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1 Introduction and summary

Unravelling the thermodynamic phase structure of gauge theories such as quantum chro-

modynamics (QCD) poses several challenging and interesting questions. The behaviour of

cold, dense matter in QCD is particularly elusive due to the so-called sign problem, and

because low temperature, finite density transitions are expected to occur in the regime of

strong gauge coupling [1, 2]. The large-N expansion promises to be a useful means of under-

standing certain aspects of the relevant physics. In recent years, the ’t Hooft and Veneziano

large-N limits [3–5] have been applied to argue the existence of a low temperature quarky-

onic phase [6, 7] where baryons condense. A second line of investigation of large-N limits
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of QCD-like theories, involves the use of tools provided by gauge/gravity dualities [8, 9] to

describe strongly interacting theories with a large number of flavours [10, 11].

Drawing motivation from these research directions, in this paper we study the phase

diagram of SU(N) gauge theories with both fundamental scalars and fermions in the

Veneziano large-N limit, on a spatial three-sphere, and with the gauge coupling set to

zero. For asymptotically free theories, this is a natural limit to consider when the radius

of the sphere is much smaller than the dynamical length scale at which gauge interactions

become strong. Despite being in a compact space, a non-trivial phase structure is possible

because of the large-N limit which plays the role of the thermodynamic limit.

It is now well appreciated, following the works of [12, 13], that even free large-N theories

on compact spaces can have a non-trivial phase structure which may, in certain cases, be

continued through to the interacting situation. For theories with adjoint matter, most

famously for the free N = 4 supersymmetric Yang-Mills (SYM) theory on S3, this study

reveals a Hagedorn density of states leading to a first order deconfinement phase transition

with increasing temperature.1 The deconfinement transition survives the continuation to

strong ’t Hooft coupling wherein the gravity dual displays a Hawking-Page transition from

thermal AdS space to an AdS black hole geometry [15, 16]. The qualitative agreement

remarkably persists upon inclusion of chemical potentials for R-symmetry charges in N = 4

SYM [17–22].

We consider models containing both fundamental scalars (“squarks”) and fermions

(“quarks”) as this is the generic matter content of supersymmetric theories that arise in

holographic descriptions of gauge theories with fundamental flavour fields (e.g. [23] and the

D3-D7 system [10, 24–27]). Thermal transitions (at zero density) in such setups at zero

and weak couplings were considered in [28–31]. The crucial new feature upon introducing

a chemical potential for (s)quark number or baryon number, is that the effective action be-

comes complex due to the breaking of charge conjugation symmetry. The thermodynamics

of gauge theory on S3 is encoded in the effective action for the Polyakov loop matrix U ,

or the holonomy of the gauge field around the Euclidean thermal circle. This effective the-

ory on a compact space yields a matrix model for U . The effective action being complex,

it turns out that the matrix integral must be interpreted in a certain holomorphic sense

so that the integral picks up, and is dominated by, complex saddle point configurations

at large-N (see e.g. [32]). This was first shown in [33] where theories with fundamental

fermions were studied (see also [34–36]). In this paper we will use the same techniques re-

vealing a wider range of phenomena that occur when fundamental scalars are included. We

further clarify the physical reasons behind these and also some of the results found in [33].

Our results are summarized in figure 1, which provides a general picture of the phase

diagram for these theories. The theory at µ = 0, with increasing temperature, experiences

a third order Gross-Witten-Wadia (GWW) [37, 38] phase transition characterized by the

formation of a gap in the large-N eigenvalue distribution of the unitary matrix U . The

non-analyticity at µ = 0 was first noted in [28]. Although there is no natural order

1While it is not known whether this first order transition in N = 4 SYM continues to exist for small

non-zero ‘t Hooft coupling, the corresponding weak coupling calculation was carried out for pure SU(N)

Yang-Mills theory (at large N) and the first order deconfinement transition found to persist [14].
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Figure 1. General features of the phase diagram. Thick black lines correspond to third order

phase transitions. Sawtooth features are associated to the filling of low lying Fermi levels. The

first such feature appears on either side of Nµ = mBF
, the mass of the lightest baryon made from

fermions (quarks). The value Nµ = mB , the mass of the lightest baryon constituted of scalar

modes, represents the onset of Bose condensation of squarks and is the boundary of the phase

diagram for the free theory. With interaction potentials typical of supersymmetric models, the

theory for Nµ > mB will enter an unstable Higgs phase (shaded region), along with a locally stable

deconfined phase (thatched region).

parameter for confinement at finite N in the presence of fundamental matter fields, non-

analytic behaviour in the Polyakov loops occurs in the large-N Veneziano limit and can be

interpreted as deconfinement of mesons to quarks.

The new features in the phase diagram, at low temperature and non-zero chemical

potential, can be explained as follows. By Gauss’s law on S3, the grand canonical partition

function must be thought of as a sum over gauge-singlet states only. A positive chemical

potential µ > 0 essentially favours baryons over anti-baryons. There are primarily three

distinct types of baryonic states whose masses and degeneracies determine the nature of

the phase diagram:

• Ordinary baryons BF constituted of fundamental fermions or quarks.

• Baryon operators BS , composed of fundamental scalars and in particular, various

spherical harmonics of squark fields on S3.

• The third type of states which will be relevant for our discussion are the “adjoint-

baryons”, BAd. Adjoint baryon operators involve any number of insertions of adjoint

fields into an ordinary baryon operator. The adjoint fields could be harmonics of the

gauge field on S3 or the modes of any other adjoint matter field in the theory.

At large N , the degeneracy of all such states grows exponentially with N , as we will

see below (for related discussions see [7, 39]). This exponential growth of baryon states

has a very important effect: although baryons are exponentially suppressed due to their

masses being O(N), their exponentially large degeneracies result in a competition between

energy and entropy, wherein the latter can overwhelm the former in the grand canonical
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ensemble. Consequently, for any fixed low temperature we may argue the existence of a

phase boundary at a value of µ determined by the mass and the degeneracy of the lightest

baryon state on S3.

The expectations above are confirmed and complemented beautifully by the explicit

behaviour of the complex saddle points of the large-N matrix model for U . As µ approaches

the mass of the lightest baryon state, and precisely when the entropy factor overwhelms the

Boltzmann suppression, the distribution of eigenvalues of U along a closed contour in the

complex plane, experiences a “gapping” transition of the GWW type. This is accompanied

by a smooth increase in baryon number, and the phase transition is found to be of third

order. The scaling of the grand potential with the number of flavours indicates that the

confined phase should be attributed to an ensemble of gauge-singlet mesons and in this

sense the quarks are confined. Across the gapping transitions we find that gauge-invariant

order parameters holomorphic in U , namely 〈 1
NTr Un〉, acquire non-zero values. Non-

vanishing expectation values for Polyakov loop observables are expected in a deconfined

phase [46, 47]. For this reason we term the non-analyticities as deconfinement transitions

across which baryons “melt”. The anti-holomorphic observables, 〈 1
NTr U †n〉 remain non-

vanishing in all phases reflecting the asymmetry under charge conjugation in the presence

of a (positive) chemical potential.

If the lightest state(s) happen to be ordinary baryons BF , composed of light quark

modes, two successive third order transitions occur on either side of the baryon mass at

Nµ = mBF
∓T ln D(BF ). Here D is the degeneracy of the light baryon state. The first is a

gapping transition followed immediately by a transition back to the ungapped or confined

phase, with increasing µ. Across the two transitions, the lowest lying Fermi levels get filled

and the baryon number increases by a discrete step. In between two such transitions, a

‘spike’ of deconfined phase penetrates all the way down to zero temperature. These are

the features shown in figure 1.

In theories with squarks, an additional feature appears in the phase diagram. For

baryons made from scalar flavours, complete antisymmetry of colour indices means that

the lightest baryon cannot always be constituted solely of the lightest squark harmonics on

S3 (the zero modes). When the number of squark flavours is smaller than the number of

colours, non-trivial baryon operators BS can exist only if higher harmonics of the squark

fields are also included. Alternatively, one may form non-vanishing baryon operators BAd

by insertions of adjoint fields. In all cases, our matrix model calculation explicitly yields

a third order deconfining transition at Nµ = mB − T ln D(B), where B is the lightest

baryon state composed of scalar flavours and D(B), the associated degeneracy. Beyond this

transition, we find that the baryon number grows without bound and eventually diverges

at Nµ = mB . We identify this as the Bose condensation of squarks/baryons and the phase

diagram cannot be continued past this boundary in the free theory.

The onset of Bose condensation of squarks is accompanied by the collapse of the

distribution of eigenvalues of U to a point, so that U = 1. This marks the entry of the field

theory into a “Higgs phase” where gauge-invariant operators carrying (positive) baryon

number could acquire vacuum expectation values (VEVs). It is not possible to see this

in the non-interacting theory. If interactions, such as those in supersymmetric QCD-like
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theories,2 were to be switched on, flat directions in the scalar potential would lead to

runaway, unstable VEVs for large enough baryon number chemical potential [17–19, 52].

At any finite temperature however, there would be a metastable phase (thatched region in

figure 1) of deconfined (s)quarks at the origin of the Higgs branch [17–19]. In the µ − T

plane, the width of the metastable region, at weak coupling, is determined by the thermal

mass of the squark modes.

Our motivation for exploring the large-N phase structure above is to glean information

on the possible thermodynamic behaviour of such theories, which could be used as a point

of reference for investigating similar theories at strong coupling within the framework of

gauge/string dualities [53]. While it may be unreasonable to expect a putative strongly

coupled gravity dual to reproduce the features in figure 1, certain aspects are possibly robust

enough to exist at any coupling. The exponential (in N) growth of baryonic states appears

unlikely to be changed by interactions; baryon-baryon and meson-baryon interactions are

intrinsically large, involving powers of N but not exponentials [54, 55]. The cold deconfined

phase at finite density in the phase diagram suggests a dual, extremal black hole geometry

at strong coupling.

The organization of the paper is as follows: In section 2, we introduce notation and

summarize the matter content of the theories in question. Section 3 is devoted to the basic

features/transitions in the holomorphic large-N matrix model, obtained from the theory

truncated to lightest modes. We also show how the observed non-analyticities coincide

with the expectations from counting of baryon operators. In section 4, we show that in

theories with a small number of squark flavours, it becomes necessary to include higher

harmonics and heavier modes to obtain the correct phase diagram. In section 5 we review

the µ = 0, finite T behaviour of the partition function. We end with section 6, a summary

of the phase diagram and possible lessons for related systems at strong coupling.

2 Free gauge theory on S3

To evaluate the grand canonical partition function of free gauge theories, we use the ap-

proach of [13]. We consider SU(N) gauge theory with νFN Dirac fermions (“quarks”), and

νSN complex scalars (“squarks”), all transforming in the fundamental representation of

the gauge group. The number of flavours is chosen to naturally scale with N . The theory

with νS = 0 has already been studied in [33]. Below we extend this to include fundamental

scalars, and further provide a natural interpretation of the ensuing phase diagram as a

function of temperature and baryonic or quark chemical potential. The thermal partition

function of the gauge theory on S3 is computed by formulating the field theory in Euclidean

signature, on S3 × S1 with the S1 circumference β = 1
T , playing the role of the inverse

temperature.

For the free field theory on S3, the partition sum follows from one loop fluctuation

determinants for the Kaluza-Klein harmonics of all fields on S3 subject to the constraint

2Note that the formulation of rigidly supersymmetric, non-conformal gauge theories on curved spaces,

such as S3
× R is subtle as it requires the introduction of new terms in the action [48–51].
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from Gauss’ law. This latter constraint is necessary since the sum must be over physi-

cal, gauge-invariant states, and in practice, it is elegantly implemented by introducing a

background thermal Wilson line for the zero mode of the gauge field on S3:

U = eiα

α ≡ 1

Vol(S3)

∮

S1×S3

A0 = diag(θ1, θ2, . . . , θN ) ,
∑

θa = 0 mod 2π . (2.1)

SU(N) gauge transformations can be used to put this Wilson line - also known as the

Polyakov loop, in a diagonal form as above. The problem of calculating the partition func-

tion is then reduced to determining the quantum effective action for the “light” zero modes

above, after integrating out all Kaluza-Klein harmonics on S3 as quadratic fluctuations.

We can consider the general situation where our 3+1 dimensional gauge theory has

both adjoint and fundamental matter fields.3 Let nS and nF be the number of adjoint

(real) scalars and chiral fermions respectively,

φI , I = 1, 2, . . . nS , (2.2)

ψA , A = 1, 2, . . . nF .

For simplicity we take the adjoint fermions and scalars to have vanishing bare mass, with

the scalars conformally coupled to the curvature of the three-sphere.

In addition, we take 2NS complex scalars (“squarks”) in the fundamental representa-

tion, each with mass mS , and NF fundamental Dirac fermions (“quarks”) of mass mF ,

(qi , q̃i) : (N, N̄) of SU(N) i = 1, 2, . . . NS (2.3)

(ψi , ψ̃i) : (N, N̄) of SU(N) i = 1, 2, . . . NF .

Our labelling of the flavour fields is motivated by supersymmetric theories with fundamental

matter (SUSY QCD), although the analysis we present is general without any reference to

supersymmetric theories. We also take all scalar flavours (“squarks”) to be non-minimally

coupled to the curvature of S3, which ensures that the fluctuations on S3 have a gap even

when the flavour masses are set to zero. In a conformal field theory (as is the case for

certain supersymmetric examples), the scalars would be massless but conformally coupled

to the curvature, ensuring a gap.

We define a U(1)B global symmetry, under which the fundamental fermions and scalars

(qi, ψi) carry a charge +1, whilst the anti-fundamental fields (q̃i, ψ̃i) have charge −1. We

will refer to this as “quark number” or “squark number”. The number of baryons is related

to it by an extra factor of 1/N . Introducing a chemical potential for the squark or quark

number, the effective action for the theory on a spatial S3 takes the form of a unitary

matrix model (see e.g. [13, 17–19, 28, 33]),

ZS3×S1 =

∫

[dU ] exp (−Seff [U ]) . (2.4)

3 This is a subtle issue once interactions are switched on and the gauge coupling acquires scale depen-

dence. For an asymptotically free theory we must ensure that the radius of the S3 is sufficiently small

compared to the relevant strong coupling scale. If the theory is infrared (IR) free, then the S3 must be

taken to be large, and the flavour masses small compared to the scale of any putative Landau pole.

– 6 –
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The effective action Seff consists of two separate contributions, one from the adjoint sector

and the other from the flavour sector, taking the general form

Seff = Sadj + Sfund (2.5)

= −
∞
∑

n=1

[

AnTr U
nTr U †n + Fn (TrU

n enβµ +TrU †n e−nβµ)
]

.

The adjoint fields are uncharged under U(1)B and the ensuing contributions are propor-

tional to TrUnTrU †n. These terms are invariant under large gauge transformations that

“wind” around the thermal S1 up to an element of ZN . Fundamental flavour fields break

the ZN invariance explicitly and give rise to single-trace terms of the type TrUn and TrU †n .

The most important point to note is that, due to the non-zero baryon number chemical

potential, the effective action is complex. The coefficients An and Fn can be explicitly

written in terms of single particle partition functions zF , zS and zV , for the fermion, scalar

and vector harmonics respectively, on the three-sphere,

An =
1

n

[

zV (x
n) + nS zS(x

n)− (−1)n nF zF (x
n)
]

(2.6)

x ≡ e−1/TR zV (x) ≡ 6x2 − 2x3

(1− x)3
zS(x) ≡ x(1 + x)

(1− x)3
zF (x) ≡ 4x3/2

(1− x)3
.

Here R is the radius of S3. The degeneracies dℓ and energies εℓ of the different modes,

which lead to each of the partition sums above are summarized in table 1 in the appendix.

For the flavour modes the coefficients Fn are given as

Fn =
1

n

[

NS ZS

(

n
β

R
, mSR

)

− NF (−1)n ZF

(

n
β

R
, mFR

)

]

. (2.7)

As before ZS and ZF are partition functions of scalar and fermion harmonics on S3 with

non-vanishing bare masses mS and mF respectively:

ZS

(

β

R
, mSR

)

=
∞
∑

ℓ=0

2(ℓ+ 1)2 exp

(

− β

R

√

ℓ(ℓ+ 2) + Ξ +m2
SR

2

)

(2.8)

ZF

(

β

R
, mFR

)

=

∞
∑

ℓ=1

2ℓ(ℓ+ 1) exp



− β

R

√

(

ℓ+
1

2

)2

+m2
FR

2



 ,

where Ξ denotes the coupling to the Ricci scalar of S3. For conformal coupling Ξ = 1,

while minimal coupling corresponds to Ξ = 0.

The effective action in the adjoint sector scales as N2, for large N (taking ns ∼ nF ∼
O(1)) as each term in the action is a double trace operator, whilst the effective action for

the flavour modes scales as N2 only if NF ∼ NS ∼ O(N),

νS ≡ 2NS

N
, νF ≡ 2NF

N
. (2.9)

It is worth repeating that in our notation, the theory has 2NS complex fundamental scalars,

and NF Dirac fermions in the fundamental representation. When NF = NS , the matter
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content in the flavour sector is that of NF hypermultiplets in the language of N = 2

supersymmetry. Similarly when nS = 6 and nF = 4, the adjoint sector has the matter

content of the N = 4 theory.

3 Low temperature large-N transition

At low temperatures TR≪ 1, the adjoint modes are exponentially suppressed and we may

ignore Sadj. The same is true for most of the flavour excitations except for those with

energies comparable to the chemical potential µ. We take µ to be positive without loss of

generality and study the behaviour of the system as µ is increased from zero.

3.1 Truncated model: light scalars mS ≪ mF

Taking the scalar modes to be strictly lighter than the fermions, for non-zero masses, we

begin our low temperature analysis by keeping only the lightest mode carrying baryon

number. The lightest scalar mode charged under U(1)B is the zero mode with ℓ = 0 and

energy ε0 =
√

ΞR−2 +m2
S , and we focus attention on the regime

0 < µ ≃ ε0 =
√

ΞR−2 +m2
S , TR≪ 1 . (3.1)

To be precise we work in the limit

|R(µ− ε0)| → 0 , TR→ 0 with
|µ− ε0|
T

= fixed . (3.2)

In this limit, the anti-squarks are Boltzmann suppressed by factors of e−β(ε0+µ) and can

be ignored, as can all heavier fluctuations. It is then consistent to truncate the effective

action to the lightest squark mode alone (U(1)B charge +1) so that

Seff [U ] ≃ N νS Tr ln(1− ζ U) , ζ ≡ e−β(ε0−µ) , (3.3)

with ζ, the effective fugacity. Within this truncation, the effective action describes all

gauge-invariant states made from the lightest flavour modes (ℓ = 0 scalar harmonics) on

S3. In this regime it is clear that the effective matrix model for U has a complex action,

requiring a non-standard approach towards its large-N solution.

3.2 Holomorphic matrix integral

Rewriting the matrix integral for U in the eigenvalue basis (2.1), and including the Jacobian

for this transformation - the well known Vandermonde determinant, we obtain,

Seff [θa] = −
N
∑

ab=1

ln

∣

∣

∣

∣

sin

(

θa − θb
2

)∣

∣

∣

∣

+N νS

N
∑

a=1

ln(1− ζ eiθa) + iQN
N
∑

a=1

θa . (3.4)

Here we have explicitly implemented the condition
∑

a θa = 0, via a Lagrange multiplier

Q, enforcing the requirement that U has unit determinant. In the large-N limit, we expect

that the integral over θa is dominated by a saddle point. However, since the integrand is

– 8 –
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complex, we must allow for complex saddle points. In particular, assuming that there exists

such a saddle point which dominates the integral at large-N , the corresponding equation

of motion is,

1

N

N
∑

a=1 ( 6=b)

cot

(

θb − θa
2

)

+ νS ζ i
eiθb

1− ζeiθb
= iQ . (3.5)

The equation has solutions only if θa are complex. To this end, we analytically continue

the equation by introducing holomorphic variables,

za ≡ eiθa , with
N
∑

a=1

ln za = 0 . (3.6)

In terms of these variables the saddle point configuration satisfies

1

N

N
∑

a=1 ( 6=b)

zb + za
zb − za

+ νS ζ
zb

1− ζzb
= Q . (3.7)

Summing over b, from this equation we learn that the Lagrange multiplier Q (times N)

has the interpretation of average baryon number in the grand canonical ensemble,

Q = νS
1

N

N
∑

a=1

ζ za
1− ζ za

=
T

N2

∂ lnZ
∂µ

. (3.8)

The squark number is N2Q. For low temperatures, when µ < ε0, the fugacity is exponen-

tially small and the squark number should be suppressed. As µ is increased, we expect

something interesting to happen since there is the possibility of a pole in the above expres-

sion for Q leading to a divergent baryon number, signalling the onset of Bose condensation.

3.3 Low µ confined phase

To solve the saddle point equation at large N , we take the eigenvalues za to lie on a

contour C in the complex z-plane. When the fugacity vanishes we know that C is the unit

circle - this follows from the repulsive pairwise Vandermonde potential between the angular

coordinates θa. In the absence of any other potential terms at zero temperature and zero

chemical potential, the eigenvalues spread uniformly around the unit circle. This is the

confined phase of the theory. When the temperature is small, with a non-zero chemical

potential and ζ < 1, we look for a closed contour C which is an appropriate deformation of

the unit circle.

It is natural to introduce a parameter t, with −π ≤ t ≤ π and treat the positions of

the continuum of eigenvalues as a function z(t). When the fugacity ζ vanishes and C is the

unit circle we must have z(t) = eit. More generally, we require z(−π) = z(π), for C to be a

closed contour. In this continuum limit all discrete sums can be replaced by integrals over

C weighted by an eigenvalue density function ρ(z):

1

N

N
∑

i=1

· · · →
∫ π

−π

dt

2π
· · · =

∮

C

dz

2πi
ρ(z) · · · ρ(z) ≡ i

dt

dz
. (3.9)
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The eigenvalue density satisfies two constraints — a normalization condition (fixing the

number of eigenvalues to N), and the unit determinant condition on U :

∮

C

dz

2πi
ρ(z) = 1 ,

∮

C

dz

2πi
ρ(z) ln z = 0 . (3.10)

The second requirement actually fixes the orientation of the branch cut of ln z, so that it

extends along the negative real axis from the origin to z = −∞.

When the eigenvalues are uniformly distributed on the unit circle (the case with van-

ishing ζ), ρ(z) = 1
z . In this parametrization, the simple pole at the origin (enclosed by C)

ensures that the eigenvalue density is normalized correctly. As the fugacity is increased

smoothly from zero, as long as C remains closed, we do not expect any further singularities

to appear inside C. In the continuum limit the saddle point equation (3.7) is

P
∮

C

dz′

2πi
ρ(z′)

z + z′

z − z′
+ νS ζ

z

1− ζ z
= Q , z ∈ C , (3.11)

where the integral over the contour C is to be treated as a principal value since the integrand

has a singularity when z′ = z along the contour of integration.

It is fairly straightforward to see that, for small ζ, ρ(z) can be uniquely fixed to be,

ρ(z) =
1

z
+

νS ζ

1− ζ z
, Q = 0 ζ small . (3.12)

Even without an explicit knowledge of C (which can now be deduced), the assumption of

analyticity has allowed us to determine ρ.

The solution is valid as long as the simple pole at z = 1
ζ lies outside C. This is

certainly true when ζ vanishes and should continue to be the correct picture as ζ is increased

smoothly. However, we expect something interesting to happen as ζ is increased and the

pole at z = 1
ζ , approaches the contour C on which the eigenvalues actually lie. Note also

that, as long as this pole lies outside C, the baryon number Q (defined in (3.8)) vanishes

identically by Cauchy’s theorem.

Since ρ(z) is fixed, we can now determine C using eq. (3.9),

eit =
z

(1− ζz)νS
, −π < t ≤ π (3.13)

which implicitly fixes z as a function of t. As expected, when ζ vanishes, we recover the

unit circle z = eit.

In this phase the expectation values of all the “holomorphic observables”, Tr Un vanish

identically by the residue theorem, whereas the operators Tr U †n are all non-vanishing,

〈 1
N

Tr Un〉 =

∮

C

dz

2πi
ρ(z) zn = 0 , 〈 1

N
Tr U †n〉 =

∮

C

dz

2πi

ρ(z)

zn
= νS ζ

n . (3.14)

This is a consequence of the difference between states carrying baryon and anti-baryon

number (made from ℓ = 0 modes of the scalars). The baryon number chemical potential

biases the system towards baryons as opposed to anti-baryons.

– 10 –
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Figure 2. The relative positions of the contour C and the pole Z∞ and zero Z0 with increasing ζ

for νS < 1. The pole repels the eigenvalue distribution, and eventually the zero hits the contour C.
Further increase in ζ causes the distribution to split into disconnected components C′ and C′′.

3.4 Phase transitions

The form of the contour C, and the location of the poles and zeroes of ρ(z) relative to it,

signal the possible onset of phase transitions as we show below. For general values of νS
and ζ, ρ(z) has one simple pole and one simple zero in the z-plane,

Pole : Z∞ =
1

ζ
, Zero : Z0 =

1

ζ (1− νS)
. (3.15)

Interestingly, both lie on the real axis. Now, there are two qualitatively distinct possibilities

depending on whether Z0 is positive or negative.

3.4.1 2NS < N : splitting eigenvalue “bubbles”

Figure 2 shows the contour C, and the positions of the pole and zero as the fugacity (or the

chemical potential) is increased. When νS < 1, Z0 and Z∞ lie to the right of C. However,
as ζ is increased both the pole and the zero approach C; the distribution of eigenvalues

appears to be “repelled” by the pole, splitting the distribution in two disconnected contours

when eventually the zero actually crosses the contour C. This splitting process leads to a

non-analyticity in the eigenvalue density, suggestive of a phase transition.

The critical value of ζ for the onset of this behaviour can be obtained by substituting

Z0 into the implicit expression (3.13) for the contour. The requirement that ζ be real the

leads to the solution,

ζcrit =
(1− νS)

νS−1

(νS)νS
, t = ± νSπ , νS < 1 . (3.16)

Therefore there are two values of the parameter t (= ± νSπ), which simultaneously map to

the point Z0 when ζ = ζcrit. Hence, two points on the contour C come together at z = Z0,

when the fugacity is tuned to the critical value. This explains the behaviour of the contour

C encountered in figure 2. In particular,

C′′ = {z(t) ; −νSπ ≤ t < νSπ} (3.17)

C′ = {z(t) ; −π < t ≤ −νSπ , νSπ < t ≤ π} .

– 11 –
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Figure 3. The absolute value of ρ(z(t)) as a function of t as the fugacity is increased, for νS = 0.5.

When ζ = 2, the density vanishes at t = ±π

2
, whilst for larger values, a discontinuity develops,

between the (high) density along the smaller contour C′′ and the larger one. The magnitude of the

density along C′ remains small but always non-vanishing.

We infer from the extents of the two distributions as a function of t, that a fraction νS of

the eigenvalues (2NS out of a total number N) have peeled off from the original contour C.
For large ζ, eq. (3.13) has two qualitatively distinct solutions for z(t),

z(t) ≃ 1

ζ

(

1− eit/νS

ζνS

)

, −πνS ≤ t ≤ πνS , (3.18)

≃ ζ
νS

1−νS exp

(

i
t− sgn(t)πνS

1− νS

)

, νSπ < |t| ≤ π .

The first of these has z ≃ ζ−1 ≪ 1, whilst the second has |z| ≃ ζνS/1−νS ≫ 1. These

are the two contours C′′ and C′ in the limit of asymptotically large fugacities. The 2NS

eigenvalues making up the smaller contour C′′ have essentially collapsed to a point with

parametrically small VEVs, whilst those lying on C′ are effectively uniformly distributed

on a large circle. Correspondingly, the magnitude of the eigenvalue density |ρ(z)| exhibits
a discontinuity for ζ > ζcrit as shown in figure 3.

The physical interpretation of this non-smooth behaviour in the eigenvalue distribution

is not immediately obvious. One possibility, which we have not explored, is that beyond ζ =

ζcrit a new saddle point solution with a gapped eigenvalue distribution appears, on disjoint

open contours. For the moment we will simply follow our original saddle point configuration

beyond ζcrit, where it splits, and attempt to understand its physical interpretation.

Despite the singular behaviour of the eigenvalue distribution, gauge invariant quantities

such as the baryon number defined via eq. (3.8), 〈TrUn〉 and 〈TrU †n〉 remain unchanged

as ζ is dialled past ζcrit. Here we are specifically referring to multiply wound loops with

n fixed as N is taken to infinity. The contributions to these quantities from the pole at

z = 1/ζ, cancel between the two disjoint contours. This is because C′ and C′′ must naturally

be assigned opposite orientations when computing physical observables using the density

function ρ(z). In particular, the total baryon/squark number remains zero during this

process. The physical reason for this can be traced to the fact that the only matter modes

we have kept in our discussion are the squark zero modes. When 2NS < N , no gauge-

invariant state carrying baryon number can be made solely using the complex scalars and
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therefore baryon number cannot change in this regime. We will see later how this picture

is altered by the inclusion of additional degrees of freedom in the effective description.

While the total baryon/squark number is zero, the two components of the eigenvalue

distribution each carry equal but opposite baryon number:

N Q[C′′] = −N Q[C′] = N νS(1− νS) . (3.19)

It is interesting to ask whether the splitting of the eigenvalue distribution into smaller

“bubbles”, can be characterized by means of gauge-invariant order parameters as a phase

transition. Possibly, Polyakov loops in rank k tensor representions, symmetric or antisym-

metric, with k ∼ O(N), could exhibit specific non-analyticities associated to the splitting

of the distribution. Such observables are known to encode gapping transitions of the Gross-

Witten-Wadia (GWW) type [40], and can be computed using methods explicitly discussed

in [41]. We postpone further study of these issues for future work.

Noting that ζcrit is strictly greater than unity for νS < 1, a surprising feature of the

saddle point configuration above, is that it does not exhibit any obvious non-analyticities

when ζ = 1. When ζ > 1, the chemical potential µ exceeds the energy ε0 of the lightest

mode and, in a free theory, should destabilize the theory by inducing runaway VEVs for

the squark zero modes. In particular the value of µ ≃ ε0 at which the splitting of the

distributions occurs (at low temperatures),

µ = ε0 + T ln ζcrit , (3.20)

is strictly greater than ε0, and yet we did not encounter any sign of an instability as the µ

was dialled past ε0.

One possible reason why the putative instability is not visible in the finite volume

theory, has to do with gauge invariance. The squark fields are not gauge-invariant and

when 2NS < N , it is not possible to form gauge-singlet baryon operators in the matrix

model truncated to the zero modes. Therefore no gauge-invariant order parameter exists

to signal the onset of an instability (e.g. a runaway VEV) in the truncated model.

From the point of view of the effective matrix model for U , a squark VEV instability is

evaded by non-zero VEVs for the Polyakov loop eigenvalues in the confined phase. In the

free theory, the action for the scalar zero modes, in the presence of the chemical potential

and a diagonal VEV for A0 as in (2.1), has the form

LS =

NS
∑

j=1

(∂τq
†
j+i Tα·q

†
j+µq

†
j) (∂τqj − i Tα · qj − µqj)+(m2

S+ΞR−2)q†jqj+(q → q̃) . (3.21)

While the chemical potential acts as a negative mass squared for the scalar zero modes,

non-vanishing eigenvalues of the Polyakov loop (α ≡ {θa}) appear to want to stabilize the

theory.

3.4.2 Gross-Witten-Wadia transition for νS > 1

When the number of charged scalar flavours 2NS is larger than N , the number colors, we

encounter a very different picture, with a new continuous deconfinement phase transition.

– 13 –
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Figure 4. For νS > 1 (number of squark flavours larger than the number of colors), the eigenvalue

distribution develops a gap as ζ is increased past ζcrit. The rightmost figure is just a continuation of

the ungapped result beyond ζcrit. The correct gapped distribution is determined separately below.

Now the zero Z0, of the analytic function ρ(z), lies on the negative real axis. As ζ is

increased, Z0 moves toward, and eventually sits on the contour C, precisely when the

fugacity approaches the critical value

ζcrit ≡
(νS − 1)νS−1

(νS)
νS < 1 for νS > 1 . (3.22)

The critical value follows from eq. (3.13), upon substituting in the expression for Z0.

Figure 4 illustrates this phenomenon for νS = 2. At this point the eigenvalue distribution

has a zero and wants to develop a gap. Finding the new distribution and establishing its

existence requires a separate analysis since the condition that C be closed, needs to be

relaxed. Before we calculate the gapped distribution for the new phase, we explain the

physical origin of this transition.

3.4.3 Baryons “melting” at large-N

The putative non-analyticities we have seen so far, in the large-N free theory in finite vol-

ume, can be provided a physical interpretation by looking at the grand-canonical partition

function of gauge-singlet states carrying baryon number. We first look at the case where

the number of squark flavours is larger than the number of colours.4 In this case (νS > 1),

the theory has gauge-invariant excitations carrying baryon number,

BS (i1i2...iN ) = qa1i1 q
a2
i2
. . . q̃† alil

. . . qaNiN ǫa1a2...aN . (3.23)

The subscript ‘S’ denotes that the baryon is made of scalars alone; in fact, from the zero

modes of squark fields carrying baryon number +1. In our notation these are the qi and

q̃†i with i = 1, 2, . . . NS . In the truncated low temperature model, when 2NS > N , the

degeneracy of single baryon states is

D(BS) =

(

2NS

N

)

≈ exp [N (νS ln νS − (νS − 1) ln(νS − 1))] . (3.24)

Therefore the degeneracy of baryon-like states grows exponentially with N in the Veneziano

limit. Each of these states has mass Nε0 and U(1)B charge equal to N . Hence, the partition

sum for gauge-invariant states at low temperatures wherein the “lightest states” charged

under U(1)B contribute goes as,

Z = 1 + exp [N (νS ln νS − (νS − 1) ln(νS − 1))]× e−Nβ(ε0−µ) + . . . . (3.25)

4The arguments presented here grew out of a stimulating discussion initiated by S. Minwalla.
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In the large N limit, the partition function diverges exponentially with N , when

µ > ε0 − T (νS ln νS − (νS − 1) ln(νS − 1)) (3.26)

which coincides with the critical value of the fugacity ζ (νS > 1) for the onset of a putative

GWW transition in our matrix model. We will see below that this phase transition is similar

to a deconfinement transition for squarks. At large N , due to the exponential growth of

baryon operators, beyond the critical value of the chemical potential baryons are not the

correct degrees of freedom, and the theory enters the phase of cold deconfined squarks.

When the number of squark flavours is smaller than the number of colours, it is not

possible to form a baryon operator out of the squark fields (such operators vanish iden-

tically for 2NS < N). However it is still possible to form adjoint-baryons, if we include

adjoint modes. On the three-sphere, such exotic baryon-like states are possible even if the

theory has no matter fields in the adjoint representation. The harmonics of the gauge field

naturally provide such objects, and can be used to make adjoint-baryons.

In particular, using a field Φ transforming in the adjoint representation, we can make

composite fields of the form Φn qi and Φn q̃†i , transforming in the fundamental represen-

tation of SU(N). It is easily seen that the lightest adjoint-baryon we can construct for

2NS < N < 4NS , is

BAd (i1i2...) = qa11 q
a2
2 . . . (Φqi1)

b1(Φqi2)
b2 . . . ǫa1a2...a2NS

b1b2...bN−2NS
. (3.27)

For theories with 4NS < N or 2νS < 1 we will also need to include states made from

contractions of higher powers of the adjoint mode, such as Φ2qi, Φ
3qi, etc. Taking the

mass of the field Φ to be ε (this could be a scalar zero mode or the lightest mode of the

gauge field), the lightest of the adjoint-baryon operators has a mass N(ε0+(1−νS)ε). The
degeneracy of these adjoint baryons also grows exponentially with N as,5

D(BAd) =

(

2NS

N − 2NS

)

≈ exp

[

N ln

(

ννSS
(1− νS)1−νS (2νS − 1)2νS−1

)]

. (3.28)

The exponential growth implies a phase transition when the chemical potential is increased

beyond the critical value,

µcrit = ε0 + (1− νS)ε−
T

N
lnD(BAd) . (3.29)

It is interesting to see how the onset of this transition and the behaviour of the theory

beyond it, is captured by the matrix model description. Of course, this will require going

beyond the truncated model for the “lightest modes” in the presence of the chemical poten-

tial. In fact if the Kaluza-Klein harmonics of the squarks are lighter than all adjoint modes,

similar phase transitions can be triggered by the exponential growth of baryon states made

from squarks carrying different angular momentum (ℓ) quantum numbers. We postpone

further discussion of this to section 4.

In order to better understand the nature of phase transitions induced by a chemical

potential in this theory , we return to study the truncated matrix model in its gapped

phase for 2NS > N .

5At this stage, for simplicity, we are assuming that the number of such light adjoint fields is one. If the

number of adjoint species is d, the degeneracy of adjoint baryons grows as
(

2NS d

N−2NS

)
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3.4.4 Gapped phase

Let us now look for the gapped solution to the saddle point equation, which we expect to

find when 2NS > N and the fugacity exceeds the critical value beyond which the large-

N degeneracy of baryon operators leads to a divergent partition function. The contour

C along which the eigenvalues are distributed, must be taken to be open. We begin by

defining the resolvent function,

ω(z) ≡ − 1

N

n
∑

a=1

z + za
z − za

→ −
∫

C

dz′

2πi
ρ(z′)

z + z′

z − z′
. (3.30)

The resolvent function will have a branch cut along the contour C, and importantly, branch

points corresponding to the end-points of C. In particular, the saddle point equation, when

expressed in terms of the resolvent, shows that the branch points must be of the square

root type:

− 1

2
[ω(z + ǫ) + ω(z − ǫ)] = Q− νS ζ

z

1− ζ z
, z ∈ C . (3.31)

Here z ± ǫ are two points infinitesimally close to the cut C, on either side of it. Although,

generally speaking, branch cuts of complex functions can be moved around, in the present

case there is one special choice of C which is determined uniquely by (3.9) once the spectral

density function ρ(z) known. The density function is also given by the discontinuity of the

resolvent across its branch cut:

1

2
[ω(z + ǫ)− ω(z − ǫ)] = z ρ(z) , z ∈ C . (3.32)

This is a very useful relation, as it allows us to re-express the expectation values of matrix

model observables as contour integrals enclosing the branch cut along C. In particular, line

integrals along C involving the spectral density ρ(z) can be replaced by contour integrals

involving the resolvent function:
∮

Ĉ

dz

4πi
ω(z)

1

z
. . . =

∫

C

dz

2πi
ρ(z) . . . , Ĉ enclosing C . (3.33)

From our analysis in the ungapped phase, we also expect the density function ρ(z) to

be symmetric under reflection about the real axis, so that ρ(z) = ρ(z∗). Therefore ω(z)

must be of the general form

ω(z) = f(z)
√

(z − a)(z − a∗) + νSζ
z

1− ζ z
−Q (3.34)

where f(z) is an analytic function, which is completely determined by the requirement that

ω(z) be regular at z = 1
ζ and the asymptotics at infinity and the origin, namely,

lim
z→0

ω(z) = 1 , lim
z→∞

ω(z) = −1 . (3.35)

We find that

f(z) =
νS

(zζ − 1)|a− ζ−1| , (3.36)

a =
Q2 +Q νS − νS + 1

ζ(Q+ νS − 1)2
+ 2i

√

Q(Q+ νS)(νS − 1)

ζ(Q+ νS − 1)2
.
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The final ingredient in the solution is the baryon number Q in the gapped phase. This

is fixed by demanding the unit determinant condition on the matrix U , after expressing

eq. (3.10) as an integral over a contour Ĉ enclosing C,
∮

Ĉ

dz

4πi
ln z

ω(z)

z
= 0. (3.37)

Since ω(z) itself has no singularities other than the branch cut enclosed by Ĉ, the latter

contour can be deformed to enclose the other singularities of the integrand — the poles at

z = 0 and z = ∞, and the branch cut of ln z which must be taken to run along the negative

real axis. Careful evaluation of the corresponding contour integrals yields6,7

ζ =
(Q+ νS − 1)Q+νS−1

(Q+ νS)Q+νS

(Q+ 1)Q+1

QQ
. (3.38)

The transition to the gapped phase occuring at ζ = ζcrit is a third order phase tran-

sition, similar to the GWW model. The derivative of Q with respect to µ, which is the

second derivative of the grand potential, is continuous across the gapping transition,

T
∂Q
∂µ

=
T 2

N2

∂2 lnZ
∂µ2

=
1

− lnQ+ ln(Q+ 1) + ln
(

Q+νS−1
Q+νS

) . (3.39)

At the transition point where ζ = ζcrit and Q is vanishing, the second derivative of the

grand potential also vanishes and is continuous, while the third derivative is discontinuous

and diverges when ζ > ζcrit (see figure 5).

We can now see in figure 5 what happens when the fugacity ζ is increased beyond

the critical value ζcrit towards ζ = 1. As ζ approaches unity (equivalently the chemical

potential approaches the energy ε0 of the lightest mode), the baryon number Q diverges.

This is the onset of Bose condensation of squarks. Furthermore as Q → ∞, the contour C
shrinks to a point because the branch points at z = a and z = a∗, both approach the point

z = 1 on the real axis.

The third order transition we have seen above has a natural interpretation as decon-

finement of squarks or fractionation of baryons. The “holomorphic” observables TrUn

which vanished in the ungapped phase, are now non-zero. Equations (3.14) and (3.33)

imply that expectation values of these are encoded in the Laurent series expansion of ω(z)

at infinity,

ω(z) = −1− 2
∞
∑

n=1

〈 1
N

TrUn〉 1

zn
. (3.40)

For example,

〈 1
N

TrU〉 =
1

ζ

Q
Q+ νS − 1

, (3.41)

6The relative position of C with respect to the branch cut of ln z, plays an important role in obtaining

the correct result.
7This relation between ζ and Q suggests an underlying combinatorial origin, from Stirling’s approxima-

tion, n! ∼ nn.
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Figure 5. Left : A depiction of the gapped distribution as the fugacity ζ is increased towards 1.

It shrinks to the point z = 1 in the limit ζ → 1, when the pole Z∞ collides with the eigenvalue

distribution. Centre: The baryon number becomes non-zero when ζ > ζcrit and eventually diverges

at ζ = 1, signalling the onset of Bose condensation. Right : Continuity of second derivative of the

grand potential (or first derivative of Q) across the third order transition.

which approaches unity as ζ → 1 and Q → ∞. Since the chemical potential breaks the

symmetry under baryon charge conjugation, the charge conjugate set of observables TrU †n,

should have different expectation values. Once again, equations (3.14) and (3.33) fix them

in terms of the Taylor series expansion of ω(z) around the origin:

ω(z) = 1 + 2
∞
∑

n=1

〈 1
N

TrU †n〉 zn , (3.42)

so that 〈 1
NTrU †〉 = ζ Q+νS

Q+1 , is distinct from its holomorphic counterpart. Since all the

Polyakov loops (singly and multiply wound), have non-vanishing expectation values, the

gapped distribution describes a deconfined phase of squarks [46, 47].

It is interesting to note that in the limit ζ → 1, at the onset of the Bose condensed

phase, the branch cut C shrinks to the point z = 1, and the resolvent simplifies,

lim
ζ→1

ω(z) =
1 + z

1− z
. (3.43)

In this limit all single trace expectation values become equal, 〈 1
NTrUn〉 = 〈 1

NTrU †n〉 = 1.

This means that the angular variables {θa} all vanish and the gauge group is “unbroken”.

When the {θa} are distinct and non-zero, the gauge symmetry is broken to U(1)N−1.

4 Incorporating heavy modes on S3

In the discussion above we saw the appearance of a third order deconfinement transition

in the general situation where squarks (scalars in the fundamental representation) are

the lightest modes. The non-analyticity of the grand potential as a function of baryonic

chemical potential was demonstrated when the number of squark flavours (2NS) was larger

than the number of colors (N). In this situation the non-analytic behaviour of the grand

canonical partition function is attributed to the exponentially large degeneracy (∼ eN ) of

baryon operators.

When the number of squark flavours is small, i.e. 2NS < N , the situation is somewhat

subtle since baryon operators made from squark zero modes alone, do not exist. In this
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case, we have already seen that the partition function truncated to squark zero modes (the

“lightest” degrees of freedom with U(1)B charge +1) displays no non-analyticities as the

chemical potential is increased (despite “bubble splitting” of the eigenvalue distribution).

However, baryon-like states, namely adjoint-baryons, do exist when then theory has addi-

tional adjoint modes which are neutral under U(1)B. In the Veneziano limit, the number

of adjoint-baryons of a given mass also grows exponentially with N , possibly leading to

a phase transition (3.29). Below we will demonstrate, using the approach of holomorphic

matrix integrals, the existence of deconfinement transitions also when 2NS < N , when ad-

ditional modes on S3 are included in the description. For sufficiently light squarks, another

effect can become important: it is possible to form baryons using squarks with differing

ℓ quantum numbers. These also exhibit an exponentially large degeneracy, and should be

responsible for transitions in the large-N matrix model.

4.1 The effect of adjoint modes

We now explore what happens when light adjoint bosonic fields neutral under U(1)B, are

included in the effective theory for U . At the outset, we emphasize that such adjoint modes

will appear in all gauge theories - they can be viewed either as arising from harmonics of free

vector fields on S3 or from additional adjoint matter fields (as in N = 2 supersymmetric

theories). Including their lowest harmonics in our effective description at sufficiently low

temperatures, the effective action for the unitary matrix U is

Seff = N νS Tr ln(1− ζU)− d
∞
∑

n=1

xn

n
Tr UnTr U †n (4.1)

x = e−ε/T , ζ = e(µ−εo)/T

where d is the number of such adjoint species and ε is the associated energy. Here, we

are implicitly assuming that there is always a range of parameters for which the anti-

squarks, and other harmonics of fields on S3 can be consistently ignored. We will eventually

determine values of the chemical potential for which the modes retained above are the most

important ones.

The fugacity is defined as before, always with reference to the energy ε0 of the lowest

squark mode charged under U(1)B. For the lowest harmonics of vector fields on S3, d = 6

and ε = 2/R, while for conformally coupled massless scalars, ε = 1/R (see table 1). In

what follows, for simplicity we set d = 1 (one adjoint species). At this juncture we impose

no special restrictions on the chemical potential or the fugacity. Notice that in the low

temperature limit, x is exponentially small and the adjoint contributions appear to be

exponentially suppressed. Despite this, we will see that when the fugacity ζ is cranked up

to sufficiently large values, the adjoint modes drive a GWW deconfinement phase transition.

The large-N equation of motion for the eigenvalues of U , following from the modified

effective action (4.1), can be written in holomorphic form as before,

∮

C

dz′

2πi
ρ(z′)

[

P z + z′

z − z′
+ x

(

z

z′ − x z
− z′

z − x z′

)]

+
νS ζ z

1− ζz
= Q , (4.2)

z ∈ C .
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At low temperatures x ≪ 1 and ζ ≪ 1, the contour C is closed and all the poles in ρ(z)

can be safely taken to lie outside C. Interestingly, this equation can also be solved exactly

to yield ρ(z):

ρ(z) =
1

z
+ ζνS

∞
∑

n=0

xn

1− ζ z xn
, Q = 0 . (4.3)

The infinite sum over n can be rewritten in terms of the q-Pochammer symbol as
d
dz (ζz ; x)∞. The contour C itself is then given by z(t), where, using eq. (3.9)

eit =
z

∏∞
n=0 (1− ζ z xn)νS

=
z

[(ζ z ; x)∞]νS
(4.4)

To understand the physics of this system systematically, working consistently at low

temperatures (x ≪ 1), let us begin by keeping only the first two terms (n = 0, 1) of the

infinite sum,

ρ(z) ≃ 1

z
+ ζνS

(

1

1− ζ z
+

x

1− ζ z x
+ . . .

)

. (4.5)

In the language of counting baryon-like states, this means we only count adjoint-baryons

made from 2NS squarks and (N − 2NS) “adjoint-squarks” of the form Φ · qi, each with a

single adjoint matrix.

Clearly, this goes one step beyond the truncated model of section 3. As before, we can

first locate the poles and zeros of this function. For small enough ζ and x, the two simple

poles at Z
(1)
∞ = ζ−1 and Z

(2)
∞ = (x ζ)−1 are far from the (closed) contour C which encloses

the origin. Our approximate form of ρ(z) also contains two zeroes, which, for x≪ 1, are at

Z
(1)
0 ≃ 1

ζ(1− νS)
, Z

(2)
0 ≃ 1

x

1− νS
ζ(1− 2νS)

, x≪ 1 . (4.6)

The first zero lies to the right of C when 2NS < N and we have already observed its effect

in the context of the splitting of the eigenvalue distribution. We denote the critical value

of ζ at which the splitting of eigenvalues occurs as ζ
(1)
crit. At this value, the zero Z

(1)
0 hits

the contour C.
The second zero is new and has appeared solely due to the inclusion of the adjoint

modes in our description. It is on the negative axis and to the left of C if 2NS < N < 4NS ;

else it lies on the positive real axis. Let us focus attention on the case with 2NS < N < 4NS .

As ζ is increased, Z
(2)
0 moves towards the contour C and eventually collides with it when

(using eq. (4.4))

ζ = ζ
(2)
crit ≃ xνS−1 (2νS − 1)2νS−1 (1− νS)

1−νS (νS)
−νS . (4.7)

The corresponding value of the critical chemical potential,

µcrit = ε0+(1− νS)ε−T (νS ln(νS)−(2νS − 1) ln(2νS − 1)−(1− νS) ln(1− νS)) , (4.8)

coincides precisely with the value deduced from the exponential growth of the degeneracy

of adjoint-baryon states (eq. (3.29)) for the case 2NS < N < 4NS . The phenomenon is

summarized in figure 6
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Figure 6. Plots demonstrating the behaviour of the contour C of eigenvalues in the z-plane, with

increasing fugacity ζ, and the relative postions of poles (in blue) and zeroes (in red) of ρ(z). At a

critical value of ζ, after the “splitting” of the contour, the distribution develops a zero, signalling

the onset of a gap. The curves were obtained assuming x = 0.1.

The preceding analysis demonstrates that even when the number of squark flavours is

smaller than the number of colors, the theory on S3 is subject to a low temperature GWW

deconfinement transition when the chemical potential approaches a threshold value deter-

mined by the mass of the lightest adjoint-baryons and their degeneracy in the Veneziano

limit. We also deduce that the effective action retaining only squark zero modes and the

adjoints is a good description at low temperatures when Nµ is in the vicinity of the mass

of the lightest adjoint-baryon.

4.2 Effect of higher squark harmonics

When 2NS < N it is obvious that baryons cannot be made from squark zero modes. How-

ever one may still use squark modes with differing angular momentum quantum numbers

to form gauge-singlet baryons. Such baryons could be formed by 2NS squark zero modes

(ℓ = 0) and N − 2NS squark modes with ℓ = 1. Given a degeneracy d for the ℓ = 1 scalar

spherical harmonics, the number of such baryons is
(

2NS d
N−2NS

)

and much in the same way as

for adjoint baryons, it should lead to a phase transition with increasing fugacity.

The baryons made from higher harmonics of squark modes become relevant only if

the energies of the squark modes are significantly smaller than R−1 so that all adjoint

harmonics (including the gauge fields) are heavier. In this situation the effective action for

U , keeping only the ℓ = 0 and ℓ = 1 squark modes, is

Seff = N νS Tr ln(1− ζU) + dN νS Tr ln(1− x ζU) (4.9)

ζ = e−β(ε0−µ) , x = e−β(ε−ε0) .

Here ε is the energy of the ℓ = 1 harmonic, and the degeneracy of this mode d = 4. Now

the saddle point configuration in the ungapped, confined phase, is solved by the density

ρ(z) =
1

z
+

ζ νS
1− ζ z

+
d x ζ νS
1− x ζ z

. (4.10)

The density function has zeroes at

Z
(1)
0 ≃ 1

ζ(1− νS)
, Z

(2)
0 ≃ 1

x

1− νS
ζ(1− (d+ 1)νS)

, x≪ 1 . (4.11)
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In the range 2NS < N < (d + 1)2NS , the first zero lies on the positive real axis, whilst

the second zero is on the negative real axis, to the left of the eigenvalue distribution. With

increasing chemical potential, a zero in the eigenvalue distribution first appears when,

ζ = ζcrit = xνS−1 (1− νS)
1−νS ((d+ 1)νS − 1)(d+1)νS−1

(dνS)dνS
, (4.12)

or

µcrit = νS ε0 + (1− νS) ε− T ln

(

(dνS)
dνS

(1− νS)1−νS ((d+ 1)νS − 1)(d+1)νS−1

)

. (4.13)

The critical value of the chemical potential is determined by the mass and degeneracy of

the lightest baryon operators composed of the squark modes with ℓ = 0 and ℓ = 1. Below

we will work out what happens to the system as the chemical potential is dialled past this

critical value. In particular we will show the emergence of a gapped “deconfined” phase.

4.3 Gapped phase

The transition to the gapped phase for νS < 1 (small number of flavours) is always preceded

by an eigenvalue splitting transition. The eigenvalues which have split off and formed

the smaller “bubbles” do not appear to play any role in the subsequent dynamics as the

chemical potential is increased to large values.

4.3.1 Gapping/Bose condensation via higher harmonics

Let us attempt to find the gapped distribution which results when the chemical potential

is dialled past the critical value in eq. (4.12). Since the distribution has already split prior

to the gapping transition, we write the spectral density function as a sum of two (disjoint)

pieces,

ρ(z) = ρ1(z) , z ∈ C′ (4.14)

= ρ2(z) , z ∈ C′′ .

where the first term is associated to the larger contour C′, and the second term yields the

density of the smaller “bubble” C′′ (see e.g. figure(2)). In the splitting transition, a fraction

νS of the N eigenvalues break off to form C′′. We must therefore have

∫

C′

ρ1(z)
dz

2πi
= 1− νS ,

∮

C′′

ρ2(z)
dz

2πi
= νS . (4.15)

From our earlier analysis, we know that the eigenvalue bubble is parametrically small,

centred around z ≃ ζ−1, for ζ ≫ 1. The configuration at the large-N saddle point solves

P
∫

C′∪C′′

dz′

2πi
ρ(z′)

z + z′

z − z′
+

νS ζ z

1− ζ z
+ d

νS x ζ z

1− x ζ z
= Q . (4.16)

We further recall from the discussion on the eigenvalue splitting transition that the contour

C′′ must be traversed in the clockwise sense. In the low temperature limit, x ≪ 1, with ζ
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large,8 the spectral densities in the two disjoint contours can be determined as follows. For

z ∈ C′, due to the small radius of C′′ (∼ ζ−1−νS ), the saddle point equation reduces to,

P
∫

C′

dz′

2πi
ρ1(z

′)
z + z′

z − z′
+ d

νS x ζ z

1− x ζ z
= Q (4.17)

where we have used the normalization condition that
∮

C′′ ρ2(z)
dz
2πi = νS . Remarkably,

this is exactly the equation we solved to find the gapped phase of the truncated model in

section 3.4.4, provided we make the following replacements:

νS → d νS
1− νS

Q → Q
1− νS

ζ → x ζ . (4.18)

The factor of (1− νS) in the denominator accounts for the fact that ρ1(z) is a density for

(1 − νS)N eigenvalues making up C′. The resolvent function for the gapped distribution

ρ1(z) is

ω1(z) ≡ − 1

1− νS

∫

C′

dz′

2πi
ρ1(z

′)
z + z′

z − z′
, (4.19)

ω1(z) = f1(z)
√

(z − a∗1)(z − a1)−
Q

1− νS
+

d νS
1− νS

x ζ z

1− x ζ z
.

The function f1(z) and the positions of the branch points at a1 and a
∗
1 are given by eq. (3.36)

with the replacements indicated in eq. (4.18). It is useful to verify that right after the onset

of the gapping transition where Q → 0, the two branch-points coalesce and

lim
Q→0

a1 =
1

x ζ

1− νS
1− (d+ 1)νS

, (4.20)

coinciding with the position of the zero (see eq. (4.11)) of the ungapped distribution at the

onset of the phase transition. Therefore the solution we have found is indeed connected,

across a continuous transition, to the ungapped/confined phase.

To find the distribution ρ2, we pick a point z ∈ C′′ and noting that on this contour

z ∼ ζ−1, the saddle point equation becomes

∮

C′′

dz′

2πi
ρ2(z

′)
z + z′

z − z′
− (1− νS) +

νS ζ z

1− ζ z
= 0 . (4.21)

Here we have used
∫

C′ ρ1(z)
dz
2πi = (1 − νS). This equation is actually solved by the same

distribution function we found in the ungapped phase of the model truncated to zero modes,

ρ2(z) =
1

z
+

νS ζ

1− ζ z
. (4.22)

8Note that ζ = exp(−β(ε0 − µ)) where ε0 is the energy of the ℓ = 0 mode. To see the gapping phase

transition µ needs to be close to the mass of the baryon made from ℓ = 0 and ℓ = 1 harmonics. Due to

the finite energy gap between the ℓ = 0 and ℓ = 1 modes, ζ will naturally be parametrically large for low

enough temperatures.
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A final, important consistency check of our picture follows from the relation between

the baryon number (Q) and the fugacity ζ, in this phase. As in the basic truncated setup,

the relation can be derived by enforcing the unit determinant condition on U ,
∫

C′∪C′′

dz

2πi
ρ(z) ln z = 0, (4.23)

and we find

ζ x1−νS =
(Q− νS + 1)Q−νS+1

QQ

(Q+ νS(d+ 1)− 1)Q+νS(d+1)−1

(Q+ dνS)
Q+dνS

. (4.24)

This means that the baryon number diverges Q → ∞ when ζ x1−νS = 1 or µ = νS ε0 +

(1 − νS) ε. Therefore when the baryon number chemical potential Nµ equals the mass of

the lightest baryon state that can be formed from the spherical harmonics of the squark

modes (ℓ = 0 and ℓ = 1 in this case), Bose condensation of squarks occurs. We believe

that it is the squarks which condense, because slightly before this happens (at low non-

zero temperatures), the system enters a deconfined phase by passing through a third order

GWW transition.

In all the GWW transitions we have encountered, the baryon number NQ is zero below

the transition and begins to increase smoothly above it. Therefore, using Q = T
N2

∂ lnZ
∂µ ,

the grand potential is a constant independent of µ below the critical value of the chemical

potential, and becomes a non-trivial function of µ above it. It follows from our results, such

as, eq. (4.24) that the grand potential above the transition is a complicated function of the

form −β lnZ = N2 F (νS , µ, T ). In contrast, in the low µ confined phase, we will see below

that the grand potential is of the form ∼ N2
S F̃ (T, µ), indicating that the contributions are

from a gas of gauge singlet mesonic states.

4.3.2 Gapping due to adjoint modes

We have already shown that when the number of squark flavours is smaller than the number

of colours, it is possible to make gauge-singlet adjoint baryons. The exponentially large

degeneracy of these states drives the system towards a GWW “gapping” transition (see

section 4.1). Below we sketch the steps involved in finding the gapped phase of the model

when light adjoint modes are included in the effective description. Since we expect a finite

energy gap between the adjoint states and the squark zero modes, the GWW transition

is preceded by the breaking up of the eigenvalue distribution into disjoint contours C′ and

C′′. As before we write ρ1(z), the gapped spectral density along C′, in terms of a resolvent,
∫

C′

dz

2πi
ρ1(z) = 1− νS , ω1(z) = − 1

1− νS

∫

C′

dz′

2πi
ρ(z′)

z + z′

z − z′
. (4.25)

The resolvent, by definition, is analytic on the z-plane with its only singularity being a

branch cut along C′. The saddle point condition for the effective model with adjoint degrees

of freedom, can then be rewritten as

−1

2
(ω1(z + ǫ) + ω1(z − ǫ)) +

1

2
ω1(x z) +

1

2
ω1(x

−1 z) =
Q+ νS
1− νS

, (4.26)

z ∈ C′ , x = e−βε .
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We have used the fact that ζ νS z
1−ζ z ≃ −νS for large ζ, and for z ∈ C′. This is an interesting

condition as it can be recast in a different form by defining a new analytic function,

G(z) ≡ ω1

(√
x z
)

− ω1

(

z√
x

)

− 2
Q+ νS
1− νS

ln z

ln x
. (4.27)

G(z) has two branch cuts (ignoring for the moment, the logarithmic branch point) and the

saddle point equation can be expressed as a gluing condition across these two branch cuts:

G
(√
x z ± ǫ

)

= G

(

z√
x

∓ ǫ

)

. (4.28)

In principle, this condition and the asymptotics of G(z) uniquely determine the resolvent.

We will not pursue the analysis further in this paper. Curiously, such a gluing condition

defines a Riemann surface of genus one; any significance of this to the physical problem at

hand is unclear. Very similar “gluing problems” arise as solutions to large-N holomorphic

matrix models in very different contexts [42–45].

4.4 Fermion flavour modes

We now turn to the physics of quarks or fermionic flavour modes on S3. The matrix model

incorporating these at finite chemical potential has already been studied in detail in [33].

Technically speaking, the saddle point equations for the fermionic flavours are related to

the bosonic ones by the replacement ζ → −ζ and νS → −νF . However, the phase structure
is very different, as must be expected for states with different statistics.

In supersymmetric theories on S3, fermions are heavier than their bosonic counterparts

(see table 1 in the appendix). However, if the quarks happen to be the lightest modes

charged under U(1)B with energy ε0 and degeneracy d, the number of (lightest) baryon

states would be

D(B) =

(

2NF d+N

N

)

≈ exp

[

N ln

(

(1 + d νF )
1+d νF

(d νF )d νF

)]

. (4.29)

Here NF is the number of Dirac fermion flavours. Now gauge-singlet baryon operators exist

for any non-zero value ofNF with degeneracies scaling exponentially withN . Consequently,

we expect a phase transition when µ = ε0− T
N ln D(B). Such a phase transition was indeed

seen in [33]. In fact, the fermionic system displays two such transitions, one on either side

of µ = ε0 at

µ∓crit = ε0 ∓
T

N
ln D(B) . (4.30)

Both these transitions are third order. The first is a deconfinement transition of the kind

we have discussed above, where the baryons “dissolve” into quarks and the distribution

of eigenvalues of the Polyakov loop matrix acquires a gap. The second transition is less

intuitive, but can be understood as a complete occupation of the lowest Fermi level following

which the theory re-enters a confined phase. Across this transition the eigenvalues of the

Polyakov loop matrix return from the gapped to an ungapped continuum distribution.

Let us briefly re-derive the above results for fermion flavours, by making use of the

replacement ζ → −ζ and νS → −νF in eq. (3.5). Assuming that the degeneracy of the
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lightest quark modes d = 1, we follow the analysis in section 3.4. The crucial difference with

respect to the bosonic case is that the pole (at Z∞ = −1/ζ) and zero (at Z0 = −1/ζ(1+νF ))

are always on opposite sides of the eigenvalue distribution in the ungapped phase. In

addition, the zero always hits the contour C with increasing ζ irrespective of the value

of νF , thus triggering a GWW transition. This is as expected for fermions, since the

corresponding baryon operators BF exist for any νF . Similarly, adapting the formula for

baryon number eq. (3.38) to fermions, we find that Q increases from Q = 0 to a maximum

of Q = νF as ζ is increased from ζ−crit = ννFF /(1 + νF )
1+νF to ζ+crit = (1 + νF )

1+νF /ννFF .

Finally we turn to the formula for the end-points of the gapped distribution (3.36) and

modify it to suit the fermionic case. We immediately obtain that the the contour is closed,

when Q = 0 and also when Q = νF . These are the two successive GWW transitions.

The main physical effect is that following the two third-order transitions, given a

degeneracy d for the lightest fermion harmonic, baryon number jumps by d νF N . Such

jumps (each accompanied by a pair of third order transitions) occur with increasing µ as

successive fermionic energy levels are encountered and filled. We refer the reader to [33]

for further details.

5 Finite temperature, small µ regime

We have explored the low temperature regime of the phase diagram in the µ−T plane. The

remaining question is what happens to the system as the temperature is increased for any

fixed µ. We know that the low temperature phase boundary between confined (or mesonic)

and deconfined phases is a straight line whose slope is determined by the logarithm of the

large-N degeneracy of the (light) baryonic states. For small µ, the finite temperature

behaviour can be understood along the lines of [13, 28–30]. Defining the “moments” of the

eigenvalue distribution (the normalized Polyakov loops)

ρn ≡ 1

N
Tr Un , ρ−n ≡ 1

N
Tr U †n , (5.1)

the effective action is

Seff [ρ] = N2
∞
∑

n=1

1

n
[(1− zV (x

n)− nS zS(x
n) + (−1)nnF zF (x

n)) ρn ρ−n (5.2)

−
(

νS ZS(n
β

R
, mSR)− νF (−1)n ZF (n

β

R
, mFR)

)

(

ρn e
nβµ + e−nβµ ρ−n

)

]

The free gauge theory with no flavours (νS = νF = 0) exhibits a first order deconfinement

transition with increasing temperature [13]. In pure Yang-Mills theory (nS = nF = 0),

this happens when zV (x) = 1, and the “lightest mode” ρ1 is forced to condense. From this

condition, the corresponding Hagedorn/deconfinement temperature is TR = 1/ ln(2+
√
3).

Similarly for N = 4 SYM (nS = 6 , nF = 4), the first moment ρ1 condenses when zV (x) +

6 zS(x) + 4 zF (x) = 1 or when TR = 1/ ln(7 + 4
√
3).

In the theory with fundamental flavours the situation is slightly different. For generic

non-zero µ, both ρn and ρ−n are non-zero and unequal, and their values determined by
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solving the (linear) equations of motion,

ρn = e−nβµ νS ZS(n
β
R , mSR)− νF (−1)n ZF (n

β
R , mFR)

1− zV (xn)− nS zS(xn) + (−1)nnF zF (xn)
(5.3)

for n 6= 0 and ρ0 = 1. The first point to note is that upon plugging the solution back

into the action, as long as this saddle point is valid, we expect that the free energy is

the sum of terms of O(N2
S), O(N2

F ) and O(NFNS). This is indeed the case in the low

temperature ungapped phase [28], leading to the interpretation that the grand potential

should be attributed to colour-singlet mesons. This is the confined phase.

The onset of the deconfinement transition is deduced by locating (for any given µ), the

value of the temperature at which a zero appears on the contour C of eigenvalues. It is a

complicated excercise in general, but somewhat easier for vanishing µ. Setting µ = 0 and

examining the effective potential for the “lightest modes” ρ1 and ρ−1 (in an approximation

which ignores all higher moments), we obtain,

ρ1 = ρ−1 =
νS ZS(

β
R ,mSR) + νF ZF (

β
R ,mFR)

1− zV (x)− nS zS(x)− nF zF (x)
. (5.4)

The non-uniform distribution develops a gap when ρ1 = ρ−1 = 1
2 , so that the spectral

density on the circle then takes the form ρ(θ) = 1
2π (1+ cos θ) with a zero at θ = π. This is

a third order GWW transition [28], and is the natural continuation of the low temperature

phase boundary to finite temperature and vanishing µ.

6 The phase diagram: discussion and conclusions

The general picture is now fairly clear: at low enough temperature, with increasing baryon

number chemical potential, the theory on S3 is subject to a third order GWW deconfine-

ment transition when the baryon number chemical potential (Nµ) approaches the thresh-

old set by the mass of the lightest baryon state and its exponentially large degeneracy in

the Veneziano limit. Depending on whether the theory has fundamental fermions or not,

there can be more than one such deconfinement transition. When the mass of the lightest

scalar baryon (a baryonic operator made purely from fundamental and adjoint scalars) is

approached, a third order baryon melting transition ensues followed by the onset of Bose

condensation of the squark degrees of freedom. The free gauge theory is not defined beyond

this point. We have also shown that in a different region of the µ − T plane, namely, low

µ and finite T , the theory undergoes a third order transition as a function of temperature.

Putting these pieces together we arrive at the general form of the phase diagram depicted

in figures 1 and 7.

In both figures, the shaded region with Nµ > mB is a region of instability for the free

theory, where the grand canonical ensemble is ill-defined (e.g. [17–19]). It is conceivable

that upon introducing appropriate self-interaction potentials, the shaded region may have

a stable ground state with a VEV for a gauge invariant operator, breaking U(1)B sponta-

neously. It can be shown that for SUSY QCD theories or the theory corresponding to the

D3-D7 system (N = 2 SYM with hypermultiplets), there are flat directions in the scalar
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Figure 7. The phase diagram for the free theory, assuming that the lightest baryon states are

constituted of squarks. (See figure(1) for the general situation when quarks are light.)

potential (Higgs branches and mixed Coulomb-Higgs branches) which are then responsible

for runaway unstable directions when µ is non-zero. For any non-zero temperature and

small coupling however, at the origin of the field space, the squarks and adjoint scalars will

obtain a temperature dependent thermal mass so thatmS(T )
2 ∼ m2

S+λδ(T ), where λ is the

’t Hooft coupling and δ(T ) is exponentially small (∼ e−1/TR) at low temperature [19] and

quadratic in T at high temperature. This suggests that, with increasing temperature, the

chemical potential will need to be increased to a higher threshold value before a runaway

instability kicks in. Therefore we may expect a small region in the µ− T plane, bounded

by Nµ = mB and the dashed line in figures 1 and 7, where a metastable, deconfined phase

exists and where all scalars have vanishing expectation values (see [17–19] for analogous

discussions in the case of N = 4 SYM with R-symmetry chemical potentials).

At strong coupling (and in flat space), the unstable region has been studied in the

context of the D3-D7 system for a small number of flavours [52] and it should be possible

to investigate this within the framework of [11] which incorporates the back-reaction from

flavour branes. In the ‘probe’ approximation (fixed number of flavours in the large-N

limit), the phase diagram in the µ−T plane of the D3-D7 system was extensively explored

in [56–58]. Despite being in the probe limit, we would expect a Bose condensed phase (in

addition to a Fermi surface from the quarks) due to squark modes charged under U(1)B
in the setup (see [56, 58, 59] for related discussions). An extensive search for instabilities

and U(1)B breaking in the world-volume fluctuations of a probe D7-brane in AdS5 × S5

has recently been carried out in [59], with a negative result. It would be interesting to

understand this better within a general setup of the kind we have studied but with (small)

interactions switched on. It would also be of interest to find what role, if any, is played by

states such as adjoint-baryons in this picture.

The low temperature, finite density transitions we have found in the Veneziano large-N

limit, are due to the exponentially large degeneracy of baryon states. It is reasonable to

expect these to persist for any coupling, at large-N (e.g [7]). If so, within an appropriate

dual gravity set-up, this would correspond to a black hole solution dual to the phase of

cold, dense, deconfined (s)quarks.
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Field Angular momentum (ℓ) Energy (εℓ) Degeneracy (dℓ)

Bi ℓ > 0 (ℓ+ 1)R−1 2ℓ(ℓ+ 2)

Ci ℓ > 0
√

ℓ(ℓ+ 2)R−1 (ℓ+ 1)2

A0 ℓ ≥ 0
√

ℓ(ℓ+ 2)R−1 (ℓ+ 1)2

Fermions ℓ > 0 (ℓ+ 1
2)R

−1 2ℓ(ℓ+ 1)

Massless scalars ℓ ≥ 0 (ℓ+ 1)R−1 (ℓ+ 1)2

(conformal coupling)

Table 1. Harmonics on the three-sphere.

A final comment should be made about the phases that we have found (section 4.2) with

order parameters that involve modes of the fields that carry non-trivial angular momen-

tum . These inhomogeneous phases should involve the spontaneous breaking of rotational

symmetry on the S3. This feature would be worthy of future study.
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A Harmonics on S3

We list the energies of Kaluza-Klein harmonics of scalar, vector and fermion fields on a

spatial three-sphere. For details of the spherical harmonic decomposition we refer the

reader to the discussion in [60]. The main point to note is that fermions ψ, and the spatial

modes of the vector field denoted by Ai (i = 1, 2, 3), do not have zero modes on S3. In

general, the spatial components of a gauge field Ai can be split into the image and kernel of

∇i (the former are the transverse, physical degrees of freedom). In particular Ai = Bi+Ci

with Ci = ∇if and ∇iB
i = 0. The time component of the gauge field A0 and scalar fields

are allowed to have zero modes on S3.
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