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1 Introduction

It is a long-standing idea, first articulated by Landau in the 1950s, that the evolution of
matter compressed in nuclear collisions lends itself to a fluid dynamical description [1].
On the experimental side, characteristic correlations of particle production with the event
plane had been interpreted as qualitative support for fluid dynamic behavior since the
very first relativistic heavy ion collision experiments at the BEVALAC in the 1980s [2].
Early qualitative predictions, based on fluid dynamics, include notably the argument [3]
that the second harmonics of the azimuthal particle distribution (elliptic flow v2) changes
at mid-rapidity from out-of-plane to in-plane emission at higher center of mass energy.
This was confirmed experimentally in heavy ion collisions at the Brookhaven National
Laboratory (BNL) Alternating Gradient Synchrotron (

√
sNN < 5 GeV), and at the CERN

Super Proton Synchrotron (
√
sNN < 20 GeV), for a review see e.g. refs. [4]. Also, fluid

dynamic arguments provided early on some qualitative understanding of the dependence
of elliptic flow on particle species, and on the energy and rapidity dependence of the
collective sidewards displacement of particle production at projectile rapidity (sidewards
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flow v1) [4]. However, conclusions remained largely limited to the qualitative statement
that the observed flow in semi-central collisions “retains some signature of the pressure in
the high density region created during the initial collision” [5].

This changed soon after the start of the Relativistic Heavy Ion Collider (RHIC) in
the year 2000, when several groups [6–9] noted that fluid dynamic simulations of Au+Au
collisions at

√
sNN < 200 GeV can account quantitatively for the main manifestations of

collectivity at RHIC, including the dominant elliptic flow signal at mid rapidity and its
dependencies on transverse momentum, centrality and particle species. These studies were
based on simplified 2+1-dimensional simulations, following Bjorken’s argument that the
initial conditions for fluid dynamic fields are close to longitudinally boost-invariant, and
that this boost-invariance is preserved by the fluid dynamics [10]. Moreover, early compar-
isons to RHIC data relied on ideal fluid dynamic equations of motion without dissipative
effects. Soon afterwards, Teaney [11] observed in 2003 that even very small values of the
ratio η/s of shear viscosity over entropy density induce dissipative effects that result in a
sizable reduction of the elliptic flow signal. Therefore, to the extent to which uncertainties
in the comparison of fluid dynamic simulations with data can be controlled quantitatively,
measurements of collective flow in heavy ion collisions provide a sensitive tool for con-
straining transport properties of QCD matter. This is one of the main motivations for the
development of more and more detailed fluid dynamic simulations of relativistic heavy ion
collisions in recent years, see e.g. [12–15] for recent reviews.

Ideal fluid dynamics is determined fully by the equation of state and conservation
laws. For causal viscous fluid dynamics, transport properties and relaxation times enter
in addition. But the equation of state, transport properties and relaxation times are in
principle calculable from first principles of a given quantum field theory. Therefore, a
comparison of fluid dynamic simulations to data of heavy ion collisions has the potential
of constraining properties of QCD matter that are fundamental in the sense that they are
most directly related to the QCD lagrangian. In practice, the bottleneck for such a program
is the limited control over the initial data that are evolved fluid dynamically.1 Early
comparisons of fluid dynamic simulations with RHIC data [6–9] employed a set of smooth,
event-averaged initial conditions that were specified via the average collision geometry in
terms of a transverse energy (or entropy) distribution with vanishing flow at initial times.
Even within this limited set of initial conditions, one observed that differences in the initial
transverse profile of phenomenologically motivated models could result in variations of the
dominant elliptic flow signal by up to 30% [16, 17].

Within recent years, there has been a growing realization of the importance of event-
by-event fluctuations in constraining the initial conditions of fluid dynamic evolution in
heavy ion collisions. In particular, event-averaged initial conditions reflect the symmetries
of the almond-shaped nuclear overlap region of finite impact parameter collisions and can
therefore give rise only to dipole, quadrupole and higher even moments in the initial density

1In principle, both the initial conditions for fluid dynamic evolution as well as the conditions for decou-

pling from the fluid dynamic evolution (’freeze-out’) imply assumptions. However, fluid dynamic evolution

occurs in response to pressure gradients that are much larger at initial times. This indicates that the

modeling of freeze-out and final decoupling does not presently limit the predictive power of the approach.
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distribution. In marked contrast, the azimuthal momentum distributions measured by all
experiments at the LHC [18–21] and at RHIC [22, 23] show a prominent third harmonic
moment v3, as well as non-vanishing moments v1 and v5 in addition to the expected even
ones. These structures had been attributed previously to other speculative effects (”Mach-
cone”, ”ridge”), but as pointed out first by Alver and Roland [24] (see also Sorensen [25] for
a related earlier suggestion) they emerge most naturally from the fluid dynamical evolution
of initial density inhomogeneities. In addition, fluctuations increase the spatial eccentric-
ity of initial transverse density distributions, and this accounts naturally for the fact that
elliptic flow values remain sizable in the most central collisions and for smaller colliding
systems [26]. There is by now compelling evidence that the dynamical evolution of fluctu-
ating initial conditions is a prerequisite for a detailed quantitative understanding of flow in
heavy ion collisions [27, 28]. And since the various flow moments vn depend differently on
the event-averaged initial state and its event-by-event fluctuations, analyzing the dynam-
ical evolution of these initial fluctuations provides a novel tool for constraining the main
uncertainty in fluid dynamical simulations of heavy ion collisions.

There has been a significant effort recently in studying fluctuating initial conditions in
heavy ion collisions [29–34] and studying their propagation in full fluid dynamic simulations
or transport models [35–44]. Precursors of these developments include e.g. refs. [45–47].
The recent efforts focussed mainly on initial density inhomogeneities. But more general
fluctuating initial conditions are conceivable. For instance, (non fluid-dynamical) initial
fluctuations in the flow field uµ may be expected to accompany a fluctuating initial energy
density profile ε [37]. Even if fluctuations in the initial spatial distribution may turn out
to be sufficient to account for the measured flow components, it is clearly important to
constrain such other conceivable sources of initial fluctuations since these may confound
any quantitative interpretation of flow phenomena aimed at an extraction of η/s and other
fundamental properties of QCD matter. This argues for treating fluctuations in all fluid
dynamical fields democratically.

The present paper aims at supplementing the current discussion of fluctuating initial
conditions with a model study in which the propagation of initial fluctuations can be fol-
lowed in a very explicit, partly analytical way. To this end, we formulate the fluid dynamic
evolution of fluctuations in all fluid dynamic fields around an event-averaged Bjorken flow
profile. The inclusion of fluctuations in all fields will provide access to qualitatively novel
features such as the dynamical evolution of vorticity. It will also allow us to discuss anew
how one of the most characteristic manifestations of fluid dynamics, namely turbulence,
can emerge in the specific expanding geometry of a Bjorken-like flow profile. The issue
here is not whether heavy ion collisions can display fully developed turbulence: It has been
pointed out previously (see e.g. ref. [48]) that the relevant Reynolds numbers are typically
larger than unity, since they are proportional to the inverse of the normalized viscosity η/s.
However, the length and time-scales in heavy ion collisions are so small that Re < O(100)
which is well below the conditions under which fully developed turbulence is expected.
Rather, what is at stake is the suggestion first made by Mishra et al. [49] and further dis-
cussed by Mocsy and Sorensen [33] that the measurement of the harmonic flow coefficients
vn for all values of n may provide information about the initial state similar to the power
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spectrum extracted from Cosmic microwave background (CMB) radiation. CMB analysis
tools exploit the fact that Hubble expansion dampens vorticity fluctuations, so that the
fluid dynamical evolution stays at all time scales in a linear non-turbulent regime. It is a
priori unclear whether the same situation persists for small fluctuations in a Bjorken-type
expansion, or whether small fluctuations can become seeds of turbulent behavior. Our
discussion shall address this question and characterize the limitations of a linear treatment
of fluid dynamic fluctuations in heavy ion collisions, thus gaining some insight into the
conditions for onset of turbulent behavior.2

Our work is organized as follows. In section 2, we show that mild extension of models of
fluctuating initial conditions give rise to fluctuations in all fluid fields. We note in particular
that fluctuations in the velocity field can have in general a vorticity component as well as
a divergence component, and that both components may be of comparable size. Furnished
with this example that fluctuations in all fluid fields may be relevant, we formulate then
the equations of motion for fluctuations around a Bjorken flow field in section 3, and we
solve them in a linearized approximation of the evolution in section 4. We then turn
in section 5 to the case of turbulent fluctuations, when non-linear contributions to the
equations of motion matter. In particular, we provide a parametric argument that a large
class of fluctuating initial conditions around Bjorken flow evolves at late times towards an
effectively two-dimensional, turbulent system. Motivated by this observation, we recall in
section 6 pertinent features of turbulence in terms of correlation functions of fluid fields.
In section 7, we finally relate these remarks to heavy ion phenomenology by showing how
correlations of fluid dynamic fields enter the one- and identical two-particle correlation
functions in a blast wave model supplemented with fluctuations. In the conclusion, we
finally summarize our main findings and provide a short outlook.

2 Fluctuating initial conditions and vorticity

We start our discussion with the prototype of an initial density inhomogeneity implemented
in current event-by-event fluid-dynamical simulations, as used e.g. in ref. [39]. Fluctuations
in the initial spatial distribution are described at some initial time τ0 and close to mid-
rapidity y = 0 by a two-dimensional transverse energy density profile of the form

ε(x) =
K

2πσ2

Npart∑
i=1

exp

[
−(x− xi)

2

2σ2

]
. (2.1)

Here, the coordinates xi denote for one specific heavy ion collision the positions of wounded
nucleons in the transverse plane, as obtained from a Monte Carlo Glauber simulation, see
e.g. [55]. A class of events corresponds then to a class of independently simulated distribu-
tions {xi}, each defining an energy density ε(x) with different, event-specific fluctuations

2We remark in this context that turbulence may play a role for heavy ion collisions not only in the more

narrow sense of fluid dynamics as we discuss it in this paper. It has been argued that non-Abelian gauge

theories show turbulent phenomena such as energy cascades in connection with plasma instabilities and that

this could play an important role for the time evolution in the early stage of a heavy-ion collision before a

hydrodynamical description which is based on local thermal equilibrium becomes applicable [50–54].
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Figure 1. (Left hand side) The transverse spatial distribution of nucleons as obtained from a
Monte Carlo Glauber simulation of a Pb-Pb collision at 6 fm impact parameter. Nucleons of the
two colliding nuclei are characterized by red and black circles, respectively. The radii correspond
to a black sphere inelastic nucleon-nucleon cross section of 63 mb at

√
sNN = 2.76 TeV. ’Wounded’

nucleons that interact are denoted by smaller blue and green circles, respectively. (Right hand side)
Initial distribution of transverse energy density (2.1) corresponding to the distribution of wounded
nucleons on the left hand side. This plot is in arbitrary units.

and each setting the initial data for an individual fluid dynamic evolution. The normal-
ization K in (2.1) can be constrained by data on the total transverse energy produced
in the collision per unit rapidity [39]. The smearing parameter σ is a model-dependent
input that sets the scale of spatial inhomogeneities. Figure 1 illustrates that this model
accounts for significant fluctuations in the transverse distribution of wounded nucleons and
their corresponding energy density (2.1). In figure 1, we have chosen a smearing parameter
σ = 0.4 fm, consistent with previous simulations of event-by-event fluid dynamics [39].

One possibility is to initialize fluid dynamical fields at initial time τ0 with event-wise
fluctuations in the transverse energy density ε(x), but with an exactly vanishing non-
fluctuating flow field in the two transverse directions 1 and 2 at initial time τ0,

u1(x, y, τ0) = u2(x, y, τ0) ≡ 0 , (2.2)

and in the rapidity component of the flow vector

uy(x, y, τ0) ≡ 0 . (2.3)

However, a larger class of initial conditions is conceivable, since the initial state may also
display fluctuations in the initial flow fields, and since both energy density (2.1) and the
flow fields could depend on rapidity y. Fluctuations in the initial velocity fields have been
discussed recently e.g. within a model of the early (Non-Equilibrium) dynamics based on
free streaming [38]. For more discussions of initial flow and its influence on HBT radii see
also refs. [56–60].

Some fluctuations in the flow field will be generated by the fluid dynamic response to
initial density fluctuations and may therefore be regarded as being implicitly included in
the ansatz (2.1)–(2.3). However, such fluid dynamically generated flow fluctuations will
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be constraint in scale and size to the fluctuations in energy density, and they will lack by
construction some qualitative features of the most general fluctuating flow field, such as
vorticity. Vorticity3 characterizes the solenoidal part of a general three-dimensional flow
field uj(x),

ωj = (Curl u)j ≡

 1
τ (∂2uy − ∂yu2)
1
τ (∂yu1 − ∂1uy)
∂1u2 − ∂2u1

 . (2.4)

We note that the fluid dynamical evolution of fluctuations in vorticity and energy density
decouples as long as these fluctuations are small and can be treated in a linearized evolution
(see section 4). This is in marked contrast to fluctuations in the irrotational part of uj

(sound modes) that can be driven by fluctuations in energy density. This indicates that
one cannot expect to generate sizable values of vorticity by evolving initial conditions of
the form (2.1)–(2.3). However, if fluctuations in vorticity are part of the initial conditions,
then they will propagate and may display particularly interesting dynamical features, as
discussed in sections 4 and 6, respectively.

To set the stage for our discussion in later section, we demonstrate now that relatively
mild extensions of (2.1) can lead naturally to fluctuations in velocity, including a non-
vanishing solenoidal component (2.4). It is one arguably mild extension of (2.1) to associate
the transverse region around a single wounded nucleon not with an energy density, but
with an energy-momentum tensor Tµνw , such that the initial energy-momentum tensor of
the entire nucleus-nucleus collision takes the form

Tµν(τ, x1, x2, y) =
Npart∑
i=1

Tµνw (τ, x1 − x1
i , x

2 − x2
i , y) . (2.5)

In general, equation (2.5) can account for non-vanishing fluctuating initial conditions in
both energy density ε(x) and flow uj(x). For instance, neglecting for simplicity non-ideal,
shear viscous contributions to (2.5) and assuming an ideal equation of state ε(x) = 3 p(x),
one can write the initial conditions for ε and uj at some fixed rapidity y and initial time
τ0 to linear order in uj in the form

ε(x1, x2)
(

1,
4
3
uj(x)

)
≡ Tµ0(τ0, x1, x2, y). (2.6)

The transverse energy density associated to a single wounded nucleon is given by εw(x) =
T 00
w (x). Therefore, the 0-component of (2.6) defines an equation of the type (2.1) for the

energy density,

ε(x1, x2) =
Npart∑
i=1

εw(x1 − x1
i , x

2 − x2
i ) , (2.7)

3Here, we deviate from the standard notation of vorticity in terms of a cartesian three-vector by adopting

the notation of vorticity to light cone coordinates, uj = (u1, u2, uy). We note that the three components of

vorticity (ω1, ω2, ω3) do not form the spatial part of a four-vector and it makes no sense to contract them

with the spatial part the metric.
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but it has also a fluctuating initial flow field defined by the spatial components of (2.6),

uj(x) =
∑Npart

i=1 εw(x1 − x1
i , x

2 − x2
i )u

j
w(x1 − x1

i , x
2 − x2

i )∑Npart

i=1 εw(x1 − x1
i , x

2 − x2
i )

. (2.8)

Here ujw is defined by writing equation (2.6) for the energy momentum tensor associated to
a single wounded nucleon. The size of initial fluctuations in the velocity field (2.8) depends
on how the initial transverse motion associated to the the single wounded nucleon is mod-
eled. Taking guidance from blast wave models, one may choose for ujw e.g. an azimuthally

symmetric radial flow field with some radial dependence w, ujw(x) = xj−xji
|x−xi| w(|x− xi|) for

j = 1, 2 and uy = 0, say. For such an ansatz, one checks easily that (2.8) defines in general
a flow field of non-vanishing transverse divergence and non-vanishing longitudinal vorticity,

∂1 u
1(x) + ∂2 u

2(x) 6= 0 ,

ω3(x) 6= 0 .
(2.9)

A more general ansatz may be based on the observation that in general, the transverse
energy deposited by a single wounded nucleon in a finite window of rapidity recoils against
transverse momentum outside this rapidity window. This argues for a net transverse ve-
locity component vi associated to the contribution of each wounded nucleon in (2.5). To
illustrate this effect, we assume that each wounded nucleon in the sample shown in figure 1
is associated with a non-relativistically small random transverse velocity component vi,
drawn from a Gaussian distribution of width 〈|v|〉 = 0.1c.4 The resulting initial transverse
flow field (2.8) is shown in figure 2. By comparing to figure 14 of ref. [38], we note that
a seemingly comparable flow field can be obtained in a model of early non-equilibrium
dynamics based on free streaming where the contribution of every particle is taken to be
delocalized in position space over a small volume.

In figure 3, we plot the absolute value of the longitudinal vorticity |ω3| = |∂1u
2−∂2u

1|
and the transverse divergence |∂1u

1 + ∂2u
2| for the flow field shown in figure 2. Inspection

of this figure shows that both components fluctuate with a similar magnitude and over
similar transverse length scales.

For illustrative purposes, we have chosen in figure 3 velocity fluctuations of an average
strength 〈|v|〉 = 0.1. We emphasize, however, that none of our conclusions in this section
or in the following sections depends on the precise numerical choice for 〈|v|〉. In particular,
repeating the analysis of figure 3 for much smaller values of 〈|v|〉 would equally well support
the only conclusion that we draw from it, namely that the irrotational and solenoidal
components of the velocity may be of comparable size. We observe at this point that there
is no general model-independent argument for the relative size fluctuations in uj and ε.
This motivates us in the following sections to treat all conceivable sources of event-by-event
fluctuations on an equal footing.

4We note that the value of the width does not play any role for the subsequent arguments and could

easily be smaller in a realistic situation.
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Figure 2. Velocity distribution corresponding to figure 1 if one assumes for the contribution of
each wounded nucleon a random velocity in the transverse plane drawn from a Gaussian distribu-
tion.Shown is the innermost area −3.5 fm < x1, x2 < 3.5 fm of the transverse plane.

0.0 c�fm

0.2 c�fm

Figure 3. The left hand side shows the absolute value of vorticity |∂1u
2 − ∂2u

1| for the velocity
field shown in figure 2. Similarly, the right hand side shows the absolute value of the divergence of
the fluid velocity |∂1u

1 + ∂2u
2| for the same velocity field. The color coding is the same on both

sides.

3 Fluid dynamic equations of motion for relativistic heavy ion collisions

On time and length scales that are large compared to the typical relaxation times and
lengths for thermal and chemical equilibration, relativistic fluid dynamics provides an ef-
fective theory for the multi-particle system produced in heavy ion collisions. A large set of
experimental observations support the assumption that in ultra-relativistic heavy ion colli-

– 8 –



J
H
E
P
1
1
(
2
0
1
1
)
1
0
0

sions the range of validity of this effective fluid dynamical description is large and comprises
bulk hadron production up to a few GeV in transverse momentum [12–14]. In this section,
we recall first shortly the fluid dynamic equations of motion. We focus then on the Bjorken
model that defines a particularly simple expanding geometry and that encodes important
features of a relativistic heavy ion collision. Regarding the Bjorken model as defining the
average fluid dynamical field, we then discuss how fluctuations in energy density and flow
propagate in the expanding geometry of a relativistic heavy ion collision.

The relativistic hydrodynamic equations for a fluid without any conserved charges
read [12–14]

Dε+ (ε+ p)∂µuµ + πµν∆ α
µ ∂αuν = 0,

(ε+ p)Duα + ∆αβ∂βp−∆α
ν∂µπ

µν = 0.
(3.1)

Here ε is the energy density and p is the pressure in the fluid rest frame, πµν is the
viscous part of the energy-momentum tensor in the Landau frame, uµπµν = 0. The partial
derivative ∂α must be replaced by the covariant derivative ∇α if one works with coordinates
other than cartesian. We work with a cartesian metric of signature gµν = diag(−1, 1, 1, 1).
The matrix ∆µν projects to the subspace orthogonal to the fluid velocity, ∆µν = gµν+uµuν .
The derivative in the direction of the fluid motion is D = uµ∂µ.

The viscous part of the energy-momentum tensor can be expanded in a derivative
expansion. To lowest order it vanishes, leading to ideal hydrodynamics. The first order
contains shear and bulk viscocity terms

πµν = −2ησµν + ζ∆µν∇αuα, (3.2)

where
σµν =

1
2

(∆µ
α∇αuν + ∆ν

α∇αuµ)− 1
3

∆µν(∇αuα) (3.3)

is transverse (orthogonal to uµ) and traceless.
To second order in the gradient expansion, the fluid dynamic equations of motion

contain various relaxation time corrections. It is a peculiar feature of a second order
approximation that the evolution equations are hyperbolic and propagation is limited to
the forward light cone even for perturbations of large wave-vector k. For this reason, second
order fluid dynamics is often referred to as causal viscous fluid dynamics. However, this
wanted feature of causality is not guaranteed to persist in higher orders of the gradient
expansion. More generally, fluid dynamics is a long distance effective theory that by its very
construction cannot be expected to be reliable for large wave-vectors. For the propagation
of fluctuations with small gradients (i.e. small wave-vectors k), second order fluid dynamics
will make only small corrections to a first order treatment. For this reasons and to keep
the formalism simple, we restrict the discussion in the present paper to first order fluid
dynamics. For the case of vanishing bulk viscocity ζ, the corresponding equations of motion
read

Dε+ (ε+ p)∇µuµ − 2 η σµνσµν = 0, (3.4)

(ε+ p)Duν + ∆νµ∇µp− 2 η∆ν
α∇µσµα = 0 . (3.5)

– 9 –
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There is evidence that dissipation in a heavy ion collision is mainly due to shear viscosity,
and we therefore neglect bulk viscosity for the remainder of this paper.

3.1 The Bjorken model

We are interested in studying fluid dynamic fluctuations in the expanding geometry of a
relativistic heavy ion collision. The Bjorken model is arguably the simplest formulation of
a corresponding expanding geometry. Motivated by the idea that in nuclear collisions at
ultra-relativistic energy, particle production is almost flat in rapidity, Bjorken [10] proposed
to formulate initial conditions for fluid dynamic fields that are independent of space-time
rapidity y = arctanh(x3/|x0|), that means ε(τ,x, y) = ε(τ,x) and uµ =

(√
1 + u2,u, uy

)
=(√

1 + u2,u, 0
)

. If this condition is satisfied at some initial proper time τ = τ0, then

it persists for all proper times τ =
√
x2

0 − x2
3 throughout the evolution. This renders

the longitudinal evolution trivial, and the numerical task simplifies to the solution of a
(2+1)-dimensional problem.

Under the further simplifying assumption that the transverse flow field vanishes at
initial times and that transverse gradients in energy density are absent, the Bjorken model
reduces to an effectively one-dimensional toy model that allows for an explicit analytical
treatment. In this case, the evolution equation for the energy density becomes

∂τ ε+
ε+ p

τ
− η 4

3τ2
= 0 , (3.6)

where energy density and pressure are related by the equation of state ε = ε(p). For what
follows, it will be useful to rewrite this equation in terms of the enthalpy

w = ε+ p = sT , (3.7)

and the kinematic viscosity
ν = η/w . (3.8)

Eq. (3.6) reads then

∂τ ε+
w

τ

(
1− 4ν

3τ

)
= 0 . (3.9)

Throughout this work, we shall neglect terms that are parametrically suppressed by powers
of ν/τ compared to some other term of the same structure. With this approximation,
equation (3.9) becomes independent of shear viscosity. As will become clear in the following,
however, the dominant effect of shear viscosity on fluctuations can be retained within
this approximation.

With the approximation ν/τ � 1 and for an ideal equation of state ε = 3p, one then
finds the characteristic time dependencies of the Bjorken model for energy density

εBj(τ) = εBj(τ0)
(τ0
τ

)4/3
, (3.10)

and temperature

TBj(τ) = TBj(τ0)
(τ0
τ

)1/3
. (3.11)

– 10 –
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For a time-independent normalized viscosity η/s, the ratio

νBj(τ)
τ

=
νBj(τ0)
τ0

(τ0
τ

)2/3
(3.12)

decreases. Therefore, replacing the bracket in eq. (3.9) by unity is an approximation that
is consistent with the late time behavior.

We note at this point that in situations with strong (non-Gaussian) fluctuations, the
evolution equation for averaged fields such as energy density ε(τ) = 〈ε(τ)〉 gets modified by
additional terms, see the discussion in section 6.1. For the present paper we assume that
these modifications are small and can be neglected.

3.2 Fluctuations on top of a Bjorken background field

In this section, we formulate the theory of the dynamics of fluctuations on top of a Bjorken
background field without transverse gradients. That means that the hydrodynamical fields
uµ, ε when averaged over many events follow a Bjorken type solution. However, locally and
for a particular event we expect deviations which we want to investigate in more detail.
We have chosen a Bjorken background field for our study mainly for two reasons. First,
the analytical simplicity of this background will allow for a particularly explicit discussion.
Second, the Bjorken model contains essential features of realistic expansion scenarios of
relativistic heavy ion collisions.5

We denote fluctuations on top of the Bjorken flow uµBj = (1, 0, 0, 0) by relaxing the
constraints (2.2) and (2.3) and allowing for local fluctuations in the transverse and rapidity
components, u1, u2, uy. The normalization condition uµuµ = −1 of the local fluid velocity
uµ = (uτ , u1, u2, uy) implies then

(uτ )2 = 1 + (u1)2 + (u2)2 + τ2(uy)2 = 1 + uju
j . (3.13)

Here and in what follows, we work in light-cone coordinates τ, x1, x2, y with metric gµν =
diag(−1, 1, 1, 1/τ2). The latin index j is summed over 1, 2, y and the corresponding three-
dimensional metric reads gij = diag(1, 1, 1/τ2). We consider small local fluctuations in the
sense that ujuj(x)� 1.

In the following we neglect terms that are parametrically suppressed due to ujuj(x)�
1 or due to ν/τ � 1 compared to other terms with the same combination of derivatives of
the velocity and pressure fields. We note that for every combination of derivatives there

5It has been pointed out repeatedly that despite its simplicity, the Bjorken model without transverse

gradients retains important features of the early time dynamics of heavy ion collisions. The argument

is based on the observation that event-averaged initial energy density distributions show typically only

small transverse gradients in the central region of the transverse plane; the central region may indeed

be approximated by the ansatz u = 0, ε(x) = ε. The transverse evolution of this initial condition may

then be thought of qualitatively as being dominated by a rarefaction wave that moves from the outside

(vacuum) to more and more central positions in the transverse plane at late times. At a given position in the

transverse plane, the dynamical evolution may be viewed as being characterized by the effectively (1+1)-

dimensional Bjorken model up to the later time at which the rarefaction wave reaches the corresponding

transverse position. Based on such considerations, the Bjorken estimates for the time-dependence of energy-

density (3.10) and temperature (3.11) are used regularily in simple phenomenological estimates.
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is one term of lowest order which is not neglected and that the main physical effects of
viscosity — the damping of velocity fluctuations and the dissipation of kinetic energy to
heat — are correctly taken into account. With this approximation scheme we find from
eq. (3.4) and (3.5) the following equations governing the velocities in the transverse plane
(j = 1, 2) and in rapidity direction (j = y)

∂τuj + ui∂iuj +
1
w

[
∂jp+ uj(∂τp+ ui∂ip)

]
− ν

[
1
3
∂j∂iu

i + ∂i∂
iuj

]
= 0 . (3.14)

Here, the first two terms describe the change in the velocity along the direction of the fluid
motion. They result from writing Duj = uµ∂µuj for small deviations from the Bjorken
background. The terms in the first square bracket account for two effects. One is the accel-
eration of the fluid due to the pressure gradients in the transverse and rapidity directions.
The second term proportional to uj is dominated by the decrease of pressure for increas-
ing τ . This dilution of the fluid leads to an acceleration in the direction of uj . Finally, there
are effects of viscosity that are similar to the corresponding term in the (non-relativistic)
Navier-Stokes equation.

In addition to eq. (3.14), one finds under the same assumptions for small local fluc-
tuations around the Bjorken background the equation of motion for the internal energy
density

∂τ ε+ uj∂jε+ w

[
1
τ

+ ∂ju
j

]
− η

[
∂iuj∂

iuj + ∂iuj∂
jui − 1

3
∂iu

i∂ju
j

]
= 0. (3.15)

Here, the first two terms describe the change along the fluid direction of motion. The first
square bracket describes dilution effects; the first term ∼ 1

τ is due to the expansion of the
Bjorken-background in the longitudinal direction while the second term measures the effect
of a possible dilution (or compression) in the transverse and rapidity directions. Viscous
correction that are parametrically suppressed due to η/(wτ)� 1 have been dropped, and
the remaining dissipative contribution to the evolution of internal energy are given in the
last bracket of (3.15). They describe how kinetic energy is transferred from the macroscopic
motion of the fluid to internal energy.

It will turn out to be useful to rewrite eqs. (3.14) and (3.15) in terms of rescaled
fluctuations in velocity,

uj =
(
τ

τ0

)1/3

vj , (3.16)

and for a rescaled time variable

t =
3 τ4/3

4 τ1/3
0

, ∂t ≡
(τ0
τ

)1/3
∂τ . (3.17)

(Of course, this rescaled time t is not the time variable x0 in the laboratory frame.) In what
follows, we also absorb deviations from the τ -dependence of Bjorken’s energy density (3.10)
in terms of the quantity

dτ ≡
(τ0
τ

)2/3
d , d ≡ ln

[
T

TBj(τ)

]
. (3.18)
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Finally, we assume that the shear viscosity ν follows the Bjorken behavior (3.12). That
means, we neglect local fluctuations in the kinematic viscosity since they are expected to
have only a minor effect. The kinematic viscosity ν0 can then be written as

ν0 = ν
(τ0
τ

)1/3
= νBj(τ0). (3.19)

For an ideal equation of state ε = 3p, using 1
wdp = 1

sT
∂p
∂T dT = 1

T dT , and neglecting
a dissipation term ∼ ν that is of higher power in the velocity field, one can show that
eqs. (3.14)–(3.15) lead to the equation for the (rescaled) velocity (j = 1, 2, y)

∂tvj+
2∑

m=1

vm∂mvj+
1
τ2
vy∂yvj+∂jdτ−

1
3
ϑ vj ,−ν0

[
1
3
∂jϑ+ (∂2

1 + ∂2
2 +

1
τ2
∂2
y)vj

]
= 0 (3.20)

and for the quantity dτ

∂tdτ+
1
2t
dτ+

2∑
m=1

vm∂mdτ+
1
τ2
vy∂ydτ +

1
3

(τ0
τ

)2/3
ϑ− ν0

6

[
2∑

m,n=1

(∂mvn+∂nvm)(∂mvn+∂nvm)

+
2
τ2

2∑
m=1

(∂yvm + ∂mvy)(∂yvm + ∂mvy) +
4
τ4

(∂yvy)2 −
2
3
ϑ2

]
= 0. (3.21)

Here and in what follows, we denote the expansion scalar ∂j vj of the rescaled velocity
fields by

ϑ = ∂1v1 + ∂2v2 +
1
τ2
∂yvy. (3.22)

In the following we will use both the representation of the equations of motion in
eq. (3.14), (3.15) and the one in (3.20), (3.21). In particular the discussion of linear fluctua-
tions in section 4 will be largely based on (3.14) and (3.15), while for the discussion of non-
linear fluctuations in section 5 the representation (3.20), (3.21) will be more appropriate.

4 Linear fluctuations

In this section we discuss the evolution of fluid dynamical fluctuations that are small enough
to neglect non-linear terms in (3.14) and (3.15). In addition, it is assumed that the deviation
of the temperature field from the homogeneous background is small, d� 1. The resulting
linearized equations describe laminar flow. They apply to systems with sufficiently small
Reynolds number, as we shall discuss in section 5.

For a fixed time τ and given spatial boundary conditions, one can divide the velocity
field uniquely into a solenoidal part with vanishing divergence, and an irrotational part
with vanishing curl,

uj = uSj + uIj ,

Div uS ≡ 0 ,

Curl uI ≡ 0 ,

(4.1)
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where Div u = ∂ju
j and Curl u is defined in eq. (2.4). We recall that the derivative oper-

ators in (4.1) introduce an explicit τ -dependence since they involve the three-dimensional
metric gij = diag(1, 1, τ2). Therefore, the splitting of uj into a solenoidal and an irrota-
tional part does not commute with the τ -derivative.

The field uIj can be represented by the expansion scalar (3.22)

θ = ∂1u1 + ∂2u2︸ ︷︷ ︸
≡θT

+
1
τ2
∂yuy︸ ︷︷ ︸
≡θy

=
(
τ

τ0

)1/3

ϑ, (4.2)

It will be convenient to write this expansion scalar as a sum of a transverse and a longitu-
dinal contribution, θ = θT + θy.

From (3.14), (3.15) we obtain the linearized equations

∂τθT −
1
3τ
θT + (∂2

1 + ∂2
2)d− ν

[
1
3(∂2

1 + ∂2
2)θ + (∂2

1 + ∂2
2 + 1

τ2∂
2
y)θT

]
= 0, (4.3)

∂τθy +
5
3τ
θy + 1

τ2∂
2
yd− ν

[
1
3

1
τ2∂

2
yθ + (∂2

1 + ∂2
2 + 1

τ2∂
2
y)θy

]
= 0, (4.4)

∂τd+
1
3
θ = 0, (4.5)

∂τωj −
hj
3τ
ωj − ν(∂2

1 + ∂2
2 + 1

τ2∂
2
y)ωj = 0. (4.6)

Here, we recall that the quantity d denotes the logarithmic temperature (3.18). The symbol
hj in (4.6) takes the values h1 = h2 = −2 and h3 = 1.

Interestingly, the vorticity modes ωj decouple from the velocity divergence θ, the loga-
rithmic temperature field d and from each other. Using Fourier decomposition with respect
to the spatial argument,

ωj(τ, x1, x2, y) =
∫

d3k

(2π)3
ωj(τ, k1, k2, ky) ei(k1x1+k2x2+kyy) , (4.7)

their diffusion-type equation of motion can be directly solved

ωj(τ, k1, k2, ky) = ωj(τ0, k1, k2, k3)×
(
τ

τ0

)hj/3
e
−ν0(k2

1+k2
2)(t−t0)+ν0

9
8
√
t0
k2
y

„
1√
t
− 1√

t0

«
. (4.8)

We assume here a constant ν0 as defined in (3.19) and we use (3.17). One sees from
equation (4.8) that vorticity modes for essentially all wave vectors are dominated at late
times by an exponentially decaying function with a decay time set by the product of
kinematic viscosity and the square of the wave vector. A somewhat unusal case is the
time evolution of modes with ky 6= 0 where the exponential damping term is modified by
a term ∝ 1/

√
t. In particular, for k2

1 + k2
2 = 0 but ky 6= 0 the vorticities do not decay

exponentially for τ → ∞. In addition, the exponential decay is modified by a term that
decreases algebraically for the transverse components ω1 and ω2 and that increases in the
longitudinal components ω3. For finite times, the algebraic increase of ω3 can overcome
the exponential decay with viscosity.
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In figure 4, we plot the solution (4.8) of the linearized fluid dynamic equations of motion
for phenomenologically motivated input values, namely a small normalized shear viscosity
η/s = 1/4π and a temperature of 500 MeV at initial time τ0 = 1 fm/c. This translates into
an initial kinematic viscosity ν0 ' 0.03 fm. Most generally, figure 4 illustrates the interplay
between an exponential decay set by kinematic viscosity, and the characteristic algebraic
dependencies of the transverse and longitudinal vorticity components. More specifically,
we have chosen in figure 4 wave vectors that correspond to fluctuations on length scales
between 1 fm and 0.25 fm, as may be regarded as realistic for the initial state of the sys-
tem created in heavy ion collisions. We observe from figure 4 that such fluctuations are
modified but persist over time scales of O(10 fm/c) typical for the expansion history of rel-
ativistic heavy ion collisions. The figure illustrates that over times scales relevant for the
fluid dynamic expansion of heavy ion collisions, some fluctuations on phenomenologically
relevant scales may get amplified rather than dampened. Moreover, the relative attenu-
ations (or amplifications) of vorticity components over times of O(10 fm/c) are - within
the phenomenologically relevant parameter range - very sensitive to the length scale 1/kj
of the fluctuations. From inspection of eq. (4.8), it is also evident that there is a similar
sensitivity to the precise choice of the viscosity.

In addition to the evolution equations for vorticity, there are equations for θT , θy and
d that we discuss now. These describe sound waves and are best solved in Fourier space.
We concentrate first on a wave traveling in the transverse direction x1, corresponding to
k1 6= 0, k2 = ky = 0. In this case, eq.(4.4) decouples from the others

∂τθy +
5
3τ
θy + νk2

1θy = 0 (4.9)

and can be integrated immediately,

θy(τ, k1, 0, 0) = θy(τ0, k1, 0, 0)
(τ0
τ

)5/3
e−ν0k

2
1(t−t0). (4.10)

Equations (4.3) and (4.5) are coupled,

∂τθT − 1
3τ θT − k

2
1d+ νk2

1

(
4
3θT + 1

3θy
)

= 0,

∂τd+ 1
3(θT + θy) = 0,

(4.11)

and depend also on the solution for θy. Concentrating for simplicity on the case θy = 0
and eliminating d, one finds the second order differential equation

∂2
τ θT +

(
− 1

3τ
+

4
3
νk2

1

)
∂τθT +

(
1

3τ2
+

1
3
k2

1

)
θT = 0. (4.12)

(We have dropped a term suppressed due to ν/τ � 1 in the second bracket.) For van-
ishing viscosity, this equation can be solved in terms of Bessel functions. The two linear
independent solutions are

τ2/3J1/3

(
k1τ√

3

)
and τ2/3Y1/3

(
k1τ√

3

)
. (4.13)
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Figure 4. Time dependence of the normalized transverse (i = 1) and longitudinal (i = 3) vorticity
amplitude ( 4.8) for modes with wave vectors k1, k2 = ky = 0 in the transverse direction (left hand
side) and with wave vectors ky, k1 = k2 = 0 in the longitudinal direction (right hand side). Input
values are T (τ = 1fm/c) = 500 MeV and η/s = 1/4π.

One finds an oscillating behavior with the amplitude increasing algebraically with time
proportional to (τ/τ0)1/6. For non-vanishing viscosity ν there is also an exponential decay
which is larger for large wavevectors k1. For small values of k1τ �

√
3 the two independent

solutions of (4.12) are proportional to τ and τ1/3, respectively. Eq. (4.11) implies that the
temperature field d grows according to τ2 and τ4/3 for these two solutions. For k1 6= 0 and
late enough times τ , the solutions in (4.13) always have an oscillating behavior, however.
For large wave vector k1 one can neglect the terms ∼ 1

τ and ∼ 1
τ2 in (4.12). Up to viscous

damping, the solution corresponds to a perturbation that propagates with the velocity of
sound cS =

√
1/3 into the transverse direction.

We show the time evolution governed by (4.12) on the left hand side of figure 5. In
close similarity to the case of vorticity, we observe that also fluctuations in the transverse
velocity divergence can persist over time scales relevant in heavy ion collisions. For sound
waves in the transverse direction, the fluid acts like an efficient low-pass filter, allowing for
the unattenuated (or even slightly amplified) passage of fluctuations on sufficiently large
scales 1/k1 ≥ 1 fm, while filtering out fluctuations on smaller length scales 1/k1 < 0.25 fm.
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Figure 5. (Left hand side) Velocity divergence amplitude θT (τ)/θT (1fm/c) for sound waves of
various wave vectors k1, traveling in the transverse direction x1. The τ -dependence is calculated
from (4.12) for T (1fm/c) = 500 MeV and η/s = 1/4π. (Right hand side) Velocity divergence ampli-
tude θy(τ)/θy(1fm/c) for a sound wave traveling in the rapidity direction y, calculated from (4.17)
for the same input values.

We finally turn to sound waves traveling in the rapidity direction y, i. e. ky 6= 0,
k1 = k2 = 0. Now, equation (4.3) decouples

∂τθT − 1
3τ θT + ν 1

τ2k
2
yθT = 0 (4.14)

and can be integrated immediately,

θT (τ, 0, 0, ky) = θT (τ0, 0, 0, ky)
(
τ

τ0

)1/3

e
ν0

9
8
√
t0
k2
y

„
1√
t
− 1√

t0

«
. (4.15)

The equations for θy and d are coupled and depend on θT ,

∂τθy + 5
3τ θy −

1
τ2k

2
yd+ ν 1

τ2k
2
y

(
4
3θy + 1

3θT
)

= 0 ,

∂τd+ 1
3(θT + θy) = 0 .

(4.16)

Concentrating on θT = 0, this yields the following second order differential equation for θy
(we drop again a term suppressed due to ν/τ � 1),

∂2
τ θy +

(
5
3τ

+ ν
4

3τ2
k2
y

)
∂τθy +

(
− 5

3τ2
+

1
3τ2

k2
y

)
θy = 0. (4.17)
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The two linear independent solutions to this equation for ν = 0 are

τ−
1
3+

1
3

√
16−3k2

y and τ−
1
3−

1
3

√
16−3k2

y . (4.18)

For k2
y � 16/3 this becomes τ and τ−5/3. Equation (4.16) implies that this corresponds to

perturbations in the temperature field d that grow like τ2 or decay like τ−2/3, respectively.
For k2

y > 16/3 the solutions (4.17) correspond to an oscillation with a period that increases
as a function of time and an additional decrease in the amplitude. On the right hand
side of figure 5, we plot this behaviour of θy for small non-vanishing viscosity, when the
algebraic increase is modified by an exponential decay. We observe again that fluctuations
of modes with wave vectors ky ∼ O(1) can persist or can be amplified over time scales
commensurate with the expected expansion duration of heavy ion collisions.

In the limit of large k2
y, one can translate (4.18) back to position space and one finds

that it corresponds to an excitation that propagates in the rapidity direction according to

∂y

∂τ
=
cS
τ

=
1
τ

√
1
3
. (4.19)

In general, for a sound mode propagating fastly into an arbitrary direction described by
a large wavevector k = (k1, k2, ky), we expect the propagation velocity (∂x1

∂τ ,
∂x2
∂τ ,

∂y
∂τ ) to

satisfy (
∂x1

∂τ

)2

+
(
∂x2

∂τ

)2

+ τ2

(
∂y

∂τ

)2

=
1
3
. (4.20)

This condition is satisfied by the sound modes in θy and θT discussed here.

5 Turbulent fluctuations

In full generality, the non-linear equations (3.14) and (3.15) or, equivalently, (3.20)
and (3.21) are difficult to analyze. One can always use a splitting of the velocity into
a solenoidal part that carries vorticity ωj and an irrotational part described by the diver-
gence θ. The nonlinear terms in the equation of motion will lead to couplings between these
fields and to the logarithmic temperature field d, however. Intuitively, one expects that
perturbations in the fluid divergence propagate quickly in the medium with the character-
istic velocity given by the velocity of sound. The fluid velocity (u1, u2, uy) can be small
compared to sound propagation. This is often characterized by a small Mach number

Ma =

√
(u1)2 + (u2)2 + τ2(uy)2

cS
� 1 . (5.1)

For the description of the part of the fluid velocity that carries vorticity one can often
assume in this case a vanishing divergence, θ = 0, since the fast sound modes can be
viewed as decoupled from the slower modes dominating the solenoidal part of the fluid
velocity. In the present section we will study the equations of motion in this situation and
show that there are some interesting parallels to non-relativistic, incompressible fluids.
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For our discussion in this section, it will be useful to work with the rescaled velocities
vi introduced in section 3. For θ = ϑ = 0, eq. (3.20) simplifies then to

∂tvj +
2∑

m=1

vm∂mvj +
1
τ2
vy∂yvj + ∂jd− ν0

(
∂2

1 + ∂2
2 +

1
τ2
∂2
y

)
vj = 0. (5.2)

Due to the the solenoidal constraint

∂1v1 + ∂2v2 +
1
τ2
∂yvy = 0 (5.3)

the temperature field d is not independent of the velocity field. More specific, by taking
the divergence of (5.2) one derives(

∂2
1 + ∂2

2 +
1
τ2
∂2
y

)
d+

2∑
m,n=1

(∂mvn)(∂nvm) +
2
τ2

2∑
m=1

(∂mvy)(∂yvm) +
1
τ4

(∂yvy)2 = 0. (5.4)

This is an instant of the Poisson equation for d. For given boundary conditions it can be
inverted to yield d as a (non-local) functional of the velocity field.

Equation (5.2) has some interesting features.6 It takes the form of a two-dimensional
Navier-Stokes equation in situations where vy = 0 and where the dependence of v1, v2 on
y can be neglected. Moreover, for a large class of initial conditions at time τ = τ0, the
evolution becomes effectively two-dimensional for late times τ/τ0 � 1. Indeed, both the
non-linear velocity term that couples vy to v1 and v2 and the damping term involving the
derivative with respect to rapidity contain factors that decrease as 1/τ2. Similarly, the
solenoidal constraint (5.3) assumes its two-dimensional form in that limit.

Motivated by the observation that for the particular expansion geometry of the Bjorken
model, fluctuations are governed by an evolution equation that reduces at late times to a
non-relativistic Navier-Stokes equation (in rescaled time coordinates), we now discuss the
conditions for a non-linear turbulent evolution of fluctuations by the very concepts that
have proven useful in the classification of solutions of the Navier-Stokes equation. To this
end, we consider situations where the velocities change notably on distances of order l in
the transverse direction or for rapidity differences ∆y. The damping term in eq. (5.2) leads
then to a damping rate (inverse relaxation time) that can be characterized in terms of the
dimensionless number

κ =
l2

τ2∆y2
. (5.6)

6We mention as an aside that in addition to the obvious rotation symmetry in transverse direction

and the translational symmetries in transverse and rapidity directions, eqs. (5.2) and (5.3) have also the

following space-time symmetry

xm → xm + Vmt (m = 1, 2),

y → y − 2Vy
t

τ2
,

vj → vj + Vj (j = 1, 2, y)

(5.5)

for constant velocity Vj . Indeed, contributions from the time derivative and from the non-linear advection

terms cancel. For Vy = 0 this corresponds to Galilean symmetry in the transverse plane while the situation

is more complicated for Vy 6= 0. However, it is not so clear whether this invariance is very useful since there

is no translational symmetry with respect to time.
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This damping rate is of order ν0/l
2 for κ� 1, and it is of order ν0/(τ2∆y2) for κ� 1. For

characteristic velocities vT in transverse, respectively vy in rapidity direction, the flow can
then be characterized in terms of the Reynolds numbers

Re(T ) =
vT l

ν0
, Re(y) =

vy l
2

ν0 ∆y
1
τ2

for κ� 1 (5.7)

and

Re(T ) =
vT τ

2 ∆y2

ν0 l
, Re(y) =

vy ∆y
ν0

for κ� 1 . (5.8)

Obviously, these definitions can be extended to intermediate κ, as well.
If both Reynolds numbers are small, Re(T ) � 1, Re(y) � 1, the resulting flow pattern

is expected to be laminar. The viscous damping term dominates then over the nonlinear
terms in eq. (5.2) and velocities are expected to follow a regular behavior dominated by
an exponential decay in time. More specifically, if the non-linear term in eq. (5.2) can be
neglected one can use Fourier decomposition with respect to the spatial arguments and one
finds the solution

vj(t, k1, k2, ky) = vj(t0, k1, k2, k3)e
−ν0(k2

1+k2
2)(t−t0)+ν0

9
8
√
t0
k2
y

„
1√
t
− 1√

t0

«
. (5.9)

This resembles closely the behavior of vorticity in eq. (4.8).
In contrast, if both Reynolds numbers are large, Re(T ) � 1, Re(y) � 1, one expects

a turbulent regime. The nonlinear terms dominate now over the viscous damping term in
eq. (5.2) and the velocities will change rather irregularly from point to point both in the
transverse plane and for different values of the rapidity variable y.

We consider next the case Re(T ) � 1 and Re(y) � 1. For κ � 1 the derivatives
with respect to x1 and x2 effectively drop out from eq. (5.2). One might expect a sort of
one-dimensional turbulent behavior. However, the unusual explicit time dependence of the
non-linear and damping terms could spoil this conclusion. Also for κ � 1, we are unable
to predict consequences of (5.2) without additional explicit calculations. However, because
of the late time behavior of Re(y) � 1, we do not expect that this case is particularly
relevant for the simulation of heavy ion collisions (see the more detailed argument in the
paragraph below).

In the opposite case Re(T ) � 1, Re(y) � 1, and for κ � 1, all terms containing
derivatives with respect to y can be neglected and eq. (5.2) can be seen as a set of equations
describing fluid motion in 2 + 1 dimensions with rapidity entering only as a parameter.
With respect to the transverse coordinates one would expect a turbulent flow pattern.
We remark that κ as defined in eq. (5.6) decreases with time τ and the ratio of the two
Reynolds numbers (which is independent of κ) increases with time

Re(T )/Re(y) =
vT ∆y τ2

vy l
. (5.10)

Therefore, in contrast to the case Re(T ) � 1, Re(y) � 1 discussed above, the case Re(T ) �
1, Re(y) � 1 can persist at late times, and it can be reached dynamically. For completeness,
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we mention finally the region κ� 1 when derivatives with respect to y enter in the damping
term. Considered as a function of the transverse coordinates x1 and x2, the velocity field
will be damped by locally varying rates due to irregularities with respect to the rapidity
argument. However, this damping is dominated by the first non-linear term in eq. (5.2) so
that the fluid will again behave turbulent with respect to the transverse coordinates.

The above discussion indicates that the case Re(T ) � 1, Re(y) � 1, κ � 1 may be
of particular relevance for the discussion of the onset of non-linear turbulent behavior in
heavy ion collisions, since it can be reached dynamically and since it persists at late times.
For a large set of initial conditions, we therefore expect that the fluid dynamics of heavy
ion collisions evolves towards a system with effectively two-dimensional turbulent behavior.
To address the issue to what extent the evolution towards turbulence could be completed
within the finite duration of a heavy ion collision, let us finally put some numbers to
this parametric discussion. Because of the late time limit of eq. (5.10), we focus on the
transverse Reynolds number

Re(T ) =
vT l T s

η
. (5.11)

We consider typical values for a heavy ion collision at LHC energies, e.g. T ≈ 0.3 GeV and
a length scale l ≈ 5 fm. Taking for the transverse velocity a fraction of the velocity of light,
say vT = 0.1 c, one finds vT l T ≈ 1 and

Re(T ) =
1
η/s

. (5.12)

For small values of the normalized viscosity η/s < 1, one therefore expects a transverse
Reynolds number Re(T ) that is larger than unity but not many orders of magnitude larger
than unity (Re(T ) < 100). Such values are not sufficiently large to expect fully developed
turbulence. A value Re(T ) > 1 indicates, however, that the system can be driven outside
the region of validity of a laminar evolution and that it may display features indicative of
the onset of turbulent behavior.

6 Qualitative features of turbulence

In the previous section, we have discussed the general conditions under which the time-
evolution of fluctuations in a Bjorken expansion scenario can be expected to lead to the
onset of turbulent behavior. Despite the relativistic nature of the system under study, we
found that upon coordinate transformation, the time evolution of fluctuations is governed
by an equation that takes the form of a two-dimensional Navier-Stokes equation at late
times. Although the Navier-Stokes equation presents still many deep problems, much is
known about fully developed turbulence in this system. Classical achievements include in
particular the scaling theory by Kolmogorov [61] for three-dimensional turbulence and its
extension to the two-dimensional case mainly by Kraichnan [62] and Batchelor [63]. For
reviews of this field, see [64–66].

To the best of our knowledge, the Bjorken scenario considered here is the first ex-
ample of a relativistically expanding three-dimensional scenario that under suitable initial
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conditions evolves dynamically into a system with effectively two-dimensional turbulent
dynamics described by a non-relativistic Navier-Stokes equation. Turbulence in the two-
dimensional case is known to display some characteristic qualitative differences in compari-
son to the three-dimensional case. Although the present section contains, strictly speaking,
no novel results, our finding of an effectively two-dimensional fluid dynamic propagation
of fluctuations at late times prompts us to discuss here the pertinent features of fully de-
veloped turbulence that apply to the Bjorken scenario for sufficiently large values of Re(T ).
In particular, we point to the phenomenon of an inverse cascade that exists only in the
case of two-dimensional turbulence and that provides a unique mechanism for enhancing
fluctuations on large spatial scales during the evolution towards turbulence. To set the
stage for this discussion, we introduce first shortly a statistical description of fluctuations
in the fluid velocities and energy densities.

6.1 Fluctuation spectra

In general, fluctuations in the fluid velocities and the energy densities can be described
statistically in terms of a τ -dependent probability distribution

pτ [uµ(τ, x1, x2, y), ε(τ, x1, x2, y)] . (6.1)

Eq. (6.1) describes an ensemble of events with equal “macroscopic” properties such as
nucleon number, center of mass energy and impact parameter. Bjorkens model of a unique
fluid velocity and energy density is then recovered by taking the probability distribution
in (6.1) to be infinitely narrow.

We consider a generalization of Bjorkens model where the assumed symmetries (boost
invariance in the longitudinal direction and translation and rotation invariance in the trans-
verse plane) are broken by the fluctuations for a particular event but hold in a statistical
sense. This means that the probability distribution (6.1) is invariant under these symme-
tries. This implies in particular that the expectation value of velocity is given by

〈uµ〉 = (1, 0, 0, 0) (6.2)

for all times τ > τ0 and for all values of x1, x2, y. Similarly the expectation values of
thermodynamic scalars such as ε, p, s, T etc. will be a function of τ , only. In general,
however, the τ -dependence of these expectation values will differ from the ones obtained
by Bjorken due to non-linear effects of fluctuations.

Beyond the expectation values, the probability distribution (6.1) can be character-
ized in terms of correlation functions. In particular, the two-point correlation function of
velocities at equal time τ is defined by (i, j = 1, 2, y)

Giju (τ, x1 − x′1, x2 − x′2, y − y′) = 〈ui(τ, x1, x2, y) uj(τ, x′1, x
′
2, y
′)〉. (6.3)

Due to translational symmetries this depends only on the differences in the spatial coordi-
nates. Similarly, we define

GT (τ, x1 − x′1, x2 − x′2, y − y′) = 〈T (τ, x1, x2, y) T (τ, x′1, x
′
2, y
′)〉 (6.4)
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and the cross-correlation

GjuT (τ, x1 − x′1, x2 − x′2, y − y′) = 〈uj(τ, x1, x2, y) T (τ, x′1, x
′
2, y
′)〉. (6.5)

The generalization to other scalar quantities such as energy density ε or pressure p or to
un-equal time arguments is obvious. It is useful to introduce also the Fourier decomposition

Giju (τ, x1, x2, y) =
∫

d3k

(2π)3
ei(k1x1+k2x2+kyy)G̃iju (τ, k1, k2, ky) (6.6)

and the abbreviation
Giju (τ) = Giju (τ, x1 = 0, x2 = 0, y = 0) . (6.7)

This generalizes trivially to the other functions. We note that for symmetry reasons, one
has Giju (τ) = 0 for i 6= j and G11

u (τ) = G22(τ).
For a solenoidal fluid with ∂ju

j = 0 one has

∂iG
ij
u (τ, x1, x2, y) = 0 (6.8)

or in momentum space
kiG

ij
u (τ, k) = 0. (6.9)

In this framework, characterizing the fluid evolution of a heavy ion collision amounts
to make statements about the form of correlation functions such as Giju (τ, k) etc. at some
given time τ . It is clear that the form of these correlations depends strongly on the
initial conditions. For example, if the initial fluctuations at time τ0 are small enough (or,
equivalently, the viscosities large enough to have small Reynolds numbers) so that the
linearized equations (4.3)–(4.6) can be applied, one can derive from them linear evolution
equations for the set of correlation functions Giju , Gd and Gjud. The form of these functions
at time τ is then directly linked to the corresponding functions at time τ0.

The situation is much more complicated in the presence of non-linear contributions to
time evolution, even if the system is far from the conditions of fully developed turbulence.
Indeed, if one tries to use the non-linear equations (3.14) and (3.15) to derive evolution
equations for the two-point correlation functions, one finds that three-point correlations
get involved, as well. The evolution equation for these involve even higher correlations and
so on. This is an instant of the well-known closure problem in the statistical description
of fluids. The same problem appears in non-perturbative formulations of quantum and
statistical field theories. No exact analytical solutions are known and advanced techniques
from statistical mechanics and field theory are needed to find approximate ones. The
scaling theory of Kolmogorov provides some insight into these problems.

6.2 Scaling theory of turbulence at large Reynolds number

Any fluctuation present in the initial conditions of a relativistic heavy ion collision can be
regarded as a source of non-thermal, say ’mechanical’ energy. Most generally, one would
like to understand to what extent this mechanical energy dissipates to thermal energy,
and to what extent it does not but leaves characteristic, dynamically evolved fluctuations
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visible in final state observables. In section 4, we have shown examples of the dissipation
(or amplification) of some fluctuation modes in a linearized description that applies to very
small Reynolds numbers. Here, we want to comment on the opposite case of very large
Reynolds number or very small viscosity. For large Reynolds numbers, we have found in
section 5 that fluctuations on a Bjorken background field are governed by an evolution
equation that takes for sufficiently late times the form of a non-relativistic Navier-Stokes
equation. Also, for situations of sufficiently small Mach number, there is a rationale for
setting θ → 0. Therefore, our discussion of the case of large Reynolds number will reduce
to recalling pertinent features of Kolomogorov’s theory of homogeneous turbulence for a
non-relativistic, incompressible fluid at very large Reynolds numbers.

For a non-relativistic fluid, it is common to denote the fluid kinetic energy per unit
mass by 1

2 [~v2], where the square brackets stand for spatial averaging. The rate of dissipation
to thermal energy for a three-dimensional evolution is given by

εdiss =
d

dt

1
2
[
~v2
]

=
1
2
ν

[
3∑

i,j=1

(∂ivj + ∂jvi)2
]

= ν[~ω2] . (3-dim. case) (6.10)

This shows that energy dissipation is mainly due to fine structures of the velocity field for
which the gradients are large; dissipation is mainly taking place at large wave-vectors k.
If one now decreases the viscosity, one finds finer and finer structures emerge so that the
energy dissipation rate εdiss remains positive. In fact, the mean-square vorticity 1

2 [~ω2] (also
called enstrophy) grows ∼ 1/ν for ν → 0. This is possible since 1

2 [~ω2] is not only given
by the vorticity present at some initial time or generated from an external driving force.
Rather, it can be generated also by non-linear terms in the three-dimensional Navier-Stokes
equation. The mechanical energy is cascaded from the large length structures to the smaller
ones by virtue of the non-linear terms in the Navier-Stokes equation. This is the famous
cascade picture of Richardson [67]. In his words: “Big whorls have little whorls, Which
feed on their velocity; And little whorls have lesser whorls, And so on to viscosity.”

Let us now come to the situation in two spatial dimensions. The most important
difference to the three-dimensional case concerns the evolution of mean-square vorticity in
the absence of an external driving force (vorticity ω = ∂1v2 − ∂2v1 has now only a single
component)

d

dt

1
2
[
ω2
]

= −ν
[
(~∇ω)2

]
. (2-dim. case) (6.11)

This shows that 1
2 [ω2] never increases as a function of time. This in turn implies that

energy per unit mass is conserved for vanishing vorticity,

d

dt

1
2
[
~v2
]
→ 0 for ν → 0. (6.12)

A cascade of mechanical energy from large structures into smaller ones where it is finally
dissipated is therefore not possible.7

7It has been argued that a cascade can take place for enstrophy 1
2
[ω2] instead of energy 1

2
[~v2], however.

This is possible if [(~∇ω)2] grows ∼ 1/ν for ν → 0 due to non-linear terms.
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Without going further into the detailed mechanism of two-dimensional turbulence let
us now attempt to transfer some of the insights that have been gained in this field to heavy
ion physics, in particular fluctuations around Bjorken flow. We consider the case of large
fluctuations and small kinematic viscosity ν so that the Reynolds number Re is large. Also,
we concentrate on the limit of large time τ where (5.2) becomes two-dimensional. Similar
to the non-relativistic case one has now

d

dt

[
v2
1 + v2

2

]
→ 0 for ν → 0 . (6.13)

For a fixed time t and rapidity y one can characterize the correlations of the velocities in
the transverse plane by (m,n = 1, 2)

(Gv)mn(t, x1 − x′1, x2 − x′2, 0) = 〈vm(t, x1, x2, y)vn(t, x′1, x
′
2, y)〉

=
(τ0
τ

)2/3
Gmnu (τ, t, x1 − x′1, x2 − x′2, 0) .

(6.14)

Adapting to the standard notation used in the literature about turbulence, we write the
Fourier transform of this as

(Gv)mn(t, x1, x2, y) =
∫

d2k

(2π)2
ei(k1x1+k2x2)

(
δmn −

kmkn
k2

1 + k2
2

)
2π
k
E(t, k). (6.15)

The tensor structure of (6.15) follows from rotational invariance and from the solenoidal
constraint (5.3). The function E(t, k) depends on k1 and k2 only in the combination
k =

√
k2

1 + k2
2. The normalization in (6.15) is chosen such that

E(t) =
1
2
〈v2

1 + v2
2〉 =

1
2

2∑
m=1

(Gv)mm(t, 0, 0, 0) =
∫ ∞

0
dk E(t, k). (6.16)

For a non-relativistic fluid, the function E(t, k) describes how the fluid kinetic energy
per unit mass is distributed over the different wave vectors. We emphasize that in the
relativistic setup considered here, E(t, k) is not directly representing kinetic energy. Instead
it simply parameterizes the contribution to the fluctuating transverse velocity field from
different wave vectors. The contribution of these fluctuations to kinetic energy, for example
in the laboratory frame, can be determined but the resulting relation is more-complicated
than in the non-relativistic case.

For the case of a relativistic heavy ion collision, the initial distribution E(t0, k) would
characterize the relative strength with which different length scales 1/k are represented
in the fluctuating initial conditions. The question of how this distribution of fluctuations
evolves amounts then to studying the time-dependence of E(t, k). Here, we point only to
one remarkable feature of the time-dependence of a two-dimensional fluid at large Reynolds
number, that can be understood in the scaling theory of freely decaying turbulence in
two dimensions developed by Batchelor [63]. This theory is based on the assumption
that at sufficiently late times, the function E(t, k) remembers only a single number from
its initialization, namely its average fluid velocity λ defined by λ2 = 1

2〈v
2
1 + v2

2〉. From
dimensional reasoning it follows then that

E(t, k) = λ3t h(kλt) . (6.17)
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It follows from (6.16) that the dimensionless function h(x) is normalized to unity,∫∞
0 dx h(x) = 1. Interestingly, if one assumes that E(t, k) is dominated by the region

around some characteristic wave vector kM , then this scale will change with time accord-
ing to

kM ∼
1
λt
. (6.18)

This implies that kinetic energy is shifted from small length scales to larger ones, in contrast
to the Richardson cascade in three dimensions [67]. We would like to close this section on
a cautious but speculative note: We recall first that Batchelor’s theory of freely decaying
turbulence was developed for very large Reynolds numbers that may not be realized in
heavy ion collisions. However, the above considerations may make it conceivable that non-
linear effects in the fluid dynamic evolution related to the onset of turbulence can move
fluctuations in the initial kinetic energy to larger spatial scales. This phenomenon would
be a distinct characteristics of an effectively two-dimensional turbulent evolution, and it
may be identified experimentally by finding fluctuations related to length scales that are
inconceivable to be present in fluctuating initial conditions.

7 The sensitivity of particle spectra on velocity correlation functions

In the previous section 6, we have seen that the fluid dynamic evolution of fluctuations
can be characterized efficiently in terms of correlation functions of fluid velocities. Here we
discuss how information about such velocity correlations enters the particle spectra that
are experimentally accessible in heavy ion collisions.

The starting point of our discussion is the ’freeze-out’ phase space distribution f(x, p)
that parametrizes the matter distribution at the time τfo when the particles decouple from
the fluid dynamic evolution. In the following, we shall view f(x, p) as describing an event-
averaged smooth fluid system supplemented by event-specific fluctuations. We shall then
ask how these fluctuations are reflected in observables. This logic should apply to arbitrary
choices of f(x, p). For the purpose of illustration, however, we shall restrict our discussion
to a simple ansatz8 that describes a locally approximately thermal distribution consistent
with the Bjorken background field of section 3, and that allows for the implementation of
local fluctuations on top of this background field. A simple choice with these properties is
the Boltzmann distribution

f(x, p) = d e
pµuµ(x)
T (x) , (7.1)

where the normalization d is fixed by the spin and flavor degeneracy of the degrees of
freedom that decouple from the system. Assuming that the freeze-out takes place at some
proper time τfo when the average temperature drops below some freeze-out temperature

8We note as an aside that phenomenologically more realistic choices of f(x, p) would be significantly more

complex. In particular, they would contain information about the finite spatial extent of the matter distri-

bution in the transverse and longitudinal distribution, they would supplement the ideal gas expression (7.1)

by terms proportional to viscosity [12–14], and they may implement correct Fermi-Dirac or Bose-Einstein

statistics instead of the Boltzmann distribution (7.1).
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Tfo, the hadronic spectra can be calculated using the Cooper-Frye freeze-out prescription

E
dN

d3p
=
∫
pµdΣµ

(2π)3
f(x, p) . (7.2)

Here, the freeze-out volume is determined by pµdΣµ = mT τcosh(η − y)dx1dx2dy for the
case of Bjorken expansion.

In practice, the spectra (7.2) measured in heavy ion collisions include averaging over
many events. On the level of the freeze-out distribution f(x, p), this event average corre-
sponds to an ensemble average with respect to the fluid velocity, energy density or tem-
perature fields, respectively. Denoting the corresponding averaging by triangular brackets,
we replace therefore in the calculation of (7.2) the function f by

f(x, p) = d

〈
e
pµuµ(x)
T (x)

〉
. (7.3)

Denoting the particle four-momentum by (p0, p1, p2, p3) = (mT cosh y, p1, p2,mT sinh y)
with transverse mass squared m2

T = p2
T +m2, p2

T = (p1)2+(p2)2, we expand f(x, p) for small
fluctuations around the velocity profile of Bjorken (u0, u1, u2, uy) = (cosh η, 0, 0, sinh η) and
the constant freeze-out temperature Tfo

f(x, p)= d e
−mT cosh(η−y)

Tfo

〈
1 +

mT cosh(η − y)
T 2

fo

(T − Tfo)

+
1
Tfo

(
p1u

1+p2u
2+ τ mT sinh(η−y)uy

)
+

1
2T 2

fo

(
p1u

1+ p2u
2+τ mT sinh(η−y)uy

)2
+
(
m2
T cosh2(η − y)

2T 4
fo

− mT cosh(η − y)
2T 3

fo

)
(T − Tfo)2

+
mT cosh(η − y)

T 4
fo

(p1u
1 + p2u

2 + τ mT sinh(η − y) uy)(T − Tfo) + . . .

〉
. (7.4)

The terms linear in T−Tfo or uj vanish by definition or due to symmetry reasons and similar
the cross-terms ∼ ujui with i 6= j. Also, due to translational symmetry the variances at
τ = τfo are actually independent of the coordinates x1, x2 and y, such that

〈(u1)2〉 = G11
u (τfo),

〈(uy)2〉 = Gyyu (τfo),

〈(T − Tfo)2〉 = GT (τfo).

(7.5)

This allows one to write the one-particle spectrum for small fluctuations around Bjorken
flow as

E
dN

d3p
= E

[
dN0

d3p
+
dδN1

d3p
G11
u (τfo) +

dδN2

d3p
Gyyu (τfo) +

dδN3

d3p
GT (τfo)

]
, (7.6)
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with

E
dN0

d3p
=
d τfoR

2
0mT

4π2
K1

(mT

T

)
,

E
dN1

d3p
=
d τfoR

2
0mT p

2
T

8π2 T 2
fo

K1

(mT

T

)
,

E
dN2

d3p
=
d τfoR

2
0m

2
T

8π2 Tfo
K2

(mT

T

)
,

E
dN3

d3p
=
d τfoR

2
0mT (m2

T + T 2
fo)

8π2 T 4
fo

K1

(mT

T

)
.

(7.7)

In the simple model studied here, information about velocity correlations enters the spec-
trum only via the coordinate-independent three numbers G11

u (τfo), Gyyu (τfo) and GT (τfo).
For another model choice, the information may be slightly different. For instance, if one
would replace the sharp freeze-out at τfo by a decoupling at times τ around τfo, then the
three numbers G11

u (τfo), Gyyu (τfo) and GT (τfo) would be replaced by averages over τ . Irre-
spective of such model-dependent nuances, however, it is a generally known feature that
the single particle spectrum (7.2) is only sensitive to space-time averages over the distribu-
tion f(x, p) and therefore does not contain information about correlations between different
space time points.

7.1 Generalization to identical two-particle correlations

As discussed in section 6, the dependence of velocity correlations on the wave-numbers
k1, k2 and ky allows for a detailed characterization of fluid dynamic behavior, including
information about the dissipation of fluctuations and the manifestations of turbulence.
The one-particle spectra discussed so far contain only the information (7.5) about the
correlations of fluid fields

Giju (τ, x1, x2, y), GjuT (τ, x1, x2, y), GT (τ, x1, x2, y) (7.8)

at equal positions (x1 = x2 = y = 0). Here, we point out that identical (Bose-Einstein)
two-particle correlation functions are linear functionals of (7.8) and may thus provide
information about the wave number dependence of velocity correlations.

Two-particle spectra for pairs of identical bosons (sB/F = 1) or fermions (sB/F = −1)
of 4-momenta pA, pB respectively, can be written as [68]

EAEB
dN

d3pAd3pB
=
∫

(pA)µdΣµ (pB)νdΣ′νf(x, pA)f(x′, pB) (7.9)

+ sB/F

∫
1
2(pA + pB)µdΣµ 1

2(pA + pB)νdΣ′νei(pA−pB)µ(x−x′)µf(x, pA+pB
2 )f(x′, pA+pB

2 ).

Here, the first term is what one would expect from kinetic theory for classical particles while
the second term results from the quantum statistics of identical particles. Data about two-
particle spectra are typically normalized by a mixed-event technique that corresponds to
forming a normalized correlation function

C(pA, pB) =
EAEB

dN
d3pAd3pB

EA
dN
d3pA

EB
dN
d3pB

. (7.10)
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As it stands, equation (7.9) is valid for an event-specific realization of the velocity and
temperature fields. Experimental data are for event samples that correspond to averages
over the hydrodynamic fields. This amounts to replacing in equation (7.9) the products
of phase-space distributions f by the corresponding event averages 〈f(x, pA)f(x′, pB)〉 and〈
f
(
x, pA+pB

2

)
f
(
x′, pA+pB

2

)〉
. Paralleling the arguments employed for the calculation of the

one-particle spectra via (7.4), one should then expand the arguments of 〈f(x, pA)f(x′, pB)〉
for small fluctuations around the event-averaged background fields. In general, the argu-
ments of these averages depend on space-time difference x−x′, and they contain information
about the relative position dependence of the correlations (7.8) in the fluid fields.

In practice, the way in which information about (7.8) enters the two-particle correla-
tion functions may depend significantly on model-specific choices for f(x, p). For illustrative
purposes, we explore here the particularly simple Bjorken-like model without spatial con-
straints in the transverse direction. We ignore all correlations involving the temperature
field on the ground that these are for a compressionless situation formally of higher order
in the fluctuating velocities, see eq. (5.4). For the discussion in the following, we also
neglect the rapidity-dependence of the correlation functions thus eliminating many terms
proportional to Giju with i = y or j = y (or both), as well as terms involving GyuT (The
assumption of a vanishing rapidity dependence is relaxed in appendix A). With these ap-
proximations, we concentrate therefore on the correlation functions of velocities Gmnu with
m,n = 1, 2. Due to rotational invariance in the transverse plane, the velocity correlation
in Fourier space can be written in the form

G̃mnu (τ, k1, k2, ky) = 2π δ(ky) [δmn g1(τ, k) + kmkn g2(τ, k)] , (7.11)

with k =
√
k2

1 + k2
2. In terms of the pair momentum P = 1

2(pA + pB) and the relative
momentum q = pA−pB, the two-particle correlation function at mid-rapidity ηA = ηB = 0
takes then the form (see appendix A for details of the derivation)

C(P, q) = 1 + sB/F (2π)2δ(2)(~qT )
1
AT

+
~P 2
T − ~q2T /4
ATT 2

fo

g1(τfo, 0) + sB/F
(mAB

T )2

mA
Tm

B
TATT

2
fo

×
[
~P 2
T g1(τfo, qT )+(~PT · ~qT )2g2(τfo, qT )

]∣∣∣K1

(
mABT
Tfo
−i(mA

T −mB
T )τfo

)∣∣∣2
K1

(
mAT
Tfo

)
K1

(
mBT
Tfo

) , (7.12)

with ~PT = (P1, P2), ~qT = (q1, q2) and qT =
√
~q2T .

Realistic phase space distributions f(x, p) have support in a finite transverse area AT
only, and this would lead to a fall-off of the correlation function to unity in the relative
transverse momentum ~qT on a scale of order 1/

√
AT . Often, this fall-off is parametrized by

a Gaussian ansatz in terms of HBT radius parameters, so that the first two terms of (7.12)
would take the form C(P, q) = 1 + sB/F exp

[
−AT q2T

]
. For the simplified model of infinite

transverse extension discussed here, this contribution is singular ∝ (2π)2δ(2)(~qT ) and we
have written it in a formal way normalized to unity at ~qT = 0.

For the purpose of the following discussion, the transverse translational invariance of
the present toy model presents the technical advantage that the ~qT -dependence of the cor-
relation function (7.12) is solely dependent on the wave number dependence of velocity
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correlations. Effects that could confound the interpretation of the ~qT -dependence in prac-
tice, such as effects from a finite transverse geometry and from transverse (event-average)
velocity gradients, are not included in the present model. Therefore, the following discus-
sion allows us to illustrate how information about velocity correlations enters two-particle
correlation functions, but it limits our discussion of how such information could be disen-
tangled from other effects in a phenomenologically relevant scenario. Keeping this caveat in
mind, we observe that the first term in (7.9) can be viewed as an incoherent superposition of
single-particle spectra and therefore does not furnish information that is not yet contained
in single-particle spectra. In contrast, the quantum-statistical second term ∝ sB/F fur-
nishes novel information about the wave number dependence of g1(τfo, qT ) and g2(τfo, qT ).

We note as a curious aside that for a situation of fully developed two-dimensional
turbulence, one can predict the form of g1(τ, k) and g2(τ, k) from the scaling theory of
Kraichnan and Batchelor. In particular, comparing (6.14), (6.15) and (7.11) one can express
g1 and g2 as a function of E(t, k). Moreover, from Batchelors scaling theory of freely
decaying two-dimensional turbulence one finds then the following scaling in the inertial
range

g1(τ, k) =
c

τ10/3k4
,

g2(τ, k) = − c

τ10/3k6
,

(7.13)

with a common but unpredicted constant c that reflects the absolute scale of velocity
fluctuations. For the correlations function (7.12), this results in an additive term with a
very slow power-law fall-off of the form ∝ 1

AT T
2
fo q

4
T

. Interestingly, if the velocity correlations

occurs on scales that are significantly smaller than the transverse extension
√
AT of the

system, then the slow power-law qT -dependence persists at relative momentum scales that
are significantly larger than the typical scales 1/R set by HBT radius parameters. It is
an exciting possibility that a measurement of a power-law 1/qnT -dependence in two-particle
correlation functions may provide a characteristic signature for turbulent distributions in
the fluid dynamically evolved velocity fields of a heavy ion collision. We caution that
the model discussed here is a simplified one; also, for intermediate Reynolds numbers one
expects corrections to the case of fully developed turbulence, see e.g. [64–66]. What may
persist in a phenomenologically realistic scenario, however, is the general idea that velocity
correlations on small scales lT induce two-particle correlations on large scales qT ∼ 1/lT ,
and that these correlations are expected to be governed by a power-law fall-off.

8 Discussion and conclusion

Recent data analyses from RHIC and LHC have given support to arguments that soft
hadron spectra may result from the fluid dynamic response to initial conditions with sig-
nificant event-by-event fluctuations. Motivated by this suggestion, we have studied here
how event-by-event fluctuations propagate on top of an event-averaged fluid dynamical
background of Bjorken type. The choice of a Bjorken background field is a simplifica-
tion that retains essential elements of the expected fluid dynamical evolution of relativistic
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heavy ion collisions. As shown in the present paper, it allows for a particularly explicit,
partly analytical discussion of the propagation of fluctuations in an expanding fluid dy-
namic system. In particular, we have found for the case of a laminar evolution explicit
expressions for the attenuation or amplification of all fluid dynamic modes over the time
scale relevant in heavy ion collisions. And we have specified the general conditions for
non-linear effects in the dynamics of fluctuations, finding in particular that the late time
dynamics evolves towards an essentially two-dimensional system with turbulent behavior.
Here we discuss our main findings in more detail:

To discuss the propagation of fluctuations, one needs to specify first the nature of the
fluctuations that are propagated. Recent studies have focussed mainly on fluctuations in
the energy density (or, equivalently, entropy density), where the Glauber model provides a
phenomenologically supported basis for assuming local fluctuations on a particular trans-
verse scale. However, it had been pointed out already that fluctuations in the velocity
field may be present in the initial conditions for fluid dynamic evolution. Velocity fluctu-
ations could arise from pre-equilibrium evolution, or they could be a natural consequence
of fluctuations in the primary interactions of elementary constituents. To the best of our
knowledge, there is no a priori argument that fluctuations in energy density dominate over
fluctuations in other fluid dynamic fields. Also, it requires studies allowing for all possible
fluctuations to address the question whether and how fluctuations in velocity and energy
density can be disentangled. In section 2, we argued that a discussion of the fluid dynamic
response to fluctuating initial conditions should be based on a formulation that allows for
fluctuations in all fluid dynamic fields. In particular, we supported with a model study the
idea that fluctuations in the velocity fields may carry significant vorticity. For a fluid with
conserved charges such as baryon number and electric charge one should take fluctuations
in these quantities into account, as well.

In general, a separation of fluid dynamical fields into background and fluctuations is
not necessary. For instance, recent studies of event-by-event fluid dynamics propagate event
samples of initial conditions numerically without separating fluctuations from background
fields. In principle, such full fluid dynamical simulations allow to explore under the most
versatile model assumptions the fluid dynamic response to fluctuating initial conditions.
But an explicit mode-by-mode formulation of the dynamics of fluctuations around a fluid
background field seems well-suited to study which fluctuating modes in the initial conditions
can survive the strong dynamical evolution in a heavy ion collision unattenuated, whether
there are mechanisms that may amplify some modes, and which modes are ’filtered out’
by the medium due to dissipative effects in the fluid dynamic evolution. To address such
questions in a simplified framework that accounts for the main features of fluid expansion,
we have formulated in section 3 the fluid dynamical evolution of local fluctuations around
average fluid fields of Bjorken type. For this system, we have found a peculiar rescaling of
the time variable, t ∝ τ4/3, that allowed us to write the relativistic fluid dynamic evolution
of fluctuations in a form resembling a non-relativistic Navier-Stokes equation.

If the Reynolds number of a fluid system is not too large, then important elements of
the dynamics may be understood in a linearized treatment. In section 4, we observed that
in this laminar case, fluctuations in vorticity decouple from sound modes and fluctuations
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in energy density. For a parameter set that is characteristic for heavy ion collisions, we
have then studied how different modes are amplified or attenuated over the time scale of
order 10 fm/c of a heavy ion collision. Remarkably, the longitudinal vorticity modes have
an algebraic enhancement factor that can overcompensate on this time scale the typical
exponential decay due to dissipative effects. Therefore, vorticity, if not present in the ini-
tial conditions, will not be generated as long as the dynamical evolution is laminar, and
it is therefore unlikely to be generated in a sizable amount for small Reynolds numbers.
However, if present in the initial conditions, some vorticity modes will be amplified signif-
icantly during the dynamical evolution. To the best of our knowledge, this phenomenon
has not been studied yet in numerical simulations, and it would be interesting to see how
it manifests itself in the presence of other background fields. In addition to the vortic-
ity modes, we have also explored the propagation of sound modes that result from initial
fluctuations. In general, we find that fluctuations of sufficiently long wave-length pass
unattenuated over time scales relevant for heavy ion collisions, while short wave-lengths
that reflect finer structures in the fluctuating initial conditions, are dissipated on shorter
length scales. There is also a characteristic difference between transverse components, and
the components that propagate in the longitudinal direction in which the system expands
according to Bjorken’s model.

Outside the regime of validity of a linearized treatment, the discussion of solutions
of fluid dynamics is very complicated and typically requires numerical techniques. For
our problem of fluctuations around Bjorken flow, we are in the special and fortunate case
that we can relate the full relativistic dynamics of fluctuations in rescaled coordinates to
a non-relativistic Navier-Stokes equation. This allows us to discuss the possibility of a
turbulent evolution in terms of those concepts and parametric estimates that have proven
useful in characterizing turbulent phenomena of non-relativistic systems. In section 5, we
introduce both a longitudinal and a transverse Reynolds number to characterize the non-
linear dynamics of fluctuations on top of a Bjorken background field that shows strong
dynamical expansion only in the longitudinal direction. We find in particular that the late
time dynamics will evolve a large set of initial conditions into a regime where the dynam-
ical evolution is effectively two-dimensional, and where the transverse Reynolds number
can be sizable. This indicates a window for a two-dimensional, non-linear evolution to-
wards turbulent behavior. Motivated by this observation, we have summarized in section 6
characteristic features of turbulent behavior, detailing the differences between the cases of
two-dimensional and three-dimensional evolution. We recall from this discussion in partic-
ular that in three dimensions, fluid kinetic energy thermalizes typically by dissipating into
vorticity modes of increasing wave number, i.e. decreasing length scales. As first observed
by Kraichnan, this mechanism is not possible for a two-dimensional fluid system where one
finds an inverse cascade: kinetic energy gets propagated to larger length scales.

The transverse Reynolds numbers estimated in section 5 do not support the assump-
tion that heavy ion collisions create systems with fully developed turbulence. However,
our discussion in section 5 shows that realistic Reynolds numbers are not small enough to
neglect non-linear effects in the dynamical evolution. Therefore, while we have no ratio-
nale to expect that the correlation functions of fluid dynamic fields generated in heavy ion
collisions satisfy the scaling laws of Kolmogorov’s theory of fully developed turbulence, we
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do expect that a non-linear dynamics that can be regarded as the onset of turbulent behav-
ior may result in interesting (power-law) wave-number dependences of correlations of fluid
fields. By supplementing a standard blast-wave model with event-by-event fluctuations in
fluid fields, we have established in section 7 how such fluid dynamic correlation functions
manifest themselves in one- and identical two-particle spectra. For one-particle spectra, we
find that fluctuations are a confounding factor in interpreting the mT -dependence of spec-
tra in a fluid dynamic scenario. For two-particle correlations, we observe a dependence that
may provide an experimentally accessible signature for the onset of turbulence in heavy
ion collisions. The observation is that identical two-particle correlations at large relative
momentum are sensitive to spatial scales that are much smaller than the transverse size of
the particle producing source. If two-point velocity correlations show turbulent behavior
on these small scales then this will translate into a characteristic power-law tail of identical
two-particle correlations at large relative momentum.

Let us close with a short outlook of how observations made in this study could be
pursued further. Our study was largely motivated by the question of how initial condi-
tions with significant velocity fluctuations (in the solenoidal and in the irrotational part)
propagate fluid dynamically. Here, full fluid dynamic simulations including initial velocity
fluctuations could provide further insight, for instance by evolving fluctuations around av-
erage fluid fields with more realistic transverse dependencies, and by quantifying to what
extent initial velocity fluctuations could contribute to the observed azimuthal asymmetries
in momentum space. Full fluid dynamic simulations including initial velocity fluctuations
could also allow for a detailed characterization of how the scale dependence of fluid corre-
lation functions of the type (7.8) builds up during the fluid dynamic evolution. This would
provide in particular insight into the question on which time scales and over which range
of wave vectors correlation functions of fluid fields may develop power-law dependences
that can be regarded as precursors of turbulent phenomena.9 Also, the semi-analytical
approach used in the present work may be pursued further. In the present work, we have
seen how single vorticity modes, and sound modes are amplified or filtered out by the
dynamical evolution, depending on their wave-number. We plan to investigate, whether
a similar understanding can be gained for a more realistic background field by expanding
fluctuating fluid fields in terms of appropriate sets of functions so that one can calculate
explicitly how the fluid dynamic evolution mixes different components in the evolution. We
expect that such studies could provide an intuitive understanding e.g. of the time scales
on which density fluctuations feed sound waves, or on which vorticity modes cascade to
other scales. This may help significantly in the interpretation of the complex fluid dynamic
phenomena that we expect to find realized in heavy ion collisions.

A Explicit expressions for the two-particle spectrum

Here, we provide further details about the calculation of the two-particle correlation func-
tion (7.12), and how the calculation of this correlation function could be generalized to
include the rapidity dependence of velocity correlations, as well as effects of temperature

9We note in this context that the time scale on which non-linear contributions start to matter in the

evolution of fluctuations may depend sensitively on the size and scale of the fluctuating initial condition.
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fluctuations. In general, we represent fluctuations in the fluid dynamic fields in Fourier
space according to

T (τ, x1, x2, y)− Tfo =
∫

d3k

(2π)3
ei(k1x1+k2x2+kyy) T̃ (τ, k1, k2, ky),

uj(τ, x1, x2, y) =
∫

d3k

(2π)3
ei(k1x1+k2x2+kyy) ũj(τ, k1, k2, ky).

(A.1)

For the first term of the two-particle spectrum (7.9), we find then the following contribution
(mA

T , mB
T , ηA, and ηB are the transverse masses and rapidities of particles A and B)

d2τ2
fom

A
Tm

B
T

(2π)6

∫
d3k

(2π)3
d3k′

(2π)3
(A.2)

×
∫
dx1dx2dy cosh(ηA − y)ei(k1x1+k2x2+kyy)e

−m
A
T

Tfo
cosh(ηA−y)

×
〈[

mA
T

Tfo
T̃ (k)cosh(ηA − y) +

(pA)1ũ1(k) + (pA)2ũ2(k)
Tfo

+
mA
T τ ũ

y(k)
Tfo

sinh(ηA − y)
]

×
∫
dx′1dx

′
2dy
′cosh(ηB − y′)ei(k

′
1x
′
1+k′2x

′
2+k′yy

′)e
−m

B
T

Tfo
cosh(ηB−y′)

×
[
mB
T

Tfo
T̃ (k′)cosh(ηB − y′) +

(pB)1ũ1(k′) + (pB)2ũ2(k′)
Tfo

+
mB
T τ ũ

y(k′)
Tfo

sinh(ηB − y′)
]〉

.

For an infinite extension in the transverse plane it is easy to perform the integrals over
x1, x2, x

′
1, x
′
2. The resulting Dirac distributions can be used to perform the integrals over

k1, k2, k
′
1, k
′
2. Also, the integrals over y and y′ can be done analytically. Transforming then

back to Fourier space, one finds for the first term of (7.9) the expression

d2τ2
fom

A
Tm

B
TAT

(2π)6

∫
dky
2π

eiky(ηA−ηB)

[
mA
Tm

B
T

T 4
fo

G̃T (τ, 0, 0, ky)E1

(
mAT
Tfo
, ky

)
E1

(
mBT
Tfo
,−ky

)
+

(~pA)T (~pB)T
T 2

fo

G11
u (τ, 0, 0, ky)E0

(
mAT
Tfo
, ky

)
E0

(
mBT
Tfo
,−ky

)
+
τ2
fom

A
Tm

B
T

T 2
fo

Gyyu (τ, 0, 0, ky)E2

(
mAT
Tfo
, ky

)
E2

(
mBT
Tfo
,−ky

)]
, (A.3)

where the functions Ei denote linear combinations of Bessel functions of the second kind,

E0(x, q) = K1+iq(x) +K1−iq(x),

E1(x, q) =
1
2
K2+iq(x) +

1
2
K2−iq(x) +Kiq(x),

E2(x, q) =
1
2
K2+iq(x)− 1

2
K2−iq(x) .

(A.4)

For ky = 0, this expression reduces to the first two terms in the first line of (7.12).
Let us now consider the second term ∼ sB/F in eq. (7.9). This term is of the form of

a single integral over the freeze-out volume∫ 1
2(pA + pB)µdΣµ

(2π)3
ei(pA−pB)µxµf(x, pA+pB

2 ) (A.5)
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times its complex conjugate. Expanding it up to terms that are quadratic in the fluctua-
tions, one obtains two distinct contributions, In one case, the bilinear terms in the fluctu-
ating fields are written at different points x, x′, in the other case they are both taken at
the same point. We consider both cases separately. We work in the following with average
pair momentum Pµ = 1

2(pµA + pµB) = (mAB
T cosh ηAB, P 1, P 2,mAB

T sinh ηAB) and we define
a transverse mass defined mAB

T =
√

(P 0)2 − (P 3)2 and a rapidity ηAB = arctanh(P 3/P 0).
This allows us to write qµx

µ = −[mA
T cosh(ηA − y) − mB

T cosh(ηB − y)]τ + ~qT~xT with
~qT = (q1, q2) and ~xT = (x1, x2).

The contribution to the second term in eq. (7.9) that is quadratic in fluctuations at
the same space-time point, can then be written as

dτfom
AB
T

(2π)3

∫
dx1dx2dy cosh(ηAB−y)e−iτ [m

A
T cosh(ηA−y)−mBT cosh(ηB−y)]τfoei~qT ~xT e−

mABT
Tfo

cosh(ηAB−y)

×
[
1 +

1
2T 2

fo

~P 2
T G

11
u (τ) +

τ2(mAB
T )2

2T 2
fo

sinh2(ηAB − y)Gyyu (τ)

+
(

(mAB
T )2cosh2(ηAB − y)

2T 2
fo

−
mAB
T cosh(ηAB − y)

2T 3
fo

)
GT (τ)

]
. (A.6)

Here, the integral over the transverse coordinates leads to a factor (2π)2δ(2)(~qT ) (where
(2π)2δ(2)(0) = AT is understood). This is a consequence of the fact that in the present
model the transverse extension of the particle emitting source is not limited. At mid-
rapidity, ηA = ηB = ηAB = 0, the term (A.6) simplifies to

d τfom
AB
T

(2π)3
(2π)2δ(2)(~qT )

[(
1 +

p2
T

2T 2
fo

G11
u (τ) +

m2
T + T 2

fo

2T 2
fo

GT (τ)
)

2K1

(
mT
Tfo

)
+
τ2mT

2Tfo
Gyyu (τ) 2K2

(
mT
Tfo

)]
. (A.7)

With the approximations used in section 7, this expression reduces to the last terms in the
first line of (7.12).

We now turn to the contribution ∼ sB/F where the fluctuating fields have different
space-time argument. This term is of similar structure as (A.2) and reads

d2τ2
fo(mAB

T )2

(2π)6

∫
d3k

(2π)3
d3k′

(2π)3
(A.8)

×
∫
dx1dx2dy cosh(ηAB − y)ei(k1x1+k2x2+kyy)e

−m
AB
T
Tfo

cosh(ηAB−y)

× e−i[mAT cosh(ηA−y)−mBT cosh(ηB−y)]τfo ei~qT ~xT

×
〈[

mAB
T

Tfo
T̃ (k)cosh(ηAB − y) +

P1ũ
1(k) + P2ũ

2(k)
Tfo

+
τfom

AB
T ũy(k)
Tfo

sinh(ηAB − y)
]

×
∫
dx′1dx

′
2dy
′cosh(ηAB − y′)ei(k

′
1x
′
1+k′2x

′
2+k′yy

′)e
−m

AB
T
Tfo

cosh(ηAB−y′)

× ei[mAT cosh(ηA−y′)−mBT cosh(ηB−y′)]τfo e−i~qT ~x
′

×
[
mAB
T

Tfo
T̃ (k′)cosh(ηAB − y′) +

P1ũ
1(k′) + P2ũ

2(k′)
Tfo

+
τfom

AB
T ũy(k′)
Tfo

sinh(ηAB − y′)
]〉

.
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The integrals over the transverse coordinates x1, x2, x
′
1, x
′
2 leads to factors (2π)2δ(2)(~qT+~kT )

and (2π)2δ(2)(~qT − ~k′T ), respectively. These can be used to perform the integrals over the
transverse components of k and k′. For simplicity we concentrate again on particles at
mid-rapidity, ηA = ηB = ηAB = 0. It is then straight-forward to perform the integrals over
y and y′ In terms of the fluid dynamic correlation functions, the result can then be written
as

d2τ2
fo(mAB

T )2AT
(2π)6

∫
dky
2π

[
(mAB

T )2

T 2
fo

GT (τ, ~qT , ky)
∣∣∣E1

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)∣∣∣2
+

2∑
m,n=1

PmPn
T 2

fo

Gmnu (τ, ~qT , ky)
∣∣∣E0

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)∣∣∣2
+
τ2
fo(mAB

T )2

T 2
fo

Gyyu (τ, ~qT , ky)
∣∣∣E2

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)∣∣∣2
+

2∑
n=1

Pn
T 2

fo

{
GnuT (τ, ~qT , ky)E1

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)
× E0

(
mABT
Tfo

+ i(mA
T −mB

T )τfo,−ky
)

+ c.c.

}
+
τfo(mAB

T )2

T 2
fo

{
GyuT (τ, ~qT , ky)E1

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)
× E2

(
mABT
Tfo

+ i(mA
T −mB

T )τfo,−ky
)

+ c.c.

}
+

2∑
n=1

τfom
AB
T Pn
T 2

fo

{
Gnyu (τ, ~qT , ky)E0

(
mABT
Tfo
− i(mA

T −mB
T )τfo, ky

)
× E2

(
mABT
Tfo

+ i(mA
T −mB

T )τfo,−ky
)

+ c.c.

}]
. (A.9)

We note that (A.9) contains information about the full fluid dynamic correlation functions
in momentum space. Under the assumptions made in section 7, this expression reduces to
the last line of (7.12).
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