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to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules

using our finite difference equations. Finally, we show that our factorization formula and

our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproduc-

ing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout

we emphasize a deep analogy with the properties of flat space scattering amplitudes in

momentum space, which suggests that the Mellin amplitude may provide a holographic

definition of the flat space S-Matrix.
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1 Introduction

Progress in physics often requires a formalism that makes both the symmetries and the

dynamics manifest and simple. For example, recently we have seen dramatic progress in

S-Matrix theory facilitated by the use of the spinor-helicity formalism, on-shell superspace,

and twistor space. We will argue that the Mellin representation [1–3] is the most natural

framework for CFT correlation functions, especially in the large N expansion. The benefits

of adopting ‘Mellin space’ are structurally identical to the crucial, yet rather pedestrian

progression from position to momentum space for correlation functions and scattering

amplitudes in flat spacetime.

Arguably the most important dynamical property of a conformal field theory is its

obedience to the operator product expansion [4–7], which says that for any two operators

O1 and O2, we have

O1(x)O2(0) =
∑

p

∞∑

m=0

Cµ1...µm
12p,ν1...νl

(x)∂µ1 . . . ∂µmOν1...νl
p (0) (1.1)

as an exact operator relation, for some coefficient functions C12p that are kinematically

determined up to an overall coefficient for each conformal primary field Op. If we begin with

an n-operator correlator and use the OPE to reduce it recursively by squeezing together

k and n− k of the original operators, then we naturally end up with something akin to a

factorization channel.

The Mellin representation displays these factorization channels as poles. We will argue

that the residues at these poles are intimately related to lower point correlation functions,

so that the Mellin amplitude inherits a recursive structure from the OPE. We support

this with a somewhat formal argument in section 2.1 and then develop it extensively for

large N CFTs in section 3.1. However, the presence of these poles follows simply from the

definition [1, 2] of the conformally invariant Mellin amplitude Mn(δij) in terms of a CFT

correlator via

〈O1(x1) · · · On(xn)〉 =

∫
[dδ]Mn(δij)

∏

i<j

(xi − xj)−2δijΓ(δij) (1.2)

The integration variables δij are the CFT analogue of the kinematic invariants pi · pj in

scattering amplitudes, and we will explain the precise definition of the contour integral in

the next section. Terms in the OPE of the correlator involving an operator of dimension

∆ will have definite power law dependence on the xi coordinates, and this specific power

law can only be reproduced by the Mellin amplitude if Mn(δij) has poles on which an

appropriate linear combination of the δij variables can be localized.

The power of the OPE is that, in principle, with knowledge of the spectrum of operators

and the three point functions, we could recursively compute all of the correlation functions

in any CFT. Mellin space may play an interesting role in this program, but we will follow

an easier route and study correlation functions in large N CFTs, specifically those with

an AdS dual. The Mellin representation becomes far more powerful in CFTs with a large

N expansion and a small number of low-dimension operators [3], because in these theories

– 2 –



J
H
E
P
1
1
(
2
0
1
1
)
0
9
5

multi-trace operators are equal to products of single trace operators, up to 1/N corrections.

This fact is in a sense built into the Mellin space formalism, as we will explain in section 2.4,

so that the contributions of multi-trace operators are automatically incorporated once

single-trace exchanges are correctly reproduced.

The AdS/CFT correspondence [8–10] has led to a long list of major insights into both

quantum gravity and gauge theory. In particular, it enabled the computation of 4-point

correlation functions in strongly coupled conformal field theories using supergravity [11–23],

see also [24] for an interesting related conjecture. However, progress on holographically

computing correlation functions with more than four external points has been relatively

modest. (Some progress was reported in [25].) We hope to facilitate progress in this

direction by deriving a precise factorization formula that makes it possible to recursively

compute tree-level Witten diagrams for arbitrary bulk scalar field theories. As a first

demonstration of the power of our methods, we compute the 5-pt and 6-pt correlation

function in φiφjφk theory in AdS. For example, the Mellin representation of the unique

5-pt Witten diagram in φ3 theory with ∆ = d = 4 is

M5(δij) ∝
(

1

δaδb
+

1

3δa(δb − 1)
+

1

3(δa − 1)δb
+

5

9(δa − 1)(δb − 1)

)
(1.3)

where δa and δb are linear combinations of δij that are analogous to the kinematic invariants

that appear in familiar flat-space propagators, such as (p1 + p2)2 and (p4 + p5)2.

The fact that our factorization formula can be applied to any combination of factoriza-

tion channels in any order strongly suggests that there must be an even simpler structure

underlying the Mellin amplitudes. In fact, we will derive a set of diagrammatic rules, the

AdS/CFT equivalent of the momentum space Feynman rules, which permit a direct con-

struction of the tree-level Mellin amplitudes in any scalar theory in terms of vertices and

propagators. For example, in section 5 we define propagators and vertices for a general

φiφjφk theory
S∆(m)

δ −m , V∆i∆j∆k
(mi,mj ,mk) (1.4)

which allow for a direct diagrammatic computation of AdS/CFT correlation functions.

Similar results should hold for vector and tensor theories, although aside from a brief

discussion in appendix B we leave these developments for future work.

We emphasize that these rules are universal and diagrammatically local, so that the

rule for one vertex in a given diagram does not depend on the rest of the diagram. At the

vertices we have ‘dimension conservation’, which is analogous to momentum conservation

in flat space and follows from conformal invariance. The most familiar manifestation of

‘dimension conservation’ is the fact that CFT two point functions vanish unless the two

operators have the same dimension.

Although OPE factorization may be the physical principle behind the simplicity of

AdS/CFT computations in Mellin space, this simplicity has another guise in the form of a

functional equation, which we will derive in section 2.3. An analogous equation was used

in position space in [25] and it enabled major progress in the computability of AdS Witten

diagrams. Furthermore, it was used by [26] to find explicit expressions for conformal blocks
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with external scalar operators. The main idea is to use the fact that bulk to bulk propa-

gators in AdS are Green’s functions of the conformal Casimir. One can use this Casimir

to collapse bulk to bulk propagators into AdS delta functions, reducing AdS exchange dia-

grams to contact interactions. In Mellin space, this observation becomes the AdS analogue

of the very useful fact that ∇2 → −p2 when we Fourier transform to momentum space.

Namely, when we apply the conformal Casimir to the Mellin representation, we find an

enormous simplification, and a complicated differential equation becomes purely algebraic.

This functional equation has a variety of uses. We will use it to prove the validity of our

recursive calculations and as a tool to obtain very general information about the analytic

structure of Mellin amplitudes. It is also an interesting tool for computing the conformal

block decomposition of various tensor structures, as we will describe in a forthcoming paper.

Mellin space has formal advantages because unlike CFT correlators in position space,

Mellin amplitudes are simple meromorphic functions of their arguments. Again, we have

a nice analogy with the S-Matrix in flat space, whose analyticity properties are very well-

known and well-studied. However, on the basis of the existence of a convergent OPE one

may expect that Mellin amplitudes will always be meromorphic functions without branch

cuts [1]. In AdS this is reflected by the discrete spectra of quantum theories in AdS,

so infinite sums replace the phase-space integrals that one encounters in flat space. The

presence of poles and the absence of branch cuts was discussed in a 1-loop example in [3].

We aim to show that Mellin space is a profoundly useful arena in which to study CFT

correlation functions, but it may also illuminate the way in which the very large N and λ

limit of AdS/CFT morphs into a holographic description of flat spacetime [27, 28], as several

of us have discussed before [3, 29–33]. We obtain the flat space S-Matrix from AdS/CFT

by studying high energy bulk states, which are dual to high dimension CFT operators,

and so we should expect scattering amplitudes to be related to the large δij behavior of

the Mellin amplitude. In fact, as was already argued in [3], we find that at large δij the

Mellin amplitude becomes the scattering amplitude of the AdS theory. In section 6 we

show explicitly that our AdS/CFT factorization formula reduces to the usual factorization

of tree-level amplitudes on their propagators when we take the flat space limit. This can

be viewed as a constructive proof that one can compute the complete tree-level flat space

S-Matrix for scalar theories using only CFT correlators, addressing the issues of [34–36]

from a different angle. We also show that the flat space limit works equally well for massless

and massive particles. Therefore, we expect that any tree level scattering amplitude can be

obtained as the flat space limit of the corresponding Mellin amplitude. The same should

hold at loop level as well, as suggested by the 1-loop example studied in [3]. It is then

natural to give a holographic and non-perturbative definition of gravitational scattering

amplitudes as the flat space limit of the Mellin amplitudes of the dual CFT.

The outline of this paper is as follows. In section 2, we will use the operator product

expansion to motivate the Mellin space approach to CFT correlation functions and discuss

how the Mellin representation becomes especially useful in the large N limit. We will then

discuss the Mellin representation of a generic scalar Witten diagram and derive the afore-

mentioned functional equation for the Mellin representation of the diagram. In section 3

we derive the factorization formula which allows us to split an arbitrary scalar tree-level
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Witten diagram into a ‘left’ and a ‘right’ piece. This factorization formula a priori only

gives us the poles (and residues) of the Mellin amplitude but we will claim that this is in

fact the entire result. This claim is further motivated in section 4 by working out several

examples. In section 5 we provide an actual proof of our claim, by demonstrating that it is

equivalent to the existence of specific Feynman rules in Mellin space and then showing that

these Feynman rules satisfy the functional equation derived in section 2. In section 6 we

verify that in the flat-space limit our Mellin amplitudes reproduce scattering amplitudes.

We end in section 7 with a discussion. Three appendices discuss a more direct proof of the

factorization formula of section 3, the extension to the exchange of bulk fields with spin

and some technical developments.

While this project was being completed we became aware of the interesting work [37],

which has some overlap with the present paper.

2 Motivating Mellin space

In this section we will explain why Mellin space [1] makes the physics of CFT correla-

tion functions simple and transparent, in the same way that momentum space simplifies

scattering amplitudes in flat spacetime. We will see that the key property of scattering

amplitudes in momentum space is also present for CFT correlation functions in Mellin

space: factorization of correlation functions on propagator poles, with the residues given

in terms of correlation functions with fewer operators. Furthermore, in CFTs with a large

N expansion, the Mellin representation of the dual Witten diagrams obeys a simple alge-

braic equation. We will explain these two properties in sections 2.1 and 2.3, with a brief

interlude to introduce some notation. Finally in section 2.4 we will review [3] why the

Mellin representation is particularly well suited to theories with a large N expansion.

2.1 Factorizaton of CFT correlation functions

First, let us motivate the Mellin transformation by studying one of the most basic properties

of a CFT, namely the Operator Product Expansion (OPE).

Consider a CFT correlation function of n operators

An(xi) =

〈
k∏

i=1

Oi (xi)

n∏

i=1+k

Oi (xi)

〉
(2.1)

where we have divided the operators into two groups. (We will in this paper only consider

correlation functions of scalar operators.) Upon recursively applying the OPE, we can

write the product of operators as a sum

k∏

i=1

Oi (xi) =
∑

p

∞∑

m=0

Cµ1...µm
p,ν1...νl

(x1, . . . , xk)∂µ1 . . . ∂µmOν1...νl
p (xk) (2.2)

where p labels primary operators.

The general idea behind the OPE is that we can expand in the distance between two

operators in the limit that this distance is small. Such an expansion is conceivable in
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any quantum field theory, but in a Euclidean CFT we expect the sum to have a finite

radius of convergence because scale invariance implies that results for small separation

should continue to hold (as long as there are no other operator insertions). We can apply

the OPE to different sequential combinations of operators, and the equivalence of these

different expansions, i.e. crossing symmetry, provides a very powerful general constraint on

CFTs [38, 39].

Consider now the action of a dilatation on the first k operators, after using translation

invariance to set xk = 0,

k∏

i=1

Oi
(
e−λxi

)
=
∑

p

∞∑

m=0

e−λ(∆p+m)+λ
∑
i ∆iCµ1...µm

p,ν1...νl
(x1, . . . , 0)∂µ1 . . . ∂µmOν1...νl

p (0) (2.3)

where ∆p is the dimension of the primary operatorOν1...νl
p (0). Since this is an exact operator

equation (as long as λ is large enough to force the first k − 1 points closer to xk = 0 than

any other point), we can substitute it into our original CFT correlation function to find

〈
k∏

i=1

Oi
(
e−λxi

) n∏

i=1+k

Oi (xi)

〉
=
∑

p

∞∑

m=0

e−λ(∆p+m)+λ
∑
i ∆iFp,m(x1, . . . , xn) (2.4)

where

Fp,m(x1, . . . , xn) = Cµ1...µm
p,ν1...νl

(x1, . . . , 0)

〈
∂µ1 . . . ∂µmOν1...νl

p (0)

n∏

i=1+k

Oi (xi)

〉
(2.5)

Our question: in what variables is the structure of the OPE manifest?

A natural answer is to use the variables that are conjugate to the dilatation parameter

λ. In these variables the CFT correlator will have a pole with residue given in terms of

lower-point correlators. To implement this philosophy, one introduces the Mellin represen-

tation

An(xi) =

∫
[dδ]Mn(δij)

n∏

i<j

(xi − xj)−2δijΓ(δij) (2.6)

where the parameters δij are symmetric in ij, but δii = 0, and they are constrained to give

the correct behavior under conformal transformations. This means that

∑

j

δij = ∆i (2.7)

Taking into account these constraints, the symbol [dδ] in (2.6) denotes an integral over a

subset of precisely n(n − 3)/2 of the δij which are independent of each other, normalized

as ∫
[dδ] =

∫
dδ12

2πi

dδ13

2πi
. . . (2.8)

The contour of integration for each of the independent δij runs parallel to the imaginary

axis. An extremely useful analogy that will pervade what follows is to think of the δij as

kinematic invariants pi · pj in an n-particle scattering amplitude, and to think of the ∆i
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as the masses of these n particles. Then the constraint eq. (2.7) follows simply from the

requirement of momentum conservation
∑

j pj = 0 and the on-shell conditions p2
i = −∆i [1].

We will discuss below why it is especially natural for theories with a large N expansion to

include the Γ(δij) factor in the definition of the Mellin amplitude.

Now if we rescale the xi → e−λxi for i ≤ k as above and consider the large λ limit of

the Mellin representation, we find

∫
[dδ]Mn(δij)e

2λ
∑k
i<j δij

n∏

i<j

Γ(δij)

k∏

i<j

(x2
ij)
−δij

n∏

i≤k<j

(
x2
j−e−λ2xi · xj+e−2λx2

i

)−δij n∏

k<i<j

(x2
ij)
−δij

To match the leading behaviour at large λ between the Mellin amplitude and our OPE

result, we consider the expansion

n∏

i≤k<j

(
x2
j − e−λ2xi · xj + e−2λx2

i

)−δij
=

∞∑

q=0

e−qλQq(x1, . . . , xn) (2.9)

where Qq is a polynomial of degree q in xi with i = 1, . . . , k. Therefore, the contribution

of a spin l operator to the OPE, comes from the q = l term in this expansion. Matching

the e−λ scaling with (2.4), we conclude that the Mellin amplitude must have poles at

k∑

i=1

∆i − 2
k∑

i<j

δij = τp +m (2.10)

for all non-negative integers m. Here, we have introduced τp = ∆p − lp, the twist of

the operator Oν1...νl
p . Notice that the left hand side is the precise analog of the flat space

kinematic invariant −(p1+. . .+pk)
2. Corresponding poles arise explicitly when we consider

Witten diagrams in AdS/CFT, and a major goal in what follows will be to give a precise

and computationally useful formula for the residues of these poles.

But let us first give an intuitive explanation for why these residues should be inti-

mately related to lower point correlation functions. The residue corresponding to a specific

OPE channel is most conveniently written by introducing for every primary field Op a

corresponding shadow field Õp,1 defined such that:

〈Op(x)Õp′(y)〉 = δd(x− y)δp,p′ (2.11)

Clearly, if Op has scaling dimension ∆p, the shadow field must have scaling dimension

d−∆p. An intuitive way to write the shadow field is via the convolution:

Õp(x) =

∫
ddy

Op(y)

(x− y)2(d−∆p)
(2.12)

but formally this integral is divergent and needs regularization.

1Very roughly speaking, one introduces shadow fields in order to write the operator 1 as a sum of primary

operators acting on the vacuum,
∑
pOp|0〉〈0|Õp. Shadows are necessary to ensure that the correlator

transforms correctly under dilatations; their necessity is analogous to the fact that on a certain very formal

sense, the bra and ket in-states 〈p| and |p〉 have opposite energy.

– 7 –
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Using the OPE, we find that at least schematically

An(xi) ∼
∑

p

∫
ddy

〈
k∏

i=1

Oi (xi)Op(y)

〉〈
Õp(y)

n∏

i=1+k

Oi (xi)

〉
(2.13)

This equation is however only formal as the integral over y of the insertion point of Op(y)

implies that we may destroy the convergence of the OPE of the other operators. Never-

theless, it can be used to offer a reasonable CFT intuition of the OPE in Mellin space. In

particular, if we were to substitute the Mellin transform of the two correlation functions

on the right-hand side of (2.13), the resulting Mellin transform of An has poles precisely

at (2.10). These poles isolate specific terms in the sum, and have residues which are given

in terms of the product of Mellin transforms of the lower point correlators. In section 3

we will see an explicit and precise confirmation of this rough OPE intuition in the case of

Witten diagrams.

2.2 Conformally covariant notation

We will be discussing CFT correlation functions, so it is natural to use variables [40, 41]

that are acted on linearly by the Euclidean conformal group SO(1, d+ 1). If we begin with

(d+ 2)-dimensional Minkowski spacetime, then the conformal generators will simply be

JAB = XA ∂

∂XB
−XB ∂

∂XA
(2.14)

so that conformally invariant functions can be constructed out of the covariant inner prod-

ucts (Xi ·Xj). We can view Euclidean AdSd+1 as the hyperboloid

X2 = −R2 , X0 > 0 , X ∈Md+2 , (2.15)

embedded in this (d+ 2)-dimensional Minkowski spacetime. We set R = 1 in what follows.

Furthermore, we can think of the conformal boundary of AdS as the space of null rays

P 2 = 0 , P ∼ λP (λ ∈ R) , P ∈Md+2 . (2.16)

Then, the correlations functions of primary scalar operators of the dual CFT are encoded

into SO(1, d+1) invariant functions of the external points Pi, transforming homogeneously

with weights −∆i. We will work extensively with this formalism in what follows; for more

thorough discussions, see [41].

Using the standard AdS/CFT prescription, CFT correlators can be computed in terms

of Witten diagrams, which are bulk Feynman diagrams that connect to propagators end-

ing on the boundary of AdS. The external legs in such diagrams represent AdS bulk to

boundary propagators, which in this notation are simply given by

G∂B(P,X) =
C∆

(−2P ·X)∆
, (2.17)

where

C∆ =
Γ(∆)

2π
d
2 Γ
(
∆− d

2 + 1
) =

Γ(h+ c)

2πhΓ (c+ 1)
. (2.18)
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Here, we have used the notation

∆ = h+ c , d = 2h . (2.19)

This normalization was obtained by taking the limit of the bulk to bulk propagator; it

differs by a factor of (2∆− d)−1 from the normalization of [15].

Using again the results of [15], this implies that in our conventions the two-point

functions are normalized as

〈O∆(P1)O∆(P2)〉 =
C∆

(−2P1 · P2)∆
. (2.20)

Finally, to recover the usual expressions in physical Md or Rd we choose the light cone

section

P = (P+, P−, Pµ) = (1, x2, xµ) , (2.21)

where µ = 0, 1, . . . , d − 1. Then P12 ≡ −2P1 · P2 = (x1 − x2)2. We will use Pi and xi
variables interchangeably in what follows.

2.3 The functional equation, or AdS/CFT turns algebraic

Let us begin by giving a brief and tortured-looking review of why momentum space drasti-

cally simplifies tree-level computations of S-Matrix elements in flat space, using φ3 theory

as a simple example. A directly analogous procedure will lead to a beautiful functional

equation for the Mellin representation of correlators in AdS/CFT.

Consider an n-pt correlation function for φ3 theory in flat space. Isolating the class

of position-space diagrams with a propagator connecting particles 1 and 2 to the rest, we

have

C(xi) =

∫
d4xd4y

1

4π2(x1 − x)2

1

4π2(x2 − x)2

1

4π2(x− y)2
F (y, x3, . . . , xn) (2.22)

Thus if we act on this correlator with (∇x1 +∇x2)2, we can exchange this operator inside

the integral for ∇2
x, which collapses the propagator 1

4π2(x−y)2 to a delta function. Now if

we consider the Fourier transform C̃(pi) of the correlator, this means that

(p1 + p2)2C̃(pi) = C0 (2.23)

where C0 is the same set of Feynman diagrams with the dependence on particles 1 and 2

reduced to a contact interaction. The transition to momentum space therefore allows us

to solve for general tree level correlation functions without doing any integrals.

Now let us perform the analogous steps for correlation functions in AdS, with the

Mellin representation playing the role of the momentum space amplitude. This procedure

has been used in position space by [25]. Consider a Witten diagram where particles 1 and

2 are connected to the rest of the diagram by a φ3 vertex and a bulk-bulk propagator as

shown in figure 1,

A(P1, P2, . . . , Pn)=

∫

AdS
dXdY

C∆1

(−2P1 ·X)∆1

C∆2

(−2P2 ·X)∆2
G∆(X,Y )F (Y, P3, . . . , Pn) (2.24)
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Figure 1. By acting with the conformal Casimir on a Witten diagram with a bulk to bulk propaga-

tor, we collapse the propagator into a delta function. We derive the functional equation by looking

at this process in Mellin space.

where G∆(X,Y ) is the bulk to bulk propagator for a field with dimension ∆. The equivalent

of the box operator in flat space is the Casimir of the conformal group, which is just the

sum of the squares of the generators. These take an especially simple form in terms of the

Pi variables, as we saw above in equation (2.14). The Casimir for the first two particles is

1

2
(J1 +J2)2 = 2P1 ·P2

∂

∂P1
· ∂
∂P2
−2PA1 P

B
2

∂

∂PB1

∂

∂PA2
+

2∑

i=1

PAi P
B
i

∂

∂PAi

∂

∂PBi
−(d−1)Pi ·

∂

∂Pi

(2.25)

and when it acts on the correlator, inside the integral it is equivalent to 1
2J

2
X = −∇2

AdS.

Since the bulk to bulk propagator is the Green’s function of this operator,
[
∇2

AdS −∆(∆− d)
]
G∆(X,Y ) = −δ(X,Y ) , (2.26)

it collapses G∆(X,Y ) into a delta function. This gives an equation
[

1

2
(J1 + J2)2 −∆(d−∆)

]
A = A0 (2.27)

where in A0 the propagator has been collapsed into a contact interaction. In [25], this was

used to convert Witten diagrams with bulk to bulk propagators to contact interactions.

In Mellin space, this equation takes a remarkably simple form. When the conformal

Casimir of particles 1 and 2 acts on the product
∏
i<j(Pij)

−δij in the definition (2.6) of the

Mellin amplitude, where Pij = −2Pi · Pj , we find

(δLR −∆)(d−∆− δLR) +

∑

i 6=j≥3

2δ1iδ2j

(
1− P1jP2i

P1iP2j
+
P12Pij
P1iP2j

)
∏

i<j

(Pij)
−δij (2.28)

where δLR = ∆1 + ∆2− 2δ12 is the natural analog of the momentum space variable −(p1 +

p2)2; later on we will see that the Mellin amplitude has poles in this δLR. This expression
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can be simplified by noting that multiplication by the kinematic invariants Pij is equivalent

to shifting the δij , so that for example

P12P34

P13P24
A(P1, . . . , Pn)=

∫
[dδ]

(
δ12δ34M(δ12+1, δ13−1, δ34+1, δ24−1, . . . )

(δ13 − 1)(δ24 − 1)

) n∏

i<j

Γ(δij)P
−δij
ij

This allows us to write the functional equation

(δLR −∆)(d−∆− δLR)M +
∑

i 6=j≥3

2
(
δ1iδ2jM − δ1jδ2iM

1j,2i
1i,2j + δ12δijM

12,ij
1i,2j

)
= M0 (2.29)

where we define

M12,ij
1i,2j = M(δ12 + 1, δij + 1, δ1i − 1, δ2j − 1, . . . ) (2.30)

and analogously for the other indexed Ms. This gives a purely algebraic equation for

any Mellin amplitude M with a propagator connecting particles 1 and 2 to the rest of

the diagram. Because of the finite differences this equation is more intricate than the

analogous equation in momentum space, but it will be extremely useful later on for proving

general results. In particular, in section 5 we will derive a set of Feynman rules for Mellin

amplitudes and use the functional equation to prove that they correctly compute Mellin

space Witten diagrams. For completeness, the general functional equation corresponding

to any propagator is

M0 = (δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij

(
δaiδbjM − δajδbiMaj,bi

ai,bj + δabδijM
ab,ij
ai,bj

)
(2.31)

where the propagator separates the first k from the last n− k operators.

We should also point out that the functional equation is useful beyond its application to

Witten diagrams. To see this, return to the OPE equation (2.2). Acting with the conformal

Casimir on both sides, we see that whenever the operator Op on the right belongs to a

conformal representation of lowest weight ∆p and spin lp, we find:

1

2

(
k∑

i=1

Ji

)2 k∏

i=1

Oi (xi)=−
∑

p

g(∆p, lp)
∞∑

m=0

Cµ1...µm
p,ν1...νl

(x1, . . . , xk)∂µ1 . . . ∂µmOν1...νl
p (xk), (2.32)

where the conformal Casimir g(∆, l) = ∆(∆ − d) + l(l + d − 2). So, the contribution of

a primary Op and all its descendants to a correlation function can be packaged into a

single solution of the homogeneous functional equation. For the four point function, this

solution is determined entirely by the kinematics. It was used by Dolan and Osborn to find

explicit and simple expressions for these contributions, which are the familiar conformal

blocks [26, 42]. In Mellin space, conformal blocks look even simpler, as we will describe

in a forthcoming paper where we will perform a general analysis of the solutions of the

functional equation.
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2.4 The Mellin representation at large N

We have motivated the Mellin amplitude as a natural representation of CFT correlation

functions which makes the structure of the OPE manifest and obeys algebraic equations

Consider a large N CFT with single-trace primary operators O1 and O2 of dimension

∆1 and ∆2. When we investigate their OPE, we will always have contributions from

operators such as O1∂
2nO2 with dimension ∆1 + ∆2 + 2n + O( 1

N ). The product of Γ

functions in our definition of the Mellin amplitude then guarantees that the full Mellin

integrand has poles whenever δij = −nij for integers nij . In our simple example, the poles

at δ12 = −n12 produce residues of the integral that combine O1 and O2 into an operator

of dimension ∆1 + ∆2 + 2n12, exactly as desired.

In general, we can combine k operators in the same way. Taking the first k for conve-

nience, we find poles at δij = −nij for all i, j ≤ k. This set of coincident poles produces

the multi-trace operator

∂
∑k
j n1jO1∂

∑k
j n2jO2 . . . ∂

∑k
j nkjOk (2.33)

where the derivatives are contracted so that between each i and j there are nij contractions.

The residue at this pole is related to the correlation function of this operator with the other

n−k operators via our factorization formula, giving a sort of LSZ prescription for extracting

the correlation functions of many composite operators.

Notice that the above argument is very specific to CFTs with a perturbative descrip-

tion. In more general CFTs the analogous ‘multi-trace’ operators have finite anomalous

dimensions and the poles of the Γ(δij) factors are not at the correct location to account

for the multi-trace contributions to the OPE. In those cases M(δij) must not only have

additional poles accounting for the multi-trace operators but also zeroes to cancel off the

poles from the Γ(δij) factors [1]. In our case the Γ(δij) already give poles at the right

location and we do not need to worry about zeroes in the Mellin amplitude. Perhaps a

different definition of M(δij) would be appropriate for such theories.

Of course multi-trace operators do gain anomalous dimensions beyond the leading

order in 1/N , which can be read off from the leading connected higher-point correlation

functions. The anomalous dimensions of the multi-trace operators can be obtained from

the Mellin amplitudes. To see how this works, note that a contour integral around a double

pole gives ∮
dδ

2πi

x−δ

(δ −∆)2
= −x−∆ log x . (2.34)

Logarithms are just the perturbative manifestation of the anomalous dimensions, because

xγ ≈ 1 + γ log x. So anomalous dimensions can be extracted by studying the double and

higher poles of the Mellin amplitude. As a concrete example, the 4-pt amplitude in g(φχ)2

theory has factors of Γ(δij) in the Mellin integrand. So in the OPE channel combining Oφ
and Oχ as operators 1 and 2, we have δ12 = δ34 due to the constraints (recall that this is

analogous to (p1 +p2)2 = (p3 +p4)2). This leads to double poles in the Mellin integrand due

to Γ(δ12)Γ(δ34), which tell us that the operator OφOχ has received an anomalous dimension

proportional to g. However, if we look at the double-trace operator OφOφ in a theory where
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∆φ −∆χ is non-integral, then there are only single poles, since δ12 = δ34 −∆φ + ∆χ. So

the operator O2
φ does not receive an anomalous dimension in this theory, as expected. One

can go on to consider more complicated examples, although it is necessary to disentangle

the contributions from primaries and descendants.

The above discussion leads to the general expectation that the inclusion of the Γ(δij)

factors in the defining equation (2.6) should lead to simple Mellin amplitudes for Witten

diagrams. This effect is most extreme when we consider the Mellin amplitude of an n-point

scalar contact interaction in AdS, which is simply a constant [3],

∫

AdS
dd+1X

n∏

i=1

C∆i

(−2Pi ·X)∆i
=
πh

2
Γ

(∑n
i=1 ∆i−d

2

) n∏

i=1

C∆i

Γ(∆i)

∫
[dδ]

n∏

i<j

Γ(δij)P
−δij
ij . (2.35)

This is analogous to the fact that an insertion of a φn vertex is a constant in the momentum

space Feynman rules for scattering amplitudes.

Since this formula will be one of the main ingredients in the remainder of the paper,

let us quickly review its derivation, which is essentially a slight generalization of a result

by Symanzik [43]. One first writes the bulk-boundary propagators as

1

(−2Pi ·X)∆i
=

1

Γ(∆i)

∫ ∞

0

dti
ti
t∆i
i e−2tiPi·X (2.36)

In this representation, it is easy to integrate over the bulk coordinate X to obtain an

exponential of
∑
titjPij . Then the key is to represent some of the terms in the exponential

using the standard Mellin identity

e−z =

∫
ds

2πi
Γ(s)z−s (2.37)

and evaluate the ti integrals, leading to the Mellin representation with the constraints that

we have discussed. This is how our standard representation for the Mellin amplitude arises

in the case of the simplest AdS amplitude.

3 Factorization of AdS/CFT correlators

In this section we will show how to recursively compute the tree-level Mellin amplitude

for any theory of scalar fields, including any number of derivative couplings. As modest

examples, in section 4, we will compute the 5-pt and 6-pt functions in a theory with 3-

pt contact interactions among scalar fields with arbitrary masses, dual to operators with

dimensions ∆i.

These computational advances are made possible by a factorization formula that we

will derive shortly, which says that a Witten diagram with a propagator that divides the

amplitude into a left and right piece (see figure 2) will have simple poles at

δLR = ∆ + 2m, where δLR =

k∑

i=1

∆i − 2
∑

i<j≤k
δij (3.1)
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1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

L R

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

L R

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

L R

1

1 Five Point Amplitude

Hello world ∫
dc

∫
dP P h + c h − c ∆

L R

1

Figure 2. A pictorial representation of the derivation of the factorization formula.

is the direct analogue of the familiar intermediate propagator variable from flat space

scattering amplitudes, −(p1+· · ·+pk)2. Here ∆ is the dimension and twist of the exchanged

operator; since we are dealing with bulk scalar fields these are identical. The residues at

these poles are

− 4πh
Γ(∆− h+ 1)m!

(∆− h+ 1)m
Lm(δij)Rm(δij) (3.2)

where

Lm(δij) =
∑

∑
nij=m

ML
k+1(δij + nij)

k∏

i<j

(δij)nij
nij !

(3.3)

Rm(δij) =
∑

∑
nij=m

MR
n−k+1(δij + nij)

n∏

k<i<j

(δij)nij
nij !

(3.4)

which depend only on the lower point diagrams or Mellin amplitudes, ML
k+1 and MR

n+1−k.

We remind the reader that the Pochhammer symbol (x)n = Γ(x+n)/Γ(x). The derivation

is given in section 3.1. The basic idea is to re-write the Mellin representation of a Witten

diagram with a particular propagator in terms of the amplitudes to the left and right of

this propagator. Then we massage the propagator into a form such that the entire Witten

diagram is written in terms of lower-point Mellin amplitudes. This will allow us to identify

all of the poles and residues in the appropriate δLR variable.

Our factorization formula can be applied to any factorization channel. The equivalence

of all the different possible recursive applications of the formula seems to be a very strong

constraint on the form of Mellin amplitudes. This suggests that there may exist a single

set of diagrammatic rules whereby an arbitrary Mellin amplitude can be constructed. In

fact, in section 5 we will see that such a set of rules exists, and we will prove that it gives

the same results as the factorization formula.

Finally, in section 5 we will show that our diagrammatic rules and our factorization

formula satisfy the functional equation from section 2.3, and in appendix A we complete the

proof that our formulas are identical to the Mellin representation of the Witten diagram.

Thus in any scalar theory, one can compute all tree-level Witten diagrams either recursively,

or by explicit construction using the diagrammatic rules.
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3.1 Factorization on AdS propagators

3.1.1 An integral formula

Our starting point is the the following formula for the bulk-to-bulk scalar propagator [3]

GBB(X,Y ) =

∫ i∞

−i∞

dc

2πi

2c2

c2 − (∆− h)2

∫
dP

Ch+c

(−2P ·X)h+c

Ch−c
(−2P · Y )h−c

(3.5)

where we recall that h = d/2. Notice the appearance of two bulk-to-boundary propagators

in the integrand. Beginning with an n-point Witten diagram, we will use this representation

for a specific internal propagator. This propagator will break the n-point Witten diagram

into two Witten diagrams integrated over a common boundary point,

An(Pi) =

∫ i∞

−i∞

dc

2πi

2c2

c2 − (∆− h)2

∫
dPALk+1(Pi, P )ARn−k+1(Pi, P ) (3.6)

We represented equation (3.6) pictorially in figure 2. The left (L) amplitude has k + 1

external legs with weights ∆i at point Pi for i = 1, 2, . . . , k and weight h + c at point

P . The right (R) amplitude has n − k + 1 external legs with weights ∆i at point Pi for

i = k + 1, k + 2, . . . , n and weight h − c at point P . In other words, the operator with

coordinate P on AR is the shadow of the operator with coordinate P on AL. Now we write

the left and right amplitudes in the Mellin representation

ALk+1(Pi, P )=

∫
[dδ̃]L[dl]LM

L
k+1(δ̃ij , li)

k∏

i<j

Γ(δ̃ij)(−2Pi · Pj)−δ̃ij
k∏

i=1

Γ(li)(−2Pi · P )−li

ARn−k+1(Pi, P ) =

∫
[dδ̃]R[dl]RM

R
n−k+1(δ̃ij , li)

n∏

k<i<j

Γ(δ̃ij)(−2Pi · Pj)−δ̃ij (3.7)

×
n∏

i=k+1

Γ(li)(−2Pi · P )−li

The integration measure [dδ̃]L[dl]L is constrained by

k∑

i=1

li = h+ c

li +
k∑

j 6=i
δ̃ij = ∆i (i = 1, 2, . . . , k)

(3.8)

and analogously for [dδ̃]R[dl]R we have the constraints

n∑

i=k+1

li = h− c

li +

n∑

k<j 6=i
δ̃ij = ∆i (i = k + 1, . . . , n) .

(3.9)
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The equations in (3.7) may appear complex, but they encode very simple information,

namely that AL is a CFT correlator between the k operators on the left of the propagator

and a new operator with dimension h+c, and equivalently for AR. The constraint equations

are identical to what we would find from momentum conservation if we introduced fictitious

pi with δij = pi · pj and p2
i = −∆i.

Inserting now the Mellin representations (3.7) in (3.6) we find

An(Pi) =

∫ i∞

−i∞

dc

2πi

2c2

c2−(∆−h)2

∫
[dδ̃]L[dl]LM

L
k+1(δ̃ij , li)

k∏

i<j

Γ(δ̃ij)(−2Pi · Pj)−δ̃ij (3.10)

∫
[dδ̃]R[dl]RM

R
n−k+1(δ̃ij , li)

n∏

k<i<j

Γ(δ̃ij)(−2Pi · Pj)−δ̃ij
∫
dP

n∏

i=1

Γ(li)(−2Pi · P )−li

Notice that the contour integral over c requires knowledge of the Mellin amplitudes ML
k+1

and MR
n−k+1 for general (complex) external scaling dimensions ∆i. As we will see explicitly

in all the examples below, for general Witten diagrams we obtain a Mellin amplitude which

is an analytic function of the ∆i and so this is not problematic.

The last integral was studied by Symanzik [43] and has a simple Mellin representation

∫
ddP

n∏

i=1

Γ(li)(−2Pi · P )−li = πh
∫

[dδ]

n∏

i<j

Γ(δij)P
−δij
ij (3.11)

where the measure [dδ] is constrained by
∑n

j 6=i δij = li. We have reduced the dependence

on all external kinematic invariants to the Mellin form! This means that we can shift

the integration variables δij → δij − δ̃ij to obtain the following expression for the Mellin

amplitude of the original n-point diagram

Mn(δij) =

∫ i∞

−i∞

dc

2πi

2πhc2

c2 − (∆− h)2
L×R (3.12)

where

L =

∫
[dδ̃]L[dl]LM

L
k+1(δ̃ij , li)

k∏

i<j

Γ(δ̃ij)Γ(δij − δ̃ij)
Γ(δij)

, (3.13)

R =

∫
[dδ̃]R[dl]RM

R
n−k+1(δ̃ij , li)

n∏

k<i<j

Γ(δ̃ij)Γ(δij − δ̃ij)
Γ(δij)

.

It is crucial that the factor L depends only on δij with 1 ≤ i, j ≤ k and the R factor

depends only on δij with k < i, j ≤ n. Using the constraints (3.9) we can solve for and

eliminate the li variables, which are the last vestige of the spacetime version of the internal

propagator. This leaves the single constraint

2

k∑

i<j

δ̃ij + h± c−
k∑

i=1

∆i = 0 (3.14)
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which expresses the dimension h± c of the internally propagating operator in terms of the

other integration variables in L and R, respectively.

Let us end the presentation of the factorization formula with some comments regarding

the relation with the OPE decomposition as presented in equation (2.13). At first sight,

the above factorization is very similar to the factorization appearing in equation (2.13).

The difference lies in the additional integral over c in the evaluation of the Witten diagram,

which in the analogous CFT computation is localized at c = ∆− h. Although we will not

prove this statement here, we claim that this additional integral is eventually responsible

for correctly taking into account the contributions of multi-trace operators. (At the level

of the four-point function this follows from equation (38) of [3], where the integral over

c is explicitly responsible for the multi-trace poles in δ12 and δ34.) Furthermore, because

the choice of contour for the c-integral breaks the symmetry between the field and the

shadow field our expressions can be made completely exact and are not of the formal form

as in equation (2.13). It would be interesting to make the relation between the multi-trace

contributions and the c integral precise, for which an analogous discussion of the conformal

partial wave decomposition in [1] should also be very useful.

3.1.2 Identifying the poles

The advantage of equation (3.12) is that we can use it to determine the residues of the

poles of the n-point Mellin amplitude in the factorization variable

δLR =

k∑

i=1

n∑

j=k+1

δij =

k∑

i=1


∆i −

k∑

j 6=i
δij


 , (3.15)

Notice that the equivalence between the two expressions on the right-hand side follows from

the constraints (2.7). As we discussed above, δLR is the direct analogue of the kinematic

invariant that vanishes at the factorization channel in a scattering amplitude, such as

−(p1 + · · ·+ pk)
2 in an n-pt scattering amplitude.

Contour integrals have singularities when a pair of poles in the integrand collides and

squeezes the contour of integration between them. We have a many-dimensional contour

integral, so identifying such occurrences would naively be a daunting proposition, but our

task is greatly simplified by the structure of the integrand, its contour, and the fact that we

are focusing on δLR. In particular, since δLR involves all of the left or all of the right δij , we

can obtain a pole in this variable only if we use the poles from all the Γ(δij − δ̃ij) in (3.13),

which form a semi-infinite sequence towards positive real infinity in the δ̃ij integration

variables. We obtain a pole in δLR when these singularities collide with the ‘propagator

singularity’ at c = ±(∆− h), where c is a function of the δ̃ij from the constraints.

Before studying the general case, let us analyze the case where ML and MR are

independent of δij so we can perform the integrals in (3.13) explicitly. This case corresponds

to a Witten diagram with a single bulk-to-bulk propagator connecting a (k+1)-vertex to a

(n− k + 1)-vertex. To compute the integrals in (3.13), one starts by eliminating δ12 using

the constraint (3.14). Then, all other δij are independent integration variables and, for
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constant ML, the integrals can be computed iteratively using Barnes’ lemma:

1

2πi

∫ i∞

−i∞
Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s)ds =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
. (3.16)

This gives

L =
Γ
(∑k

i=1 ∆i−h−c
2

)
Γ
(
h+c−δLR

2

)

Γ
(∑k

i=1 ∆i−δLR
2

) ML , (3.17)

which has poles at c = δLR − h− 2m, for m = 0, 1, 2, . . . , with residue

2
(−1)m

m!

Γ(
∑k

i<j δij +m)

Γ(
∑k

i<j δij)
ML . (3.18)

In this expression, ML depends on the integration variable c. It is convenient to make this

dependence explicit. Using (2.35) we find that

ML(c) =
Γ
(∑k

i=1 ∆i−h+c
2

)

4Γ(c+ 1)

k∏

i=1

C∆i

Γ(∆i)
=

Γ(∆− h+ 1)Γ
(∑k

i=1 ∆i−h+c
2

)

Γ(1 + c)Γ
(∑k

i=1 ∆i+∆−2h
2

) ML
k+1 (3.19)

where ML
k+1 stands for the left Mellin amplitude with physical external dimensions ∆i and

∆. Similarly, the right part of the diagram gives

R =
Γ
(∑n

i>k ∆i−h+c

2

)
Γ
(
h−c−δLR

2

)

Γ
(∑n

i>k ∆i−δLR
2

)
Γ(∆− h+ 1)Γ

(∑n
i>k ∆i−h−c

2

)

Γ(1− c)Γ
(∑n

i>k ∆i+∆−2h

2

) MR
n−k+1 , (3.20)

which has poles at −c = δLR − h− 2m for m = 0, 1, 2, . . . . The poles in δLR of the n-point

Mellin amplitude arise from pinching the c integration contour in (3.12) between two poles

of the integrand. From figure 3, it is clear that, for δLR = ∆ + 2m, the contour will be

pinched in two places, at c = ∆− h and at c = h−∆. The contribution to the residue of

Mn at δLR = ∆ + 2m from the pinching at c = ∆− h involves the product of the residue

of L times R evaluated at the pole. This gives a residue of the form

πh(∆− h) 2
(−1)m

m!

[
Γ(
∑k

i<j δij +m)

Γ(
∑k

i<j δij)
ML
k+1 R|c=∆−h

]

δLR=∆+2m

= −2πhΓ(∆− h+ 1)

m!(∆− h+ 1)m
ML
k+1M

R
n−k+1



( k∑

i<j

δij

)
m

( n∑

k<i<j

δij

)
m



δLR=∆+2m

(3.21)

which is symmetric between left and right. The other contribution is equal and just doubles

this residue. In (3.21), we are always evaluating the residue at the pole δLR = ∆ + 2m,

which using (3.15) implies a constraint for the δij appearing in (3.21). Notice however

that those δij , being the arguments of the full Mellin amplitude (3.12), are in principle

not subject to this extra constraint and we therefore added the square brackets and the

explicit δLR = ∆ + 2m to indicate this extra constraint.
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D - hh - D

h - ∆LR + 2 m

-h + ∆LR - 2 m

Figure 3. Structure of poles of the integrand of the factorization equation (3.12) in the c complex

plane. When δLR = ∆ + 2m, the integration contour is pinched between poles at two places.

Let us now consider the general case. First consider the contribution from the collision

of poles of L with the pole at c = ∆−h in (3.12). The relevant poles from the left δ̃ij arise

from the pinching of

Γ(δij − δ̃ij) and
2πhc2

c2 − (∆− h)2
(3.22)

where we remind the reader that c is linked to the δ̃ij by constraints. This happens when

the δij variables are such that

δ̃ij = δij + nij (3.23)

This gives the following contribution to the residue of Mn at the pole δLR = ∆ + 2m,

2πh(∆− h)


 ∑
∑
nij=m

ML
k+1(δij + nij)

k∏

i<j

(−1)nij

nij !

Γ(δij + nij)

Γ(δij)
×R



δLR=∆+2m

(3.24)

where it is important that the sum of the nij are constrained to equal m. Notice that

evaluating the δij at the pole δLR = ∆ + 2m also ensures that the arguments of ML
k+1

always satisfy the appropriate constraints (which follows from (3.15)) where ML
k+1 is well-

defined. This is almost our factorization formula eq. (3.2), except that here the arguments

in R are constrained by eq. (3.14) with c = ∆ − h. Thus, it has the appearance of a

lower-point Mellin amplitude where one of the legs has been replaced with a shadow field,

exactly as we should expect from our discussion in section 2.1. In appendix C.1, we prove

an identity relating the Mellin amplitude M̃ with a shadow field replacement to the original
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Mellin amplitude:



∫

[dδ̃]M̃n−k+1(δ̃ij)
n∏

k<i<j

Γ(δ̃ij)Γ(δij − δ̃ij)
Γ(δij)



δLR=∆+2m

=


−Γ(∆− h)(−1)mm!

(∆− h+ 1)m

∑
∑
nij=m

Mn−k+1(δij + nij)

n∏

k<i<j

(δij)nij
nij !



δLR=∆+2m

(3.25)

Notice that the arguments of MR
n−k+1 again satisfy the required constraints. Inserting this

identity into equation (3.24), we obtain half of our factorization formula (3.2). The other

half comes from the collision of poles in R with the pole at c = h−∆ in (3.12).

3.1.3 The complete factorization formula and its interpretation

We have shown that any Witten diagram will have a Mellin representation with the above

poles and residues in the δLR channel. If the Mellin amplitude vanishes for large δLR then

it would be completely determined by its poles and residues, and we would be able to write:

M =

∞∑

m=0

Res(m)

δLR −∆− 2m
(3.26)

with

Res(m) = −4πhΓ2(∆− h+ 1)m!

Γ(∆− h+ 1 +m)
[Lm(δij)Rm(δij)]δLR=∆+2m (3.27)

where Lm and Rm are given in (3.3). In fact, we will see in all examples that a stronger

statement is true. Our formula is equivalent to its projection onto all of its poles, not

just the specific δLR singularity in the factorization formula, so that all of the explicit

Pochhammer symbols (δij)nij can be evaluated at poles. If M vanishes as any propagator

goes to infinity, then this follows from the simple fact from complex analysis that

∑

i

fi(z)

z − ai
=
∑

i

fi(ai)

z − ai
(3.28)

when the sum vanishes as z → ∞. In what follows, when we refer to our factorization

formula we will almost always be referring to equation (3.27) with all δij in the numerator

projected onto poles, because it is this pole-projected formula that we will be able to prove.

In the remainder of this paper we provide strong evidence that the Mellin amplitude

is in fact completely determined by its poles and therefore (3.26) is the full answer. This

we will do as follows. We will first show that our factorization formula implies a set of

diagrammatic rules for the computation of Mellin amplitudes, and then we will show that

these rules satisfy the functional equation from section 2.3. Assuming that Witten diagrams

are polynomially bounded at large δij , as we discuss in appendix A, this leads to a proof

of the factorization formula (3.26) as well as our diagrammatic rules. Additionally, we

provide a more direct proof of (3.26) and a few other technical details in appendix A.
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3.2 Adding derivative interactions

The results above generalize to scalar theories with arbitrary derivative interactions, due to

a beautiful interplay between the interaction vertices and our factorization formula. In fact,

we will see that all dependence on the δij from derivatives passes through our factorization

formula and simply leads to an overall factor multiplying the Mellin amplitude and the

shift of a few constant factors.

As shown in [3], the Mellin amplitude for a contact interaction with an arbitrary

number of derivatives is a polynomial. A convenient basis for these polynomials is

Mk = g
k∏

i<j

(δij)aij (3.29)

where the aij are integers related to the number of derivatives coupling field i to field j.

(Notice however that the derivation below goes through for non-integral aij as well.) If we

plug this amplitude into our factorization formula, we find

Rm =
∑

∑
nij=m

∏

i<j

(δij)nij
nij !

× g
∏

ij

(δij + nij)aij (3.30)

= g
∏

ij

(δij)aij ×
∑

∑
nij=m

∏

i<j

(δij + aij)nij
nij !

(3.31)

and equivalently for Lm. In other words, Mk has passed through the Pochhammer symbols

from the factorization formula, and so we can evaluate it at the original δij and not at

δij + nij . The only effect of the derivative interaction is to shift the Pochhammer symbols

in the factorization formula, but since these δij are naturally evaluated at poles, this only

shifts certain constants in the residues at those poles.

This effect persists under recursion, so Mellin amplitudes with many derivative in-

teractions are simply given by the equivalent amplitude without derivatives with some

constant shifts and an overall factor from all of the various polynomial Mellin amplitudes

from the derivative interactions. In particular, this means that if Mellin amplitudes with-

out derivative interactions are entirely determined by their poles, then our factorization

formula applies to all scalar theories in AdS. Another way of saying this is that when we

add derivative interactions, the ‘skeleton diagrams’ with only the propagators are basically

just ‘dressed’ by a polynomial coming from the derivatives at vertices.

4 Sample computations

In this section we will demonstrate the power of our formalism by computing the 5-pt and

6-pt amplitudes in a scalar field theory with 3-pt interaction vertices. Notice that, as will

become clear below, using the factorization formula it is even easier to compute amplitudes

in theories with general ∇aφb vertices, since the greatest complication arises from having

many bulk to bulk propagators.

Before moving on to a non-trivial computation, let us see how our formalism works

in the simplest case, that of the 4-pt function. Suppose specifically that we have the
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Figure 4. Four-point and five-point Witten diagrams in cubic scalar theory.

bulk interaction vertices λφ1φ2φ5 and λφ3φ4φ5, and we want the Mellin amplitude for

〈O1O2O3O4〉 from φ5 exchange, as shown in figure 4. Applying equation (3.26), we find

the Mellin amplitude is

M4(δij) =
∑

m

1

δLR−∆5−2m

−4πhΓ(∆5−h+1)m!

(∆5 − h+ 1)m

[(
λ125

(δ12)m
m!

)(
λ345

(δ34)m
m!

)]

δLR=∆+2m

=
∑

m

1

δ5−m
−2πhΓ(∆5−h+1)m!

(∆5 − h+ 1)m

(
λ125

1

m!(∆12,5)−m

)(
λ345

1

m!(∆34,5)−m

)
, (4.1)

where ∆ij,k ≡ ∆i+∆j−∆k

2 and λijk is the 3-pt Mellin amplitude for a contact Witten diagram

with external dimensions ∆i, ∆j and ∆k. In the second line, we have used the fact that

2δ12 = −δLR + ∆1 + ∆2, 2δ34 = −δLR + ∆3 + ∆4, and the identity (a−m)m = 1
(a)−m

. We

have also introduced the notation

2δ5 ≡ δLR −∆5. (4.2)

This will be convenient in amplitudes with multiple propagators because in those cases

there will be poles in many different specific linear combinations of the δij . In this respect,

the δi’s are analogous to the combinations (p1 + · · ·+ pk)
2 +M2 in a flat-space diagram; in

fact, in terms of the equivalent fictitious Mellin “momenta” pi, 2δ5 = −(p1 + p2)2 −∆5 =

−(p3 + p4)2 −∆5. The major difference is that, while flat-space amplitudes have a single

pole for each propagator, Mellin amplitudes have the full tower of poles in eq. (3.26):

S-Matrix:
1

(
∑
pi)

2 +M2
←→ Mellin:

1

δ −m
−2πhΓ(∆− h+ 1)m!

(∆− h+ 1)m
, m = 0, 1, . . . (4.3)

Note also that the vertices, while more complicated than the simple flat-space factor

λ, do not actually introduce additional δij-dependence, despite the naive appearance of

equation (3.27), because δ12 and δ34 are completely fixed by the constraint δLR = ∆5 +2m.

So, continuing the comparison of the four-point function with that of flat space, the vertices

differ by

S-Matrix: λ ←→ Mellin:
λijk

m!(∆ij,k)−m
, m = 0, 1, . . . (4.4)
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We will next turn to the evaluation of some higher-point amplitudes, where we will see that

much of this structure continues to hold. Thus although in section 3 we were only able to

prove that our factorization formula reproduced the correct poles and residues, in this and

all other examples that we have computed, miraculous identities and cancellations seem to

guarantee that this is the entire result. In other words, even the naive version of our for-

mula (3.26), with in particular the explicit Pochhammer factors (δij)nij in equation (3.27),

actually does vanish at infinity.

The components of the 4-point calculation will be so ubiquitous that it is useful to

introduce notation for the factors that accompany the propagator, and for the vertices:

S∆(m) = −2πhΓ(∆− h+ 1)m!

(∆− h+ 1)m
, V∆i∆j∆k

(m) =
λijk

m!(∆ij,k)−m
. (4.5)

This is our first hint of the Mellin space diagrammatic, which we will develop in section 5.

Note that the vertex is not symmetric, because only the leg k is ‘off-shell’. We will obtain

a general expression for this vertex with all legs ‘off-shell’ in equation (4.17).

4.1 5-pt amplitude

The next simplest amplitude is the five-point diagram shown in figure 4. We can choose

to apply our factorization formula, equation (3.26), on either propagator. In this example,

the diagram is symmetric so the computation is identical either way, so let us decompose

on the internal line 7. Then, the left Mellin amplitude is the four-point diagram from the

previous subsection, which depends only on the δij through the combination

2δ6 = −(p1 + p2)2 −∆6 = −2δ12 + ∆1 + ∆2 −∆6, (4.6)

which is essentially the “momentum” flowing through line 6. Applying (3.26) with 2δ7 ≡
δLR −∆7 thus gives

M5(δ6, δ7) =
∑

m

1

δ7 −m
−2πhΓ(∆7 − h+ 1)m!

(∆7 − h+ 1)m

×




 ∑

∑
nij=m

M4(δ6 − n12)
(δ12)n12

n12!

(δ13)n13

n13!

(δ23)n23

n23!



(
λ457

(δ45)m
m!

)

δ7=m

.(4.7)

The fact that this entire amplitude can be written as just a function of δ6 and δ7 is not yet

manifest, since naively the Pochhammer symbols contribute dependence on δ12, δ13 and δ23

separately. However, M4 depends only on δ6 = −δ12 + ∆12,6, so we can first do the sum

over n13 and n23 with their sum ñ = n13 +n23 fixed. This is aided by the general identity2

Γ(
∑

i<j δij + ñ)

ñ!
=

∑
∑
nij=ñ

∏

i<j

Γ(δij + nij)

n!
. (4.8)

2This identity is easily proven by first noting that
∑∞
n=0

zn(δ)n
n!

= (1− z)−δ, and then matching powers

of z in the product
∏
i<j(1 + z)−δij = (1 + z)−

∑
i<j δij .
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Therefore, only the combinations δ12 and δ13 + δ23 actually appear in the 5-point Mellin

amplitude. But, it is easy to see that these combinations are completely fixed by δ6 and

δ7! The most immediate way to see this is by considering the “momenta” flowing through

the diagram: (p1 + p2) flows through propagator 6, and (p1 + p2 + p3) = −(p4 + p5) flows

through propagator 7, so we have that

δ45 = −δ7 + ∆45,7, δ12 = −δ6 + ∆12,6, δ12 + δ13 + δ23 = −δ6 + ∆123,7. (4.9)

Now, let us substitute our expansion for the four-point Mellin amplitude in eq. (4.7):

M5(δ6, δ7) =
∑

m

1

δ7 −m
−2πhΓ(∆7 − h+ 1)m!

(∆7 − h+ 1)m

(
λ457

m!(∆45,7)−m

)
(4.10)

∑

n12+ñ=m

∑

k

V∆1∆2∆6(k − n12)S∆6(k − n12)V∆3∆7∆6(k − n12)

δ6 − k

× (∆12,6 − δ6)n12

n12!

(∆36,7 + δ6 −m)ñ
ñ!

We have checked numerically that this is a valid, explicit and symmetric formula for the

five-point function, but we can simplify it by ‘projecting it onto its poles’, i.e. replace δ6 → k

in the numerator. In fact, in section 5 we will explicitly prove that our factorization formula

holds after this simplifying projection is performed, although, somewhat miraculously, in

all examples this step has not actually been necessary.

The projection eliminates the δij dependence from the Pochhammer symbols in the

numerator, and we find

M5(δ6, δ7) =
∑

m,k

V∆1∆2∆6(k)S∆6(k)V∆3∆6∆7(k,m)S∆7(m)V∆4∆5∆7(m)

(δ6 − k)(δ7 −m)
, (4.11)

where we have defined a generalization of the vertex function to include two indices:3

V∆3∆6∆7(k,m) ≡ λ367

k!(∆37,6)−km!(∆36,7)−m
3F2

(
−k,−m, ∆3+∆6+∆7

2 − h
∆367 −m,∆376 − k

; 1

)
. (4.12)

This vertex is manifestly symmetric in (∆6, k) ↔ (∆7,m), as is required by reflection

symmetry of the diagram. Furthermore, one may easily see that it reduces to our earlier

vertex function V∆i∆j∆k
(m) when one of the indices is set to zero:

V∆i∆j∆k
(0,m) = V∆i∆j∆k

(m). (4.13)

4.2 6-pt amplitude

For the next example, consider the “star” 6-point diagram in figure 5. We will apply the

factorization formula to line 9, so the left amplitude is now the 5-point Mellin amplitude

3Arriving at this expression for V∆3∆6∆7(k,m) requires the use of a hypergeometric transformation

identity.
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Figure 5. Left (Right): Six-point linear (star) Witten diagram in cubic scalar theory.

M5(δ7, δ8) from the previous subsection. We will see that the final six-point amplitude

depends only on the combinations δ7, δ8, and δ9, which satisfy

δ12 = −δ7 + ∆12,7, δ34 = −δ8 + ∆34,8, δ56 = −δ9 + ∆56,9

δ12 + δ13 + δ14 + δ23 + δ24 + δ34 = −δ9 + ∆1234,9. (4.14)

These relations are most intuitively understood by noting that the “momentum” flowing

through lines 7,8, and 9 are (p1 + p2), (p3 + p4), and −(p1 + p2 + p3 + p4) = (p5 + p6),

respectively.

In evaluating (3.2), we can again take advantage of the fact that M5 depends only on

δ7 and δ8, rather than all possible δij ’s, to immediately sum over n13, n23, n14, n24, subject

to the constraint n13 + n23 + n14 + n24 = ñ. The 6-point Mellin amplitude can then be

written

M6 =
∑

m

S∆9(m)

δ9 −m

(
λ569

m!(∆56,9)−m

)
(4.15)


 ∑

n12+n34+ñ=m

M5(δ7−n12, δ8−n34)
(∆12,7−δ7)n12

n12!

(∆34,8−δ8)n34

n34!

(∆78,9+δ7+δ8−m)ñ
ñ!


.

Upon substituting the expression (4.11) for M5, we obtain an explicit expression for M6.

However, as before, we can simplify further by evaluating δ7 and δ8 at the residues of

all poles This step simplifies the calculation, and it means that we are explicitly using

the version of our factorization formula that we wrote down in section 3. This diagram

is particularly interesting because it is the lowest-point amplitude that contains a cubic

vertex that connects three internal or ‘off-shell’ propagators. As such, it is the simplest

diagram that one should calculate in order to obtain the generalization of V∆i∆j∆k
to three

different, non-zero indices. A short computation shows that the Mellin amplitude M6 for

this ‘star’ Witten diagram is

M6(δ7, δ8, δ9) =
∑

l,k,m

V∆1∆2∆7(l)S∆7(l)V∆3∆4∆8(k)S∆8(k)V∆5∆6∆9(m)S∆9(m)

(δ7 − l)(δ8 − k)(δ9 −m)

× V∆7∆8∆9(l, k,m) (4.16)
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where

V∆7∆8∆9(l, k,m) =
λ789

l!k!m!(∆78,9 + l + k)−m(∆89,7)−l(∆79,8)−k
(4.17)

×
∞∑

n12,n34,n=0

(
(−l)n12+n(−k)n34+n(−m)n12+n34

n12!n34!n!

(h−∆7 − l)n12(h−∆8 − k)n34

(
∆7+∆8+∆9−d

2

)
n

(1−∆78,9 − l − k)n12+n34(∆89,7 − l)n12+n(∆79,8 − k)n34+n


 .

Although it is not obvious from the way this expression is written, it is easy to verify

numerically that it is symmetric under interchange of any two (∆, i) dimension-index pairs,

e.g. (∆7, l)↔ (∆9,m). Moreover, when any of the indices vanishes, it reduces to the vertex

functions we have already encountered in the 5-point amplitude:

V∆i∆j∆k
(0, k,m) = V∆i∆j∆k

(k,m). (4.18)

So far, the above formula for V∆i∆j∆k
(l, k,m) is simply another way of packaging the 6-

point amplitude, and one could reasonable expect that a new vertex function would appear

at each vertex as one considered higher and higher n-point amplitudes. Surprisingly, this

turns out not to be the case: the functions S∆(m) and V∆i∆j∆k
(l, k,m) are all that is

needed in order to write down the most general n-point amplitude in φ3 theory. These

remarkable diagrammatic rules for Mellin amplitudes are the subject of section 5, to which

we now turn.

5 Mellin space diagrammatic rules

In section 3.1 we derived a factorization formula for Mellin amplitudes that can be applied

to any factorization channel, and in section 4 we used this formula to recursively compute

several examples. The fact that our factorization formula gives equivalent results when the

recursive steps are applied in different orders suggests that there exist universal diagram-

matic rules that allow for the construction of any Mellin amplitude. The purpose of this

section is to derive and prove these rules. We also obtain a practical benefit, because the

computation of complicated diagrams becomes standard and straightforward.

5.1 The diagrammatic rules and factorization

To begin, we will demonstrate that there is a special case where Mellin amplitudes may

be computed with essentially exactly the usual flat space procedure. This case is the λφ3

theory, in any number of dimensions up to 6,4 when the CFT operator dual to φ has

dimension ∆ = 2. The reason that the usual kind of diagrammatic rules automatically

apply to this case is that every time we use (3.2) to add on a cubic vertex to a lower-point

diagram, we encounter the factor (in, say, R):

Rm =
M3

m!(1)−m
(5.1)

4Above 6 dimensions, ∆ = 2 is not allowed in a unitary CFT.
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where M3 is the 3-pt Mellin amplitude. Thus, the sum over m always truncates at m = 0,

and therefore all the sums over the nij ’s do as well. Since all amplitudes in this theory can

be built up by adding on three-point vertices, there are never any sums to do at all! For

an arbitrary diagram, the rules for the Mellin amplitude are simply to include factors of:

1. S2(0)
δi

for each propagator, (where δi is the appropriate linear combination of δij ’s),

2. M3 for each vertex.

So, in this special case, the calculation of Mellin amplitudes is identical to the cal-

culation of the corresponding S-matrix elements in flat space, as long as we replace the

kinematic invariants pi · pj → δij . For instance, we can write the five-point diagram from

figure 4 in terms of the ‘Mellin momenta’ as

M5(p1, . . . , p5) = M3
−2S2(0)

(p1 + p2)2 + ∆6
M3

−2S2(0)

(p4 + p5)2 + ∆7
M3. (5.2)

For general ∆, however, the sum on m will not truncate at m = 0, and each propagator

will be associated with multiple poles:

M =
∑

{ma}

M(m1, . . . ,ms)

(δ1 −m1) . . . (δs −ms)
, (5.3)

where

δi = −∆i +K2
i

2
(5.4)

is the square of the total ‘momentum’ flowing through the i-th propagator. Thus, the

best that we could hope for generally is to have diagrammatic rules for the residues

M(m1, . . . ,ms). We have already seen in our examples in the previous section in equa-

tions (4.11) and (4.16) what form such rules might take. Thus we will optimistically guess

that more generally, one can calculate M(m1, . . . ,ms) according to the following rules:

1.
S∆a (ma)
δa−ma for each propagator, where S∆a(ma) = −2πhΓ(∆a−h+1)ma!

(∆a−h+1)ma

2. V∆i∆j∆k
(mi,mj ,mk) for each vertex.

These rules are depicted schematically in figure 6.5 We will show below that this very

simple procedure is exactly correct for higher-point diagrams as well! On the one hand, this

is rather surprising from the point of view of the factorization formula (3.2), where naively

any diagrammatic vertex factors like V∆a∆b∆c would have to depend on all the indices of

all internal lines in the diagram. On the other hand, the existence of such a set of rules is

very natural in that it automatically explains why the factorization formula gives the same

answer when applied to any propagator in diagram, a very strong consistency condition.

The first step is to simplify the Pochhammer symbols. Since all dependence on the

δijs in ML and MR is through the propagator variables, we can always use eq. (4.8) like we

5All external lines are taken to have index m = 0. To save space, we will abbreviate S∆a(m) to Sa(m),

and similarly for V .
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Vabc(ma,mb,mc)

a

b

c

Sa(ma)a

!a-ma

Figure 6. Diagrammatic Rules. The expression for Vabc is given in eq. (4.17), and that for Sa is

given in eq. (4.5).

did in the case of the five-point function in section 4. There we grouped all the δijs into

terms that depend on only the propagator variables, the δis. However, each δij appears in a

Pochhammer symbol exactly once, so each δij can only appear in a single linear combination

of the δi. For instance, in the five-point function, we had to use the latter two identities in

eq. (4.8) to write δ12 and δ23 + δ13 as

δ12 = −δ6 + ∆12,6, δ13 + δ23 = −δ7 + δ6 + ∆36,7. (5.5)

In general, this regrouping can always be performed, so that for every vertex we have

a Pochhammer symbol of the form

(∆ab,c + δa + δb − δc)nc−na−nb
(nc − na − nb)!

, (5.6)

as depicted in figure 7. Here, a and b are the two propagators leading into the vertex

and c is the propagator leading out, as we work from the external lines inward toward the

δLR propagator. For completeness, we note that this identity generalizes to arbitrary n-pt

interactions, with the a and b indices replaced by a sum over all the propagators flowing

into the vertex, towards the propagator on which we are factorizing. Each δij shows up in

exactly one such Pochhammer, because starting with external vertices i and j and flowing

inward through the diagram, there is always a unique vertex where the two meet. The sum

is then reduced from a sum over all the nij ’s to a sum over ni’s, one for each propagator,

defined by the condition that δij → δij + nij is equivalent to δi → δi − ni.6 An important

nicety of defining the ni’s this way is that the poles are always shifted by

1

δi −mi
→ 1

δi −mi − ni
(5.7)

As we will soon see, this makes it possible for us to absorb all of the nis via a re-definition

of the sums.
6To be a little more explicit, if pi = (k1 + k2 + · · · + ks), where ki are all external “momenta”, then

ni =
∑s
i<j nij .
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an

a1

a2 c

(∆a1a2...an,c+ma1
+ma2

+···+man−mc)nc−na1−···−nan

(nc−na1
−···−nan )!

Figure 7. When evaluating the factorization formula on its poles, products of Pochhammer symbols

reduce generally to a simple expression associated with each vertex.

To demonstrate how the Feynman rules follow from the factorization formula, let

us factorize a Witten diagram along a certain ‘central’ propagator and assume that the

associated ML and MR have been computed from the diagrammatic rules. We will prove

that if we compute use the factorization formula (3.26) to compute Mn from ML and MR,

then the result will be equal to what we would have found had we computed it entirely

from the diagrammatic rules.

It is helpful to illustrate our arguments first with an example, so let us consider the

eight-point diagram below, as it will exhibit all the features we will use for the general

proof. Factorizing on the “e” propagator, ML is a seven-point diagram and MR is a three-

point diagram. Assuming that we have applied the diagrammatic rules to ML and MR, we

obtain for M8

12

3

4

a

b c

5 6

7

8

d

e

M8 =
∑

me

Se(m)

δe −me




∑
na,nb

nc+nd+ne=me



∑

ma,mb,
mc,md

V12a(ma)Sa(ma)V34b(mb)Sb(mb)Vabc(ma,mb,mc)V56d(md)Sd(md)Vcde(me)

(δa −ma − na)(δb −mb − nb)(δc −mc − nc)(δd −md − nd)

(∆12,a − δa)na

na!

(∆34,b − δb)nb

nb!

(∆ab,c + δa + δb − δc)nc−na−nb

(nc − na − nb)!
(∆56,d − δd)nd

nd!

(∆cd,e + δc + δd −me)ne

ne!

)][
(∆78,e −me)me

me!

]
(5.8)

– 29 –



J
H
E
P
1
1
(
2
0
1
1
)
0
9
5

We can eliminate ne through nc + nd + ne = me, and then the sum on ni’s is unrestricted.

To simplify further, we first redefine mi → mi − ni in the sums on mi in order to shift the

poles back to mi, and then as usual we evaluate all the δi’s in the numerator on the poles

(i.e. δi → mi).

Now we want to show that M8 also satisfies the diagrammatic rules. We will first show

that the correct V and S factors are associated with the residues of the poles in δa and δb.

This follows from the following identity, which we have verified numerically:

ma,mb∑

na,nb=0

(
V12a(ma−na)Sa(ma−na)

(∆12,a−ma)na
na!

)(
V34,b(mb−nb)Sb(mb−nb)

(∆34,b−mb)nb
nb!

)

×Vab,c(ma − na,mb − nb,mc − nc)
(∆ab,c +ma +mb −mc)nc−na−nb

(nc − na − nb)!
(5.9)

= V12a(ma)Sa(ma)V34b(mb)Sb(mb)
Vabc(ma,mb,mc)

Vabc(mc)
Vabc(mc − nc)

(∆ab,c −mc)nc
nc!

In words, this identity implies that after summing over na and nb in (5.8), all the factors

associated with ma and mb become exactly what they should be according to the diagram-

matic rules. Furthermore, the factors associated with mc are 1
Vabc(mc)

times exactly what

we would have started with if we had considered the diagram with external lines 1, 2, 3

and 4 stripped off. We have already seen in the previous section that a five-point func-

tion satisfies the rules; repeating that analysis here, the factor Vabc(mc) of the five-point

diagram cancels the 1
Vabc(mc)

in the identity above to give exactly the correct result.

If we had started with an even larger diagram, we would just apply eq. (5.9) repeatedly,

reducing at each stage to the needed factors times a reduced diagram. To be a bit more

explicit, consider a general diagram Mn, factorized along a ‘central’ bulk to bulk propagator

with a vertex with dimension ∆e, taking the form

Mn =
∑

m

Se(me)

δe −me


∑

{ni}

∑

{mi}

(∏

prop

Si(mi − ni)
δi −mi

)
(∆yz,e +my +mz −me)me−ny−nz

(me − ny − nz)!
(5.10)

×
(∏

vert

Vijk(mi − ni,mj − nj ,mk − nk)
(∆ij,k +mi +mj −mk)nk−ni−nj

(nk − ni − nj)!

)]
×Rm,

where y, z are the lines connected to e on the left. The first product inside the brackets is

over propagators, and the second is over all vertices. The identity (5.9) now says that, work-

ing “outwards in” according to figure 8, the sums on the ni’s exactly turn the Pochhammer

symbols, shifted vertex factors, and shifted propagator factors associated with mi into the

appropriate final factors, times factors that allow us to consider a reduced diagram with

the i legs stripped off. Thus, the poles of the factorization formula (3.27) are exactly given

by the diagrammatic rules we have presented.

A crucial aspect of the identity in equation (5.9) is that while it may seem complex,

it is localized to a particular vertex in the diagram. It says that if we work from the

outside of a tree diagram inward, toward the central propagator with an associated δLR,

then the sums over the ni variables simplify at each vertex independently. Without this
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property, it is hard to imagine that these diagrammatic rules could consistently reproduce

our factorization formula.

The relative simplicity of this localization allows us to immediately write down and

check the necessary identities for any scalar theory. In a theory with both 3-pt φiφjφk
couplings and an (R+ 1)-pt coupling, we would find a generalized identity

R∏

i=1

mai3∑

nai3=0

(
Vai1ai2ai3(mai3 − ni3)Sai3(mai3 − nai3)

(∆ai1ai2,ai3 −mai3)nai3
nai3 !

)

×Va13,...,aR3X(mai3 − nai3 ;mX − nX)

(
∆a13...aR3,X +

∑R
i mai3 −mX

)
nX−

∑R
i nai3(

nX −
∑R

i nai3

)
!

=

[
R∏

i=1

(Vai1ai2ai3(mai3)Sai3(mai3))

]
Va13,...,aR3X(mai3 ;mX)

×Va13,...,aR3X(0;mX − nX)

Va13,...,aR3X(0;mX)

(∆a13...aR3X −mX)nX
nX !

(5.11)

The first line of this identity is a product of all the vertices, propagators, and associated

Pochhammers that lead into our (R+ 1)-pt vertex, the second line is the (R+ 1)-pt vertex

and its associated Pochhammer. The third line is a product of simplified vertices with the

n dependence eliminated, so that they take precisely the form that the diagrammatic rules

dictate. In the final line we have an ‘on-shell’ mi = 0 version of the (R+1)-pt vertex, which

will feed in naturally to the next vertex, leading towards the factorization propagator δLR.

We have checked numerically that this identity holds in the case of theories with 3-pt and

4-pt interactions, and we have written out the general 4-pt vertex in appendix C.2. In

theories with many different interaction vertices, there are equivalent identities involving

all combinations of the vertices.

5.2 The diagrammatic rules satisfy the functional equation

Next, we will show that the diagrammatic rules we have just presented satisfy the functional

equation. As we discussed in section 2, the general functional equation takes the form

M0 = (δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij

(
δaiδbjM − δajδbiMaj,bi

ai,bj + δabδijM
ab,ij
ai,bj

)
(5.12)

where we recall that the shifted amplitudes are Mab,ij
ai,bj = M(δab+1, δij+1, δai−1, δbj−1, . . .),

and we have chosen a specific propagator δLR, which divides the Mellin amplitude into an

ML
k and MR

n−k+1. A feature of our diagrammatic rules is that they only explicitly depend

on the left and right δij , and not those with i ≤ k < j. Now the shifts such as Maj,bi
ai,bj in the

functional equation only involve L-R combinations, so when we plug in our factorization

formula, we find that Maj,bi
ai,bj = M . This means that the first and second terms in the sum

in equation (2.31) cancel, so the functional equation reduces to

M0 = (δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij
δabδijM

ab,ij
ai,bj . (5.13)
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=

�

n1,...,nR

V1(m1)

VR(mR)

S1(m1)

SX(mX − nX)

SR(mR)

V1,...,R(mi; mX)× V1,...,R(0; mX − nX)

V1,...,R(0; mX)

(δX)nX

nX !

V1...RX(mi − ni)
(
�

δi − δX)n...

(nx −
�

i ni)!

SR(mR − nR)

VR(mR − nR)
(δR)nR

nR!

S1(m1 − n1)

V1(m1 − n1)
(δ1)n1

n1!

SX(mX − nX)

V···

V···

Towards δLR

Towards δLR

Figure 8. This is the general diagrammatic identity which is necessary to prove that our factoriza-

tion formula and our diagrammatic rules are identical. The Pochhammer factors localize at vertices

in the diagram, and then the sum over nij from the factorization formula can be performed locally

on the diagram, working from the external legs inward towards the factorization or ‘δLR’ propa-

gator. Applying this identity to the sums turns the factorization formula into the diagrammatic

rules. The precise form of the Pochhammer symbols is schematic, refer to equation (5.11) for the

full form.

Now, since the large δij behavior of the diagrammatic rules are easy to read off, we can

immediately see that the term linear in δLR in the r.h.s. of this equation cancels. The

constant term is by definition independent of δLR, so this will have to be shown to match

M0 on the l.h.s. . Our strategy will be to first show that the r.h.s. is independent of δLR.

But, any possible dependence on δLR in the r.h.s. is clearly in the part that falls like δ−1
ij .

So, if we just want to prove that the r.h.s. is independent of δLR, then all expressions at
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any step can be evaluated on their poles. Afterwards, we will show that the remaining

δLR-independent piece matches M0.7

First, note the effect of the shifts in Mab,ij
ai,bj . By assumption, ab and ij are on opposite

sides of the δLR propagator, so δLR → δLR−2. The other propagators are shifted as follows.

Consider a propagator δi on the left part of the diagram. If a and b are both to the left

of this propagator, then δi → δi − 1 in Mab,ij
ai,bj , otherwise it has no change. A symmetric

statement holds for propagators on the right part of the diagram.

At this point, we can make effective use of the results from the previous subsection.

Specifically, let us write the Mellin amplitude as

M =
∑

me

ML(δab,me)
Se(me)

δe −me
MR(δij ,me), (5.14)

and rewrite the second term on the r.h.s. of (5.13) as

∑

ab≤k<ij
δabδijM

ab,ij
ai,bj = 4

∑

me

Se(me)

δe −me − 1


 ∑

∑
nab=1

ML(δab + nab,me)
∏

a<b≤k

(δab)nab
nab!




×


 ∑

∑
nij=1

MR(δij + nij ,me)
∏

k<i<j

(δij)nij
nij !


 . (5.15)

where we have re-written the δabδij factors as Pochhammer symbols. Now, we can further

simplify the terms in brackets using the result from the previous subsection that

ML(δab + nab,me) =
∑

n′ab=me


 ∏

a<b≤k

(δab + nab)n′ab
n′ab!


ML(δab + nab + n′ab), (5.16)

when all δab’s are evaluated on the poles. Substituting this into eq. (5.15),8 we find that

∑

ab≤k<ij
δabδijM

ab,ij
ai,bj

∣∣∣∣
poles

= 4
∑

me

(me + 1)2Se(me)

δe −me − 1


ML(δab + nab,me + 1)

∏

a<b≤k

(δab)nab
nab!




×


MR(δij + nij ,me + 1)

∏

k<i<j

(δij)nij
nij !



∣∣∣∣∣∣
poles

= me(me + ∆e − h)M |poles , (5.18)

7We will not prove here that the overall numerical coefficient matches that in M0, although we will

obtain the correct parametric dependence on the couplings.
8It is necessary here to use the fact that

∑
∑
nab=1

∑
∑
n′
ab

=me

∏
a<b≤k

(δab)nab

nab!

(δab + n′ab)n′
ab

n′ab
=

∑
a<b≤k

∑
∑
n′′
ab

=me+1

∏
a<b≤k

(δab)n′′
ab

n′′ab
n′′ab

= (me + 1)
∑

∑
n′′
ab

=me+1

∏
a<b≤k

(δab)n′′
ab

n′′ab
. (5.17)
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where in going to the last line we have shifted the summation index me → me−1 and used

the fact that Se(me−1)
Se(me)

= ∆e+me−h
me

. Now, since (δLR−∆e)(d−∆e−δLR) = −4δe(δe+∆e−h),

the poles in the above expression clearly cancel those in the first term in eq. (5.13)!

We still need to show that the left-over δLR-independent piece, call it Mred, actually

has the correct dependence on the remaining δij ’s to match M0. To show that we produce

the correct M0, we can simply substitute Mred into the functional equation for any of the

other legs, and keep doing this until we have acted on every propagator in the diagram.

After the last propagator is removed this way, the resulting M0 will be that for a contact

interaction, which is simply independent of all the δij ’s. Thus, if we can prove that this

procedure reduces the Mellin amplitude constructed from the diagrammatic rules to just a

constant, then we will be done.9

However, this follows immediately if we use a nice property of the relevant confor-

mal Casimirs. The r.h.s. of the functional equation (2.31) is the action of the Casimir

(
∑

i∈L Ji)
2, where L denotes the set of all external lines to the left (with respect to an a

priori chosen vertex at the far right of the diagram) of the propagator being acted upon.

Because of the tree structure of the diagrams, for any two propagators with corresponding

L, L′, either L and L′ will be disjoint or one of them will be a subset of another. In the

former case, it is obvious that the two Casimirs commute. A short computation shows that

they commute in the latter case as well:



(∑

i∈L
Ji

)2

,

( ∑

i∈L′⊂L
Ji

)2

 = 2

( ∑

i∈L−L′
Ji

)
·



(∑

i∈L′
Ji

)
,

(∑

i∈L′
Ji

)2

 = 0. (5.19)

Therefore, all the Casimirs associated with propagators commute with each other. Let us

act on M with the Casimirs corresponding to all the propagators in the diagram. Since the

Casimirs commute, we can act with any one of them first, so the result must be independent

of all the δij ’s, which completes the proof.

6 The flat space limit of AdS/CFT and the S-matrix

One can obtain a holographic description of the flat space S-Matrix [3, 27–33] by taking a

limit of the AdS/CFT correspondence in which the curvature of AdS goes to zero. This

fact has received more attention recently, and in particular in [3] one of us argued for an

intimate connection between the Mellin representation of AdS/CFT correlation functions

and the flat space S-Matrix.

Roughly speaking, the claim is that if one interprets the δij as the kinematic invariants

pi · pj of a scattering amplitude, then in the large δij limit the Mellin amplitude will

reproduce the flat space S-Matrix. This result has a very simple physical justification.

Time translations in global AdS are generated by the dilatation operator of the CFT, so the

dimension of an operator in the CFT directly translates into the energy of a corresponding

bulk state. Since the AdS radius R is a dimensionful quantity, what we really mean by

the flat space limit is ER→∞ for all bulk energies E. We have seen repeatedly that the

9We will address quite generally the issue of homogeneous solutions in appendix A.
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Mellin space coordinates δij are related to the dimensions of operators in the CFT, so it is

natural to expect that the large δij limit of a Mellin amplitude is related to the physics of

bulk states with large ER, which compute the flat space S-Matrix. We will now show how

this works quantitatively.

6.1 The flat space limit of AdS/CFT factorization

At a computational and pictorial level, we know that Witten diagrams describe scattering

events in AdS spacetime. In [3], an explicit formula was given relating the large δij behavior

of a Mellin amplitude to the corresponding flat space scattering amplitude. With the

present normalizations, this formula reads

M(δij) ≈
πh

2

n∏

i=1

C∆i

Γ(∆i)

∫ ∞

0
dβ β

1
2

∑
∆i−h−1e−β T (pi · pj = 2βδij) , δij � 1 . (6.1)

where the flat space S-Matrix is S = 1 + i(2π)d+1δ (
∑
pi)T .

The transformation in (6.1) may appear complicated but its effect is relatively simple.

To understand why something like (6.1) is necessary, first consider the case of massless

scalars scattering through a single contact interaction with some fixed number of deriva-

tives. In this case, the only dimensionful parameter is the coupling constant, which is an

overall factor in the amplitude T (pi · pj). Thus, β in (6.1) just factors out by dimensional

analysis, and the Mellin amplitude is simply proportional to the flat-space scattering am-

plitude. The only effect of the transformation is to modify the overall coefficient. The

reason that a tranformation is needed for more general theories is that this overall coeffi-

cient depends on the dimension of the interaction. It was shown in [3] that for all scalar

contact interactions, (6.1) produces exactly the correct overall coefficient in order to match

the Mellin amplitude. This is a very general check, since one may typically consider an

arbitrary scattering amplitude as a linear combination of such interactions below some

cut-off. So, roughly what (6.1) says is that to get the flat-space S-matrix from M(δij), one

simply performs a series expansion at large δij and goes through the series term by term,

altering the coefficients by hand in a way that depends only on the power of the δij ’s.

Now, the goal of this section is to show that the flat space limit of the factorization

formula

M(δij) = −
∞∑

m=0

4πhΓ(∆− h+ 1)m!

(∆− h+ 1)m

Lm(δij)Rm(δij)

δLR −∆− 2m
(6.2)

reduces to the usual factorization of scattering amplitudes.

We recall that Lm is given by

Lm(δij) =


 ∑
∑
nij=m

ML(δij + nij)
∏

i<j

(δij)nij
nij !



δLR=∆+2m

(6.3)

and similarly for Rm. We start by considering the limit of δij � 1 with fixed internal and

external dimensions ∆ and ∆i. In this case, the flat space limit will give rise to scattering
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amplitudes of massless particles because the mass squared of the bulk fields is of the order

of the AdS curvature. This turns equation (6.2) into

M(δij) ≈
4πhΓ(∆− h+ 1)

−δLR

∞∑

m=0

m!

(∆− h+ 1)m
Lm(δij)Rm(δij) (6.4)

We see that the multiple poles of the Mellin amplitude at δLR = ∆ + 2m all contribute

to the pole of the scattering amplitude at (
∑k

i=1 pi)
2 = 0. In order to show that the

sum over all contributions reproduces the correct residue of the scattering amplitude, we

need to understand the large δij limit of Lm. It turns out that at large δij , Lm simplifies

significantly,

Lm(δij) ≈
1

m!

(
∂

∂t

)m
t

1
2

(
∑

∆i−∆)−1ML(tδij)

∣∣∣∣
t=1

, δij � 1 . (6.5)

We will now prove this relation. To that end, consider the example

ML(δij) =
k∏

i<j

(δij)aij . (6.6)

This set of functions is very broad and can be used as a basis. Thus, to prove (6.5) in

general, it will be sufficient to prove it for (6.6). This is a convenient basis to use because,

for this type of left Mellin amplitude, one can perform the sum in Lm(δij) explicitly,

Lm(δij) =


 ∑
∑
nij=m

k∏

i<j

(δij + aij)nij
nij !

(δij)aij



δLR=∆+2m

=


(
∑
δij +

∑
aij)m

m!

k∏

i<j

(δij)aij



δLR=∆+2m

=

(
1
2(
∑

∆i −∆) +
∑
aij −m

)
m

m!

k∏

i<j

(δij)aij (6.7)

where, in the second line, we used the identity (4.8) and, in the last line, we evaluated∑k
i<j δij = (

∑k
i=1 ∆i − δLR)/2 on the pole δLR = ∆ + 2m. For large δij , we have

ML(δij) ≈
k∏

i<j

(δij)
aij , Lm(δij) ≈

(
1
2(
∑

∆i −∆) +
∑
aij −m

)
m

m!

k∏

i<j

(δij)
aij , (6.8)

in perfect agreement with (6.5).

Let us now substitute this simplified form into (6.4) and invoke the flat space limit

formula (6.1) for ML and MR. We obtain the large δij limit of the Mellin amplitude in
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terms of the left and right scattering amplitudes:

M(δij) ≈−
πh

4δLR

n∏

i=1

C∆i

Γ(∆i)

∫ ∞

0
dβL β

1
2

(∆+
∑k
i=1 ∆i)−h−1

L TL(pi · pj = 2βLδij)

∫ ∞

0
dβR β

1
2

(∆+
∑n
i>k ∆i)−h−1

R TR(pi · pj = 2βRδij) (6.9)

∞∑

m=0

1

m!

(
∂

∂tL

∂

∂tR

)m (tLtR)h−∆−1e−βL/tL−βR/tR

Γ(∆− h+ 1 +m)

∣∣∣∣∣
tL=tR=1

,

where we have rescaled the integration variables βL, βR. This looks like a rather complicated

expression but it simplifies dramatically due to the following identity

∞∑

m=0

1

m!

(
∂

∂tL

∂

∂tR

)m (tLtR)h−∆−1e−βL/tL−βR/tR

Γ(∆− h+ 1 +m)

∣∣∣∣∣
tL=tR=1

= βh−∆
L e−βL δ(βL − βR) , (6.10)

which we prove in appendix C.3. Finally, the large δij behaviour of the Mellin amplitude

simplifies to

M(δij) ≈
πh

2

n∏

i=1

C∆i

Γ(∆i)

∫ ∞

0
dβ β

1
2

∑
∆i−h−1e−β

TL(pi · pj =2βδij)T
R(pi · pj =2βδij)

−2βδLR
, (6.11)

in agreement with the factorization of scattering amplitudes for massless scalars,

T (pi · pj) =
TL(pi · pj)TR(pi · pj)

(
∑k

i=1 pi)
2

. (6.12)

6.1.1 Massive propagators in flat space

The mass of a scalar field in AdSd+1 is ∆(∆− d)/R2, where ∆ is the conformal dimension

of the dual operator and R is the AdS radius of curvature. Thus, in order to keep a finite

mass in the flat space limit R → ∞, one must scale the dimensions ∆ → ∞ of the scalar

operators.

More precisely, one considers the limit of large ∆ and δij with fixed ratio δij/∆
2. Let

us then return to (6.2) with (6.5) and (6.1) applied to ML and MR, and study this limit

M(δij) ≈−
πh

4

n∏

i=1

C∆i

Γ(∆i)

∫ ∞

0
dβL β

1
2

∑
L ∆i−h−1

L TL(pi · pj = 2βLδij)

∫ ∞

0
dβR β

1
2

∑
R ∆i−h−1

R TR(pi · pj = 2βRδij)

∞∑

m=0

(
∂

∂tL

∂

∂tR

)m (βLβR)
∆
2 (tLtR)h−∆−1e−βL/tL−βR/tR

(δLR −∆− 2m)Γ(∆− h+ 1 +m)m!

∣∣∣∣∣
tL=tR=1

(6.13)

In appendix C.3, we prove that the limit of the last line is

δ(βL − βR)e−βLβhL
2βL

2βLδLR −∆2
. (6.14)
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Thus, the limit of (6.13) is

M(δij) ≈
πh

2

n∏

i=1

C∆i

Γ(∆i)

∫ ∞

0
dβ β

1
2

∑
∆i−h−1e−β

TL(pi · pj =2βδij)T
R(pi · pj =2βδij)

−2βδLR + ∆2
(6.15)

as expected from the factorization of scattering amplitudes

T (pi · pj) =
TL(pi · pj)TR(pi · pj)

(
∑k

i=1 pi)
2 +M2

, (6.16)

where we identified ∆2 with the mass squared of the exchanged particle.

It is worth noting that the poles of the Mellin amplitude at δLR = ∆ + 2m turned into

the pole at δLR = ∆2/(2β) in the integrand of (6.15). The reason is that, in the flat space

limit, the infinite sum over poles is dominated by the poles with m of order ∆2 � 1. More

precisely, in the limit of large δij with fixed δij/∆
2, the infinite sequence of poles of the

Mellin amplitude gives rise to a branch cut along the positive real axis of δLR/∆
2.

6.2 Diagrammatic rules

In the last section, we have shown that the flat space limit of the AdS factorization formula

reduces to the usual factorization of scattering amplitudes. In this section, we will show

that the flat space limit of the AdS Feynman rules proposed in section 5 gives the usual

Feynman rules for scattering amplitudes.

The flat space limit corresponds to the large δij behaviour of Mellin amplitudes. If we

take this limit with fixed ∆’s, then equation (5.3) simplifies to

M(δij) ≈
( ∑

{ma}

M(m1, . . . ,ms)
) s∏

a=1

1

δa
, (6.17)

where the index a = 1, . . . , s labels the internal propagators of the Witten diagram. The

function M(m1, . . . ,ms) is computed using the diagrammatic rules of section 5. This large

δij behaviour of the Mellin amplitudes should be compared with the prediction from the

flat space limit formula (6.1). Inserting the appropriate scattering amplitude for massless

scalars in (6.1), one obtains

M(δij) ≈
πh

2

(
n∏

i=1

C∆i

Γ(∆i)

)
Γ

(
1

2

n∑

i=1

∆i − h− s
)

s∏

a=1

−1

4δa
, (6.18)

where we have set to 1 the coupling constants associated to each interaction vertex. We

conclude that the dependence on the kinematic variables δij is the correct one. To finish

the proof we just need to show that the overall normalization also agrees, i.e. we must show

that

∑

{ma}

M(m1, . . . ,ms) =
πh

2

(
n∏

i=1

C∆i

Γ(∆i)

)
Γ

(
1

2

n∑

i=1

∆i − h− s
)

(−1)s

4s
. (6.19)

We will perform the sum over {ma} recursively, starting from the bulk propagators

closer to the external legs of the tree level Witten diagram.
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The first case to consider is a part of the Witten diagram that connects one bulk

propagator (∆8,m8) to 3 external legs (∆1,∆2,∆3) like in the left diagram in figure 5. In

this case, we need to compute the sum

∞∑

m7=0

V∆1∆2∆7(0, 0,m7)S∆7(m7)V∆3∆7∆8(0,m7,m8) (6.20)

=
−2πhλ127λ378Γ2(∆7 − h+ 1)Γ

(
∆1+∆2+∆3+∆8

2 − h− 1
)

m8!(∆123,8 − 1)−m8Γ
(

∆1+∆2+∆7
2 − h

)
Γ
(

∆3+∆7+∆8
2 − h

) .

It is then easy to use this result twice to compute the sum

∞∑

m7,m8=0

V∆1∆2∆7(0, 0,m7)S∆7(m7)V∆3∆7∆8(0,m7,m8)S∆8(m8)V∆4∆8∆9(0,m8,m9) (6.21)

=
4π2hλ127λ378λ489Γ2(∆7 − h+ 1)Γ2(∆8 − h+ 1)Γ

(
∆1+∆2+∆3+∆4+∆9

2 − h− 2
)

m9!(∆1234,9 − 2)−m9Γ
(

∆1+∆2+∆7
2 − h

)
Γ
(

∆3+∆7+∆8
2 − h

)
Γ
(

∆4+∆8+∆9
2 − h

) ,

corresponding to the 2 leftmost bulk propagators in the left diagram in figure 5. By using

this rule recursively, we can compute the sum in (6.19) for some Witten diagrams. However,

the general Witten diagram requires another type of basic sum, corresponding to a part

of the Witten diagram connecting 4 external legs (∆1,∆2,∆3,∆4) to a bulk propagator

(∆9,m9) like in the right diagram in figure 5,

∞∑

m7,m8=0

V∆1∆2∆7(0, 0,m7)S∆7(m7)V∆3∆4∆8(0, 0,m8)S∆8(m8)V∆7∆8∆9(m7,m8,m9) (6.22)

=
4π2hλ127λ348λ789Γ2(∆7 − h+ 1)Γ2(∆8 − h+ 1)Γ

(
∆1+∆2+∆3+∆4+∆9

2 − h− 2
)

m!(∆1234,9 − 2)−mΓ
(

∆1+∆2+∆7
2 − h

)
Γ
(

∆3+∆4+∆8
2 − h

)
Γ
(

∆7+∆8+∆9
2 − h

) .

Using (6.20) and (6.22) recursively, it is easy to show that a general tree level n-point

Witten diagram with s internal propagators has

∑

{ma}

M(m1, . . . ,ms)=Γ

(∑n
i=1 ∆i

2
−h−p

)
(−πh)s

s∏

a=1

Γ2(∆a− h+ 1)
∏

vert

λijk

Γ
(

∆i+∆j+∆k

2 −h
)

where

λ123 =
πh

2
Γ

(
∆1 + ∆2 + ∆3

2
− h
) 3∏

i=1

C∆i

Γ(∆i)
=

Γ
(

∆1+∆2+∆3
2 − h

)

16π2h
∏3
i=1 Γ(∆i − h+ 1)

(6.23)

is the 3-point Mellin amplitude. Finally, using the fact that a tree level n-point Witten

diagram has s = n − 3 bulk propagators and n − 2 cubic vertices, it is straightforward to

prove (6.19).

7 Discussion

We have argued that Conformal Field Theory correlation functions have a natural home

in Mellin space, and we have given dramatic evidence for this claim in the case of CFTs

with a weakly coupled AdS dual.
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The easiest way to summarize our results is to list the profound similarities between

Mellin space for AdS/CFT and momentum space for scattering amplitudes. As with scat-

tering amplitudes in momentum space, in Mellin space

• CFT correlation functions have poles corresponding to the exchange of operators,

which we have dubbed ‘OPE factorization’, and on these poles the correlation func-

tions factorize into lower point correlators;

• the differential equations that define AdS/CFT correlators as Green’s functions turn

into simple, purely algebraic functional equations for the Mellin amplitude;

• there are simple diagrammatic rules that enable a direct construction of the Mellin

amplitude corresponding to any Witten diagram;

• the Mellin space ‘momentum’ flows through these Witten diagrams in such a way

that it is conserved at all vertices.

Furthermore, the connection becomes totally explicit when we take the flat space limit of

AdS/CFT, where Mellin variables turn into flat space kinematic invariants via δij → pi · pj
and the Mellin amplitudes themselves reduce to the flat space S-Matrix of the bulk theory.

In this paper we have only dealt in a precise and systematic way with CFTs dual to

theories of scalar fields living in the bulk of AdS, and we have only computed the correlators

at tree-level, i.e. at leading order in 1/N . We expect that this is only the beginning. It will

be interesting to understand how our results generalize to theories with higher spin fields,

at loop level, and to more general CFTs that do not have a weakly coupled AdS dual. Let

us conclude with a few comments about these possibilities.

As discussed in appendix B, there exists a straightforward method for generalizing

our results to vector and tensor fields. However, more efficient methods might very well

exist which more naturally incorporate the helicity structure of the fields dual to the con-

served currents and the stress-energy tensor. In this respect, (standard) momentum space

seems to have an advantage since the current conservation condition, which is a differential

equation in position space, turns into the more tractable algebraic equation pµJµ = 0 in

momentum space. Indeed, recently some simple results have been obtained for tensor corre-

lators in momentum space [44]. Second, computing gravitational amplitudes using Witten

diagrams is tedious because gravity has an infinite number of interaction vertices. To ef-

ficiently compute these amplitudes in Mellin space, we would require some version of the

BCFW recursion relations [45–47] analogous to the one developed in momentum space for

AdS [48, 49]. Unfortunately, conformal invariance is obscured in momentum space. More-

over, in some cases (logarithmic) divergences in the Fourier transform of CFT correlation

functions in momentum space lead to conformal anomalies which complicate the analysis

for higher-point functions, see for example [50]. These issues do not arise in Mellin space.

At loop level in the bulk of AdS, there may be two distinct but natural forms for

the Mellin amplitude to take — one generalizing our factorization formula, and the other

generalizing our diagrammatic rules. As we discussed in section 2.1, we expect that at

loop-level and even non-perturbatively, the Mellin amplitude will be meromorphic, with
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poles corresponding to the exchange of operators in the OPE. So at loop-level it should still

be possible to write the amplitude in a form that makes the poles corresponding to various

multitrace operators manifest; a form with exactly these properties was found for the 4-pt

amplitude in [3]. However, given the success of our diagrammatic rules, we also expect to

find loop-level rules, where infinite sums replace the momentum space integrals familiar

from flat spacetime. In these diagrams, factorization may be obscured, but perhaps bulk

unitarity will be manifest. It is not hard to guess a generalization of our rules from tree to

loop level, but we will leave the exploration of their nature and their physical interpretation

to future work.

We should note that the complete holographic computation of correlation functions in

for example N = 4 SYM using supergravity is more involved than just the evaluation of

the Witten diagrams themselves. In particular, in order to obtain for example the five-

dimensional Lagrangian a Kaluza-Klein reduction has to be performed [51] which beyond

the first order is rendered computationally difficult because of the non-linear relations

between the Kaluza-Klein coefficients and the eventual five-dimensional bulk fields [52].

Using superconformal invariance and inspired by the results obtained in this way, a general

conjecture for certain scalar four-point functions of N = 4 SYM in the supergravity limit

was written down in [24].

Results like those of [24] for AdS/CFT four-point functions were often conveniently

expressed in terms of the so-called D-functions which were first introduced in [16]. Such

D-functions correspond to contact Witten diagram in AdS and as we have seen in equa-

tion (2.35) their Mellin transforms are just constants. One may therefore attempt to use

existing techniques in the literature [16] to convert bulk to bulk propagators to contact in-

teractions and amplitudes to sums over D-functions, and then reformulate these results as

Mellin amplitudes. We have verified that this leads to answers in a different form than we

presented above and the two forms are related by resummation (as, for example, in the four

point calculation of [3]). The results of this paper indicate that the Mellin transform may

be a more natural object to describe higher-point correlation functions. We hope that this

can enable an extension of the current results for e.g. N = 4 correlation functions in the

supergravity limit to more than four external points. We also expect Mellin amplitudes to

be useful in N = 4 SYM beyond the supergravity limit. An important question is if higher

point functions of single-trace operators can be constructed from the knowledge of 2-pt and

3-pt functions of single-trace operators. The factorization of Mellin amplitudes provides a

concrete way to do this in CFTs whose AdS dual can be constructed from cubic interaction

vertices. More generally, we can hope that a BCFW-like construction is possible for type

IIB string theory in AdS5 × S5, which recursively reduces n-pt to 3-pt Mellin amplitudes.

Will our results extend usefully to general CFTs? The present definition of the Mellin

amplitude [1] includes factors of Γ(δij) which are especially convenient for theories with

a perturbative expansion, where the existence of operators with dimensions ∆1 and ∆2

implies the existence of an operator with dimension ∆1+∆2, up to perturbative corrections.

We have only studied theories with a small number of low-dimension operators, so it may

be interesting to investigate Mellin amplitudes in say weakly coupled N = 4 SYM (not

necessarily at large N) , where the perturbation expansion involves a larger number of
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operators. But the larger question is whether the Mellin representation can be useful at

a non-perturbative level. Our arguments based on the OPE from section 2.1 suggest that

it will be, but we will need to make those arguments more precise in order to apply them

quantitatively. It would be interesting to investigate this question by studying simple,

exactly solvable models such as minimal models. One by-product of our analysis that

could be immediately useful is the functional equation, since its homogeneous solutions are

nothing other than the conformal blocks. In the future we expect to present results using

the functional equation to obtain explicit expressions for the conformal blocks.

Finally, we have extended the discussion of [3], showing that when we take the flat

space limit of a classical scalar field theory in AdS, the Mellin amplitude of the dual CFT

morphs into the S-Matrix of the bulk theory. This suggest that Mellin amplitudes can be

used to give a holographic and non-perturbative definition of the gravitational S-matrix,

through the flat space limit of AdS. The main open question is how much progress can be

made in the computation of Mellin amplitudes beyond the planar limit (i.e. tree level in

AdS). It will be exciting to pursue this research avenue towards a holographic description

of flat spacetime.
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A The functional equation and large δij behavior

We showed in section 5 that the diagrammatic rules are identical to the factorization

formula, and also that the diagrammatic rules satisfy the functional equation of 2.3. Fur-

thermore, we know that our formulas reproduce the poles of Witten diagrams from the

discussion of the factorization formula in section 3, so if there is any difference between

our formulas and the Witten diagrams then this difference must be an analytic function.

However, by linearity of the functional equation we find that any possible difference should

also satisfy the general functional equation (2.31) with M0 = 0.

Our formulas explicitly vanish as δij → ∞, and on physical grounds we expect that

Witten diagrams must be polynomially bounded in this limit. Among other things, if this

were not true then our Mellin amplitudes would not reproduce the flat space S-Matrix, as
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we know they do. So to really prove that our formulas are identical to the Mellin amplitude

of the corresponding Witten diagrams, it suffices to prove that no polynomial can satisfy

the homogeneous functional equation.

Let us see why a pure polynomial cannot satisfy the homogeneous functional equation.

Roughly speaking, one would expect this to follow because the functional equation requires

a certain periodicity, and polynomials clearly cannot be periodic, but we can easily make

a more precise and direct argument. The general homogeneous functional equation is

(δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij

(
δaiδbjM − δajδbiMaj,bi

ai,bj + δabδijM
ab,ij
ai,bj

)
= 0 (A.1)

Let us use a basis for the δij that is unconstrained by identities involving the dimensions

∆i. Any polynomial in this restricted set of δij variables will have a term of highest degree

D of the form

H(δij) =
∑

∑
dij=D

f(dij)

n∏

i<j

δ
dij
ij (A.2)

Plugging this into the functional equation, we see that the term in that equation of greatest

degree is unaffected by the shifts of the δij , so the first two terms in the summand cancel

and we find that 
(δLR −∆)(d−∆− δLR) +

∑

ab≤k<ij
δabδij


H(δij) = 0 (A.3)

The term in brackets of order δ2
LR will automatically cancel, but the term of order δLR

will not, at least for generic (physical) values of the ∆i. It also cannot be canceled by

the next-to-leading degree terms in M because the order δ2
ij coefficient of those terms also

cancels, so the only solution to this equation is H = 0, completing the proof.

Now, for completeness, we will present an argument that the functional equation can be

directly used to argue that our factorization formula correctly computes Witten diagrams.

(Notice that in the body of the text we proved this via a detour, through the equivalence

of factorization and the diagrammatic rules.) Namely, we will prove that our factorization

formula satisfies the functional equation when it is evaluated on its poles in δLR. We

know that the poles and residues of the factorization formula are identical to the poles and

residues of the Witten diagram in question, from the development of section 3, and so from

the argument above we then obtain that our factorization formula is indeed correct.

We want to prove that our factorization formula is sufficient to determine the Mellin

amplitude. More precisely, we claim that

M =

∞∑

m=0

Res(m)

δLR −∆− 2m
(A.4)

with

Res(m) = −4πhΓ2(∆− h+ 1)m!

Γ(∆− h+ 1 +m)


 ∑
∑
nij=m

∏

i<j≤k

(δij)nij
nij !

ML(δij + nij)




∆LR=∆+2m

Rm

(A.5)
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where of course Rm takes the same form as the left piece, so we have not written it out

explicitly. The arguments from section 5 immediately apply, so the functional equation

reduces to

M0 = (δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij
δabδijM

ab,ij
ai,bj (A.6)

The expression on the right hand side appears to be of order δ2
LRM as δLR → ∞, but as

before one can check explicitly that this dependence cancels between the first term and the

summand. Then the leading behavior for large δLR is of order δLRM , which approaches

a constant, independent of δLR. Thus up to a constant, we can evaluate the right hand

side of this equation on its poles. We will find a dramatic simplification. Let us focus on

a particular term in the summand and study

δABδIJM
AB,IJ
AI,BJ =

∑

m

−1

δLR−∆−2m−2

4πhΓ2(∆− h+ 1)m!

Γ(∆− h+ 1 +m)
δIJRm(δIJ → δIJ + 1) (A.7)

∑
∑
nij=m



∏

i<j≤k
ij 6=AB

(δij)nij
nij !


(δAB+1)nAB

nAB!
δABM

L(δij + nij ; δAB + nAB + 1)

where we have capitalized the AB, IJ to differentiate them from the ij that are being

summed over, and again we are leaving right piece implicit because we will be manipulating

it and the left piece in an identical way. Furthermore, since we are ignoring the constant

piece and only consider the the poles and their residues, we are implicitly evaluating all

the δij in this expression at the pole δLR = ∆ + 2m, in particular the δAB and δIJ are now

also assumed to be subject to this constraint. Focusing on the second line, notice that

(δAB + 1)nAB
nAB!

δAB = (nAB + 1)
(δAB)nAB+1

(nAB + 1)!
(A.8)

Let us use this fact and switch the order of summation, so that we sum over the AB labels

inside the sum over the nij ,

∑
∑
nij=m

k∑

A<B

(nAB + 1)



∏

i<j≤k
ij 6=AB

(δij)nij
nij !


 (δAB)nAB+1

(nAB + 1)!
ML(δij + nij ; δAB + nAB + 1) (A.9)

The result is that we obtain precisely the (m+1)th term of the series, except for (nAB +1)

type factors. However, when viewed from the perspective of the (m+ 1)th term, this just

means that we must multiply by
∑
nij = m + 1. This follows from the following identity

regarding sums over partitions of integers,

∑
∑
ni=m

k∑

A=1

(nA + 1)F (n1, . . . , nA + 1, . . . , nk) = (m+ 1)
∑

∑
ni=m+1

F (n1, . . . , nk) . (A.10)

Thus we find that the entire summand in (A.6) has the following poles

∞∑

m=0

2m(2∆− d+ 2m)
Res(m)

δLR −∆− 2m
(A.11)
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Evaluating also the first term on its poles gives

(δLR −∆)(d−∆− δLR)M → −
∞∑

m=0

2m(2∆− d+ 2m)
Res(m)

δLR −∆− 2m
, (A.12)

proving that the right hand side of the functional equation is analytic in δLR. To complete

the proof that our ansatz solves the functional equation it is sufficient to show that the

right hand side of (A.6) tends to M0 as δLR → ∞. This depends on the theory and the

structure of the diagram, and proving this was precisely the subject of section 5.

B Exchange of vector fields

In this appendix, we wish to examine how Mellin amplitudes factorize when a gauge boson

is exchanged in a bulk to bulk propagator. This analysis can be generalized to the exchange

of a higher spin field in the bulk. We will only consider amplitudes with external scalars.

We need a formula that relates the bulk to bulk propagator to the bulk to boundary

propagator

GµνBB,∆(x, y) =

∫
χ(c)dc

∫
ddzGµρ∂B,(h+c)(x, z)G

νσ
∂B,(h−c)ηρσ, (B.1)

where G∂B,∆ indicates the bulk to boundary propagator for a spin-1 field of dimension

∆, and GBB,∆ is the bulk to bulk propagator for the same field. The existence of such a

formula follows from the existence of the analogous formula for scalars. All we will assume

about the function χ(c) here is that it has a pole at c = ∆ − h. (A formula of the kind

that we need was developed in [53] but we will not need its detailed form.)

By inserting this formula in a Witten diagram we get

A(x1, . . . xn) =

∫
χ(c)dc

∫
ddzAµL(x1, . . . xm, z)A

ν
R(z, xm+1, . . . xn)ηµν . (B.2)

Let us lift the vector fields AL and AR to vector fields on the boundary of AdS in the

embedding space. As explained in [41, 54], a spin-1 primary operator Aµ(x) is uplifted to

a transverse spin-1 field AM (P ) on the light-cone of Md+2, such that

PM AM (P ) = 0 , Aµ(x) =
∂PM

∂xµ
AM (P ) , (B.3)

where PM = (1, x2, xm) is the Poincaré section of the lightcone.

It follows that

ηµνA
µ
LA

ν
R = ηMNA

M
L A

N
R , (B.4)

which uplifts equation (B.2) to the embedding space.

Conformal invariance tells us that AL must have the form

AML (P1, . . . Pm, P ) =
m∑

p=0

ApL(P1, . . . Pm, P )PMp (B.5)

with P0 ≡ P and where the ApL(P1, . . . Pm, P ) are m+ 1 scalar functions.
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We will also need the fact that the function ApL has a conformal weight at the point

Pq which is given by

∆p
q =

{
∆q, if q 6= p

∆q + 1, if q = p
(B.6)

where ∆q are the dimensions of the external operators in the original amplitude A.

Inserting this into (B.2), we get

A(x1, . . . xn) =

∫
χ(c)dc

∫
ddP

m∑

p=1

n∑

q=m+1

ApL(P1, . . . Pm, P )AqR(P, Pm+1, . . . Pn)(Pp · Pq)

≡
m∑

p=1

n∑

q=m+1

Apq(P1, . . . , Pn)(Pp · Pq). (B.7)

Note that the sum over p starts from 1, because the terms involving P ·P1 etc. have dropped

out because of the transversality constraint (B.5). From now, the range of the sums will

be kept implicit. Also in the term (Pp · Pq), one factor comes from the left, and the other

factor comes from the right. In general, the effect on the Mellin amplitude of multiplying

the correlation function by the factor Pi · Pj is to send M(δij) → δijM(δij − 1). We can

therefore for the moment consider the Mellin amplitude in the absence of this factor, and

reintroduce it later. But, this is exactly of the form we encountered in scalar theories,

where we have seen how factorization works. So, repeating the analysis for scalars, we now

find that

Mpq(δij) =

∫
χ(c)dcLp ×Rq, (B.8)

where Mpq is the Mellin transform of Apq. Here, the subscripts on L and R come from (B.7)

and do not indicate the number of particles inside L and R. We have kept that information

implicit to avoid clutter. We have

Lp =

∫
[dδ̃]L[dl]LM

L
p (δ̃ij , li)

k∏

i<j

Γ(δ̃ij)Γ(δij − δ̃ij)
Γ(δij)

(B.9)

where the constraints on the δ̃ are now
∑

j 6=i
δ̃ij = ∆p

i (B.10)

where ∆p
i is given by (B.6).

We are almost done now, since we can repeat the analysis for poles when a scalar is

exchanged. We find that Mpq contains a pole when

∑

ij

(δij + nij)−
1

2

(∑

i

∆p
i − h− c

)
= 0. (B.11)

However, since
∑

i ∆p
i =

∑
i ∆i + 1, we can rewrite (B.11) as

δLR =
∑

i

∆i − 2
∑

ij

δij = h+ c− 1 + 2m. (B.12)
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In order to obtain M from the Mpq’s, we take M =
∑

pq δpqMpq(δpq − 1). However, since

p and q are always on opposite sides of the propagator, their shift has no effect on the

position of the poles in δLR. Therefore, (B.12) is the position of the poles in M as well.

If we now assume that the function χ(c) has a pole at c = ∆ − h, we find that for the

exchange of a gauge boson, the Mellin amplitude has a pole at

δLR = ∆− 1 + 2m, (B.13)

with a residue that can be read off from (B.8).

A very similar analysis can be performed for gravity. As we mentioned above, how-

ever, the primary complication in computing graviton amplitudes is that Witten diagrams

involving the interaction of gravitons are inordinately complicated. It would be interesting

to see if this can be ameliorated using BCFW recursion relations and to compare their

form to the recursion relations developed for correlation functions of stress tensors and

conserved currents in [48, 49].

C Some technical developments

C.1 Shadow field identities

We saw in section 2.1 that to implement factorization and unitarity, for each operator with

dimension ∆ we need to introduce a shadow operator with dimension d − ∆. Our goal

is to understand factorization in the Mellin representation, so we should first understand

the relationship between the Mellin amplitude of a product of operators Oi(xi) and the

identical amplitude where one operator, say O1(x1), is replaced by its shadow Õ1(x1). The

result is

M̃(δ̃ij) = − 1

Γ(h−∆1)

∫
[dδ]M(δij)

n∏

1<i<j

Γ(δij)Γ(δ̃ij − δij)
Γ(δ̃ij)

. (C.1)

Now we will derive it.

The starting point is an identity relating propagation with dimension ∆ and d−∆:

Cd−∆

(−2P ·X)d−∆
= − 1

πhΓ(h−∆)

∫
ddP ′

Γ(d−∆)

(−2P · P ′)d−∆

C∆

(−2P ′ ·X)∆
(C.2)

where X is a point in the bulk of AdS, but P and P ′ are boundary points. If we apply this

identity to the computation of an AdS amplitude A and then represent A using a Mellin

amplitude M , we find

Ã(x1, . . . , xn) = − 1

πhΓ(h−∆1)

∫
dy

Γ(d−∆1)

(x1 − y)2(d−∆1)
A(y, x2, . . . , xn) (C.3)

= − 1

Γ(h−∆1)

∫
[dδ̃]



∫

[dδ]M(δij)

n∏

1<i<j

Γ(δij)Γ(δ̃ij − δij)
Γ(δ̃ij)




n∏

i<j

Γ(δ̃ij)(x
2
ij)
−δ̃ij

Or in other words, we have derived the relation (C.1) between the amplitude M and the

equivalent amplitude with O1 → Õ1.
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Now, we would like to use this relation to evaluate the R piece in eq. (3.24). Let us

rewrite it with variables relabeled in a way that suits our present purposes:

Mk+1(δij) = − 1

Γ(∆k+1 − h)

∫
[dδ̃]M̃(δ̃ij)

k∏

i<j

Γ(δ̃ij)Γ(δij − δ̃ij)
Γ(δij)

, (C.4)

where the integration variables are constrained by
∑

j 6=i δ̃ij = ∆̃i, and the amplitudes

M(δij) and M̃(δ̃ij) differ only through ∆̃k+1 = d − ∆k+1 in the first external leg (for all

other legs, ∆̃i = ∆i). In general, this applies only in the case that the δij variables also

satisfy similar constraints,
∑

j 6=i δij = ∆i, whereas in our factorization eq. (3.24) we need

to be able to take δLR = ∆k+1 +2m when m 6= 0. So this identity is not yet directly usable.

However, for the special case of three-point functions (k = 2), the integrations are vacuous,

and we can derive a shadow field identity for arbitrary δij . To do this, let us define new

variables δ̂ij that do satisfy the constraints, and write

M3(δij) = − 1

Γ(∆3 − h)

Γ(δ12 − δ̃12)Γ(δ̂12)

Γ(δ̂12 − δ̃12)Γ(δ12)

∫
[dδ̃]M̃(δ̃ij)

2∏

i<j

Γ(δ̃ij)Γ(δ̂ij − δ̃ij)
Γ(δ̂ij)

=
Γ(δ12 − δ̃12)Γ(δ̂12)

Γ(δ̂12 − δ̃12)Γ(δ12)
M3(δ̂ij). (C.5)

One can now substitute this relation into eq. (3.24), with (1, 2)→ (n− 1, n) for continuity

of index labels and ∆3 → c+ h, δ̂13 → l̂n−1, δ̂23 → l̂n, and constraints that give

2δ̃n−1,n = ∆n−1 + ∆n − h+ c

2δ̂n−1,n = ∆n−1 + ∆n − h− c
2l̂n−1 = h+ c+ ∆n−1 −∆n

2l̂n = h+ c+ ∆n −∆n−1

2δn−1,n = ∆n−1 + ∆n − δLR. (C.6)

Thus, we find that on c = ∆− h, δLR = ∆ + 2m, we have

R = −Γ(∆− h)
(h−∆)−m(

∆n−1+∆n−∆
2

)
−m

MR
3 (δ̂n−1,n, l̂i)

= −Γ(∆− h)(−1)m

(∆− h+ 1)m
M3(δn−1,n +m)(δn−1,n)m

This is sufficient to prove the factorization formula (3.2) for all poles of δLR in n-point

functions when adding on three-point functions:

Mn(δij) ∼
∑

nij

πhΓ(∆− h+ 1)

δLR −∆− 2m
ML
k+1(δij + nij)




k∏

i<j

(−1)nij

nij !

Γ(δij + nij)

Γ(δij)




× (h−∆)−m(
∆n−1+∆n−∆

2

)
−m

MR
3 (δ̂ij , l̂i) (C.7)
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Now, the key to generalizing beyond three-point functions is that when we factorize the

propagator to obtain eq. (3.24), either side of the diagram may be chosen to be the “Left”

or the “Right”, and the answer must be the same regardless. Instead of adding a three-

point function onto a k + 1-point function, we could have made the k + 1-point function

the “Right” piece.

Applying eq. (3.24) in this way with L↔ R, we obtain

Mn(δij) ∼
∑

m

πh(h−∆)

δLR −∆− 2m
MR

3 (−1)m
(δn−1,n)m

m!
× L. (C.8)

By the constraints, we have δn−1,n + m = ∆n−1+∆n−∆
2 in the above formula. Matching

residues of the poles in δLR in eqs. (C.8) and (C.7), we therefore obtain

∑
∑
nij=m

Γ(∆− h+ 1)ML
k+1(δij + nij)




k∏

i<j

(−1)nij
(δij)nij
nij !


 (h−∆)−m(

∆n−1+∆n−∆
2

)
−m

=
(h−∆)(−1)m

m!
(

∆n−1+∆n−∆
2

)
−m

× L. (C.9)

After some simplifications, this reduces to

L = −Γ(∆− h)m!(−1)m

(∆− h+ 1)m

∑
∑
nij=m

ML
k+1(δij + nij)




k∏

i<j

(δij)nij
nij !


 , (C.10)

which proves the identity (3.25).

C.2 General diagrammatic identities and vertices from the functional equa-

tion

We saw in section 5 that although the factorization formula (3.2) looks diagrammatically

non-local, in that the residues of the poles in one δi appear naively to depend on the

positions of all the other δj ’s, it in fact satisfies a set of diagrammatic rules for each vertex

and propagator that depend only on adjacent pole positions. A key technical aspect of this

fact was an identity (5.9) that allowed the rules to be proved recursively, so that larger

diagrams could be effectively reduced to smaller ones with fewer external lines. For the

same result to occur in a general φn theory, there must exist a general identity of the form

shown in equation (5.11). We expect this identity to be true in all φn theories, and we

have explicitly computed the φ4 vertex

Vabcd =
∑

na,nb,nc,ña,ñb,na

[
1

na!nb!nc!(1−h+ma+∆a)−na(1−h+mb+∆b)−nb(1−h+mc+∆c)−nc

(∆abc,d+ma+mb+mc−md)md−na−nb−nc(∆ab,c+ma+mb−mc−na−nb+nc)mc−nc−ña−ñb
(mc − na − nb − nc)!ña!ñb!(mc − nc − ña − ñb)!

Vcda(ma − na − ña − na)(∆cda,b +ma − na − ña −mb + nb + ñb)mb−nb−ñb−na
(1− h+mb − nb + ∆b)−ñbna!(1− h+ma − na + ∆a)−na−ña(mb − nb − ñb − na)!

]

and checked our identity (5.11) numerically for the case of φ3 and φ4.
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We can use the functional equation to generate more general vertices. The idea is that

if we construct the (s+ t)-pt Mellin amplitude from (s+ 1) and (t+ 1)-pt vertices and plug

the result into the functional equation, then we will automatically generate an (s + t)-pt

diagrammatic vertex. This means we begin by taking (schematically)

Ms+t(δ) =
∑

m

V∆1...∆s∆(m1, . . . ,ms,m)S∆(m)V∆1...∆t∆(ms+1, . . . ,ms+t,m)

δ −m (C.11)

where we are imagining that the external legs are themselves propagators coupling to

further vertices, and δ is the single propagator variable. Once we plug this formula into

the functional equation, we need to deal appropriately with the fact that the external legs

are ‘off-shell’, which means that the mi can be shifted. The resulting identities can be used

as a definition or a check of the n-pt vertex; we also obtain very non-trivial identities from

the symmetry properties of these vertices.

C.3 Flat space limit identities

In this appendix we prove two identities that were used in the study of the flat space limit

of the AdS factorization formula in section 6. Firstly, we want to prove that

∞∑

m=0

1

m!

(
∂

∂tL

∂

∂tR

)m (tLtR)h−∆−1e−βL/tL−βR/tR

Γ(∆− h+ 1 +m)

∣∣∣∣∣
tL=tR=1

= βh−∆
L e−βL δ(βL − βR) . (C.12)

This can be proven by integrating both sides against βx−1
L βy−1

R over βL and βR from 0 to

∞. After performing the integrals, the left hand side gives

∞∑

m=0

Γ(x)Γ(y)

m!Γ(∆− h+ 1 +m)

(
∂

∂tL

∂

∂tR

)m
(tLtR)h−∆−1txLt

y
R

∣∣∣∣
tL=tR=1

=

∞∑

m=0

Γ(x)Γ(y)

m!Γ(∆− h+ 1 +m)(x+ h−∆)−m(y + h−∆)−m
(C.13)

= Γ(x+ y + h−∆− 1)

and the right hand side trivially gives the same.

Secondly, we want to prove that the limit

lim
∆→∞

∞∑

m=0

(
∂

∂tL

∂

∂tR

)m (βLβR)
∆
2 (tLtR)h−∆−1e−βL/tL−βR/tR(

u+ ∆+2m
∆2

)
Γ(∆− h+ 1 +m)m!

∣∣∣∣∣
tL=tR=1

(C.14)

is given by

δ(βL − βR)e−βLβhL
2βL

2βLu+ 1
. (C.15)

This was used in section 6.1.1 with the identification u = −δLR/∆2.

The strategy to prove that (C.14) equals (C.15) is to compute their double Mellin

transform by integrating them against βx−1
L βy−1

R over βL and βR from 0 to ∞. The Mellin

transform of (C.15) is

∫ ∞

0
dβe−ββx+y+h−1 2

2βu+ 1
=

∫ ∞

0
ds

e−1/s

sx+y+h

1

u+ s/2
, (C.16)
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where we changed integration variable to s = 1/β. The Mellin transform of (C.14) is

lim
∆→∞

∞∑

m=0

(
∂

∂tL

∂

∂tR

)m Γ
(
x+ ∆

2

)
Γ
(
y + ∆

2

)
(tLtR)h−

∆
2
−1txLt

y
R(

u+ ∆+2m
∆2

)
Γ(∆− h+ 1 +m)m!

∣∣∣∣∣
tL=tR=1

(C.17)

= lim
∆→∞

∞∑

m=0

Γ
(
x+ ∆

2

)
Γ
(
y + ∆

2

)

m!Γ(∆− h+ 1 +m)
(
h+ x− ∆

2

)
−m
(
h+ y − ∆

2

)
−m

1

u+ 2m
∆2

Comparing with (C.16), we identify the continuous integration variable s with the limit of

the discrete variable 4m/∆2. Then, the sum over m turns into the integral over s

∞∑

m=0

4

∆2
· · · →

∫ ∞

0
ds . . . (C.18)

and, using the Stirling approximation, the summand reduces to the correct integrand,

lim
∆→∞

∆2Γ
(
x+ ∆

2

)
Γ
(
y + ∆

2

)

4m!Γ(∆− h+ 1 +m)
(
h+ x− ∆

2

)
−m
(
h+ y − ∆

2

)
−m

∣∣∣∣∣
m= s∆2

4

=
e−1/s

sx+y+h
. (C.19)
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