,607
http://dx.doi.org/10.1103/PhysRevD.50.3134
http://arxiv.org/abs/hep-ph/9402283
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9402283
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://arxiv.org/abs/hep-ph/9509311
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9509311
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://arxiv.org/abs/hep-ph/9611433
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9611433
http://dx.doi.org/10.1103/PhysRevD.56.5524
http://arxiv.org/abs/hep-ph/9704207
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704207
http://dx.doi.org/10.1103/PhysRevLett.43.246
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,43,246
http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B87,359
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B94,245
http://dx.doi.org/10.1134/1.1813676
http://arxiv.org/abs/hep-ph/0407207
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407207
http://dx.doi.org/10.1016/0550-3213(92)90643-P
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B381,129
http://dx.doi.org/10.1103/PhysRevD.60.094017
http://arxiv.org/abs/hep-ph/9905372
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905372


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[35] S. Goloskokov and P. Kroll, Vector meson electroproduction at small Bjorken-x and

generalized parton distributions, Eur. Phys. J. C 42 (2005) 281 [hep-ph/0501242]

[INSPIRE].

[36] S. Goloskokov and P. Kroll, The longitudinal cross-section of vector meson

electroproduction, Eur. Phys. J. C 50 (2007) 829 [hep-ph/0611290] [INSPIRE].

[37] S. Goloskokov and P. Kroll, The role of the quark and gluon GPDs in hard vector-meson

electroproduction, Eur. Phys. J. C 53 (2008) 367 [arXiv:0708.3569] [INSPIRE].

[38] D.Y. Ivanov and R. Kirschner, Polarization in diffractive electroproduction of light vector

mesons, Phys. Rev. D 58 (1998) 114026 [hep-ph/9807324] [INSPIRE].

[39] I. Anikin, D.Y. Ivanov, B. Pire, L. Szymanowski and S. Wallon, On the description of

exclusive processes beyond the leading twist approximation, Phys. Lett. B 682 (2010) 413

[arXiv:0903.4797] [INSPIRE].

[40] I. Anikin, D.Y. Ivanov, B. Pire, L. Szymanowski and S. Wallon, QCD factorization of

exclusive processes beyond leading twist: γ∗T → ρT impact factor with twist three accuracy,

Nucl. Phys. B 828 (2010) 1 [arXiv:0909.4090] [INSPIRE].

[41] I. Ginzburg, S. Panfil and V. Serbo, Possibility of the Experimental Investigation of the

QCD Pomeron in Semihard Processes at the γγ Collisions, Nucl. Phys. B 284 (1987) 685

[INSPIRE].

[42] I. Anikin, A. Besse, D.Y. Ivanov, B. Pire, L. Szymanowski et al., A phenomenological study

of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson,

Phys. Rev. D 84 (2011) 054004 [arXiv:1105.1761] [INSPIRE].

[43] J. Gunion and D.E. Soper, Quark Counting and Hadron Size Effects for Total

Cross-Sections, Phys. Rev. D 15 (1977) 2617 [INSPIRE].

[44] A. Besse, L. Szymanowski and S. Wallon, The Dipole Representation of Vector Meson

Electroproduction Beyond Leading Twist, Nucl. Phys. B 867 (2013) 19 [arXiv:1204.2281]

[INSPIRE].

[45] J. Nemchik, N.N. Nikolaev, E. Predazzi and B. Zakharov, Color dipole phenomenology of

diffractive electroproduction of light vector mesons at HERA, Z. Phys. C 75 (1997) 71

[hep-ph/9605231] [INSPIRE].

[46] J.R. Forshaw, R. Sandapen and G. Shaw, Color dipoles and ρ, φ electroproduction,

Phys. Rev. D 69 (2004) 094013 [hep-ph/0312172] [INSPIRE].

[47] H. Kowalski, L. Motyka and G. Watt, Exclusive diffractive processes at HERA within the

dipole picture, Phys. Rev. D 74 (2006) 074016 [hep-ph/0606272] [INSPIRE].

[48] J. Forshaw and R. Sandapen, Extracting the ρ meson wavefunction from HERA data,

JHEP 11 (2010) 037 [arXiv:1007.1990] [INSPIRE].

[49] J. Forshaw and R. Sandapen, Extracting the Distribution Amplitudes of the ρ meson from

the Color Glass Condensate, JHEP 10 (2011) 093 [arXiv:1104.4753] [INSPIRE].

[50] P. Ball, V.M. Braun, Y. Koike and K. Tanaka, Higher twist distribution amplitudes of

vector mesons in QCD: Formalism and twist three distributions,

Nucl. Phys. B 529 (1998) 323 [hep-ph/9802299] [INSPIRE].

[51] P. Ball, V. Braun and A. Lenz, Twist-4 distribution amplitudes of the K∗ and φ mesons in

QCD, JHEP 08 (2007) 090 [arXiv:0707.1201] [INSPIRE].

– 46 –

http://dx.doi.org/10.1140/epjc/s2005-02298-5
http://arxiv.org/abs/hep-ph/0501242
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501242
http://dx.doi.org/10.1140/epjc/s10052-007-0228-4
http://arxiv.org/abs/hep-ph/0611290
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611290
http://dx.doi.org/10.1140/epjc/s10052-007-0466-5
http://arxiv.org/abs/0708.3569
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C53,367
http://dx.doi.org/10.1103/PhysRevD.58.114026
http://arxiv.org/abs/hep-ph/9807324
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807324
http://dx.doi.org/10.1016/j.physletb.2009.11.040
http://arxiv.org/abs/0903.4797
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4797
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.022
http://arxiv.org/abs/0909.4090
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4090
http://dx.doi.org/10.1016/0550-3213(87)90057-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B284,685
http://dx.doi.org/10.1103/PhysRevD.84.054004
http://arxiv.org/abs/1105.1761
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1761
http://dx.doi.org/10.1103/PhysRevD.15.2617
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2617
http://dx.doi.org/10.1016/j.nuclphysb.2012.09.011
http://arxiv.org/abs/1204.2281
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2281
http://dx.doi.org/10.1007/s002880050448
http://arxiv.org/abs/hep-ph/9605231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605231
http://dx.doi.org/10.1103/PhysRevD.69.094013
http://arxiv.org/abs/hep-ph/0312172
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312172
http://dx.doi.org/10.1103/PhysRevD.74.074016
http://arxiv.org/abs/hep-ph/0606272
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0606272
http://dx.doi.org/10.1007/JHEP11(2010)037
http://arxiv.org/abs/1007.1990
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1990
http://dx.doi.org/10.1007/JHEP10(2011)093
http://arxiv.org/abs/1104.4753
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4753
http://dx.doi.org/10.1016/S0550-3213(98)00356-3
http://arxiv.org/abs/hep-ph/9802299
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802299
http://dx.doi.org/10.1088/1126-6708/2007/08/090
http://arxiv.org/abs/0707.1201
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1201


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[52] K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low

Q2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513]

[INSPIRE].

[53] J.L. Albacete and Y.V. Kovchegov, Solving high energy evolution equation including

running coupling corrections, Phys. Rev. D 75 (2007) 125021 [arXiv:0704.0612] [INSPIRE].

[54] J.L. Albacete, Particle multiplicities in Lead-Lead collisions at the LHC from non-linear

evolution with running coupling, Phys. Rev. Lett. 99 (2007) 262301 [arXiv:0707.2545]

[INSPIRE].

[55] H. Kowalski and D. Teaney, An impact parameter dipole saturation model,

Phys. Rev. D 68 (2003) 114005 [hep-ph/0304189] [INSPIRE].

[56] J.R. Forshaw and D.A. Ross, Quantum chromodynamics and the pomeron, Cambridge Lect.

Notes Phys. 9 (1997) 1.

[57] G. Frolov, V. Gribov and L. Lipatov, On Regge poles in quantum electrodynamics,

Phys. Lett. B 31 (1970) 34 [INSPIRE].

[58] V.S. Fadin and A.D. Martin, Infrared safety of impact factors for colorless particle

interactions, Phys. Rev. D 60 (1999) 114008 [hep-ph/9904505] [INSPIRE].

[59] HERMES collaboration, A. Airapetian et al., Ratios of Helicity Amplitudes for Exclusive

ρ0 Electroproduction, Eur. Phys. J. C 71 (2011) 1609 [arXiv:1012.3676] [INSPIRE].

[60] S. Wandzura and F. Wilczek, Sum Rules for Spin Dependent Electroproduction: Test of

Relativistic Constituent Quarks, Phys. Lett. B 72 (1977) 195 [INSPIRE].

[61] K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering,

Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].

[62] E. Gotsman, E. Levin, M. Lublinsky and U. Maor, Towards a new global QCD analysis:

Low x DIS data from nonlinear evolution, Eur. Phys. J. C 27 (2003) 411 [hep-ph/0209074]

[INSPIRE].

[63] J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model:

DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].

[64] E. Iancu, K. Itakura and S. Munier, Saturation and BFKL dynamics in the HERA data at

small x, Phys. Lett. B 590 (2004) 199 [hep-ph/0310338] [INSPIRE].

[65] J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado and U.A. Wiedemann, Nuclear size

and rapidity dependence of the saturation scale from QCD evolution and experimental data,

Eur. Phys. J. C 43 (2005) 353 [hep-ph/0502167] [INSPIRE].

[66] V. Goncalves, M. Kugeratski, M. Machado and F. Navarra, Saturation physics at HERA

and RHIC: An Unified description, Phys. Lett. B 643 (2006) 273 [hep-ph/0608063]

[INSPIRE].

[67] I. Balitsky, Quark contribution to the small-x evolution of color dipole,

Phys. Rev. D 75 (2007) 014001 [hep-ph/0609105] [INSPIRE].

[68] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization

group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014

[hep-ph/9706377] [INSPIRE].

– 47 –

http://dx.doi.org/10.1103/PhysRevD.59.014017
http://arxiv.org/abs/hep-ph/9807513
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807513
http://dx.doi.org/10.1103/PhysRevD.75.125021
http://arxiv.org/abs/0704.0612
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0612
http://dx.doi.org/10.1103/PhysRevLett.99.262301
http://arxiv.org/abs/0707.2545
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2545
http://dx.doi.org/10.1103/PhysRevD.68.114005
http://arxiv.org/abs/hep-ph/0304189
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304189
http://dx.doi.org/10.1016/0370-2693(70)90013-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B31,34
http://dx.doi.org/10.1103/PhysRevD.60.114008
http://arxiv.org/abs/hep-ph/9904505
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9904505
http://dx.doi.org/10.1140/epjc/s10052-011-1609-2
http://arxiv.org/abs/1012.3676
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3676
http://dx.doi.org/10.1016/0370-2693(77)90700-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B72,195
http://dx.doi.org/10.1103/PhysRevD.60.114023
http://arxiv.org/abs/hep-ph/9903358
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903358
http://dx.doi.org/10.1140/epjc/s2002-01109-y
http://arxiv.org/abs/hep-ph/0209074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0209074
http://dx.doi.org/10.1103/PhysRevD.66.014001
http://arxiv.org/abs/hep-ph/0203258
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0203258
http://dx.doi.org/10.1016/j.physletb.2004.02.040
http://arxiv.org/abs/hep-ph/0310338
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0310338
http://dx.doi.org/10.1140/epjc/s2005-02185-1
http://arxiv.org/abs/hep-ph/0502167
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0502167
http://dx.doi.org/10.1016/j.physletb.2006.10.068
http://arxiv.org/abs/hep-ph/0608063
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608063
http://dx.doi.org/10.1103/PhysRevD.75.014001
http://arxiv.org/abs/hep-ph/0609105
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609105
http://dx.doi.org/10.1103/PhysRevD.59.014014
http://arxiv.org/abs/hep-ph/9706377
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9706377


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[69] J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x

physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015

[hep-ph/9709432] [INSPIRE].

[70] A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD

evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014]

[INSPIRE].

[71] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044]

[INSPIRE].

[72] E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass

condensate. I., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

[73] E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color

glass condensate. II., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

[74] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99

[hep-ph/9509348] [INSPIRE].

[75] Y.V. Kovchegov, Small-x F2 structure function of a nucleus including multiple Pomeron

exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

[76] A. Shuvaev, K.J. Golec-Biernat, A.D. Martin and M. Ryskin, Off diagonal distributions

fixed by diagonal partons at small x and ξ, Phys. Rev. D 60 (1999) 014015

[hep-ph/9902410] [INSPIRE].

[77] A.D. Martin, M. Ryskin and T. Teubner, Q2 dependence of diffractive vector meson

electroproduction, Phys. Rev. D 62 (2000) 014022 [hep-ph/9912551] [INSPIRE].

[78] K. Kumericki and D. Mueller, DVCS and the skewness effect at small x, arXiv:0907.1207

[INSPIRE].

[79] M. Diehl, P. Laycock and C. Royon, DIS 2009 – Diffraction and Vector Mesons Working

Group Summary, arXiv:0908.1652 [INSPIRE].

[80] A.H. Rezaeian, M. Siddikov, M. Van de Klundert and R. Venugopalan, Analysis of

combined HERA data in the Impact-Parameter dependent Saturation model,

Phys. Rev. D 87 (2013) 034002 [arXiv:1212.2974] [INSPIRE].

[81] J. Berger and A.M. Stasto, Exclusive vector meson production and small-x evolution,

JHEP 01 (2013) 001 [arXiv:1205.2037] [INSPIRE].

[82] J.L. Albacete, N. Armesto, J.G. Milhano and C.A. Salgado, Non-linear QCD meets data: A

global analysis of lepton-proton scattering with running coupling BK evolution,

Phys. Rev. D 80 (2009) 034031 [arXiv:0902.1112] [INSPIRE].

[83] J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias and C.A. Salgado, AAMQS: A

non-linear QCD analysis of new HERA data at small-x including heavy quarks,

Eur. Phys. J. C 71 (2011) 1705 [arXiv:1012.4408] [INSPIRE].

[84] L.D. McLerran and R. Venugopalan, Boost covariant gluon distributions in large nuclei,

Phys. Lett. B 424 (1998) 15 [nucl-th/9705055] [INSPIRE].

[85] A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron,

Nucl. Phys. B 415 (1994) 373 [INSPIRE].

– 48 –

http://dx.doi.org/10.1103/PhysRevD.59.014015
http://arxiv.org/abs/hep-ph/9709432
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9709432
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://arxiv.org/abs/hep-ph/0004014
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0004014
http://dx.doi.org/10.1016/S0375-9474(01)01668-2
http://arxiv.org/abs/hep-ph/0004044
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0004044
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://arxiv.org/abs/hep-ph/0011241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011241
http://dx.doi.org/10.1016/S0375-9474(01)01329-X
http://arxiv.org/abs/hep-ph/0109115
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109115
http://dx.doi.org/10.1016/0550-3213(95)00638-9
http://arxiv.org/abs/hep-ph/9509348
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9509348
http://dx.doi.org/10.1103/PhysRevD.60.034008
http://arxiv.org/abs/hep-ph/9901281
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9901281
http://dx.doi.org/10.1103/PhysRevD.60.014015
http://arxiv.org/abs/hep-ph/9902410
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9902410
http://dx.doi.org/10.1103/PhysRevD.62.014022
http://arxiv.org/abs/hep-ph/9912551
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9912551
http://arxiv.org/abs/0907.1207
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1207
http://arxiv.org/abs/0908.1652
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1652
http://dx.doi.org/10.1103/PhysRevD.87.034002
http://arxiv.org/abs/1212.2974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2974
http://dx.doi.org/10.1007/JHEP01(2013)001
http://arxiv.org/abs/1205.2037
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2037
http://dx.doi.org/10.1103/PhysRevD.80.034031
http://arxiv.org/abs/0902.1112
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1112
http://dx.doi.org/10.1140/epjc/s10052-011-1705-3
http://arxiv.org/abs/1012.4408
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4408
http://dx.doi.org/10.1016/S0370-2693(98)00214-7
http://arxiv.org/abs/nucl-th/9705055
http://inspirehep.net/search?p=find+EPRINT+nucl-th/9705055
http://dx.doi.org/10.1016/0550-3213(94)90116-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B415,373


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[86] H. Navelet, R.B. Peschanski, C. Royon and S. Wallon, Proton structure functions in the

dipole picture of BFKL dynamics, Phys. Lett. B 385 (1996) 357 [hep-ph/9605389]

[INSPIRE].

[87] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum

Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

[88] H.G. Dosch, T. Gousset, G. Kulzinger and H. Pirner, Vector meson leptoproduction and

nonperturbative gluon fluctuations in QCD, Phys. Rev. D 55 (1997) 2602

[hep-ph/9608203] [INSPIRE].

[89] E. Ferreiro, E. Iancu, K. Itakura and L. McLerran, Froissart bound from gluon saturation,

Nucl. Phys. A 710 (2002) 373 [hep-ph/0206241] [INSPIRE].

[90] S. Munier and S. Wallon, Geometric scaling in exclusive processes,

Eur. Phys. J. C 30 (2003) 359 [hep-ph/0303211] [INSPIRE].

[91] D.Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in the

next-to-leading approximation, Nucl. Phys. B 732 (2006) 183 [hep-ph/0508162] [INSPIRE].

[92] D.Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in next-to-leading

BFKL: Study of systematic effects, Eur. Phys. J. C 49 (2007) 947 [hep-ph/0610042]

[INSPIRE].

[93] F. Caporale, A. Papa and A. Sabio Vera, Collinear improvement of the BFKL kernel in the

electroproduction of two light vector mesons, Acta Phys. Polon. B 39 (2008) 2571

[arXiv:0807.0525] [INSPIRE].

[94] D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHC -

complete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].

[95] B. Ducloue, L. Szymanowski and S. Wallon, Mueller-Navelet jets at LHC: the first complete

NLL BFKL study, PoS QNP2012 (2012) 165 [arXiv:1208.6111] [INSPIRE].

[96] B. Ducloue, L. Szymanowski and S. Wallon, Confronting Mueller-Navelet jets in NLL

BFKL with LHC experiments at 7TeV, JHEP 05 (2013) 096 [arXiv:1302.7012] [INSPIRE].

[97] D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization,

tomography, arXiv:1108.1713 [INSPIRE].

[98] LHeC Study Group collaboration, J. Abelleira Fernandez et al., A Large Hadron

Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and

Detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].

[99] ILC collaboration, J. Brau et al., ILC Reference Design Report: ILC Global Design Effort

and World Wide Study, arXiv:0712.1950 [INSPIRE].

[100] ILC collaboration, G. Aarons et al., International Linear Collider Reference Design Report

Volume 2: Physics at the ILC, arXiv:0709.1893 [INSPIRE].

[101] ILC collaboration, T. Behnke et al., ILC Reference Design Report Volume 4 - Detectors,

arXiv:0712.2356 [INSPIRE].

[102] B. Pire, L. Szymanowski and S. Wallon, Double diffractive ρ-production in γ∗γ∗ collisions,

Eur. Phys. J. C 44 (2005) 545 [hep-ph/0507038] [INSPIRE].

[103] R. Enberg, B. Pire, L. Szymanowski and S. Wallon, BFKL resummation effects in

γ∗γ∗ → ρρ, Eur. Phys. J. C 45 (2006) 759 [Erratum ibid. C 51 (2007) 1015]

[hep-ph/0508134] [INSPIRE].

– 49 –

http://dx.doi.org/10.1016/0370-2693(96)00889-1
http://arxiv.org/abs/hep-ph/9605389
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605389
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://inspirehep.net/search?p=find+J+Phys.Rev.,D22,2157
http://dx.doi.org/10.1103/PhysRevD.55.2602
http://arxiv.org/abs/hep-ph/9608203
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9608203
http://dx.doi.org/10.1016/S0375-9474(02)01163-6
http://arxiv.org/abs/hep-ph/0206241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206241
http://dx.doi.org/10.1140/epjc/s2003-01294-1
http://arxiv.org/abs/hep-ph/0303211
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0303211
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.028
http://arxiv.org/abs/hep-ph/0508162
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508162
http://dx.doi.org/10.1140/epjc/s10052-006-0180-8
http://arxiv.org/abs/hep-ph/0610042
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0610042
http://arxiv.org/abs/0807.0525
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0525
http://dx.doi.org/10.1007/JHEP12(2010)026
http://arxiv.org/abs/1002.1365
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1365
http://arxiv.org/abs/1208.6111
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6111
http://dx.doi.org/10.1007/JHEP05(2013)096
http://arxiv.org/abs/1302.7012
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.7012
http://arxiv.org/abs/1108.1713
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1713
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://arxiv.org/abs/1206.2913
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2913
http://arxiv.org/abs/0712.1950
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1950
http://arxiv.org/abs/0709.1893
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1893
http://arxiv.org/abs/0712.2356
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2356
http://dx.doi.org/10.1140/epjc/s2005-02386-6
http://arxiv.org/abs/hep-ph/0507038
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507038
http://dx.doi.org/10.1140/epjc/s10052-007-0375-7
http://arxiv.org/abs/hep-ph/0508134
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508134


J
H
E
P
1
1
(
2
0
1
3
)
0
6
2

[104] B. Pire, M. Segond, L. Szymanowski and S. Wallon, QCD factorizations in γ∗γ∗ → ρρ,

Phys. Lett. B 639 (2006) 642 [hep-ph/0605320] [INSPIRE].

[105] M. Segond, L. Szymanowski and S. Wallon, Diffractive production of two ρ0L mesons in

e+e− collisions, Eur. Phys. J. C 52 (2007) 93 [hep-ph/0703166] [INSPIRE].

[106] M. Segond, L. Szymanowski and S. Wallon, A test of the BFKL resummation at ILC, Acta

Phys. Polon. B 39 (2008) 2577 [arXiv:0802.4128] [INSPIRE].

[107] M. Diehl, T. Gousset and B. Pire, Exclusive electroproduction of vector mesons and

transversity distributions, Phys. Rev. D 59 (1999) 034023 [hep-ph/9808479] [INSPIRE].

[108] J.C. Collins and M. Diehl, Transversity distribution does not contribute to hard exclusive

electroproduction of mesons, Phys. Rev. D 61 (2000) 114015 [hep-ph/9907498] [INSPIRE].

[109] A. Ali, V.M. Braun and H. Simma, Exclusive radiative B decays in the light cone QCD sum

rule approach, Z. Phys. C 63 (1994) 437 [hep-ph/9401277] [INSPIRE].

[110] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products, Academic Press, New

York (1980).

– 50 –

http://dx.doi.org/10.1016/j.physletb.2006.07.014
http://arxiv.org/abs/hep-ph/0605320
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605320
http://dx.doi.org/10.1140/epjc/s10052-007-0365-9
http://arxiv.org/abs/hep-ph/0703166
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703166
http://arxiv.org/abs/0802.4128
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.4128
http://dx.doi.org/10.1103/PhysRevD.59.034023
http://arxiv.org/abs/hep-ph/9808479
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9808479
http://dx.doi.org/10.1103/PhysRevD.61.114015
http://arxiv.org/abs/hep-ph/9907498
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9907498
http://dx.doi.org/10.1007/BF01580324
http://arxiv.org/abs/hep-ph/9401277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9401277

	Introduction
	Helicity amplitudes of the hard rho meson leptoproduction in the impact factor representation
	Helicity amplitudes and polarized cross-sections
	Impact factors gamma*(L,T) -> rho(L,T)
	From impact factors to helicity amplitudes and polarized cross-sections

	Dipole models
	Comparison with the HERA data
	The radial distributions of dipoles involved in the overlap of the gamma*(L(T)) and rho(L(T))-meson states
	The radial distribution of the gamma*(L) -> rho(L) transition
	The radial distribution of the gamma*(T) -> rho(T) transition
	Comparison with the radial distributions obtained from models of the rho meson wave function.

	Conclusions
	Distribution amplitudes in the LCCF parametrization
	Evolutions of DAs and coupling constants with the renormalization scale
	Dipole-proton scattering amplitude in the GS-Model
	Results using the GBW and AAMQSb models

