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Abstract: We introduce and initiate the investigation of a general class of 4d, N = 1

quiver gauge theories whose Lagrangian is defined by a bipartite graph on a Riemann

surface, with or without boundaries. We refer to such class of theories as Bipartite Field

Theories (BFTs). BFTs underlie a wide spectrum of interesting physical systems, includ-

ing: D3-branes probing toric Calabi-Yau 3-folds, their mirror configurations of D6-branes,

cluster integrable systems in (0+1) dimensions and leading singularities in scattering am-

plitudes for N = 4 SYM. While our discussion is fully general, we focus on models that are

relevant for scattering amplitudes. We investigate the BFT perspective on graph modifica-

tions, the emergence of Calabi-Yau manifolds (which arise as the master and moduli spaces

of BFTs), the translation between square moves in the graph and Seiberg duality and the

identification of dual theories by means of the underlying Calabi-Yaus, the phenomenon

of loop reduction and the interpretation of the boundary operator for cells in the posi-

tive Grassmannian as higgsing in the BFT. We develop a technique based on generalized

Kasteleyn matrices that permits an efficient determination of the Calabi-Yau geometries

associated to arbitrary graphs. Our techniques allow us to go beyond the planar limit by

both increasing the number of boundaries of the graphs and the genus of the underlying

Riemann surface. Our investigation suggests a central role for Calabi-Yau manifolds in the

context of leading singularities, whose full scope is yet to be uncovered.
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1 Introduction

In this paper we introduce and initiate the investigation of a general class of 4d, N = 1

quiver gauge theories whose Lagrangian is defined by a bipartite graph on a Riemann

surface, with or without boundaries. We refer to such class of theories as Bipartite Field

Theories (BFTs).

The motivation for studying these theories follows from the fact that they underlie a

wide range of interesting physical systems.1 One of their first appearances has been in

the context of D3-branes probing toric Calabi-Yau 3-folds in Type IIB string theory. The

superconformal field theory on the worldvolume of the D3-branes is indeed encoded by a

bipartite graph on a 2-torus [1]. When investigating the Type IIA configurations of D6-

branes related to the previous setup by mirror symmetry, bipartite graphs on higher genus

Riemann surfaces surprisingly emerge as fundamental objects [2]. More recently, bipartite

graphs on a 2-torus have been shown to give rise to an infinite class of quantum mechanical

integrable systems [3].

In the latest addition to this string of applications, bipartite graphs have been used in

the context of scattering amplitudes in quantum field theory (QFT) [4]. In recent years, we

have witnessed tremendous progress in our understanding of scattering amplitudes in gauge

theory, most notably for N = 4 super Yang-Mills in the planar limit. These developments

were originally triggered by Witten’s twistor string [5] and have resulted in efficient tools

for the computation of scattering amplitudes at tree level, such as CSW diagrams [6] and

BCFW recursion relations [7–10], and loop level [11–14]. At the same time, the hidden

dual superconformal symmetry of planar N = 4 SYM was unveiled [15, 16], and it was

realized that superconformal and dual superconformal symmetries combine to give rise to

the infinite dimensional Yangian symmetry [17]. In order to better understand the role of

this symmetry, it was suggested one should focus on the leading singularities of scattering

amplitudes, which in turn arise as residues of a contour integral over the Grassmannian [18].

At a fundamental level, the new insights have led to the idea that a new formulation of QFT

might exist, displaying its otherwise hidden simplicity by abandoning manifest locality and

unitarity in favor of making the infinite Yangian symmetry explicit. The fundamental

structure behind this new formulation might take several tightly related disguises: the

Grassmannian, algebraic geometry, certain graphs or, as we advocate in this paper, certain

quiver gauge theories.

For all the systems mentioned above, BFTs are not merely a different interpretation

of the same underlying graph. In fact, every statement and computation in any of these

systems has a counterpart in the corresponding BFT. As usual, having an alternative

perspective on the same physics, in this case in terms of a gauge theory, is extremely

valuable. It not only allows us to understand known facts in a new light, but it provides

intuition, suggests new approaches and might eventually become useful for answering new

questions. The dynamics, duality and natural connection to geometry in the form of moduli

spaces of the gauge theory have fruitful applications to the other systems.

1Here we do not mention the obvious, and extremely interesting, applications of bipartite graphs to

condensed matter physics.
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The appearance of quivers in connection to all these systems is not a coincidence. To

some extent, it can be understood as the result of a powerful mathematical structure that

underlies all of them: cluster algebras [19]. Quivers indeed provide the natural physical

arena for cluster algebras.

In this paper we will study BFTs in full generality, but our examples will mainly focus

on graphs with boundaries, which is the sub-class that has been less explored so far and

the one that is relevant for leading singularities in scattering amplitudes. Our results will

also shed light in the relatively unexplored area of the combinatorics of bipartite graphs

on general Riemann surfaces with boundaries.

This paper is organized as follows. BFTs are introduced in section 2. Section 3 explains

the BFT interpretation of various modifications of the underlying graph. Section 4 provides

an overview of several areas in which BFTs arise. In section 5, we generalize the method

based on the Kasteleyn matrix for the determination of perfect matchings to deal with

bipartite graphs with boundaries. Section 6 discusses two toric Calabi-Yau (CY) manifolds

that are associated to any BFT, its master and moduli spaces. Section 7 collects explicit

examples of BFTs. The examples presented are related to leading singularities and go

beyond the planar limit in two directions, increasing both the number of boundaries of

the graph and the genus of the underlying Riemann surface. Section 8 studies the action

of Seiberg duality on BFTs, which translates to square moves in the underlying graph.

We analyze both planar and non-planar graphs, explicitly illustrating that the moduli is

invariant under Seiberg duality and can be efficiently exploited for identifying theories

related by square moves. In section 9, we explain how the number of loops in certain

diagrams can be reduced and explain this process in terms of the dynamics of the associated

BFT. The equivalence between different multi-loop diagrams has a striking manifestation in

terms of a single underlying Calabi-Yau manifold, arising as the moduli space of the BFTs.

Section 3.3 explains how the boundary operator on a cell in the positive Grassmannian

maps to the Higgs mechanism in the corresponding BFT. We show how a new bipartite

graph, related to the original one by the untwisting map on zig-zag paths, is an efficient

tool for identifying consistent higgsings. We conclude and summarize some open questions

for further research in section 11.

Note added: while this paper was being finalized, we became aware of [57], which has

some overlap with this work.

2 Bipartite field theories

In this section we introduce the concept of a Bipartite Field Theory. A BFT is a 4d,

N = 1 quiver gauge theory whose Lagrangian is defined by a bipartite graph G on a

Riemann surface Σ, which can contain boundaries. BFTs are natural generalizations of

toric quivers, which are defined by bipartite graphs without boundaries on T 2 [1].

We can separate the nodes of G into internal and external (those on boundaries) ones.

G is bipartite if nodes can be colored in black and white such that:

1) Every edge in G connects nodes of different colors.

2) Every boundary node is connected to a single edge.

– 3 –



J
H
E
P
1
1
(
2
0
1
2
)
1
4
1

Figure 1. An artistic representation of a bipartite graph on a Riemann surface defining a BFT.

2.1 The dictionary

Let us now describe the translation between the elements of the bipartite graph on Σ and

a 4d, N = 1 quiver gauge theory.

• Faces: to every face in the graph, we associate an SU(N) group.2 We can identify

faces as internal or external. Internal faces are those whose entire perimeter is given

by edges in G. On the other hand, external faces are those in which part of its

perimeter overlaps with the boundary of the graph. We show examples of both types

of faces in figure 2.

• Edges: every edge is identified with a chiral multiplet transforming in the bifunda-

mental representation of the two faces it separates. The bipartiteness of G introduces

a natural orientation of the bifundamentals dual to edges which, without loss of gener-

ality, can be taken to be oriented clockwise around white nodes and counterclockwise

around black nodes.

• Nodes: every internal node corresponds to a monomial in the superpotential, given

by the product of all chiral fields associated with the edges terminating on it. The

valence of the node, i.e. the number of edges terminating on the node, corresponds

to the order of the superpotential term. We assign signs to superpotential terms

such that white and black nodes correspond to plus and minus signs, respectively.

External nodes do not have any superpotential interpretation, and simply follow from

the existence of edges that have one endpoint on an internal node and terminate on

the boundary.

Due to the bipartiteness of G, the number of edges around an internal face is even.

Furthermore, the numbers of white and black nodes around an internal face are equal. In

contrast, the number of edges on the perimeter of an external face can be either even or odd.

2In fact, each face corresponds to a U(N) group. When gauging some of them, the U(1) pieces are IR

free and become global symmetries at low energies.
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Figure 2. Examples of internal and external faces in a BFT.

Given the interpretation of edges as bifundamental chiral fields with an orientation dictated

by the color of nodes we conclude that, from a quiver perspective, internal faces have an

equal number of incoming and outgoing bifundamentals arrows, which in turn implies that

they are free of anomalies. As a result, the SU(N) groups associated to internal faces can

be consistently gauged. From now on, we include in the definition of a BFT the fact that

internal faces are gauged, while external faces correspond to global symmetry groups.3,4

This interpretation of faces is rather natural in light of similar systems that admit an

interpretation as brane configurations in string theory. In such systems, faces correspond

to stacks of D-branes suspended from a web of branes associated with the graph G, which

extends over dimensions transverse to the ones in which the gauge theory lives. Internal

faces have a finite extension along the directions transverse to the field theory ones and

hence give rise to gauge symmetries. External faces can instead have an infinite extension

in these directions and thus lead to global symmetries. BFTs associated to graphs with no

boundaries on T 2 indeed arise as configurations of D5 and NS5-branes [1]. The question

of whether general BFTs can arise as systems of branes is a very interesting one, but we

postpone it for future studies.

According to the map between faces and gauge or global symmetry groups, edges

can correspond to: bifundamentals of the gauge group (when they sit between two inter-

nal faces), fundamental or antifundamental flavors (internal/external) or gauge singlets

transforming in a bifundamental representation of the global symmetry group (exter-

nal/external).

The correspondence we have introduced implies that every BFT has a quiver diagram

living on Σ, which is indeed dual to the bipartite graph G as illustrated with an example

in figure 3. Faces, edges and nodes in G are mapped to symmetry group nodes (gauged

or global), arrows and plaquettes (superpotential terms with sign determined by their

clockwise or counterclockwise orientation) in the quiver, respectively. Table 1 summarizes

the dictionary between graphs and BFTs.

3Following the previous discussion, there exists an alternative natural gauging, in which a basis for all

closed loops in the graph whose perimeter is made out of internal edges is gauged. This alternative becomes

relevant for non-planar graphs and is useful in some contexts such as leading singularities. While we will

not consider this gauging any further, the resulting theories can be studied with exactly the same tools we

develop in this paper.
4Internal faces might contain punctures inside them. A possible way of distinguishing such faces at the

level of the BFT is by not gauging the corresponding anomaly-free SU(N) group. While in this paper we

will gauge the symmetries associated to all internal faces, it is important to keep this possibility in mind.
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Figure 3. A bipartite graph and its quiver dual. Blue nodes in the quiver represent gauge

groups and green squares represent global symmetry groups. Plaquettes in the quiver correspond

to superpotential terms.

Graph BFT

Internal face (2n-sided) Gauge group with n flavors

External face Global symmetry group

Edge between two faces i and j Chiral multiplet in the bifundamental

representation of the groups i and j. The

orientation of the corresponding arrow is such

that it goes clockwise around white nodes and

counterclockwise around black nodes

k-valent node Monomial in the superpotential involving k chiral

multiplets. The signs of the terms are (+/-) for

(white/black) nodes

Table 1. The dictionary connecting bipartite graphs on Riemann surfaces and BFTs.

Let us briefly comment on the scale dependence properties of BFTs. A natural rep-

resentation of bipartite graphs is given by the so called isoradial embedding. We refer

the reader to [20] for details about this construction. Interestingly, in this embedding it

is possible to map the scaling dimensions of chiral fields to the angles subtended by the

corresponding edges. Vanishing of the beta functions for gauge and superpotential cou-

plings then translates into local flatness of the graph [1, 21]. As a result, BFTs on curved

Riemann surfaces are not conformal.

In the remainder of this section, we discuss two important concepts in the study of

bipartite graphs: perfect matchings and zig-zag paths.

2.2 Perfect matchings

An almost perfect matching p is a subset of the edges in G such that:

• Every internal node is the endpoint of exactly on edge in p.

• Every external node belongs to either one or zero edges in p.

– 6 –
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Figure 4. Zig-zag paths in double line notation. This example has five zig-zag paths going through

external legs and an internal one, shown in purple.

Almost perfect matchings can be regarded as regular perfect matchings of a larger bipartite

graph that contains G and extends it beyond its boundaries. For brevity, we simply refer

to them as perfect matchings in what follows. Perfect matchings connect bipartite graphs

to gauge theory, toric geometry and integrable systems, as we explain later.

The map between chiral fields in the quiver Xi, equivalently edges in G, and perfect

matchings pµ is given by

Xi =
c
∏

µ=1

p
Piµ
µ , (2.1)

where c is the total number of perfect matchings, and Piµ is equal to 1 if the edge in the

bipartite graph associated to the chiral field Xi is contained in pµ and zero otherwise [1], i.e.

Piµ =

{

1 if Xi ∈ pµ

0 if Xi /∈ pµ
(2.2)

In section 5, we will introduce efficient methods for determining the matrix P . It will play

an important role in section 6, when computing the moduli spaces of the BFTs.5

2.3 Zig-zag paths

Zig-zag paths, also denoted alternating strands, are oriented paths in a bipartite graph

that alternate between turning maximally right and maximally left at every node. They

can be efficiently implemented in terms of a double line notation for edges [2], in which

two zig-zag paths go over every edge in opposite directions, crossing at the middle point.

Figure 4 shows the zig-zag paths for the example in figure 3.

Zig-zag paths play a prominent role in the study of bipartite graphs for various reasons.

First, it is possible to reconstruct the graph G from knowledge of its zig-zags. There is

an edge for every intersection between a pair of them, and black (white) nodes correspond

5Throughout the paper, we will also use a notation for chiral fields involving two subindices, explicitly

indicating the gauge groups under which they are charged, as opposed to the single subindex notation

in (2.2). We are confident that these two alternative notations will not generate any confusion.
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Figure 5. The untwisting map.

to disks with clockwise (counterclockwise) oriented boundaries. Relative motion of the

zig-zags results in different graphs, which translate to dual BFTs as we will briefly discuss

in section 8 (see also [22]). In the case of graphs without boundaries on T 2, zig-zag paths

are directly connected to the Calabi-Yau geometry of the moduli space of the associated

BFT [2, 22]. They are the legs in the (p, q)-web [23–25] dual to the corresponding toric

diagram. Whether there also exist a direct link between zig-zags paths and moduli spaces

in the generalized context of arbitrary BFTs is an extremely interesting question that we

plan to revisit in the future.

Consistency: we will restrict to graphs that do not contain self-intersecting zig-zag

paths. The existence of such paths has, in some sub-classes of BFTs, been linked to

inconsistencies of the field theory [22]. For brevity, we will refer to the resulting graphs

and BFTs as consistent. A full study of the consequences of self-intersecting zig-zags on

general BFTs is beyond the scope of this paper. We will often explicitly determine the

zig-zags of graphs, showing this condition is met.

Untwisting map: the action of the untwisting map is schematically shown in figure 5.

It interchanges:
G on Σ G̃ on Σ̃

zig-zag path ↔ face

face ↔ zig-zag path

The graph G̃ on Σ̃ resulting from untwisting can be interpreted as a new bipartite field

theory, which we denote B̃FT. The concept of B̃FT will be used in section 10 for keeping

track of zig-zag paths under certain modifications of the graph.

Deligne permutations: for bipartite graphs with boundaries, it is possible to introduce

the concept of Deligne permutations [4], which correspond to a bijection fd(bi) = bj that

maps every boundary point bi to another boundary point bj .
6 More concretely, Deligne

permutations are in one-to-one correspondence with zig-zag paths going through external

legs as follows

fd(bi) = bj ⇐⇒ The zig-zag path starting at bi ends at bj (2.3)

For example, for the model in figure 4 we have

fd(1) = 4, fd(2) = 5, fd(3) = 1,

fd(4) = 2, fd(5) = 3.
(2.4)

6Other works in which bipartite graphs have been discussed in conjunction with certain permutations

and Calabi-Yau manifolds include [29, 30].
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Figure 6. Integrating out massive fields associated to 2-valent nodes corresponds to condensing

nodes on the graph.

3 A BFT perspective on graph modifications

In this section we discuss the BFT interpretation of various possible modifications of the

bipartite graph.

3.1 Reduction to 2 and 3-valent graphs

Nodes with valence k in the graph correspond to order k superpotential terms in the BFT.

In particular, 2-valent nodes correspond to mass terms. Due to the specific structure of the

BFT superpotentials, integrating out massive fields has a simple graphical implementation:

it corresponds to condensing the two nodes at both endpoints of the 2-valent one, as

illustrated in figure 6.

The origin of the condensation can be understood as follows. The superpotential takes

the form

W = X1P1(Xi) +X2P2(Xi)−X1X2 + . . . (3.1)

where we have identified all terms in the superpotential containing X1 and X2. P1(Xi)

and P2(Xi) are products of bifundamentals fields. The equations of motion for the massive

fields are

∂X1
W = 0 ⇔ X2 = P1(Xi) and ∂X2

W = 0 ⇔ X1 = P2(Xi). (3.2)

Plugging them back into (3.1), the terms involving X1 and X2 are replaced by

W = P1(Xi)P2(Xi) + . . . , (3.3)

which is precisely the interaction associated to merging the nodes at both sides of the mass

term. I.e. two terms of order k1 and k2 are combined into a single one of order k1+ k2− 2.

Inverting this process, we can reduce the order of superpotential terms by inserting

2-valent nodes, i.e. by integrating-in massive fields. Iterating this process, it is possible to

reduce any k-valent node to (k − 2) 3-valent and (k − 3) 2-valent ones. This process is

clearly not unique, although the low energy physics is independent of how we perform it.

Figure 7 shows a possible decomposition of a 5-valent node.

– 9 –
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Figure 7. A possible decomposition of a 5-valent into three 3-valent ones by the insertion of

two 2-valent nodes. The field theory counterpart of this process corresponds to integrating-in

massive fields.

Figure 8. A bicolored graph containing an edge between nodes of the same color can be turned

into a bipartite one by introducing an intermediate 2-valent node or by node condensation.

From bicolored to bipartite graphs. Bicolored graphs that are not bipartite, i.e.

graphs that contain edges connecting nodes of the same color, can be studied with the

same tools discussed in this paper. Plabic (i.e. planar bicolored) graphs are examples of

this class of models [26].

Whenever we encounter a graph with an edge connecting two nodes of the same color,

we will interpret it as a bipartite one by introducing a 2-valent node of the opposite color

in the middle of this edge. The corresponding massive fields can then be integrated out,

resulting in the merging of the two original nodes. This field theoretic interpretation

leads precisely to the two equivalent procedures that appear in the math literature for

turning bicolored graphs into bipartite ones: introducing an intermediate 2-valent node or

condensing the two nodes of the same color.

3.2 Seiberg duality

Seiberg duality [27] is a remarkable property of N = 1 gauge theories that implies a full

equivalence between two different theories (typically referred to as electric and magnetic)

in the low energy limit. It plays an essential role in our understanding of the low energy

dynamics of SUSY gauge theories [28]. Being such a central concept in SUSY field the-

ories, Seiberg duality has, in the BFT context, a natural implementation in terms of the

underlying bipartite graph.

We will focus on Seiberg dualities in which the electric and magnetic theories are BFTs

on the same Riemann surface. This constraint implies that we can only dualize Nf = 2Nc

gauge groups, where Nf = N , the common rank of all gauge and global symmetry groups.

This class of gauge groups corresponds to internal square faces in the graph. Let us briefly

discuss the field theory side of the duality, focusing on the dualized gauge group, while con-

– 10 –
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Figure 9. Seiberg duality maps to square moves in the graph.

sidering all others as expectators. The electric theory has SU(Nc) gauge groups and flavors

Q1, Q2 in its fundamental representation and Q̃1 and Q̃2 in the antifundamental represen-

tation. More precisely, these flavors are in fact bifundamentals fields in the BFT but, for

brevity, we omit discussion of the transformation properties under the additional symmetry

groups. The dual gauge group is SU(Ñc), where the dual rank is Ñc = Nf −Nc = Nc, i.e. it

is equal to the original one. In addition, the duality implies the following transformations:

• Replace the electric quarks Q1, Q2, Q̃1 and Q̃2 by magnetic quarks q̃1, q̃2, q1 and q2
transforming in the conjugated (bifundamental) representations.

• Introduce meson fields Mij , which are composite from the perspective of the electric

theory, i.e. Mij = Q̃iQj . Meson fields are singlets of the magnetic gauge group and

transform in bifundamentals representations of the other groups, which are either

gauged or global.

• Introduce cubic superpotential couplings between the dual quarks and the mesons

∆W =
∑

ij

qiMij q̃j ,

and re-express any product of the electric quarks in the original superpotential in

terms of the mesons.

In figure 9 we present the simple graph transformation that implements Seiberg duality.

It was originally discovered in [1] in the context of BFTs without boundaries on T 2 but

extends to generic BFTs without changes. It is easy to see that this modification of the

graph automatically implements the three points discussed above. It is often referred to

as urban renewal, spider move or square move. If 2-valent nodes are generated during this

process, the corresponding massive fields can be integrated out as discussed in section 3.1.

Repeating this operation twice on the same face obviously returns to the original graph.

The effect of Seiberg duality on zig-zag paths is shown in figure 10. It corresponds to

a reorganization of the four zig-zag paths passing through the dualized square, in which

zig-zags associated to opposite corners are pairwise interchanged.

Seiberg duality is a full equivalence between the electric and magnetic theories in the

IR limit. This implies agreement in their behavior under relevant deformations, matching

of their moduli spaces, etc. The field theoretic perspective on bipartite graphs thus suggests

– 11 –
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Figure 10. The action of Seiberg duality on zig-zag paths.

Figure 11. Removing an edge in the graph corresponds to turning on a vev for a bifundamentals

scalar, resulting in the merging of two faces.

natural invariants under square moves. This intuition can be exploited in the context of

any other interpretation of the same graphs, such as leading singularities in scattering

amplitudes. We will use this approach in sections 8 and 9.

3.3 Higgsing

Edge removal is another natural operation on graphs. From a BFT viewpoint, it trans-

lates to the scalar in the corresponding bifundamentals chiral multiplet acquiring a non-

zero vacuum expectation value (vev) [1]. The two faces on each side of the removed

edge are combined into a single one as shown in figure 11. Depending on the type of

faces that are merged, we can have three different situations, which have the following

BFT interpretation:

• Internal-internal: higgsing of the corresponding SU(N)× SU(N) piece of the gauge

group down to the diagonal SU(N) subgroup.

• Internal-external: color-flavor locking of the SU(N)gauge × SU(N)global symmetry

associated to the faces.

• External-external: spontaneous breaking of an SU(N) × SU(N) subgroup of the

global symmetry to the diagonal subgroup. This process results in massless Gold-

stone bosons.

If 2-valent nodes are generated in this process, the corresponding massive fields can be

integrated out. Throughout the paper we will be interested in preserving external legs,

which map to scattered particles, so we will no longer consider the third option.
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Figure 12. Bipartite graph associated to the 4d, N = 1 SCFT on D3-branes over the complex

cone over F0. Opposite sides of the square are identified to form a T 2.

In section 10 we will investigate the connection between higgsing and the boundary

operator in leading singularities and introduce an implementation of it that efficiently

keeps track of zig-zag paths, ensuring that we only perform higgsings that result in consis-

tent graphs.

4 BFTs everywhere

BFTs and their dynamics play an important role in a wide spectrum of interesting physical

systems. In this section we present a brief overview of some of them.

4.1 D3-branes over toric Calabi-Yau 3-folds

The 4d, N = 1 superconformal field theory (SCFT) arising on a stack of D3-branes probing

a CY 3-fold is a BFT on a 2-torus without boundaries [1]. The two fundamental directions

of the T 2 correspond to a U(1)2 flavor symmetry that follows from isometries of the toric

CY. The remaining U(1) isometry translates to the R-charge of the gauge theory. Figure 12

shows an example, corresponding to the BFT on D3-branes at the complex cone over F0 [1].
7

The correspondence between this class of SCFTs and bipartite graphs has been ex-

tremely fruitful, fully answering the question of which gauge theory is associated to a given

toric Calabi-Yau and vice versa.

4.2 Mirror symmetry

Consider the configuration discussed in the previous section, with D3-branes on a toric

singularity with characteristic polynomial P (z1, z2) =
∑

an1,n2
zn1

1 zn2

2 , where (n1, n2) runs

over points in the toric diagram. On the D3-branes, we obtain a BFT theory described by

a bipartite graph G on a 2-torus.

The mirror manifold is given by P (z1, z2) = W , W = uv. Let us consider the Riemann

surface Σ̃ sitting at W = 0. The genus and number of punctures of Σ are given by

the number of internal points and the perimeter of the toric diagram, respectively. The

original configuration of D3-branes is mapped to a set of intersecting D6-branes in the

7In fact there is another BFT associated to D3-branes on the same geometry, which is connected to this

one by Seiberg duality as discussed in section 8.

– 13 –



J
H
E
P
1
1
(
2
0
1
2
)
1
4
1

Figure 13. The tiling of the mirror obtained by acting with the untwisting map on the F0 model in

figure 12. The resulting Riemann surface on which the graph lives is a 2-torus with four punctures.

mirror, with one type of D6-branes for each gauge group in the quiver and bifundamentals

chiral multiplets arising at their intersections [2]. The non-trivial information about the

mirror configuration is encoded in a new bipartite graph G̃ on Σ̃, in which the D6-branes

arise as zig-zag paths. The graph G̃ is obtained from G by applying the untwisting map.

We can associate a new B̃FT gauge theory to G̃, as mentioned in section 2.3. The B̃FT has

been referred to as the specular dual in [31]. Figure 13 shows G̃ obtained by untwisting

the F0 model in figure 12. In this case, Σ̃ is a 2-torus with four punctures.

The discussion in this section makes it clear that mirror symmetry naturally gives rise

to bipartite graphs, i.e. BFTs, on Riemann surface of arbitrarily high genus, providing an

important motivation for their study.

4.3 Cluster integrable systems

Bipartite graphs without boundaries on a 2-torus are also in one-to-one correspondence

with an infinite class integrable systems in (0+1) dimensions, denoted cluster integrable

systems [3]. The Poisson manifold of the integrable system is parametrized by loops on

the graph, a useful basis for which is provided by the loops around faces and along the

two fundamental directions of the T 2. The Poisson brackets between these variables are

dictated by the number of edges over which the corresponding loops overlap, counted with

orientation. Different patches of the Poisson manifold, typically described by different

graphs, are connected by cluster transformations. In [3], it was shown that the Hamil-

tonian and Casimir operators of the integrable system correspond to internal points and

ratios of external points in the associated toric diagrams, respectively. We refer the reader

to [3] for a detailed explanation of how the integrals of motion are constructed in terms

perfect matchings. Figure 14 shows a graph which, by means of this correspondence, is

mapped to the n-particle, relativistic, periodic Toda chain. Physical implications of this

correspondence and connections to other setups realizing the same integrable systems have

been studied in [32–35].

Motivated by generic BFTs, it is natural to ask whether bipartite graphs on Riemann

surfaces other than T 2 also give rise to integrable systems. We expect it might be possible

to extend the proof in [3] to at least graphs without external nodes that can be embedded

in a T 2, i.e. disks and cylinders.
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Figure 14. Bipartite graph on a T 2 associated to the n-particle, relativistic, periodic Toda chain.

4.4 Leading singularities

The connection between bipartite graphs, and consequently BFTs, and the positive Grass-

mannian and leading singularities in planar N = 4 SYM is relatively more recent and less

known to the general physics audience. For this reason, our discussion of these topics will

be slightly lengthier. The material presented in this subsection is a brief summary, tailored

for our specific needs, of the ideas in [4, 26] and references therein, to which we refer the

interested reader for further details.

Leading singularities can be found by an iterative procedure. Starting from a loop

amplitude, we compute the discontinuity at branch cuts, next we determine the disconti-

nuity at branch cuts of this result, and repeat the process until we are left with a rational

function of the kinematical invariants. For brevity, this discontinuity across the leading

singularity is often referred to as the leading singularity. We can regard leading singular-

ities as calculable well-defined data associated to gauge theories. In addition it has been

conjectured that, for maximally supersymmetric theories, leading singularities are suffi-

cient for determining the perturbative S Matrix [18]. Evidence supporting this proposal

for N = 4 SYM has been given in [36–39].

The Grassmannian G(k, n) is the space of k-dimensional planes in n dimensions. Points

in G(k, n) can thus be parametrized by a general k×n matrix C, whose rows correspond to

n-dimensional vectors spanning a plane. We can take any linear combination of the rows

without affecting the plane, so we conclude that this parametrization has a GL(k) redun-

dancy or ‘gauge symmetry’. The positive part of the Grassmannian G≥0(k, n) corresponds

to the subspace in the Grassmannian in which the determinant of all k×k minors of C are

greater or equal to zero. In what follows, n corresponds to the total number of scattered

particles, with k being the number of negative helicity ones. Amplitudes with k = 2 are

known as maximally helicity violating (MHV), while for k > 2 they are denoted Nk−2MHV.

It has been proposed in [18] that all leading singularities in planar N = 4 SYM arise

as residues of the following contour integral over the Grassmannian

Ln,k(Wj) =

∫

dk×nCij

(12 · · · k)(23 · · · (k + 1)) · · · (n1 · · · (−1))

k
∏

i=1

δ4|4(CijWj). (4.1)

Here (i1 . . . ik) indicates the determinant of the k × k matrix made out of the i1, . . . , ik
columns of C, i.e. the denominator consists of the determinants of the n sequential minors

in C. Wj = (λ̃j , µ̃j , η̃j), j = 1, . . . , n, are the kinematic variables of the scattered particles in

twistor space. We refer the reader to [18] for a detailed explanation of this representation
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Figure 15. Flow pattern on 3-valent nodes.

Figure 16. There is a one-to-one correspondence between perfect matchings and perfect orienta-

tions. Here we indicate in red an edge in a perfect matching.

and of how to identify the contour integration, which determines the resulting leading

singularity. Leading singularities correspond to certain subspaces, also denoted cells, of

the Grassmmanian parametrized by a constrained matrix C.

On a parallel line of development, subspaces of the Grassmannian have been shown

to be in one-to-one correspondence with bipartite graphs [26]. More concretely, cells in

G(k, n) are associated to bipartite graphs on a disk with n boundary points, k of which

are black.8 We thus have a connection between the following objects:

Leading singularities ⇔ Cells in the Grassmannian ⇔ Bipartite graphs

Let us explain how to go from a bipartite graph to a cell in the Grassmannian. The

first step is to define certain ‘momentum flows’ along edges of the graph, also called perfect

orientations, which are in one-to-one correspondence with perfect matchings [26]. These

flows are such that there are two outgoing and one incoming arrows at each white node and

two incoming and one outgoing arrows at each black node, as shown in figure 15. Flows

go through 2-valent nodes without changing direction. Since every bipartite graph can be

reduced to 2 and 3-valents nodes as explained in section 3.1, these rules are sufficient for

determining perfect orientations.

The bijection between perfect matchings and perfect orientations works as follows.

Given an edge contained in a perfect matching, we identify it with the incoming and

outgoing arrows of the white and black nodes at its endpoints, respectively, as shown in

figure 16. In figure 17 we present an example of a perfect matching and its corresponding

perfect orientation.

We are ready for determining the restricted structure of C associated to a graph,

given a perfect orientation. C is a k × n matrix in which now rows correspond to black

external nodes and columns correspond to all external ones, i.e. negative and positive

8More generally, cells in the Grassmannian can be parametrized by plabic graphs, but it is straightforward

to turn them into bipartite ones, as explained in section 3.1.
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(a) (b)

Figure 17. a) An example of a perfect matching and b) its corresponding perfect orientation.

helicity particles are mapped to black and white external nodes, respectively.9 Entries for

which the row and column correspond to the same node are set to 1. Entries associated to

a pair of nodes that are not connected by an oriented path in the perfect orientation are

set to 0. Finally, all other entries are determined in terms of edge weights via the so called

boundary measurement [26],

cij =
∑

P :bj→bi

∏

e∈P

xe, (4.2)

i.e. we sum over all directed paths P starting from bi and terminating at bj in the graph

with a perfect orientation, and the product is over all edges e in P . When P has self-

intersections, we have to weigh the corresponding contribution by (−1)wind(P ), where the

winding wind(P ) is the signed number of full 360◦ turns P makes. The edge weights xe
are in one-to-one correspondence with the expectation values of the corresponding scalars

in the BFT. The precise map between them will be clarified in section 10, when we dis-

cuss higgsing.

The procedure we have just outlined clearly depends on a choice of perfect orientation,

equivalently on a choice of perfect matching. Different choices are physically equivalent.

The result of this prescription coincides with the kinematical analysis of leading singular-

ities, as the one presented in [40]. For example, for the configuration in figure 17, the C

matrix becomes

C =















1 2 3 4 5 6 7 8

2 c21 1 0 c24 0 c26 c27 0

3 c31 0 1 c34 0 c36 c37 0

5 c51 0 0 c54 1 c56 c57 0

8 c81 0 0 c84 0 c86 c87 1















. (4.3)

The subspace parametrized by the constrained matrix C associated to a bipartite graph

when edge weights are restricted to be R ≥ 0, is a cell in the positive Grassmannian.

The previous discussion makes the connection between bipartite graphs and cells in

the Grassmannian relatively natural. White and black nodes can be interpreted as MHV

9The explicit form of C depends on how we arrange nodes within the rows and columns. This freedom

can be taken care of by the existing GL(k) ‘gauge’ symmetry.
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(a) (b)

Figure 18. A BFT on a disk. a) The corresponding graph has one internal and four external faces.

It also has four white nodes (two internal and two external) and four black nodes (two internal and

two external). b) The associated quiver diagram.

and MHV 3-point amplitudes and, intuitively, the graph provides a picture of a scattering

process in which external nodes represent scattered particles and internal faces correspond

to loops.

5 Kasteleyn technology for general BFTs

In this section we introduce an efficient method for finding the perfect matchings of a general

bipartite graph, generalizing the approach based on the Kasteleyn matrix to graphs that

might contain boundary nodes. These techniques will play an essential role in the efficient

computation of moduli spaces.

We begin by defining the master Kasteleyn matrix K0, as the adjacency matrix of the

graph in which rows are indexed by white nodes and columns are indexed by black nodes, i.e.

for every edge in the bipartite graph between nodes wµ and bν , we introduce a contribution

to the K0,µν entry. We separate white nodes into two sets Wi and We, corresponding to

internal and external (i.e. boundary) nodes, respectively. Similarly, we split black nodes

into Bi and Be. This separation is independent of the number of boundary components and

of how external nodes are distributed among them. The individual numbers of internal and

external nodes need not be the same for different colors. Furthermore, the total numbers

of white and black nodes need not be equal, either. K0 takes the general form

K0 =







Bi Be

Wi ∗ ∗

We ∗ 0






. (5.1)

Let us illustrate these ideas with the simple BFT shown in figure 18(a), which is related

to a leading singularity in the scattering of 2 negative helicity and 2 positive helicity

gluons at 1-loop. Figure 18(b) shows the corresponding quiver diagram, for which the

superpotential is

W = X15X52X21 −X13X32X21 +X13X34X41 −X15X54X41, (5.2)
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where color indices and their contractions are implicit. The master Kasteleyn matrix is

K0 =















5 6 7 8

1 X15 X21 X52 0

2 X41 X13 0 X34

3 X54 0 0 0

4 0 X32 0 0















. (5.3)

For any subsets We,del ⊆ We and Be,del ⊆ Be of the boundary nodes, we define the

reduced Kasteleyn matrix:

K(We,del,Be,del) ≡ matrix resulting from starting from K0 and deleting the rows

in We,del and the columns in Be,del (5.4)

All perfect matchings in the graph are then encoded in the polynomial

P =
∑

We,del,Be,del

detK(We,del,Be,del), (5.5)

where the sum runs over all possible subsets We,del and Be,del of the external nodes such

that the resulting reduced Kasteleyn matrices are square. Every term in this polynomial,

which we denote Pµ, is interpreted as the product of edges in a perfect matching.

Let us explain in more detail the reason for the sum over reduced Kasteleyn matrices

in (5.5). The determinant of eachK(We,del,Be,del) in (5.5) generates all the perfect matchings

containing the edges connected to the external nodes in (We − We,del) and (Be − Be,del).

Once again, let us show how this works in the example in figure 18, for which K0 is given

in (5.3). Let us first consider We,del = {3} and Be,del = {7}, which results in

K(We,del={3},Be,del={7}) =











5 6 8

1 X15 X21 0

2 X41 X13 X34

4 0 X32 0











. (5.6)

Taking its determinant, we obtain

detK(We,del={3},Be,del={7}) = −X15X32X34. (5.7)

This is the only perfect matching that contains the edges connected to the surviving exter-

nal nodes 3 and 8, and we show it in figure 19. Generically, each reduced Kasteleyn matrix

can give rise to multiple perfect matchings.

Computing the full polynomial P in (5.5), we obtain

P = X13X15 −X21X41 +X32X41X52 −X15X32X34

+X21X34X54 −X13X52X54 +X32X34X52X54, (5.8)

which corresponds to the seven perfect matchings in figure 19. Given the definition in (2.2),

it is very easy to find the matrix P in terms of the polynomial P. It is given by

Piµ =

∣

∣

∣

∣

∂Pµ

∂Xi

∣

∣

∣

∣

∣

∣

∣

∣

all Xj = 1
, (5.9)
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Figure 19. Perfect matching generated by detK(We,del={3},Be,del={7}). Edges in the perfect match-

ing are indicated in red.

Figure 20. The seven perfect matchings for the BFT in figure 18. Edges in the perfect matchings

are indicated in red.

where, as previously defined, Pµ indicates the term in P associated to the perfect matching

pµ. For our example, we obtain

P =

































p1 p2 p3 p4 p5 p6 p7

X13 1 0 0 0 0 1 0

X15 1 0 0 1 0 0 0

X21 0 1 0 0 1 0 0

X32 0 0 1 1 0 0 1

X34 0 0 0 1 1 0 1

X41 0 1 1 0 0 0 0

X52 0 0 1 0 0 1 1

X54 0 0 0 0 1 1 1

































. (5.10)

6 BFTs and Calabi-Yau’s: moduli spaces

A remarkable feature of BFTs, which is at the center of their special properties, is that

perfect matchings extremely simplify the computation of their moduli space. The moduli

spaces are automatically toric and perfect matchings are in one-to-one correspondence with

fields in their gauged linear sigma model (GLSM) description. In this section we discuss

this calculation, using the example in figure 18 to illustrate our ideas. Indeed, perfect

matchings automatically satisfy F-term equations in the gauge theory. This property was
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Figure 21. Graphic representation of the F-term equations in a BFT.

originally identified in the context of dimer models on T 2 in [1], and a detailed proof of

how perfect matchings parametrize the moduli space of the corresponding theories was

given in [41]. We now briefly review the arguments in these papers, which extend without

changes to general BFTs.

6.1 F-flatness and perfect matchings

The map between chiral fields in the BFT and perfect matchings given in (2.1) implies

that F-term equations are trivially satisfied, as we now review. The vanishing of F-terms

for fields associated to external legs is not imposed.10 For any bifundamental field X0

associated to an internal edge, we have

W = X0P1(Xi)−X0P2(Xi) + . . . , (6.1)

where we have identified the only two terms in the superpotential containing X0. P1(Xi)

and P2(Xi) are products of bifundamentals fields. The F-term equation for X0 takes

the form

∂X0
W = 0 ⇐⇒ P1(Xi) = P2(Xi). (6.2)

This equation has a simple graphic representation as shown in figure 21. After removing

X0, the product of edges connected to node 1 needs to be equal to the product of edges

connected to node 2. Using (2.1), this becomes

∏

i∈P1

∏

µ

p
Piµ
µ =

∏

i∈P2

∏

µ

p
Piµ
µ . (6.3)

But this equation is automatically satisfied. Since nodes 1 and 2 are precisely separated

by a single edge, every perfect matching that appears on the L.H.S. of (6.3) also appears

on its R.H.S.

6.2 The master space

The first step in our discussion of the vacuum structure of BFTs is the concept of master

space, which was introduced for arbitrary N = 1 field theories in [42].11 The master space

10Since these fields appear in a single superpotential term, they would set to zero the product of fields

they are coupled to. This special treatment of external legs is motivated by the connection to geometry,

which we develop in this section.
11The concept of master space extends to SUSY theories in other dimensions.
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is defined as the space of solutions to F-term equations. Since D-terms are not imposed,

we can regard the master space as the full moduli space of the gauge theory, including

baryonic directions.

Following the discussion in the previous section, the master space of a BFT is naturally

parametrized in terms of perfect matchings. For a BFT, the master space is toric, i.e. it

can be described by a GLSM. In GLSM language, F-term conditions can be translated to

certain U(1) charges of the perfect matchings, which are encoded in a charge matrix QF

defined as

QF = KerP. (6.4)

The toric diagram of the master space is given by KerQF , which is indeed P . In other

words, the matrix P connecting chiral fields in the quiver to perfect matchings gives the

positions of points in the toric diagram of the master space! It is interesting to note that

a few months before the general concept of master space was introduced in [42], the same

object was constructed in the mathematics literature in [43], from a different point of view,

for the restricted case of bipartite graphs on a disk. In that work, the matrix P was referred

to as the matching polytope. Our interpretation of the graph as defining a gauge theory

makes the emergence of this geometry absolutely natural and allows its generalization to

bipartite graphs on arbitrary Riemann surfaces.

As we have just said, the toric diagram for the master space is given by the P matrix.

In order to obtain a better idea of this geometry, it is useful to consider the row-reduced

version of P which, for the example at hand, becomes

Gmast =



















p1 p2 p3 p4 p5 p6 p7

1 0 0 0 0 1 0

0 1 0 0 0 −1 −1

0 0 1 0 0 1 1

0 0 0 1 0 −1 0

0 0 0 0 1 1 1



















. (6.5)

We conclude that the master space is a 5-complex dimensional toric geometry with a toric

diagram consisting of seven different points. From now on, every time we mention the

dimension of a Calabi-Yau manifold, we refer to its complex dimension. Furthermore, the

entries in every column of Gmast add up to 1, implying the master space is Calabi-Yau.

In fact, the Calabi-Yau property will be exhibited by the master spaces of all models

considered in this paper. Since the toric diagram lives on a hyperplane at distance 1 from

the origin, we can project it down to 4 dimensions by, for example, considering only four of

the rows in (6.5). A convenient way of visualizing this 4d toric diagram is by considering

different 3d projections, as shown in figure 22. Different points in the 5d toric diagram

might be projected down to the same point in 3d. Such points are indicated in red in

figure 22.

The interior of the toric diagram of the master space, i.e. of the matching polytope,

provides a graphical representation of the corresponding cell in the positive Grassmannian.

The BFT interpretation of the lower dimensional sub-cells on its boundary will be discussed

in section 10.
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(a) (b)

Figure 22. Two projections of the toric diagram for the master space, corresponding to (6.5).

Points descending from multiple ones in 5d are shown in red. The projections correspond to keeping

the following combinations of rows: a) (Gmast,1, Gmast,2, Gmast,3) and b) (Gmast,2, Gmast,3, Gmast,4).

Taking the kernel of P , or equivalently of Gmast, we obtain the charge matrix that

implements the F-terms

QF =







p1 p2 p3 p4 p5 p6 p7

0 1 −1 0 −1 0 1

−1 1 −1 1 −1 1 0






. (6.6)

6.3 The mesonic moduli space

The mesonic moduli space, is another natural geometry associated to any BFT. For short-

ness, we will refer to it simply as the moduli space from now on. The moduli space of any

gauge theory is the vacuum space of solutions of both vanishing F and D-terms. It is thus

a projection of the master space onto the subspace of vanishing D-terms.

There is a D-term contribution for each gauge group in the BFT i.e., by means of the

dictionary introduced in section 2.1, for every internal face in the bipartite graph. It is

convenient to define the charge matrix ∆ of the BFT, as the matrix encoding how every

chiral field transforms under the gauge symmetries.12 The matrix ∆ is an nfields×ngauge ≡

nedges × nint. faces matrix in which rows correspond to chiral fields and columns correspond

to gauge groups. For the row associated to Xij , the non-zero entries are a 1 for the ith

column and a −1 for the jth column. All entries are zero in rows associated to adjoint

fields Xii. D-terms can then be encoded in a charge matrix QD giving the charge of perfect

matchings under the gauge groups. This means that QD is defined such that

P ·QT
D = ∆. (6.7)

It is clear that (6.7) does not determine QD uniquely. Any solution to this equation is

equivalent for the purpose of determining the moduli space.

For our example, there is a single gauge group associated to face 1. Under it, X13 and

X15 have charge 1, X21 and X41 have charge −1, and all other fields are neutral. It is

12For the purpose of this paper, it is sufficient to proceed as if every gauge group was U(1).
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straightforward to verify that the following QD does the right job

QD =

(

p1 p2 p3 p4 p5 p6 p7

0 0 −1 1 −1 1 0

)

. (6.8)

The next step in the determination of the moduli space is to concatenate QF and QD

into a single charge matrix Q

Q =

(

QF

QD

)

. (6.9)

The toric diagram of the moduli space is thus encoded in a matrix G such that

G = KerQ. (6.10)

Let us consider our example. From (6.6) and (6.8), we obtain

G =















p1 p2 p3 p4 p5 p6 p7

−1 −1 0 0 0 0 1

1 1 1 0 0 1 0

0 0 −1 0 1 0 0

1 1 1 1 0 0 0















. (6.11)

The moduli space is a 4d toric manifold. As for the master space, the entries in every

column add up to 1, implying the moduli space is also a Calabi-Yau manifold. This will

also be the case for all the examples considered in the paper which, together with our

previous observation regarding the master space, leads us to conjecture that

Conjecture:

The master and moduli spaces of every BFT are toric Calabi-Yau manifolds.

We expect the existence of a simple proof of this statement based on the combinatorics

of QF and QD.

We observe an interesting phenomenon: there can be non-trivial multiplicities of per-

fect matchings associated to the same point in the toric diagram. In particular, we see

that the point (−1, 1, 0, 1) corresponds to both p1 and p2. Such multiplicities are generic

in BFTs. For example, for the case of D3-branes probing toric CY 3-folds, trying to un-

derstand them has been an important factor leading to the correspondence between the

associated quivers and dimer models [44]. The role of multiplicities in the generalized

context of BFTs is certainly an interesting question that deserves further investigation.

Multiplicities can arise for both internal and external points of a toric diagram. We

would like to note that the toric diagram in figure 23 contains corners with multiplicity

different from one. In the specific case of gauge theories on D3-branes probing toric CY 3-

folds (i.e. BFTs on T 2 with no boundaries), this feature has been identified as an indication

of an inconsistency. In fact, for this class of theories, this behavior is directly connected to

the existence of self-intersecting zig-zag paths [22]. This is clearly not the case here, as we

can verify by explicit determination of the zig-zag paths. At this time, we are not aware
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Figure 23. Toric diagram for the CY 4-fold that is the moduli space of the 4-leg, 1-loop model.

This CY 4-fold is the real cone over Q1,1,1. We indicate the non-trivial perfect matching multiplicity

of the (−1, 1, 0, 1) point in the toric diagram with a number.

of any pathology signaled by this behavior.13 In any case, we are confident that BFTs

without this feature exist. Such models can be analyzed with exactly the same methods

we have applied here.

Since the toric diagram lives on a hyperplane at distance 1 from the origin, it can

be projected down to three dimensions by, for example, considering any three of the rows

in (6.11). Figure 23 shows the toric diagram for this model. This is indeed a well-known

geometry, the real cone over the 7-dimensional Sasaki-Einstein manifold Q1,1,1. This CY

4-fold has been extensively investigated in connection to other types of gauge theories

associated to M2-branes [45–48].

The moduli space of a gauge theory is invariant under Seiberg duality. More abstractly,

in graph theoretic language, this means that the moduli space of a BFT provides a natural

geometry associated to a bipartite graph on a Riemann surface that, by construction, is

invariant under square moves. In section 8, we will discuss in detail the implications and

applications of this fact.

7 Additional examples: increasing boundaries and genus

BFTs associated to graphs without boundaries have been extensively studied in the liter-

ature. Tilings of T 2 describe the gauge theories on D3-branes over toric CY 3-folds [1, 49]

and tilings on higher genus Riemann surfaces arise when acting on them with the untwist-

ing map as discussed on section 4 [2]. For this reason, we emphasize in this section the

novel case of BFTs with boundaries, which are also the ones that are relevant for scatter-

ing amplitudes. We start discussing a model on the disk and soon move to theories that

have never been studied before: models with multiple boundaries and higher genus. It is

natural to expect such configurations to be relevant for leading singularities beyond the

planar limit. Further studies of non-planar graphs will appear in [50].

13This diagnostic quite probably does not apply to other classes of theories beyond those on T
2. For

instance, there are known examples of gauge theories in 2+1 dimensions whose moduli space have toric

diagrams with corner multiplicities and that do not have any known problem [47].
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(a) (b)

Figure 24. a) Bipartite graph for the hexagon-square model. It contains two internal and six

external faces. b) The six zig-zag paths for this model. We see that it does not have any self-

intersecting zig-zag path.

We will put special emphasis in the geometry of the corresponding master and mod-

uli spaces. They can be determined in terms of perfect matchings following the general

procedure introduced in section 6.

7.1 Another example on the disk: the hexagon-square model

Let us consider the 2-loop graph, shown in figure 24, corresponding to the scattering of 3

negative helicity and 3 positive helicity gluons. For pedagogical reasons, we present the full

details of the calculation of its master and moduli spaces in appendix A. The treatment of

other examples in the paper will be briefer and will only emphasize the main results. The

master Kasteleyn matrix for this model is

K0 =





























8 9 10 11 12 13 14

1 X31 0 0 X18 X83 0 0

2 X14 X42 X21 0 0 0 0

3 0 X25 X62 0 0 X56 0

4 0 0 X16 X71 0 0 X67

5 X43 0 0 0 0 0 0

6 0 X54 0 0 0 0 0

7 0 0 0 X87 0 0 0





























. (7.1)

The theory has 25 perfect matchings. The master space is an 8d toric CY. Its toric
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(a) (b)

Figure 25. Two projections of the toric diagram corresponding to (7.3). Points descending from

multiple ones in 6d are shown in red. The numbers indicate the non-trivial multiplicity of perfect

matchings. The projections correspond to keeping the following combinations of rows: a) (G1 −

G2 +G3, G3, G4 +G6) and b) (G1, G2, G3).

diagram is given by the matrix

Gmast =





















1 0 0 −1 0 −1 0 0 −1 0 0 0 −1 −1 0 0 1 −1 0 0 1 −2 −1 −1 0

0 1 0 1 0 0 0 0 0 0 0 −1 1 0 0 0 0 −1 −1 −1 −1 1 1 1 1

0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 −1 1 0 0 −1 1 0 0 −1

0 0 0 0 1 1 0 0 0 0 0 1 0 0 −1 0 −1 1 0 1 0 0 −1 0 −1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 −1 −1 1 1 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1





















.

(7.2)

The moduli space is a 6d toric CY. The 25 perfect matchings give rise to 18 different

points in its toric diagram, whose positions are captured by the following matrix

G =

























0 1 −1 −2 −1 −1 −1 0 0 −1 0 0 −1 0 0 −1 0 0

0 0 0 1 0 1 1 1 1 2 1 −1 0 0 0 1 0 1

0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0

1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 −1 0 −1 −1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 −1 −1 −1 1 1 1 0 0 0 0

3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

























, (7.3)

where we have introduced a compact notation for the G matrix, in which the last row

indicates the multiplicity of perfect matchings for each point in the toric diagram. As

already done in section 6, a useful way of visualizing this 6d toric diagram is by considering

different 3d projections, as shown in figure 25.

7.2 Two boundaries: the cylinder

We now study a model with more than one boundary. Let us consider the example in

figure 26. It has 6 external legs distributed on 2 boundaries, and 3-loops.
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(a) (b)

Figure 26. a) Bipartite graph for the 6-leg, 3-loop model on the cylinder. It contains three internal

and six external faces. b) The eight zig-zag paths for this model.

The master Kasteleyn matrix is

K0 =







































10 11 12 13 14 15 16 17 18

1 X41 0 X16 0 0 0 X64 0 0

2 X24 X52 0 0 0 0 0 X45 0

3 0 X35 X63 0 0 0 0 0 X56

4 X12 0 0 X71 X27 0 0 0 0

5 0 X23 0 0 X82 X38 0 0 0

6 0 0 X31 X19 0 X93 0 0 0

7 0 0 0 X79 0 0 0 0 0

8 0 0 0 0 X87 0 0 0 0

9 0 0 0 0 0 X98 0 0 0







































. (7.4)

This model has 44 perfect matchings. The master space is a 10d CY. The moduli space is

a 7d CY. The 44 perfect matchings organize into 28 distinct points in the toric diagram,

which are given by the following matrix

G =











−1 −1 −1 −2 −1 −1 0 −1 −1 0 −1 −1 0 −2 −1 −1 0 −2 −1 −1 0 −1 0 −1 0 0 0 1

0 1 1 1 1 0 0 0 1 0 1 1 1 2 1 2 1 0 0 0 0 1 0 0 0 1 0 0

1 0 1 1 1 0 0 1 1 1 1 0 0 2 1 1 0 0 0 0 0 2 1 0 0 1 0 0

1 1 0 1 1 1 1 0 1 0 1 0 0 2 2 1 1 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 −1 0 −1 0 1 0 1 0 −1 0 1 0 −1 1 0

0 0 0 0 0 0 0 0 0 0 −1 1 0 −1 −1 0 0 1 1 0 0 −1 −1 1 1 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 −1 −1 −1 −1 1 1 1 1 0 0 0 0 0 0 0

3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1











.

(7.5)

figure 27 shows two possible 3d projections of this toric diagram.

7.3 One boundary on T
2

Let us move to higher genus and consider a model on a 2-torus, with 4 external legs

terminating on a single boundary. From a scattering amplitude perspective, we can regard

this diagram as a non-planar, 5-loop contribution to the scattering of 2 negative helicity and

2 positive helicity gluons. We refer to this theory as model 1 and we show the corresponding

graph in figure 28.
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(a) (b)

Figure 27. Two projections of the toric diagram corresponding to (7.5). Points descending from

multiple ones in 7d are shown in red. The numbers indicate the non-trivial multiplicity of per-

fect matchings. The projections correspond to keeping the following combinations of rows: a)

(G1, G2, G3) and b) (G2 −G3, G4, G5).

(a) (b)

Figure 28. a) Bipartite graph for model 1. It lives on a 2-torus and has four external nodes on a

boundary. It contains five internal and four external faces. b) The four zig-zag paths for this model.

The master Kasteleyn matrix for this model is

K0 =

























7 8 9 10 11 12

1 X61 X27 X12 0 X76 0

2 X45 X83 0 X34 +X58 0 0

3 X14 +X56 0 Y61 Y45 0 0

4 0 X32 Y29 Y83 0 X98

5 0 X78 0 0 0 0

6 0 0 X96 0 0 0

























. (7.6)

The theory has 48 perfect matchings and the master space is an 11d CY. The perfect

matchings give rise to 22 different points in the toric diagram of the moduli space, with
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Figure 29. Two projections of the toric diagram corresponding to (7.7). We show in red the

points descending from multiple ones in 6d. The numbers indicate the non-trivial multiplicity of

perfect matchings. The projections correspond to keeping the following combinations of rows: a)

(G1, G2, G6) and b) (G1, G2, G5 −G3).

positions summarized by the following matrix
























1 0 0 1 1 −1 −1 1 0 0 0 0 −1 −1 1 −1 −1 1 0 0 2 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 1 −1 0 1 −1 0 0 −1 1

0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0

0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0

0 0 0 1 −1 0 0 0 1 −1 −1 1 1 1 1 −1 −1 −1 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 2 −2 −1 −1 −1 1 1 1 0 0 0 0

9 4 4 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1

























.

(7.7)

We see that the moduli space is a 6d toric CY. In figure 29, we show two projections of

the toric diagram down to three dimensions. They have been chosen in order to minimize

the overlap of distinct points after the projections. In both cases, the 22 points of original

6d toric diagram are mapped to 19 points.

8 Square moves and geometry, or Seiberg duality and moduli spaces

Let us investigate the effect of square moves on BFT theories. As we have explained in

section 8, they correspond to Seiberg dualities on certain gauge groups of the BFTs. The

moduli space of the theories is, by construction, invariant under Seiberg duality.14 As a

result, the moduli space is an ideally suited object for identifying theories connected by

square moves. This problem becomes rather non-trivial for large graphs, multiple square

moves, multiple boundaries and/or higher genus Riemann surfaces.

8.1 The dual of the hexagon-square model

Let us consider the model shown in figure 30, which is obtained from the hexagon-square

model discussed in section 7.1 by Seiberg dualizing the gauge group associated to face 2.

14As shown in [51], this is not the case for the master space which, in the case of plabic graphs, is the

toric geometry associated to the matching polytope [43].
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(a) (b)

Figure 30. a) Bipartite graph obtained by Seiberg dualizing the gauge group associated to face

2 of the hexagon-square model. It contains two internal and six external faces. b) The six zig-zag

paths for this model.

Four 2-valent nodes, i.e. mass terms in the BFT, are generated by the duality. We have

only integrated out the massive fields associated to two of them, in order to preserve the

external legs connected to nodes 6 and 13.

The master Kasteleyn matrix is

K0 =





























8 9 10 11 12 13 14

1 X31 0 X18 0 X83 0 0

2 X24 X52 0 X45 0 0 0

3 X12 X26 X71 0 0 0 X67

4 0 X65 0 0 0 X56 0

5 X43 0 0 0 0 0 0

6 0 0 0 X54 0 0 0

7 0 0 X87 0 0 0 0





























. (8.1)

The theory has 22 perfect matchings and the master space is an 8d toric CY. The moduli

space is a 6d CY, with toric diagram given by

G =

























0 0 0 −1 −1 −1 0 −1 −1 −1 0 −1 0 0 −1 −1 0 1

0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0

1 0 0 0 0 1 1 −1 0 −1 −1 0 0 −1 0 1 0 0

0 0 1 0 −1 −1 −1 1 1 0 0 0 0 1 0 0 0 0

0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0

0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0

3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

























(8.2)

This moduli space is the same as the one for the original hexagon-square model. It is indeed

possible to find an SL(6,Z) transformation that takes (8.2) into (7.3). Instead of giving the

explicit transformation, we show two projections of the toric diagram in figure 31, which

are identical to those shown in figure 25 for the Seiberg dual theory.
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(a) (b)

Figure 31. Two projections of the toric diagram corresponding to (8.2). Points descending from

multiple ones in 6d are shown in red. The numbers indicate the non-trivial multiplicity of perfect

matchings. The projections correspond to keeping the following combinations of rows: a) (G2 −

G4, G5, G6) and b) (G2 −G3, G4, G6).

(a) (b)

Figure 32. a) Bipartite graph for model 2, obtained from model 1 by Seiberg dualizing face 4.

It lives on a 2-torus and has four external nodes on a boundary. It contains five internal and four

external faces. b) The four zig-zag paths for this model.

Comparing (7.3) and (8.2), we see that the original hexagon-square model and its

Seiberg dual differ in the multiplicity of perfect matchings associated to each point in the

toric diagram of the moduli space. This is a generic feature of dual theories that will be

also encountered in the examples that follow. Different multiplicities are a manifestation,

in the context of toric geometry, of the action of cluster transformations. They relate the

partition functions for perfect matching of dual models and, in particular, produce the

perfect matching multiplicities for any of the two theories in terms of those for the other

one. The central role of cluster transformations, which leave the boundary measurement

invariant [26], in the study of leading singularities has been investigated in [4]. A more

intuitive understanding of the role of cluster transformations in the BFT will be presented

in future work [52].

8.2 Non-planar duals

Let us now consider a theory, that we call model 2, obtained from model 1 in section 7.3

by Seiberg dualizing face 4. The resulting graph is shown in figure 32.
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Figure 33. Two projections of the toric diagram of model 2, given by (8.4). Points descending

from multiple ones in 6d are shown in red. The numbers indicate the non-trivial multiplicity of

perfect matchings. The projections correspond to keeping the following combinations of rows: a)

(G1, G2, G6) and b) (G1, G2, G5 +G3). Models 1 and 2 have the same moduli space.

The master Kasteleyn matrix is

K0 =

































9 10 11 12 13 14 15 16

1 X61 X27 0 0 X12 0 X76 0

2 0 X83 X48 0 0 X34 0 0

3 X46 0 X54 X65 0 0 0 0

4 0 0 X85 Y54 0 Y48 0 0

5 X14 0 0 Y46 Y61 0 0 0

6 0 X32 0 0 Y29 Y83 0 X98

7 0 X78 0 0 0 0 0 0

8 0 0 0 0 X96 0 0 0

































. (8.3)

The theory has 53 perfect matchings, which turn into 22 distinct points in the toric

diagram of the moduli space. We already see that this number agrees with its Seiberg dual.

The moduli space is a 6d toric CY whose toric diagram is given by

























1 0 0 1 1 −1 −1 1 0 0 0 0 −1 −1 1 −1 −1 1 0 0 2 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 1 −1 0 1 −1 0 0 −1 1

0 0 1 1 −1 1 0 1 1 0 −1 2 2 1 2 0 −1 0 0 1 0 0

0 0 1 1 −1 1 1 0 1 0 −1 2 2 2 1 0 0 −1 1 0 0 0

0 0 0 −1 1 0 0 0 −1 1 1 −1 −1 −1 −1 1 1 1 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 2 −2 −1 −1 −1 1 1 1 0 0 0 0

12 5 5 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1

























.

(8.4)

This moduli space is identical to the one for model 1. As in the previous example,

instead of providing the explicit SL(6,Z) transformation connecting the two toric diagrams,

we present some 3d projections in figure 33, which match those in figure 29.

Despite their simplicity, the examples considered in this section show how powerful

the concept of moduli space is for identifying models connected by Seiberg duality, i.e.
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Figure 34. The n-loop ladder diagram for the scattering of 2 negative and 2 positive helicity

particles generalizing the 1-loop model discussed in section 6.

(a) (b)

Figure 35. a) Bipartite graph for the 4-leg, 2-loop model. It contains two internal and four external

faces. b) The four zig-zag paths for this model.

configurations related by square moves in the graph. The moduli space serves as a practical

and sharp diagnostic even for large graphs, complicated topologies and/or theories related

by a chain of multiple Seiberg dualities.

9 Loop reduction and Calabi-Yau geometry

In this section we study some nice behavior exhibited by the moduli spaces associated

to multi-loop diagrams. For concreteness, we consider the scattering of 2 negative and 2

positive helicity gluons and focus on the multi-loop ladder diagrams given in figure 34,

which generalize the model studied in section 6.15

For BFTs on a disk, the dimension of the master space is equal to the total number

of faces of the graph [43]. To determine the moduli space, we further impose the D-term

equations associated to internal faces, so the dimension of the moduli space is equal to the

number of external faces. Applying this general discussion to the class of models given

by figure 34, we conclude that while the master space of the n-loop theory is (n + 4)-

dimensional, the moduli space is a CY 4-fold for every n. We will soon see that the

agreement between moduli spaces goes beyond just the number of dimensions.

15This example was also independently considered by the authors of [4].
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Figure 36. General toric diagram for the moduli space of the 4-leg, 2, 3 and 4-loop models. The

moduli space is in the three cases the same as the one for the 1-loop model, i.e. the real cone over

Q1,1,1. Letters indicate the non-trivial perfect matching multiplicities of points in the toric diagram,

which depend on the number of loops.

Two loops. Let us begin with the 2-loop diagram shown in figure 35. The master

Kasteleyn matrix for this model is

K0 =





















6 7 8 9 10

1 X13 X21 X32 0 0

2 0 X52 X24 X45 0

3 X61 X15 0 0 X56

4 X36 0 0 0 0

5 0 0 X43 0 0





















. (9.1)

The model has 10 perfect matchings and the master space is, as anticipated, a toric 6d

CY. This theory has two gauge groups, associated to faces 1 and 2. Performing the further

quotient by these symmetries we obtain the moduli space, which is a toric 4d CY. Its toric

diagram is given by the matrix

G =















0 1 −1 0 0 0

0 0 1 1 0 1

1 0 1 1 0 0

0 0 0 −1 1 0

3 2 2 1 1 1















. (9.2)

The associated toric diagram is presented in figure 36. Interestingly, the moduli space

is exactly the same as for the 1-loop model considered in section 6, although with different

perfect matching multiplicities (a, b, c, d, e, f) = (2, 2, 1, 1, 1, 3).
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(a) (b)

Figure 37. a) Bipartite graph for the 4-leg, 3-loop model. It contains three internal and four

external faces. b) The four zig-zag paths for this model.

Three loops. Let us now quickly analyze the 3-loop model, given by the graph in fig-

ure 37. The master Kasteleyn matrix is

K0 =

























7 8 9 10 11 12

1 X14 X42 0 X21 0 0

2 0 X34 X53 0 0 X45

3 0 X23 X36 X62 0 0

4 X71 0 0 X16 X67 0

5 X47 0 0 0 0 0

6 0 0 X65 0 0 0

























. (9.3)

The model has 15 perfect matchings and a master space that is a CY 7-fold. After

imposing the D-terms associated to the three gauge groups, we see that the moduli space

is a CY 4-fold with toric diagram given by

G =















1 0 0 −1 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 0 0 0 −1 1

5 3 3 2 1 1















. (9.4)

We conclude that the moduli space of the 3-loop graph is identical to the one for 1 and

2-loops, shown in figure 36, with multiplicities (a, b, c, d, e, f) = (5, 2, 1, 3, 1, 3).

Four loops. The 4-loop model corresponds to the graph in figure 38. The master Kaste-

leyn matrix is

K0 =





























8 9 10 11 12 13 14

1 X15 X52 0 0 X21 0 0

2 0 X35 X54 X43 0 0 0

3 0 0 X46 X74 0 X67 0

4 0 X23 0 X37 X72 0 0

5 X81 0 0 0 X17 0 X78

6 X58 0 0 0 0 0 0

7 0 0 X65 0 0 0 0





























. (9.5)

– 36 –



J
H
E
P
1
1
(
2
0
1
2
)
1
4
1

(a) (b)

Figure 38. a) Bipartite graph for the 4-leg, 4-loop model. It contains four internal and four

external faces. b) The four zig-zag paths for this model.

The model has 23 perfect matchings and a master space that is a CY 8-fold. The

moduli space is a CY 4-fold with toric diagram given by

G =















1 0 0 −1 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 0 0 0 −1 1

8 5 5 3 1 1















, (9.6)

which, once again, precisely agrees with the moduli spaces for the lower loop models, but

with multiplicties (a, b, c, d, e, f) = (8, 3, 1, 5, 1, 5).

It is natural to expect that the moduli space remains the same, up to perfect matching

multiplicities, for arbitrary number of loops. Below we show that this is indeed the case

by proving that different loops are connected by Seiberg duality. We conjecture that this

behavior is a geometric manifestation of the fact that for a given set of scattered particles

the number of leading singularities is finite and determines the scattering amplitude to an

arbitrary number of loops. It would be interesting to investigate this phenomenon for other

multi-loop diagrams.

9.1 Loop reduction and Seiberg duality

The fact that BFTs associated to the ladder diagrams with an arbitrary number of loops

share the same moduli space suggests that they are connected by Seiberg duality. Since a

different number of loops maps to a different number of gauge groups in the BFT, Seiberg

duality clearly needs to be supplemented with some additional dynamics, as we now explain.

The n-loop diagram is connected to the (n−2)-loop one by the sequence of steps shown

in figure 39. In terms of gauge theory dynamics, these steps have the following meaning:

1) We perform a Seiberg duality on some of the internal faces that are not at the

endpoints of the ladder. This transformation is implemented by a square move in the

graph and generates four 2-valent nodes.

2) The 2-valent nodes generated in the previous step correspond to mass terms in the

superpotential. We integrate out the massive fields, which maps to condensation of

nodes in the graph. When doing so, the number of sides of each of the two faces

adjacent to the dualized one is reduced to two.
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Figure 39. An n-loop diagram can be turned into an (n− 2)-loop one by a sequence of steps that

in the BFT correspond to: 1) Seiberg duality, 2) Integrating out massive fields, and 3) Confinement

of Nf = Nc gauge groups and formation of mesons.

3) Internal faces with two sides correspond to SU(Nc) gauge groups with Nf = Nc. At

low energies, such gauge groups confine and their dynamics is expressed in terms of

gauge invariant (under the confined gauge group) mesons and baryons. The graphic

implementation of the formation of mesons corresponds to combining the two edges on

the boundary of these faces into a single one. This process makes the faces disappear,

in agreement with confinement.

Iterating this process we can show that all diagrams with an even number of loops give

rise to dual gauge theories. Similarly, theories with an odd number of loops are also dual.

10 The boundary operator as higgsing

In section 4.4, we reviewed the correspondence between bipartite graphs and cells in the

positive Grassmannian. In section 6.2 we explained, in terms of the master space, that a cell

takes the form of a convex polytope and its boundary is a collection of lower dimensional

cells. Being at a boundary of a cell corresponds to setting some of the entries of the

corresponding matrix C to zero. The larger the number of vanishing entries is, the lower

dimensional the corresponding boundary cell is.

Setting an entry in C to zero corresponds to eliminating the connectivity between the

associated external nodes. This is achieved by removing an internal edge in the graph,

disrupting oriented paths between the nodes. Figure 40 shows an example of this pro-

cess. Removing the edge shown in red results in setting c24, c26, c27, c37 and c57 to zero

in (4.3). The discussion in section 3.3 implies that the boundary operator maps to higgsing

in the BFT.

Turning on a non-zero vev for a bifundamentals field X0 determines an energy scale

〈X0〉 = Λ. Removing the edge associated to X0 from the graph corresponds to considering

energies much smaller than Λ. The surviving graph accurately captures the low energy
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Figure 40. An example of higgsing. An edge is removed from the graph, resulting in the disap-

pearance of some oriented paths, associated to a perfect orientation, connecting external nodes.

physics, such as the moduli space of the theory, provided the vevs involved are much

smaller than Λ.

The BFT not only captures the combinatorics of the boundary but also describes

the continuous approach to boundary facets. In fact, identifying expectation values of

bifundamental fields with the inverse of edge weights entering (4.2), we obtain perfect

agreement between the higgsing and Grassmannian pictures.16 As some expectation value

is increased certain entries in C get suppressed, eventually vanishing once the vev is sent

to infinity.

We have discussed how the boundary operator is linked to a simple local operation on

the graph: edge removal. Given the map between zig-zag paths and Deligne permutations

explained in section 2.3, it is straightforward to see that the boundary operator acts by

flipping Deligne permutations [4], according to

fd(a) = b

fd(c) = d
∂−−→

fd(a) = d

fd(c) = b
(10.1)

where a, b, c and d are the endpoints of two intersecting zig-zag paths. Figure 41 shows

how the permutation flip results from edge removal. Notice that while permutation flip is

a global operation in the graph, it is equivalent to removing edges, which is local.

10.1 Consistent higgsing and untwisting

We should only consider higgsings that produce consistent graphs, i.e. graphs without

self-intersecting zig-zag paths. When an edge is removed, two zig-zags are split at some

intermediate points and then recombined as in figure 41. This implies that removing

an edge generates self-intersections only when the two zig-zags involved originally have

multiple intersections. This situation is sketched in figure 42.

16The inversion of edge weights in this correspondence is not surprising. The structure of F-terms in

BFTs is such that there is a trivial xe ↔ x
−1

e symmetry.
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Figure 41. Removing an internal edge gives rise to a recombination of zig-zag paths that results

in a flip of Deligne permutations.

Figure 42. Removing an edge between two zig-zag paths with multiple crossings results in a zig-zag

with multiple intersections.

Zig-zags are not manifest in the graph G, and keeping track of them or recomputing

them after each higgsing in order to check consistency is rather tedious. This is partic-

ularly hard when multiple non-zero vevs are involved. It is then useful to consider the

untwisted graph G̃. Zig-zags of G become boundaries of faces (both internal and exter-

nal) in G̃ and explicit in the graph even after higgsing.17 Recombination of zig-zags maps

to the recombination of faces and we can efficiently follow them through the process of

removing edges.

According to our previous discussion, in order to preserve consistency, edges between

zig-zags that intersect more than once cannot be removed. It is then straightforward to

identify inconsistent higgsings using G̃: we simply cannot delete edges sitting between faces

with multiple intersections.

Let us illustrate these concepts with an explicit example. Consider figure 43, which

corresponds to a leading singularity in the scattering of 4 negative and 4 positive helicity

gluons at 4-loops. We have labeled edges to facilitate their identification after untwisting.

There are eight zig-zag paths: two of length 4, two of length 6, two of length 7 and

two of length 8. They are given by the following collections of edges:

Length 4 1 : (1, 4, 10, 14) Length 7 3 : (1, 5, 11, 17, 18, 19, 20)

2 : (2, 8, 13, 20) 4 : (2, 7, 12, 17, 16, 15, 14)

Length 6 5 : (3, 10, 15, 21, 24, 25) Length 8 7 : (3, 4, 5, 6, 12, 18, 22, 25)

6 : (9, 13, 19, 22, 24, 23) 8 : (9, 8, 7, 6, 11, 16, 21, 23)

(10.2)

17It is important to emphasize that we do not need to require G̃ to be consistent. In fact, it has self-

intersecting zig-zags if the original theory has adjoint fields.
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(a) (b)

Figure 43. a) A 4-loop diagram associated to the scattering of 4 negative and 4 positive helicity

gluons. We have labeled edges in blue. b) The eight zig-zag paths of this model.

Figure 44. The graph G̃ obtained by untwisting the zig-zag paths in figure 43. Face labels are

those of the corresponding zig-zag paths in the original graph. G̃ contains eight external faces, has

three boundaries (represented as blue circles) and lives on a 2-torus.

The untwisted graph G̃ is shown in figure 44.18 The eight zig-zag paths of the original

graph turn into eight external faces via untwisting. G̃ has three boundaries and lives on

a 2-torus.

As explained above, G̃ can be used to identify, by simple inspection, all edges that

cannot be removed without spoiling consistency. They are indicated in color in figure 44.

In green, we show external legs, which correspond to the scattered particles and hence are

preserved. In red, we show the edges that cannot be removed because they sit between

faces with more than one intersection. In particular we have edges 5 and 18 between faces

3 and 7, and edges 7 and 16 between faces 4 and 8. While this approach might seem too

elaborate for dealing with the removal of single edges, it becomes particularly useful for

systematically determining consistent removals of multiple edges.

18We are extremely grateful to Rak-Kyeong Seong for sharing his expertise in untwisting complicated

graphs and for verifying this example.
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10.2 Higgsing and geometry

Let us discuss the effect of higgsing on the geometry of the master and moduli spaces. The

correspondence between perfect matchings pµ, which should be regarded as GLSM fields,

and a chiral field Xi in the quiver is given by (2.1), which we reproduce here for convenience

Xi =
c
∏

µ=1

p
Piµ
µ . (10.3)

This means that, in order for Xi to acquire a non-zero vev, all perfect matchings with

Piµ = 1, i.e. all the ones that contain the corresponding edge in the graph, need to get a non-

zero vev and are eliminated. This removal of perfect matchings results in the disappearance

of some points in the toric diagrams of the master and moduli spaces, and in a reduction

in the multiplicity of others.

While higgsing removes points from the toric diagrams of the master and moduli spaces,

their qualitative behavior is different. Higgsing decreases the number of internal faces in G

by one, which implies that the dimensionality of the master space is reduced by the same

amount. The toric diagram of the master space of the higgsed theory is, as expected, a

lower dimensional sub-cell on the boundary of the original one. On the other hand, the

number of D-term equations is also reduced by one when higgsings, which implies that the

dimension of the moduli space remains constant.

11 Conclusions and outlook

In this paper, we have introduced and started the study of Bipartite Field Theories, a

general class of 4d, N = 1 quiver gauge theories defined by a partite graph on a Riemann

surface. We explained the map between the field theory dynamics and graph modifica-

tions, the emergence of toric CY manifolds as the master and moduli spaces of the gauge

theory, the connection between Seiberg duality and square moves and interpretation of the

boundary operator on cells in the positive Grassmannian as higgsing. While our discussion

has been completely general, most of our explicit examples have boundaries, i.e. they were

relevant for scattering amplitudes.

We developed specific tools, in the form of generalized Kasteleyn matrix techniques, for

the study of general BFTs. We extensively demonstrated in examples how these methods

allow the explicit determination of master and moduli spaces, even for complicated graphs.

Finding the corresponding CY manifolds is reduced to computing determinants of rather

simple matrices.

We have studied models that go beyond the planar limit, by increasing the number of

boundaries and the genus of the underlying Riemann surface. From a BFT viewpoint, they

are not more involved than planar graphs. As discussed in section 8, it is in the context of

non-planar graphs that the moduli space of the BFT more strikingly shows its power for

identifying theories related by square moves, since they cannot be understood in terms of

permutations as in the planar case.

Our work suggests various interesting directions for future investigation, some of which

are summarized below:
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• One of the main lessons of our work is the existence of a deep connection between

Calabi-Yau manifolds, which appear in the form of master and moduli spaces of BFTs,

and leading singularities. As explained in sections 6.2 and 10, the master space is

the natural object for describing cells in the Grassmannian and their boundaries.

But, to us, the moduli space appears to be a more fundamental object, since it is

invariant under all equivalence transformations of the graph. It is natural to expect

these geometries to play central role in the study of leading singularities, yet to be

unveiled in full generality. In the restricted case of graphs on a disk, the toric diagram

of the moduli space exhibits striking similarities with the matroid polytope of [43].

The connection between these two objects will be explained in [50].

• For graphs without boundaries on T 2, there is an intimate connection between zig-zag

paths and the geometry of the moduli space of the associated BFT, which is a CY

3-fold. Zig-zags are in one-to-one correspondence with (p, q)-legs normal to the faces

of the toric diagram. It would be interesting to understand whether, and if so how,

zig-zags on bipartite graphs on generic Riemann surfaces with boundaries are related

to the moduli spaces of the corresponding BFTs. We expect that understanding

this connection, in conjunction with the previous point, will lead to a map between

invariants, global properties of zig-zags and CY manifolds.

• A string theory embedding is known for certain classes of BFTs. This is the case for

those associated to graphs without boundaries on T 2, which arise on the worldvolume

of D3-branes probing toric CY 3-folds. In these cases, the graph can be interpreted

as a physical web of NS5-branes from which D5-branes are suspended, connected by

two T-dualities to the original configuration of D3-branes. In addition, the graph on

a (typically) higher genus Riemann surface that is obtained from it by the untwisting

map describes a configuration of D6-branes on the mirror manifold. It would be

extremely interesting to investigate whether additional sub-classes of BFTs admit a

string theory realization.

• In section 8, we discussed how different BFTs can give rise to the same CY manifolds

as their moduli spaces. We can regard such equivalence as a generalized version of

Toric Duality [53–56]. In section 9, we presented explicit examples showing that even

graphs with a different number of loops can lead to the same CY. There is a priori

no obvious reason preventing graphs with different numbers of boundaries and/or

genus from producing the same CY.19 It would be interesting to search for explicit

examples realizing this behavior and, if they indeed exist, to understand what its

physical interpretation is.

• The Grassmannian G(k, n) also arises as the moduli space of k U(n) vortices. Given

the connection between cells in the Grassmannian and bipartite graphs and the fact

that any such graph can be reduced to one only involving 2 and 3-valent nodes, it

19In fact we know that a similar behavior is possible for the master space: specular duals, whose underlying

graphs are related by untwisting zig-zag paths, share the same CY as the master space [31].
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would be interesting to explore whether some natural decomposition of the moduli

space, in which U(2) and U(3) vortices are basic building blocks, exist.

We foresee BFTs will provide useful insights and guidance and will fuel future devel-

opments in the study of systems associated to bipartite graphs, in particular in the area of

leading singularities in scattering amplitudes.
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A Master and moduli spaces of the hexagon-square model

The bipartite graph for this model is shown in figure 24. The master Kasteleyn matrix for

this model is

K0 =





























8 9 10 11 12 13 14

1 X31 0 0 X18 X83 0 0

2 X14 X42 X21 0 0 0 0

3 0 X25 X62 0 0 X56 0

4 0 0 X16 X71 0 0 X67

5 X43 0 0 0 0 0 0

6 0 X54 0 0 0 0 0

7 0 0 0 X87 0 0 0





























, (A.1)

from which we determine

P = −X14X16X18X25 −X16X18X42X43X56 +X14X16X18X54X56 −X18X21X25X43X67

−X18X21X43X54X56X67 +X18X42X43X62X67 −X14X18X54X62X67

−X21X25X31X71 +X21X31X54X56X71 +X31X42X62X71 +X21X25X43X71X83

−X21X43X54X56X71X83 −X42X43X62X71X83 +X14X54X62X71X83

+X16X31X42X56X87 +X21X25X31X67X87 −X21X31X54X56X67X87

−X31X42X62X67X87 +X14X16X25X83X87 −X16X42X43X56X83X87

+X14X16X54X56X83X87 −X21X25X43X67X83X87 +X21X43X54X56X67X83X87

+X42X43X62X67X83X87 −X14X54X62X67X83X87. (A.2)
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I.e. the model has 25 perfect matchings. The P matrix becomes:

P =































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25

X14 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X16 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X18 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X25 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0

X42 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

X43 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0

X56 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1

X54 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1

X21 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1

X67 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0

X62 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

X31 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1

X71 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

X83 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

X87 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0































.

(A.3)

We can get a better idea of the toric diagram of the master space by considering the

row-reduced version of this matrix

Gmast =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25

1 0 0 −1 0 −1 0 0 −1 0 0 0 −1 −1 0 0 1 −1 0 0 1 −2 −1 −1 0

0 1 0 1 0 0 0 0 0 0 0 −1 1 0 0 0 0 −1 −1 −1 −1 1 1 1 1

0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 −1 1 0 0 −1 1 0 0 −1

0 0 0 0 1 1 0 0 0 0 0 1 0 0 −1 0 −1 1 0 1 0 0 −1 0 −1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 −1 −1 1 1 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1















.

(A.4)

The master space is hence an 8d toric CY. The charge matrix encoding F-terms is QF =

Ker P , which becomes

QF =



































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25

0 −1 1 0 1 0 −1 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 −1 0 0 0 0 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 −1 0 0 1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

−1 1 1 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 1 −1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1 0 1 0 1 0 −1 1 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



































.

(A.5)

This theory has two gauge groups. The matrix associated to D-terms can be chosen

to be:

QD =

(

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0

)

. (A.6)

CombiningQF andQD into the total charge matrixQ, we obtain the matrixG = KerQ

defining the toric diagram of the moduli space

G =









p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25

0 1 −1 0 0 −1 0 0 −1 0 −1 −1 0 −2 −1 −1 0 −2 −1 −1 0 −1 0 0 1

0 0 1 1 1 2 1 −1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 −1 −1 0 −1 −1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 −1 −1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0









. (A.7)

In (7.3), we presented a reduced version of this matrix in which we only show the different

column vectors and indicate their multiplicity.
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