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Abstract: We establish a close parallel between classicalization of gravitons and

derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation

in high energy scattering process represents classicalization with the classicalization radius

given by Schwarzschild radius of center of mass energy, and with the precursor of black hole

entropy being given by number of soft quanta composing this classical configuration. Such

an entropy-equivalent is defined for scalar classicalons also and is responsible for exponen-

tial suppression of their decay into small number of final particles. This parallel works

in both ways. For optimists that are willing to hypothesize that gravity may indeed self-

unitarize at high energies via black hole formation, it illustrates that the Goldstones may

not be much different in this respect, and they classicalize essentially by similar dynamics

as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-

hole-unitarization process and of the role of entropy in it, as it illustrates, that much more

prosaic scalar theories essentially do the same. Finally, it illustrates that in both cases

classicalization is the defining property for unitarization, and that it sets-in before one can

talk about accompanying properties, such as entropy and thermality of static classicalons

(black holes). These properties are by-products of classicalization, and their equivalents

can be defined for non-gravitational cases of classicalization.

Keywords: Solitons Monopoles and Instantons, Nonperturbative Effects, Black Holes

ArXiv ePrint: 1103.5963

Open Access doi:10.1007/JHEP11(2011)070

mailto:Georgi.Dvali@cern.ch
mailto:bfkl08@gmail.com
mailto:kehagias@central.ntua.gr
http://arxiv.org/abs/1103.5963
http://dx.doi.org/10.1007/JHEP11(2011)070


J
H
E
P
1
1
(
2
0
1
1
)
0
7
0

Contents

1 Introduction 1

2 Classicalization of Goldstones 4

3 Classicalization by gravitons 7

4 Classicalization of graviton scattering 10

5 Parallels and differences 12

5.1 Classicalons in gravity versus Goldstone 12

5.2 The role of entropy in unitarization by classicalization 12

5.3 If not N → 2, then why 2 → N? 13

6 Classicalization landscape: gravity as a most efficient classicalizer 15

6.1 Graviton as a most efficient classicalizer 15

6.2 Generalized holographic bound on information storage 19

6.3 Black hole entropy as classicalon entropy? 20

7 Conclusions 21

1 Introduction

Recently, a concept of non-Wilsonian UV-self completeness for a class of non-renormalizable

theories was introduced in [1–3]. The meaning of this concept is, that a seemingly unitary-

violating theory prevents us from going to sub-cutoff distances, by becoming classical in

deep UV. This concept was inspired by the original suggestion for Einstein gravity [4, 5],

due to generically-expected feature, that high-energy collisions there produce black holes.

It was suggested, that this fact leads us to self-completeness since black hole formation au-

tomatically prevents us from probing sub-Planckian distances. Inspired by this property of

gravity, in [1] this concept of self-UV-completeness, which we refer to as classicalization, was

generalized to a class of derivatively-self-interacting theories. Defining property of such the-

ories is energy self-sourcing and existence of classical radius that sets the interaction range

at high center of mass energy and dominates over all the relevant quantum length-scales.

Satisfactory understanding of physical viability of the classicalization phenomenon

requires field-theoretic analysis based on combination of perturbative and non-perturbative

methods. Subsequent studies [2, 3] based on non-perturbative analysis of scattering process,

confirm the emergence of the classical length scale in such processes. In what follows, we

shall also employ such analysis. A promising approach in this direction would be to develop

a path integral formulation of the problem, as suggested recently in [6].
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The main purpose of the present work is to establish a deeper connection between

classicalization phenomena in gravity and in Goldstone-type scalar theories, for the sake

of improving understanding on both sides.

The idea of classicalization, of course, raises number of important question, one of

which is, how close are the parallels between gravity and Goldstones?

In other words there are two major questions.

1) Do black holes really unitarize scattering amplitudes, and if yes, why?

and

2) How special are black holes as compared to other classical configurations for unita-

rization of the amplitudes?

These questions are closely related and (as we shall see) the answer to the first question

is also a key for answering the second one. In order to outline our claims and findings, let

us deconstruct the above questions.

The known properties of the black holes are: 1) (semi)classicality; 2) classical stability;

3) existence of Schwarzschild (or other) horizon; and 4) the subsequent properties: Absence

of classical hair, existence of Hawking temperature and of Bekenstein-Hawking entropy.

All the properties listed in 4) are the consequences of 1)-3). But obviously, the property

1) (and 2)) can exist without the rest. In order to understand which of these properties are

crucial for unitarization, let us outline why we even expect that black holes can unitarize

high energy scattering amplitudes.

The idea is simple. In order to probe short distances one needs to do high-energy

scattering with small impact parameter. This requires bringing a lot of energy within a

small volume. Because any form of energy sources gravity, bringing a lot of energy within

the small volume creates a classical gravitational field. If volume is small (equivalently

if energy is large) so that energy concentration is within its Schwarzschild radius rg, the

whole region is expected to collapse into a black hole [7]. The inevitability of the very last

step for the case of arbitrary topology is still under debate, but we shall not enter there.

Our findings are precisely directed to bypass this issue and reduce the unitarization process

to its bare essentials (for which, as we shall argue, what matters is not a ”blackholeness”

but rather classicality). So therefore, let us pick up a spherically-symmetric geometry in

which case most of us probably would agree that black hole formation is inevitable.

Lets us note here that understanding the high-energy scattering in gravitational theo-

ries is a central problem and has attracted a lot of attention both in the framework of Ein-

stein gravity as well as in supergravity and/or string theory [8]–[18, 19]. An emerging fea-

ture in all these studies, is that quantum gravity is endowed with deep long-distance issues

connected with black hole formation. The latter provides a classical scale, the Schwarzschild

radius, larger than any quantum scale, and seems to lead to the conclusion that unitar-

ity in gravity theory is not a short-distance problem and cannot be resolved by any UV

modification of the theory. For example, string theory has improved perturbation theory

compared to QFT, which however, breaks down precisely at impact parameter of the order

of Schwarzschild radius. Although there is no full proof for the inevitability of black hole
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formation in transplanckian scattering with sub-Schwarzschild radius impact parameter,

there are indications by numeric simulations for example [20], that this is indeed the case.

In addition, the radiated away gravitational energy has been calculated in [21, 22] and it

is a finite fraction of the total center of mass energy
√
s forming possibly a large black hole

with mass ∼ √
s. It should be also noted that in 2+1-dimensions the inevitability of black

hole formation has been demonstrated for head-on collision [23].

Now, once black hole is formed, its decay into any few-particle quantum state is ex-

ponentially suppressed. Whatever property is behind this suppression, is the key to the

unitarization process. For the black holes this suppression can be understood from any of

the properties 1-4) listed above. And in particular, the suppression can be easily under-

stood from the properties of entropy and thermality, because probability to produce a pair

of highly energetic particles with energy equal to an entire mass of a black hole (MBH)

in a thermal evaporation process at temperature T−1
H ∼ MBHL

2
P is at least Boltzmann

suppressed by a factor

ΓBH→2 ∼ e
−MBH

TH ∼ e−(MBHLP )2 . (1.1)

Let us ask now, are all 1)-4) properties necessary for such a suppression? The answer

to this question is negative. In fact property 1), classicality is the defining property. Once

we understand that a given object is classical, the suppression of any two-particle decay

automatically follows, regardless of entropy and any other property. In order to see this,

let us imagine that in a scattering experiment we stop short of forming a horizon, but still

form a classical configuration of the gravitational field of the size not that different from

a Schwarzschild horizon of a would-be black hole (rg). Since, there is no horizon, such a

configuration carries no entropy or temperature, but it is nevertheless classical.

How probable is the decay of such a classical configuration say in a two-particle quan-

tum state? Of course, intuitively we understand that the suppression must be exponential,

but in order to quantify it, let us analyze classicality from field-theoretic perspective. One

of the signals of classicality is that the mass M of a configuration is much larger than

its inverse size r−1
∗ . In other words, we deal with a coherent superposition of many soft

quanta. The number of quanta can be estimated to be N ∼ Mr∗. Now the question is

how probable is the decay of a coherent N -particle state into two quanta? This decay (up

to factors of order logN in the exponent) is suppressed as,

ΓN→2 ∼ e−N . (1.2)

Notice, that when applied to black holes, this counting correctly reproduces the above

Boltzmann (or entropy) factor, but it is much more general. We thus learn, that neither

entropy nor thermality are the defining universal suppression factor, but rather classicality.

It is classicality and not ”blackholeness” the defining universal reason for unitariza-

tion!

Being liberated from the necessity of having entropy (or even a horizon), we can ask

why can’t other classical configurations that are also result of energy sourcing play the role

in unitarizing the scattering cross sections? This is the key idea of classicalization.

– 3 –
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In fact, we can turn the above reasoning around, and argue that classicalon config-

urations allow us to define a notion of an entropy precursor, in terms of the number of

soft quanta produced in classicalization process, which in the particular case of black holes

agrees with the entropy counting, but is much more general and applicable to other classical

configurations produced by energy self-sourcing. This view can also shed a different light

at the origin of black hole entropy, by viewing it as a necessary outcome of classicalization,

which requires production of many soft quanta, and not vice versa.

Classicalons share with black holes two properties that are crucial for unitarization.

These are, the energy (self)sourcing and classicality. Thus, the bare essentials of unitariza-

tion process in these two different theories are surprisingly similar.

We hope, that a simple calculation below illustrates the viability and the depth of

this connection. For this we shall consider the scattering process in gravity up to the point

where we stop short of horizon formation, and show that formation of classical configuration

is closely connected to the formation of analogous configuration in a scattering process

involving self-sourcing of Goldstone-type scalars.

The idea is to repeat the calculation of the scattering process of [2], which was per-

formed there for Goldstone waves, for a spin-2 system. Namely, we consider scattering of

wave-packets with a very small occupation number but trans-Planckian center of mass en-

ergy and see how the system classicalizes at larger and larger distances. Not surprisingly we

shall discover that the role of the classicalization radius, r∗, is played by the Schwarzschild

radius corresponding to the center of mass energy.

This emerging parallels allow us to give an useful unified parameterization of the

landscape of classicalizing theories, by parameterizing how efficiently the classicalization

radius r∗(s) grows with energy
√
s. We shall see, that gravity (spin-2 field) is a most

efficient classicalizer, and gives a linear growth, r∗ ∝ √
s. In all other cases, of spin-0

classicalizer fields, the growth is slower. This parameterization also allows to generalize

the holographic bound on information storage to all classicalizing theories. The bound

is the most stringent for gravity and non-existent for weakly-coupled non-classicalizing

theories, with spin-0 classicalizing theories occupying intermediate states.

In order to try to achieve a maximal clarity, we shall structure our discussion in the

following way. First, we shall briefly go through the essential ingredients for the Goldstone

analysis, and give an universal definition of the r∗-radius. Then we shall repeat the similar

analysis for gravitons. Finally, we shall highlight important parallels between the two cases

and emphasize the universal role of classicality for unitarization.

2 Classicalization of Goldstones

We shall adopt the following useful definition of the classical radius r∗ [2], which is applica-

ble to essentially any interacting theory, regardless of classicalization. With this definition,

r∗ is a classical distance down to which in a high-energy scattering process the wave-packets

propagate essentially freely, without experiencing a significant corrections from interaction

terms, and beyond which the scattering can no longer be ignored. Simply speaking, r∗ can

be viewed as a distance that defines interaction range at given energy
√
s. Therefore, r∗
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automatically determines the cross section as a geometric cross-section

σ ∼ r2∗ . (2.1)

With this definition r∗ is a classical length that survives in the limit ~ = 0. The above

definition of r∗ is possible essentially in any interacting theory. The defining property of

classicalization is the behavior of r∗ as a function of energy, relative to other quantum

length-scales in the problem. The key property for classicalizing theories is, that for
√
s ≫

M∗, r∗ exceeds all the other quantum length scales in the problem. In particular, r∗(s) ≫
L∗ for

√
s ≫ L−1

∗ . In such a system the scattering takes place way before the system has

any chance of probing distance L∗.

Following [2], we shall now review the classicalization of scattered wave-packets on a

simple prototype example of a derivatively-coupled Nambu-Goldstone type scalar with the

following Lagrangian,

L =
1

2
(∂µφ)2 +

L4
∗

4

(

(∂µφ)2
)2
. (2.2)

In particular, the above Lagrangian can be viewed as a simplest interacting truncation of

Dirac-Born-Infeld-type theory, which is fully sufficient for our purposes. Our results can

be easily generalized to higher order non-linearities (see below). This theory is symmetric

under the shift by an arbitrary constant c,

φ → φ + c . (2.3)

The equation of motion is,

∂µ(∂µφ
(

1 + L4
∗(∂νφ)2)

)

= 0 . (2.4)

In order to identify the r∗ radius in the above theory, let us consider a scattering process

in which for r = ∞ and t = −∞, φ is well-approximated by a spherical wave of very high

center of mass energy
√
s = A2/a ≫ M∗ ≡ L−1

∗ (where a is a characteristic wave-length)

and amplitude A,

φ0 =
ψ(r + t)

r
, (2.5)

which satisfies the free-field equation of motion,

�φ0 = 0 . (2.6)

Since the initial wave has to describe few quantum particles, we shall assume A ∼ 1 (small

occupation number). We shall now solve the equation (2.4) iteratively, by representing

φ-field as superposition of a free wave-packet φ0 and a scattered wave φ1,

φ = φ0 + φ1 . (2.7)

We shall treat φ1 as a small perturbation and shall try to understand at what distances

this correction to a free wave becomes significant. The classicalization radius will be set

by a classical distance at which the approximation

φ1 ≪ φ0 , (2.8)

breaks down.
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The equation for the leading correction to the free wave now becomes,

�φ1 = −L4
∗∂

µ(∂µφ0(∂νφ0)
2) . (2.9)

Taking into the account properties of ψ(t + r)-wave, for a ≪ r, the leading contribution

to the right hand side is,

�φ1 = −L
4
∗

r5
(2ψ2ψ′′ + 8ψψ′2) , (2.10)

where prime denotes the derivative with respect to the argument. For a−1 ≫ r−1 the

solution of this equation can be approximated by,

φ1 ≃ −f(r + t)
L4
∗

6r4
, (2.11)

where,

f(r + t) ≡
∫ r+t

0
(2ψ2(y)ψ′′(y) + 8ψ(y)ψ′2(y))dy . (2.12)

Notice, that since ψ is a wave-packet of amplitude ∼ 1 and wave-length a, we have,

f ∼ 1

a
ψ . (2.13)

Thus, the breakdown of the condition (2.8), which signals that scattering became signifi-

cant, takes place at a distance,

r∗ ≡ L∗(L∗/a)
1
3 . (2.14)

Or, translating a in terms of center of mass energy, we can write,

r∗ ∼ L∗(L∗
√
s)

1
3 . (2.15)

For example, for a Gaussian wave-packet,

φ0 = A
e−

(r+t)2

a2

r
, (2.16)

the equation (2.10) can be solved exactly in the limit a→ 0,

φ1 (r ≫ a) = −32

9

√

π

3
L4
∗A

3 θ(r + t)

a(t− r)3r
, (2.17)

which confirms (2.14).

Notice, that the physical meaning of the classicalization radius can be understood also

in the following way. Consider a probe source Jµ1µ2 ...µ3 coupled to φ. Due to the shift

symmetry this coupling has to involve gradients of φ. For example,
(

L2n
∗ ∂µ1φ∂µ2φ . . . ∂µnφ

)

Jµ1µ2 ...µn . (2.18)

In other words, the probe sees an effective background ”metric” (potential),

V =
(

L2n
∗ (∂µ1φ)(∂µ2φ) . . . (∂µnφ)

)

, (2.19)

created by φ, and scatters off it. This background becomes order one at r∗ for φ1 given

by (2.17) and with a ∼ r∗. In other words, a softest wave-packet of a fixed energy (and

thus of fixed r∗) would-give an order one potential exactly at the distance r∗.
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3 Classicalization by gravitons

We have seen above how a scattering of Goldstone-type scalar wave-packets is classicalized

due to self-sourcing. We now wish to consider a situation in which the classicalization of

the same wave-packets happens through ordinary gravity.

It is well known that a collapse of a spherical source leads to the formation of a black

hole. This is well-known for the sources that are classical to start with. That is, when

the occupation number of the initial wave-packet is so large that it can be treated as a

classical object. What we wish to see instead is, that exactly the same process for a small

initial occupation number can be viewed as classicalization, with classicalization radius r∗
being equal to the Schwarzschild radius (rg) corresponding to the center of mass energy

of the wave-packet. In other words, classicalization is a precursor effect in which initially-

quantum wave-packet evolves into a configuration with a classical gravitational field that

sets an effective range of the interaction.

We consider Einstein’s graviton hµν and a massless Goldstone-type scalar φ. At the

level of the free fields, the Lagrangian is,

Lfree = − 1

2
hµνE αβ

µν hαβ +
1

2
(∂µφ)2 . (3.1)

where

E αβ
µν hαβ = �hµν − ηµν�h − ∂µ∂

αhαν − ∂ν∂
αhαµ + ηµν∂

α∂βhαβ + ∂µ∂νh (3.2)

is a linearized Einstein tensor. Eq. (3.1) represents an unique linear ghost-free action for a

massless spin-2 field. This theory propagates 2 degrees of freedom, and is invariant under

the following shift,

δhµν = ∂µξν + ∂νξµ , (3.3)

where ξµ is an arbitrary vector (below we shall use harmonic gauge ∂µhµν = 1
2∂νh). In

order to see how graviton classicalizes in the scattering process, we shall introduce the

interaction terms. For our purposes we shall limit ourselves by cubic order interactions

in fields. To this order the coupling can be accounted by coupling graviton to the energy

momentum tensor of the system. That is, we supplement (3.1) by,

Linteraction = LP hµν T
µν(φ) + LP O(h3)Einstein (3.4)

where, LP ≡MP is the Planck length, and

Tµν(φ) = ∂µφ∂νφ − 1

2
ηµν(∂αφ∂

αφ ) (3.5)

and O(h3)Einstein, stands for a cubic part of the Einstein’s action, which can be thought of

as a self-sourcing of graviton by its own energy-momentum tensor. For simplicity, we shall

not write this term explicitly in the action, but only its contribution into the equation of

motion. To this order (and using harmonic gauge) the equation of motion for the graviton

has the following form,

�hµν = −LP

(

Tµν − 1

2
ηµν T

α
α

)

, (3.6)

– 7 –
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where

Tµν ≡ Tµν(φ) + Tµν(h) (3.7)

and

Tµν(h) = −1

2
hαβ (∂µ∂νhαβ + ∂α∂βhµν − ∂α(∂νhµβ + ∂µhνβ)) −

−1

2
∂αhβν∂

αhβ
µ +

1

2
∂αhβν∂

βhα
µ − 1

4
∂µ hαβ ∂ν h

αβ

− 1

4
ηµν

(

∂α hβγ ∂
β hαγ − 3

2
∂α hβγ ∂

α hβγ)

)

− 1

4
hµν �h +

1

2
ηµν hαβ �hαβ . (3.8)

Since, we have already discussed the classicalization due to self-sourcing of φ, we shall

not include the self-interaction terms for simplicity, but only terms that source graviton.

We shall now proceed as follows. We assume that our system starts at t = −∞ and

r = ∞ in an ”in”-state with no gravitons and a collapsing free wave-packet of φ = φ0 with

a trans-Planckian center of mass energy and a small occupation number.

Perturbatively, such a φ-scattering due to graviton exchange would violate unitarity

for
√
s ≫ MP . Instead we shall see that system classicalizes via production of a large

gravitational field.

We shall observe how the initial quantum wave will evolve into a classical configuration

of the graviton field, and how the classicalization distance will depend on energy. In order

to achieve this goal, we shall look for the solution for graviton in form of an expansion,

hµν = h(0)
µν + h(1)

µν , (3.9)

where h
(0)
µν is the solution of the linear equation, that takes into the account sourcing of

graviton by Tµν(φ) (but ignores self-sourcing!), whereas, h
(1)
µν is the next order correction

due to self-sourcing by Tµν(h). We than try to find out at what radius,

h(0)
µν ∼ MP (3.10)

and

h(1)
µν ∼ h(0)

µν . (3.11)

This will define the classicalization radius, r∗. We shall discover that this distance is set by

the classical scale equal to a Schwarzschild radius corresponding to a center of mass energy.

This is a clear signal that system classicalizes by formation of classical objects whose size

is governed by the Schwarzschild radius. Let us now analyze the scattering process. We

choose, φ0 to be a free spherical wave-packet,

φ0 =
ψ(r + t)

r
, (3.12)

of amplitude A and energy
√
s ≡ M ∼ A2/a, where 1/a is a characteristic momentum

(or inverse localization width) entering in the wave-packet. For evaluating h
(0)
µν we need to

solve equation (3.6) with the source (3.5), which takes the following form,

�h(0)
µν = −LP (∂µφ0∂νφ0) . (3.13)

– 8 –
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Let us evaluate this equation on a spherical wave-packet. Picking up (a most interesting)

h00 component of the graviton that in classicalized limit should reproduce Newtonian

potential of a classical source, we get

�h
(0)
00 = −LP

ψ′2

r2
, (3.14)

where prime denotes derivative with respect to the argument (in this case (t + r)). Is is

obvious that for any localized wave-packet with total center of mass energy M , outside the

source the Newtonian gravitational potential must behave as h
(0)
00 ∼ LPM/r, which makes

it clear that the classicalization radius is given by the Schwarzschild radius associated with

the center of mass energy M .

To make the analogy with the Goldstone case deeper, we wish to represent the metric

in the form that is most convenient for confronting it with the case of a classicalized scalar

field (2.17). For this, let us take

φ0 =
ψ(r + t)

r
= A

e−
(r+t)2

2a2

π1/4r
, (3.15)

which represents a wave-packet of amplitude A and energy M ∼ A2/a. The equation (3.14)

now becomes (irrelevant factors are absorbed in LP ),

�h
(0)
00 = − 2LP M

1

r2

(

1 +
1

2
a2∂2

t

)

e−
(r+t)2

a2

a
√
π

(3.16)

For clarity of the solution, we shall take a limit a→ 0, A2/a =fixed, and use the relation

lim
a→0

1

a
√
π
e−

(r+t)2

2a2 = δ(r + t) . (3.17)

The equation then becomes,

�h
(0)
00 = − 2LP

M

r2
δ(r + t) , (3.18)

which gives,

h
(0)
00 =

LPM

r
θ(r + t)ln(r − t) . (3.19)

Comparison of this expression with (2.17) suggests a clear analogy between the two cases.

In particular, it is obvious that in gravity LP plays the role of L∗, whereas the role of r∗
is played by the Schwarzschild radius associated with energy

√
s ≡ M . Indeed, classical-

ization radius is set by the condition (3.10), which is reached at r∗ ∼ L2
PM , and which is

nothing but the Schwarzschild radius of a black hole of mass M .

Note, that appearance of a time-dependent log-factor in (3.19), is an artifact of the

harmonic gauge we are working in. In this gauge, appearance of the log-factors in the

gravitational tails at 1/r2-order in source expansion is a well known feature in gravitational

wave physics, and can be removed by appropriate gauge shift, which effectively amounts

to a correction of light-cone outside the source [24–27]. However, for our purposes, of
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making the parallel between the graviton and Goldstone classicalization more transparent,

we prefer to stay in the above gauge.

Now evaluating (3.8) on (3.19) and inserting it eq. (3.6) we can get the standard

corrections to the metric at second order in L2
P . For example,

h
(1)
00

MP
∼ 1

2

r2∗
r2
, (3.20)

which clearly indicates that the second condition of classicalization (3.11) is also met at r ∼
r∗. We thus see, that the classicalization radius for spin-2 coincides with the Schwarzschild

radius corresponding to the center of mass energy. For the interested reader, there is a full

non-linear treatment for the collapse of a spherical light shell confirming our findings for

the formation of the classicalon (black hole in this case) [28], for us however most important

is the deconstruction of the collapse from classicalization point of view, as we did above.

4 Classicalization of graviton scattering

We shall now study the classicalization of graviton scattering. For this we shall repeat

the same exercise as in the previous case, but replace an incoming scalar wave-packet by

a graviton one. We shall thus again solve the equation (3.6) iteratively, by setting the

scalar field to zero, and taking h
(0)
µν as a free incoming gravitational wave-packet. All

the machinery required for such analysis has already been prepared in series of excellent

papers [24–27, 29] studying both the multipole and the post-Newtonian expansions of

gravitational waves. We shall limit ourselves by adapting the key essentials of this analysis

for our purpose of understanding classicalization of scattered gravitons.

For standard convenience we rewrite the equation (3.6), in notation of trace-reversed

graviton,

h̄αβ = hαβ − 1

2
ηαβh

κ
κ , (4.1)

which in harmonic gauge ∂µh̄
µν = 0 takes the form,

�h̄µν = − 1

MP
Λµν (4.2)

where Λµν is given by

Λµν(h̄)=−h̄κλ∂µ∂ν h̄κλ + ∂κh̄
µλ∂λh̄

νκ +
1

2
ηµν∂λh

σ
κ∂σh̄

κλ

−∂λh̄
ντ∂µh̄λ

τ − ∂λh̄
µτ∂ν h̄λ

τ + ∂λh̄
µτ∂λhν

τ (4.3)

+
1

8

(

2ηµληνκ − ηµνηκλ
)

(

2∂κh̄
τσ∂λh̄τσ − ∂κh̄

τ
τ∂λh̄

σ
σ

)

.

We shall solve this equation iteratively by representing a graviton as a superposition of free

and scattered waves,

hµν = h(0)
µν + h(1)

µν , (4.4)

which to the leading order satisfy the following equations,

�h̄(0)
µν = 0 , ∂µh̄

(0)
µν = 0 (4.5)
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and

�h̄(1)
µν = − 1

MP
Λµν(h(0)) (4.6)

The solution to (4.5) is usually given in terms of infinite multipolar series using symmetric

trace-free harmonics [29] and takes the form of multipolar waves

h̄(0)µν =

∞
∑

ℓ=0

∂L

(

Kµν
L (u)

r

)

(4.7)

Here L = i1i2 . . . iℓ is a compact notation for multipolar index of ℓ spatial indices. Thus,

Kµν
L = Kµν

i1i2...iℓ
and ∂L = ∂i1∂i2 . . . ∂iℓ . In particular Kµν

i1i2...iℓ
in our case is a function of

u ≡ t+ r and it is symmetric and trace-free in its lower indices.

For simplicity we shall choose incoming wave to be a quadrupole,

h̄
(0)
00 = −2∂i∂l

(

Mil(u)

MP r

)

,

h̄
(0)
0i = 2∂j

(

M
(1)
j i (u)

MP r

)

, (4.8)

h̄
(0)
ij = −2

M
(2)
ij (u)

MP r
,

(4.9)

where M
(n)
kl = dnMkl/dt

n.

The fact, that very similar classicalization mechanism is at work as in the case of scalar

scattering, can already be anticipated from the observation, that when evaluated on (4.9)

to the leading order of 1/r2 contribution, the right hand side on the equation (4.6) takes

the form of the stress energy tensor of a massless field,

�h̄(1)
µν = − 1

MP

1

r2
kµkνΠ(t+ r) (4.10)

where, kµ is null vector, and quantity Π accounts for the multipole structure of the product

of the two quadrupoles, and can be re-expanded in the standard way.

In order not to stress the reader with a tedious but straightforward calculation of

general case (which can be found in standard gravitational wave analysis [24–27, 29]), we

limit ourselves by illustrating the point for a monopole component of Π(t+r), in which case

the problem essentially reduces to a scalar incoming wave studied in the previous section.

So the gravitational h
(1)
µν field produced by a monopole component of the self-source is

now of the same nature as the field h
(0)
µν produced by sourcing by a scalar wave in the

equation (3.19). For a sharply localized incoming free wave-packet, the h
(1)
00 produced by a

monopole component of a self-source can be approximated by

h
(1)
00 ∼ LP

√
s

r
θ(t+ r)ln(r − t) , (4.11)

where
√
s is (a spherically averaged) center of mass energy of an incoming wave. Just as

in the scalar case, this fixes the classicalization radius at the Schwarzschild radius corre-

sponding to this center of mass energy r∗ ∼ rg =
√
sL2

P .
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5 Parallels and differences

5.1 Classicalons in gravity versus Goldstone

We have proven the emergence of the classical radius r∗ in the scattering process, both

for gravitons as well as Goldstones. In both cases this classical radius marks an effective

range of interaction, that is, a distance where a free-wave approximation breaks down. In

both cases a correction to a free wave is leaving behind a power-law tale. All the above

signals, that we deal with a configuration that became classical at r∗. Thus, whatever the

subsequent evolution of the system is, an s-wave scattering of highly energetic quanta leads

to a formation of a classical field configuration of size r∗. In neither cases this classicalon

configuration yet corresponds to any static spherically-symmetric solution.

What is a post-classicalization evolution of fields?

In case of gravity the answer is simple. Classicalization must be a precursor of the

formation of a Schwarzschild black hole. This is obvious from the spherical symmetry

of the problem and from Birkhoff’s theorem. Of course, the details of horizon crossing

cannot be captured by our analysis, but there is no need for it. Our goal was to witness

classicalization.

What is an analogous static solution (if any) in the scalar case to which the classicalon

configuration may settle? As found in [1], theory does admit such static singular solutions,

which in some respect are analogous to black holes. Whether a time-dependent classicalon

configuration will settle to this, is unclear. But, the key point is, that from the unitariza-

tion point of view there is no need for a settlement to any stable or long-lived solution,

since classical configuration has already being formed and this is enough. Once formed,

the classical configuration cannot decay in a two-particle state without paying price of

exponentially-suppressed probability.

This simple but important fact, naturally allows us to resolve the question of the role

of black hole-type entropy for unitarization of the scattering amplitude. Since black hole

entropy is a property of very special classical configurations, whereas any intermediate

classicalon that is formed by self-sourcing suffices to unitarize the scattering process, it

follows that black hole entropy is just an accompanying property for gravitational systems

(which of course automatically agrees with the counting of exponential suppression in two-

particle decays) but not a defining property for unitarization.

5.2 The role of entropy in unitarization by classicalization

The closed parallel presented here between gravity and Goldstone examples, clarifies a

potential misconception about the role of black hole entropy in unitarization process. We

wish to discuss this point in more details. The process of unitarization by classicalization

consists of two ingredients.

(a) First is to show, that an initial two-particle state inevitably leads to the development

of classical configuration. We have demonstrated this for an s-wave scattering.

(b) The second ingredient is the fate of this classical configuration: An exponential sup-

pression of its decay-probability into a two-particle state.
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Let us investigate the role of black-hole-type entropy for any of these stages. Obviously,

entropy plays no role at the first (classicalization) stage neither in Goldstone nor in gravity

examples. We saw, that classicalization took place before one could talk about any entropy

or even a well-defined horizon.

What role does entropy play in the second aspect? In gravity example, entropy is a

byproduct of classicalization, since we know that a spherical wave packet after collapsing

will form a Schwarzschild black hole with an associated Bekenstein-Hawking entropy. So

in gravity, at least in the s-wave scattering, the outcome of classicalization is a black

hole formation, and this is accompanied by formation of entropy. However, main reason

for unitarization is classicality, not the entropy of the final classical configuration. Any

classical configuration, with or without entropy, can only decay into a two-particle state

with exponentially-suppressed probability. Since entropy is a inevitable accompanying

property of classicalons in gravity case, entropy counting does agree with this suppression.

But classicality is the key reason for the suppression regardless of entropy. For example,

a binary system of neutron and anti-neutron stars carries no black hole type entropy, but

probability for it to decay into two photons is obviously suppressed.

This is a defining property of all classical configurations. They represent many particles

in coherent state and due to this their decay into any two-particle states is exponentially

suppressed, by a factor e−Nc, whereN is number of soft quanta composing the configuration

in question, c is a factor of order one up to logN corrections. An exact computation of this

suppression factor is beyond the scope of our paper, but it is very instructive to estimate

it from the following reasoning.

The classicalon configuration of size r∗ and mass
√
s is mostly composed out of soft

quanta of wave-length ∼ r∗. Therefore their number in a classicalon configuration can be

estimated as N ∼ √
sr∗, and thus the decay into two particles is suppressed by a factor,

Γclassicalon→few ∼ e−
√

sr∗ . (5.1)

Notice that for the gravity case ( r∗ = rg =
√
sL2

P ) the above expression correctly

reproduces entropy suppression of a black hole decay into few particles, although we never

referred to any entropy!

5.3 If not N → 2, then why 2 → N?

We now wish to address a question that may bother some readers.

We have just argued that two-particle decay of any classical configuration, which can

always be understood as a superposition of many quanta, is exponentially suppressed. In

this light how can we understand an unsuppressed formation of the same classical state

out of initial few energetic quanta?

One may think that in the case of a black hole the large entropy factor somehow plays

the role and overcompensates. This way of counting is misleading. First, as we know,

the gravitational field classicalizes before horizon is even formed and one can prescribe

standard Bekenstein-Hawking entropy. The two-body decay of such a classical field would

be suppressed even if it never evolves into a black hole. Moreover, the origin of the black
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hole’s entropy is precisely the result of the fact that many initial states evolve into the

same final one, and not other way round.

The fact that the same black hole can be formed by many different initial states, gives

no enhancement for black hole formation from each initial pure state.

So the answer to the above question has nothing to do with the particularities of the

black hole entropy, but rather again is universal property of classicallization. To answer

this question let us notice, that when we form a classical configuration out of an initial

wave-packet describing free particles, we are dealing with a transition that takes infinite

time, because initial particles can be considered as free only if r ≫ r∗.

So the N -particle classical configuration is built up gradually, during a very long time,

and at distances at which the quantum re-scattering is negligible. Of course, there is full

time reversal symmetry, and N -particle state could gradually bounce back into the original

2-particle state, however , the time needed for this is much longer than the time of re-

scattering among the N -particles, which takes away the needed coherence. As a result,

smooth bounce back almost never happens.

Also, since classicalization (both for gravity and other cases) forces the system to

produce N soft quanta, the enhancement can only be encoded in the number of states in

which these particles can be produced, and must be universally applicable for gravity and

for other cases.

Let us analyze this discussion in an universal field theoretic language, equally applicable

both for black holes and as well as for other classicalons. Consider an above-considered

scattering process in a theory (not necessarily a classicalizing one) in which the interaction

range r∗(s) is some function of center of mass energy
√
s. This means that highly energetic

wave-packet starts to scatter at distance r∗. Typical quanta produced in this scattering

have wave-length r∗(s). Their available number can be estimated as N =
√
sr∗(s), for

r∗(s) ≥ 1/
√
s and N ∼ 1 in the opposite case r∗ ≤ 1/

√
s. . Let us ask, what is the

suppression factor for producing a composite object of the available mass
√
s composed

out of quanta of wave-length r̄. The number of quanta in such an object will of course be

N̄ ≡ √
sr̄. Up to log-corrections in the exponent, the exponential suppression factor for

such a process will be

e
− r̄

r∗(s) ≡ e−
N̄
N . (5.2)

Notice that this universal language correctly reproduces the suppression price for soliton

production in high energy scattering in weakly coupled (non-classicalizing) theories, be-

cause in such theories at high energies r∗(s) ≪ 1/
√
s, whereas, because size of the soliton

r̄ is much larger than its inverse mass r̄ ≫ 1/
√
s, hence an exponentially suppressed

price. For example, for t’Hooft-Polyakov monopoles, in a weakly coupled theory with

gauge-coupling g, the monopole size and mass in terms of gauge boson mass are given by

1/mW and mW /g2 respectively. The minimal center of mass energy for pair production

is
√
s ∼ mW/g2. Thus, we have r̄ ∼ (1/(

√
sg2)), whereas r∗(s) ∼ g2/

√
s. Hence for

a production of monopole anti-monopole pair in scattering of two particle we obtain the

following suppression,

Γ2→mon.+anti−mon. ∼ e
− 1

g2 , (5.3)
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which very well reproduces the expected suppression for production of solitonic objects.

However, when applied to classicalons the same method shows that suppression disappears.

This is because, for classicalizing theories r∗(s) ≫ 1/
√
s and r̄ = r∗(s). So the exponent

becomes one! This explains why production of black holes is unsuppressed, without ever

referring to any entropy.

The physics of suppression is entirely clear in terms of soft quanta. The rule is simple.

Suppression in a production of a classical object of size r̄ appears whenever the number

of soft quanta required for making up this object (N̄ ) is larger than the number of soft

quanta N that the system can produce at the distance r∗(s). For weakly coupled solitons

N̄ ≫ N , and the suppression is given by (5.3).

For black holes and other classicalons, these two numbers are similar, N̄ ≃ N and the

suppression disappears. In particular case for black holes, r∗(s) is the Schwarzschild radius

and N ∼ rg
√
s, which is the same as entropy, but the physics is much more general, and

what matters is simply the number of soft quanta produced by scattering.

Having understood in this language why classicalon formation avoids any price of expo-

nential suppression that one would naively expect, let us now understand the suppression

of the two particle decay in the same language. This suppression is simply coming from

the fact that N soft quanta that compose the classicalon have to annihilate into 2 very en-

ergetic ones. This obviously costs (5.1), which for the black hole automatically reproduces

the entropy or Boltzmann suppression, but there is no need to refer to any of these notions.

As we see the answer can be understood in very general terms of need to annihilate many

soft quanta into the two energetic ones.

There no violation of time reversal symmetry or any other exotica in physics of clas-

sicalons. Rather the physics is simple. Production of classicalon in high energy collision is

easy because in classicalizing it is easy to produce many soft quanta out of enough energy.

However, once soft quanta have been produces their annihilation into few energetic ones is

always costly.

6 Classicalization landscape: gravity as a most efficient classicalizer

6.1 Graviton as a most efficient classicalizer

In our treatment of the scalar example, the effect of classicalization on the scattering

amplitude can also be represented in the following terms. We have started with a theory

in which at low energies (
√
s ≪ L−1

∗ ) an s-channel 2 → 2 scattering amplitude behaves

as [8, 10],

A(s)|s≪L−1
∗

∼ L2
∗s

2

t
. (6.1)

Naive extrapolation of the above perturbative amplitude at high energies would imply

violation of unitarity for
√
s ≫ L−1

∗ . Instead, the amplitude behaves as,

A(s)|s≫L−1
∗

∼
(

L∗

r∗(s)

)2

, (6.2)
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with r∗(s) being given by (2.15). This is the key idea of unitarization by classicalization.

Since, the high energy scattering takes place at the classical radius r∗, two-to-two scat-

terings are dominates by momentum-transfer of order r∗(s)
−1. In a generic classicalizing

theory the
√
s-dependence of r∗ can be parameterized as,

r∗(s) = L∗(
√
sL∗)

α , (6.3)

where for classicalization it is necessary that α is a positive number. Its precise value

depends on the self-sourcing interaction. As we have seen, for a graviton α = 1.

The physical meaning of (6.2) can be easily understood as a consequence of the trans-

formation of a hard quanta of energy E into a set of N(E) soft quanta of wave length 1
r∗(E)

induced by energy self sourcing. In the particular case of gravity N(E) = sL2
P = Er∗(E).

In the case we are considering of a 2 → 2 scattering process among gravitons with total

energy s, the average number of elementary interaction vertices contributing to the process

is N(s). This directly follows from the fact that the interaction among gravitons is set by

L2
P . In the limit of s ≫ t the main contribution comes from exchange of transfer momen-

tum in the t channel. For t ≫ M2
P the Born approximation to this process will violates

unitarity. However we should expect, as the leading contribution, those processes where

the total t is exchanged through N(s) elementary exchanges [11, 12, 15, 18, 19]. This leads

to an effective momentum transfer t
N(s) ∼ 1

r∗(s)
and to expression (6.2). More concretely

in theories that classicalize we can define N(E) = Er∗(E) and unitarization proceeds by

replacing s and t by s
N2(s)

and t
N2(t)

respectively.

At this point the reader can wonder how this form of softening amplitudes can be

consistent with black hole formation in those kinematical regimes where we have for a

given s , an impact parameter smaller than the corresponding gravitational radius. Here, is

important to disentangle the classical analysis of black hole formation as the appearance –in

certain kinematical initial conditions– of trapped surfaces and the pure S matrix approach

to the problem. The softening of the amplitude in the s channel is due to transforming

the energy s carried by the |in > hard quanta into a set of N(s) soft quanta localized

in a region of typical size r∗(s). Black hole ( or classicalon) formation depends on the

very non perturbative issue of when these localized soft quanta in the s (or t) channel

become a new resonance state in the spectrum contributing to the imaginary part of the

amplitude. Classicality approaches this question observing that the set of localized N soft

quanta define a classical state in the sense that all the dynamical scales involved are bigger

than the Compton lengths. This classical state contributes to the 2 → 2 amplitude as e−N .

It is this extra exponential suppression the sign –in S matrix language– of black hole (or

classicalon) formation.

Clearly we are not claiming that classicalization is the only way to unitarize scattering

amplitudes. Our point is that classicalization is most important for scattering at small im-

pact parameters (smaller than r∗). Let us deconstract this statement. Consider scattering

of two quanta (say gravitons or φ-fields) by gravitational interaction, at some large
√
s. At

large impact parameter (≫ r∗) the seeming violations of unitarity are resolved by eikonal

resummation [8]–[18, 19] and we have nothing more to add to this knowledge. Classicaliza-

tion becomes important for violating unitarity at small impact parameter (≪ r∗), because
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as we have shown in non-perturbative treatment (on an example of s-wave scattering)

the small impact parameter scattering results into formation of a classical configuration,

and thus automatic suppression of 2→2 scattering. So at small impact parameter, the

2→2 scattering can only take place in two ways: 1) particles scatter with high momentum

transfer, form a classical configuration which then decays back to two particle state. This

amplitude is exponentially suppressed. 2) Second option is that particles scatter before

coming closer than their r∗ radius. In such a case, momentum transfer is very low, . 1/r∗,

and on dimensional grounds the amplitude goes as eq. (6.2).

Let us now show, that in Poincare-invariant theories with a scalar classicalizer field, α

has to be below one. Following [1], consider a (self)sourcing by an operator that contains

2k power of derivatives and n power of a scalar field φ, which schematically can be written

as

Gφ∂
2kφn , (6.4)

where Gφ is a coupling constant of dimensionality Gφ = [mass]
2−n

2 [length]
n+4k−6

2 . This

coupling defines a quantum length-scale L∗ = G
1

n+2k−4

φ ~
n−2

2(n+2k−4) that marks the breakdown

of perturbative unitarity.

The classicalization radius caused by such an operator, can be estimated by noticing

that the only classical length that can be constructed out of the scale L∗ and a de Broglie

wave-length of the wave-packet a = ~√
s

is

r∗ = L∗

(

L∗

a

)
n−2

n+4k−6

. (6.5)

Of course, the above dimensional analysis does not prove that the above operator always

leads to classicalization, but whenever it does, the classical radius scale is uniquely defined

and since k ≥ 2 (k = 2 corresponds to a free theory by field redefinition), we have α =
n−2

n+4k−6 < 1.

For the purposes of our present discussion, more reliable proof that α < 1, is to show

that the length scale at which the wave-packet first gets perturbed by self-interaction, which

therefore must always be equal or larger than r∗, must scale as fractional power of 1/a.

Let us estimate such radius caused by such an operator in the above-considered scat-

tering process. The self-sourcing equation (analog of (2.9)) can be schematically written

as,

�φ1 = L2k+n−4
∗ ∂2kφn−1

0 , (6.6)

where φ0 is an initial free wave-packet (given by (2.5)) of characteristic wave-length a and

energy
√
s ∼ 1/a. The ordering of derivatives and fields is model-dependent and is not

shown explicitly. Because φ is a scalar, all the Lorentz-indexes of derivatives on the r.h.s.

of the equation (6.6) are contracted among each other. Due to this fact, for a ≪ r each

pair of contacted derivatives results into a factor 1/(ar) as opposed to 1/a2 that one would

naively anticipate. So in total the effect of derivatives is crudely reduced to an appearance

of a factor of order 1/(ra)n. Thus generically, the equation will have a form,

�φ1 ∼ L2k+n−4
∗

1

ak

f(r + t)

rn+k−1
, (6.7)
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where, f(r + t) is a wave-packet of wave-length a and of order-one amplitude. In order to

solve for φ1 we have to invert the box, which effectively removes one power of 1/(ar), so

that finally we have,

φ1 ∼ L2k+n−4
∗

1

ak−1

f̃(r + t)

rn+k−2
, (6.8)

where,

f̃(r + t) ≡ a

∫ r+t

0
f(y)dy . (6.9)

Since, both ψ and f̃ have order-one amplitudes, the r̂ radius, which marks the breakdown of

the free-wave approximation (2.8) , is given by r̂ ∼ L∗(L∗/a)
(k−1)/(n+k−3). Or, translated

in terms of center of mass energy of the initial wave-packet , we can write,

r̂ ∼ L∗(L∗
√
s)(k−1)/(n+k−3) . (6.10)

The key point is, that by default for any system r̂ represents an upper bound on r∗, since

system cannot classicalize before experiencing interaction. Notice, also that for k = n/2,

r̂ = r∗.

It may be instructive to see this more transparently by taking a limit of a sharply

localized wave-packet, φ0 = Ae−
(r+t)2

a2 . Taking now a limit a→ 0 and
√
s ∼ A2/a =fixed,

the function f(r + t) in (6.7) becomes δ(r + t),

�φ1 = L2k+n−4
∗

An−1

ak−1

δ(r + t)

rn+k−1
, (6.11)

(here and below irrelevant numerical factors will be dropped). Which can be easily inte-

grated and gives the following expression for φ
(1)
1 ,

φ1 = L2k+n−4
∗

An−1

ak−1

θ(r + t)

(t− r)n+k−3r
= L2k+n−4

∗
An−2

ak−1

θ(r + t)

(t− r)n+k−3

(

A

r

)

(6.12)

In the very last expression, we have singled out a factor A/r for convenience of comparing

with φ0 which is of order A/r. Taking 2k = n and comparing this with φ0, keeping in mind

that A2/a ∼ √
s, we get that r∗ = r̂ given by (6.10).

For k > n/2 we can apply the same counting, but one has to make sure that the

background is ghost-free, on case by case basis, and we won’t enter in the details here.

Some interesting ideas appeared recently about self-protection of such systems [30] as well

as about generalized high-derivative candidates for classicalizing theories [31].

For us important thing is that, since, r̂ ≥ r∗, confronting with (6.3), we see, that for

scalar theories α ≤ (k − 1)/(n + k − 3) and since n > 2, we have α < 1.

The reason why spin-2 case avoids this power-counting is clear from the equation (3.6),

which is a tensor equation, and derivatives acting on wave-packet on the r.h.s. are not

Lorentz-contracted with each other. As a result, the r.h.s. of the equation,

�h
(1)
00 = −LP

(

T00 −
1

2
Tα

α

)

, (6.13)
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when evaluated on a similar free wave-packet (of energy
√
s = 1/a and small occupation

number), is of order ∼ 1/(ar)2, as opposed to 1/ar3 that it would be had we replaced

graviton with a scalar with a two-derivative cubic interaction. The resulting r∗ therefore

is r∗ = L2
∗
√
s.

In other words, we observe, that graviton is a most efficient classicalizer!

6.2 Generalized holographic bound on information storage

Given the fact, that classicalizing theories are based on the concept of a minimal length

(L∗) and a classical radius (r∗(s)) associated with the energy, they allow for a generalization

of the black hole bound on information storage. Because the latter bound involves the area,

often it is refereed to as the holographic bound. We shall see, that in a classicalizing theory

the analog of this bound can be derived and can be interpreted as the bound on the number

of soft quanta N that is required to make up a given classicalon configuration.

Because of this, the landscape of classicalizing theories can also be parameterized

according to this bound. As we shall see, not surprisingly, gravity gives a most stringent

bound. Of course, in each case, the bound has to be understood as the bound on amount

of information that can be stored in the quanta that exhibit classicalization.

In order to derive the bound, let us consider a classicalizing theory with r∗ given

by (6.3). Imagine localizing a bit of information within a region of size r. Since information

is encoded in particles, such a localization cost at least energy ∼ 1/r. Correspondingly,

for N bits this energy is at least
√
s ∼ N/r. This lower bound on needed energy is

independent of how the particles carrying this information interact. In a weakly-coupled

non-classicalizing theory, one can store an arbitrary amount of information within a fixed

region r, by pumping-in a sufficient amount of energy. However, in a classicalizing theory

this is not possible, since required energy makes the r∗ radius of the information-storage

grow according to (6.3), and thus, resists localization. The r∗ corresponding to the above-

mentioned energy-storage is

r∗(N) = L∗(L∗N/r)
α . (6.14)

A given amount of information (N -bits) can be contained within a volume r as long as

r < r∗(N). Thus, the maximal amount of information stored within the volume r is

N = (r/L∗)
1+ 1

α . (6.15)

This information hits its lower bound for gravity case, α = 1, and is unbounded for weakly-

coupled non-classicalizing theories, that correspond to α = 0. More efficient is a classical-

izer, more restrictive is the information storage within a given volume, and gravity provides

an absolute bound.

Finally, notice that from (5.1) using (6.3) we can express the decay rate of any clas-

sicalon into few particles as

Γclassicalon→few ∼ e− (r∗/L∗)1+
1
α . (6.16)

From here it is clear that among all classicalons, per fixed size, the black holes are the ones

that decay into few particle states in a least suppressed way. This is because, among all the
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classicalons of a given size, the black holes are the ones that are made of the least number of

soft quanta. This also explains, why for a weakly-coupled non-classicalizing theory (α = 0)

the above suppression is formally infinite. Because in such theories classicalons are never

formed (even for energies corresponding to infinite N).

6.3 Black hole entropy as classicalon entropy?

In a quantum field theory framework the simplest way to assign an entropy to a black hole

is to compute first the Hawking radiance temperature TH and to define the entropy by

standard Clausius’s rule: TH = ∂M
∂Sbh

. This procedure leads to the well known black hole

entropy Sbh = A
4 for A being the horizon area in Planck length units. This relation between

entropy and horizon area fits nicely with the black hole area theorems. The conceptual

puzzle underlying the notion of black hole entropy is to understand its statistical meaning.

Is this entropy the log of the number of internal black hole states associated with the same

values of global mass, charge and angular momentum? Is the black hole entropy the log of

the different ways we can create a given black hole? Is the entropy the log of the number

of holographic quantum states we can fit on the horizon? Is it an entanglement entropy for

the interior region? It is most likely, that all these questions can lead us to complementary

understandings of the same fundamental issue.

On the other hand, as we tried to argue, the black hole formation can be viewed as a

classicalization process, and black hole entropy has a precursor in classicalon language in

terms of number of soft quanta produced in classicalization process. This fact may give us

a possibility of pushing this connection further and understanding the origin of black hole

entropy (at least qualitatively) in terms of classicalon states.

In other words, the notion of a classical interaction range r∗ leads to an alternative

approach to black hole entropy and provides at least a qualitative way to define it in purely

microscopic terms. The recipe is the following. Interpreting a black hole of mass M as a

non-perturbative state in the spectrum of pure Einsteinian gravity the associated entropy

will be defined as the log of the number of quantum states of the set of the interacting quanta

of wave-length ∼ r∗(M) that we can produce at energyM . The physical meaning of singling

out such wavelengths is that this are dominant contributors in the classicalization process

that takes place at distance r∗(M), which defines the interaction range. Correspondingly,

the number of these quanta is determined as,

N(M) = Mr∗(M) . (6.17)

Therefore, the dimension of the corresponding Hilbert space of states will be d = ξN ,

for ξ being a number of order one determined by the number of states of constituent

quanta, such as e.g., helicities of the quanta of the theory. This leads to the entropy

S(M) = N(M)ln(ξ). Hence we can estimate the black hole entropy once we know the

classicalization radius of gravity. As shown in this paper the interaction range r∗(M) for

gravity is given by the Schwarzschild gravitational radius of M and the previous recipe

leads to a qualitatively-correct entropy counting. Note, that this approach to black hole

entropy is purely statistical and does not use any notion of horizon or other geometric
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entities. The Clausius rule relating entropy and temperature appears as a consequence of

the exponential suppression for the decay process of a set of N ”soft” quanta into a few

”hard” ones. The rough estimate of this amplitude is

(

1

MLP

)N(M)

, (6.18)

which agrees with the exponential suppression of (1.2).

The key point of the above approach to black hole entropy is, that it generalizes to

any quantum field theory. Namely we can define an entropy function S(M) depending on

energy as Mr∗(M). Generically for renormalizable theories r∗(M) ∼ g
M , where g is some

weak dimensionless coupling g ≪ 1, and consequently S(M) ∼ 1, i.e. no real notion of

entropy emerges in such a case. Contrary, for theories that classicalize, i.e., for those with

r∗(M) growing as function of M for M ≫ L−1
∗ , entropy starts to develop once we cross

above the naive unitarity bound M∗. Note also, that this generalized notion of entropy for

theories that classicalize always grows with energy.

7 Conclusions

The purpose of this paper is to establish close parallel between classicalization processes in

gravity and in non-gravitational theories. For this, we have deconstructed the process of

s-wave high energy scattering in gravity, which by all accounts is expecting to end up by

black hole formation. For us, however, most important aspect was understanding of the

pre-horizon-formation stage of this process from the point of view of classicalization. We

have seen, that this process is nothing but a version of classicalization process that also

takes place in analogous scattering of derivatively-coupled Nambu-Goldstone-type scalars.

The main finding of this analysis is, that r∗(s) for gravity agrees with the gravitational

radius of energy
√
s. This allows us to understand most of the black hole unitarization

properties as direct consequences of classicalization.

In particular we see, that there is a clear precursor of entropy in terms of number of

soft quanta produced in the classicalization process. This notion is universally applicable

to generic classicalizing theories, regardless of the existence of the horizon, and follows from

classicality of the configuration produced.

This universality allows for a parameterization of classicalization landscape in terms

of a parameter that measures the classicalization-efficiency, and for generalization of black

hole properties, such as holographic bound on information storage, to non-gravitational

situations. Being a most efficient classicalizer, gravity is the limiting case on this landscape,

and correspondingly, gives a most stringent bound on information storage.
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