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1 Introduction

One of the fundamental ingredients of nuclear physics is the nuclear force with which point-

like nucleons interact with each other. A variety of aspects of nuclear forces results in the

protean metamorphosis of nuclei, the bound states of nucleons. It is known that in nuclear

forces there are forces that can not be explained by two-body forces only, one of which is the

three-body force. The three-body forces play important role, for example, in reproducing

excitation spectra of light nuclei, or explaining equations of states for high-density baryon

matters such as supernovae and neutron stars. However, in spite of the long history of

nuclear physics, the bulk properties of three-body nuclear forces are yet to be revealed.

The main obstacle for revealing the various aspects of nuclear forces is obvious: QCD

is strongly coupled and thus difficult to solve. In this paper, by using a nuclear matrix

model of holographic QCD which we have derived together with P. Yi in [1], we explicitly

compute a three-body nuclear force in a large Nc holographic QCD. The two-body nuclear

force was already computed in [1].

For the derivation of our matrix model [1] we use the gauge/string duality (the

AdS/CFT correspondence) [2–4] applied to a D4-D8 system [5, 6] of a large Nc QCD

at a large ’tHooft coupling λ. Precisely speaking, our matrix model is a low-energy ef-

fective field theory on baryon vertex D4-branes [7] in the D4-D8 holographic model [5, 6]

of large Nc QCD. The matrix model describes k-body baryon systems with arbitrary k,

where the size of the matrix is given by this k, based on the fact that baryons are wrapped

D-branes on sphere [7] in the gravity side of the gauge/string duality. In the previous

work [1], in addition to the derivation of the matrix model, the cases with k = 1 (baryon

spectrum) and k = 2 (two-body nuclear force) were studied. For k = 2, it was found that

a universal repulsive core exists for any baryon states with two flavors. Since our matrix
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model is not a phenomenological model for multi-baryon systems, but based on a firm

ground of the gauge/string duality in string theory, it is natural to extend the analysis of

our matrix model to derive the three-body nuclear forces. In this paper, we continue the

analysis to the k = 3 case, i.e. we study the short-range three-body nuclear force, using

the matrix model.

Although generic configurations of three baryons can be treated in the matrix model,

as the computations are involved and thus not so illuminating, in this paper we shall

concentrate on two particular examples: (a) three neutrons with spins averaged and (b)

proton-proton-neutron (and proton-neutron-neutron), both aligned on a line with equal

spacings. System with spin averaged is rather typical for dense states of multi-baryons

such as cores of neutron stars. The latter is related to Helium-3 and tritium nucleus.

For both cases, the resultant three-body potential is positive, i.e. repulsive. It scales as

Nc/λ
2r4 (where r is the inter-nucleon distance), in contrast to the two-body repulsive

core ∼ Nc/λr
2. As the region of validity is at short range, 1/

√
λMKK ≪ r ≪ 1/MKK

(where MKK ∼ O(1 GeV)), the three-body potential is suppressed compared to the two-

body potential by ∼ 1/λ(rMKK)2 ≪ 1. However at very short distances, i.e. at high dense

states of nucleons, three-body forces are not small.

The organization of this paper is as follows. We first review the matrix model and the

two-body calculation shown in [1]. Then in section 3, we calculate the three-body forces.

First, as an exercise, we treat the case with spin/isospins aligned classically, and find that

the three-body force vanishes for this case, which is consistent with the soliton approach [8].

After that, we proceed to generic three-body forces with quantum spin/isospins. The final

section is devoted for discussions.

2 Review: a matrix model and two-body interactions

The procedures of the computation of the three-body nuclear forces is quite analogous to

the two-body case performed in [1]. Here we provide a summary of the matrix model action

and the computation of the two-body nuclear forces of [1].

2.1 A matrix model action

In [1], we proposed with P. Yi a U(k) matrix model which describes generic k-body in-

teraction of nucleons. Note that the rank of gauge group U(k) is not at all related to the

number of colors Nc but just the number of nucleons k. The matrix model action is quite

simple,

S =
λNcMKK

54π

∫
dt trk

[
(D0X

M )2 − 2

3
M2

KK(X4)2 +D0w̄
α̇
i D0wα̇i −

1

6
M2

KKw̄
α̇
i wα̇i

+
36π2

4λ2M4
KK

(
~D
)2

+ ~D · ~τ α̇
β̇
X̄ β̇αXαα̇ + ~D · ~τ α̇

β̇
w̄β̇

i wα̇i

]
+Nc

∫
dt trkA0 . (2.1)

The peculiar property of this matrix model is the simplicity: changing the number of the

nucleons k is available just by choosing U(k) for the gauge group of the matrix model.
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field index U(k) SU(Nf ) SU(2) × SU(2)

XM (t) M = 1, 2, 3, 4 adj. 1 (2,2)

wα̇i(t) α̇ = 1, 2; i = 1, · · · , Nf k Nf (1,2)

A0(t) adj. 1 (1,1)

Ds(t) s = 1, 2, 3 adj. 1 (1,3)

Table 1. Fields in the matrix model.

In [1] it was demonstrated how to compute the baryon spectrum (k = 1) and two-body

nuclear forces (k = 2) at short distances.

To be concise, here we briefly describe the matter content of the matrix model (2.1).

The model has a unique scale MKK, and λ = Ncg
2
QCD is the ’tHooft coupling constant

of QCD, with the number of colors Nc. The field content is summarized in table 1. The

dynamical fields are only XM and wα̇i, while A0 and Ds are auxiliary fields. In writing

these fields, the indices for the gauge group U(k) are implicit. In this paper we consider

only the two-flavor case Nf = 2 for simplicity. The symmetry of this matrix quantum

mechanics is U(k)local×SU(Nf )×SO(3) where the last factor SO(3) is the spatial rotation,

which, together with a holographic dimension, forms a broken SO(4) ≃ SU(2) × SU(2)

shown in the table. The breaking is due to the mass terms for X4 and wα̇i. In the

action, the trace is over these U(k) indices, and the definition of the covariant derivatives

is D0X
M ≡ ∂0X

M − i[A0,X
M ], D0w ≡ ∂0w − iwA0 and D0w̄ ≡ ∂0w̄ + iA0w̄. The spinor

indices of X are defined as Xαα̇ ≡ XM (σM )αα̇ and X̄α̇α ≡ XM (σ̄M )α̇α where σM = (i~τ , 1)

and σ̄M = (−i~τ , 1), with Pauli matrices τ . All of these definitions follow the notation of [9].

For the derivation of this matrix model via gauge/string duality, see [1].

2.2 Two-body nuclear forces

We review briefly [1] for explaining how to obtain the two-body nuclear forces. First, we

describe a single baryon wave function, and second, obtain the two-body Hamiltonian by

integrating out A0 with a simple gauge choice.

In all the cases, we need to solve the “ADHM constraint” [10] which minimizes the

potential induced by integrating out Ds. This is because the potential has a coefficient λ2

which is very large in the gauge/string duality.

~τ α̇
β̇

(
X̄ β̇αXαα̇ + w̄β̇

i wα̇i

)

BA
= 0 . (2.2)

Here A,B = 1, . . . , k.

For a single baryon k = 1, this equation is simply solved by wα̇i = Uα̇iρ where U

is an SU(2) matrix and ρ is a constant. After integrating out the auxiliary field A0, the

matrix model action becomes a standard quantum mechanics whose Lagrangian is almost
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the same as that of the soliton approach [15, 16],

S =
λNcMKK

54π

∫
dt trk

[
(∂0X

4)2 − 2

3
M2

KK(X4)2

+∂0w̄
α̇
i ∂0wα̇i −

1

6
M2

KKw̄
α̇
i wα̇i −

(
27π

λMKK

)2 1

w̄α̇
i wα̇i

]
. (2.3)

This quantum mechanics is solved by following [15, 16]. At the leading order in the large

Nc limit, the wave functions for X4 and ρ are classical, which simply means that we can

substitute the classical values

X4 = 0 , ρ = 2−1/437/4√πλ−1/2M−1
KK . (2.4)

The wave functions for the spin/isospin U is nontrivial. They are shared with those of the

Skyrme model [11–14], as described in [16], and given by

〈~a|
(

|p ↑〉 |p ↓〉
|n ↑〉 |n ↓〉

)

IJ

=
1

π
(τ2U)IJ =

1

π

(
a1 + ia2 −a3 − ia4

−a3 + ia4 −a1 + ia2

)

IJ

. (2.5)

The SU(2) matrix U is represented by a unit 4-vector ~a as U = iaiτ
i + a412×2, with

(a1)
2 + (a2)

2 + (a3)
2 + (a4)

2 = 1.

Next, let us review the case k = 2 of [1]. The generic solution to the ADHM con-

straint (2.2) with k = 2, Nf = 2 is the well-known ADHM data of two SU(2) YM instan-

tons,

XM = τ3 r
M

2
+ τ1YM , wA=1

α̇i = U
(A=1)
α̇i ρ1 , wA=2

α̇i = U
(A=2)
α̇i ρ2 . (2.6)

Here the off-diagonal part Y is defined as

YM ≡ −ρ1ρ2

4|r|2 tr
[
σ̄Mr

NσN

(
(U (1))†U (2) − (U (2))†U (1)

)]
, (2.7)

The vector rM (M = 1, 2, 3, 4) is the distance between the two baryons, and |r|2 ≡ (rM )2.

The SU(2) matrices U (1) and U (2) denote the moduli parameters of each baryon, while ρ1

and ρ2 denote the moduli parameter associated with the size of instantons of each baryon.

With this choice, the potential associated with ~D (i.e. the ADHM potential) vanishes.

We integrate out the auxiliary field A0 to obtain the two-body Hamiltonian. With the

U(2) decomposition A0 = A0
012×2 +A1

0τ
1 +A2

0τ
2 +A3

0τ
3, it is straightforward to evaluate

the terms including the gauge field A0 in the action,

Skin.+CS ≡ λNcMKK

54π

∫
dt tr

[
(D0X

M )2 +D0w̄
α̇
i D0wα̇i

]
+Nc

∫
dt trA0

=
λNcMKK

54π

∫
dt

[
2(A1

0)
2|r|2+ 8(A3

0)
2(Y M )2+ 2(ρ2

1 + ρ2
2)
(
(A0

0)
2 + (A1

0)
2 + (A3

0)
2
)

+4ρ1ρ2A
0
0A

1
0 tr

[
U (1)†U (2)

]
+ 4(ρ2

1 − ρ2
2)A

0
0A

3
0 +

108π

λMKK
A0

0

]
. (2.8)
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Solving the equations of motion for all the components of A0 and substituting the solution

back to this action, we obtain the potential
∫
dt V = −Skin.+CS,

V = 2V1−body + V2−body , V1−body =
27πNc

4λMKK

1

ρ2
, (2.9)

V2−body =
27πNc

λMKK

(u0)
2

|r|2 + 2ρ2 − 2(u0)2ρ2
. (2.10)

Here u0 ≡ (1/2)tr
[
U (1)†U (2)

]
, and we put ρ1 = ρ2(= ρ) which is justified as we keep only

the leading term in the large Nc expansion. The value of ρ is (2.4).1

In addition to the terms in Skin.+CS, there is the mass term for X4 in the Lagrangian,

λNcMKK

54π
· 2

3
M2

KKtr(X4)2 =
λNc

81π
M3

KK

(
(r4)2/2 + 2(Y 4)2

)
. (2.12)

The off-diagonal component Y gives an additional two-body potential,

V mass
2−body =

λNcM
3
KK

162π

ρ4

|r|4
(
ri tr

[
iτ i
(
U (1)

)†
U (2)

])2
, (2.13)

where i = 1, 2, 3. So the 2-body potential is a sum of (2.10) and (2.13). The four-

dimensional distance |r| is equal to the inter-baryon distance |ri|2 in three dimensions,

since the classical value of the X4 for the single instantons is zero at the large Nc leading

order, as in (2.4).

Using the nucleon wave function (2.5), it is straightforward to evaluate the vacuum

expectation value of this potential. The final form of the two-body nuclear potential is

〈V 〉I1,J1,I2,J2 = VC(~r) + S12VT(~r) with the standard definition S12 ≡ 12J i
1r̂

iJj
2 r̂

j − 4J i
1J

i
2

(with r̂i ≡ ri/|r|, i = 1, 2, 3), where the central and tensor forces are2

VC(~r) = π

(
33

2
+ 8Ii

1I
i
2J

j
1J

j
2

)
Nc

λMKK

1

|r|2 , VT(~r) = 2πIi
1I

i
2

Nc

λMKK

1

|r|2 . (2.14)

3 Three-body baryon interaction

The three-body interaction potential can be computed by using the matrix model with

k = 3 for k × k matrices. The procedures to compute the nuclear potential are parallel

to the case of the two baryons in the previous section, and here is a summary of the

procedures:

(1) Choose your k, and solve the ADHM constraint (2.2) (which minimizes the potential

obtained by integrating out the auxiliary field D).

1For our later purpose, we write the expression for the case of classically aligned spins and isospins. This

corresponds to U (1) = U (2), which is nothing but an ADHM data for ’tHooft instantons. The two-body

potential is found as

V cl
2−body =

27πNc

λMKK

1

|r|2
. (2.11)

2The result is quite close to that of the soliton approach [17].
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(2) Substitute the solution back to the matrix model Lagrangian.

(3) Integrate out the auxiliary field A0.

(4) Evaluate the Hamiltonian with your favorite baryon state. The baryon state is just

a tensor product of single-baryon states (which is given by the k = 1 analysis).

In this section, at first as an exercise, we consider a case where all the three baryons

share the same classical spin/isospins. Then for next, after giving an explicit set-up for

generic quantum spin/isospins, we demonstrate exact computations for baryons aligned on

a straight line with equal spacings. The reason for choosing this linear position is just to

simplify and illuminate the computations. Finally we evaluate the three-body Hamiltonian

with specific three-baryon quantum states: (a) three neutrons with spins averaged, and (b)

proton-proton-neutron and proton-neutron-neutron. We find that the three-body nuclear

potential is positive i.e. repulsive.

3.1 An exercise: classical treatment of spin/isospin

Let us evaluate the three-body Hamiltonian, first, for a simple situation where all the

baryons share the same classical spin/isospin, as an exercise.

Procedure (1): solving the ADHM constraint. First, let us consider the configu-

ration space of minimizing the ~D term. This is equivalent to the so-called ADHM con-

straints (2.2) for any A,B = 1, 2, 3. A simple solution to this constraint equation is the

ADHM data for ’tHooft instantons, which we treat in this subsection, while in the later

subsection we consider generic solution to this constraint. The ADHM data for the ’tHooft

instantons consists of diagonal matrices X and special w’s sharing the same orientation,

wA
α̇i = Uα̇iρ

A (A = 1, 2, 3) , (3.1)

where 2 × 2 unitary matrix U is independent of the index A. As the degrees of freedom

w correspond to the spin and the isospin, this means that all the three baryons share the

same “classical” spins and isospins. Here, fixing the orientation U for baryons cannot be

achieved with wave functions with finite width, that is the reason we call this “classical.”

As the off-diagonal elements of XM vanish, all the commutators [X,X] are zero, which

trivially satisfies (2.2).

In [8], ’tHooft instantons are used in the soliton approach to evaluate the three-body

nuclear forces. The result turns out to vanish. In this subsection, we will find that our

matrix model also gives the same answer, the vanishing three-body force for the ADHM

data of the ’tHooft instantons.

We are going to choose implicitly the gauge ∂0w
A
α̇i = 0 so that there is no time-

dependence in w. See [1] for details of the gauge choices. The matrices XM whose diagonal

elements with M = 1, 2, 3 specify the spatial location of the baryons are diagonal,

XM =
∑

a=3,8

λa

2
rM
a . (3.2)
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Procedure (2): substitute the ADHM data to the action. The inter-baryon po-

tential consists of two terms, the potential coming from the integration of A0, and the

potential from the mass term for X4. The latter vanishes for the ’tHooft instantons, as

there is no off-diagonal extra component in (3.2). So in this subsection we concentrate

on the former.

Given the ADHM data, we can integrate out A0, in analogy to the two-body case. The

auxiliary field A0 is expanded by the Gell-Mann matrices λa,

A0 = A0
013×3 +

8∑

a=1

Aa
0

λa

2
. (3.3)

As in the two-body case, in the Lagrangian the terms containing A0 are (D0X)2 and

D0w̄Dw. The CS term contains only the overall U(1) component, A0
0.

First, the kinetic terms of X gives

tr(D0X
M )2 =

1

2

(
(A1

0r
M
3 )2 + (A2

0r
M
3 )2

)
+

1

8

(
(A4

0)
2 + (A5

0)
2
)
(rM

3 +
√

3rM
8 )2

+
1

8

(
(A6

0)
2 + (A7

0)
2
)
(rM

3 −
√

3rM
8 )2 . (3.4)

Next we consider the kinetic term for w,

trD0w̄
α̇
i D0wα̇i =

(
A0

0

)2
(
∑

A

|wA
α̇i|2
)

+ 2Aa
0A

0
0j̃

a + t̃abAa
0A

b
0 (3.5)

where a(= 1, · · · , 8) is the adjoint index of the SU(3), and A(= 1, 2, 3) is the index for the

baryons. The coefficients j̃a and t̃ab are defined as

j̃a ≡ wA
α̇i

λa
AB

2
(wB

α̇i)
∗ , t̃ab ≡ wA

α̇i

λa
ABλ

b
BC

4
(wC

α̇i)
∗ . (3.6)

Using the definition of symmetric structure constants dabc for SU(3),

{
λa

2
,
λb

2

}
= dabcλ

c

2
+

1

3
δab , (3.7)

the term with t̃ab is replaced by

t̃abAa
0A

b
0 =

1

6
wB

α̇i(w
B
α̇i)

∗δabAa
0A

b
0 +

dabc

4
wA

α̇iλ
c
AC(wC

α̇i)
∗Aa

0A
b
0 . (3.8)

Now due to the ADHM data (3.1), all wA
α̇i are proportional to each other, i.e., wA=1

α̇i /ρA=1 =

wA=2
α̇i /ρA=2 = wA=3

α̇i /ρA=3. Therefore, wA
α̇iλ

c
AC(wC

α̇i)
∗ vanishes for c = 2, 5, 7, and

wA
α̇iλ

c=1
AC (wC

α̇i)
∗

ρ1ρ2
=
wA

α̇iλ
c=4
AC (wC

α̇i)
∗

ρ1ρ3
=
wA

α̇iλ
c=6
AC (wC

α̇i)
∗

ρ2ρ3
= 2Uα̇i(Uα̇i)

† = 4 . (3.9)

Furthermore, similar terms with c = 3 and c = 8 are given by

wA
α̇iλ

c=3
AC (wC

α̇i)
∗ = 2

(
(ρ1)2 − (ρ2)2

)
, wA

α̇iλ
c=8
AC (wC

α̇i)
∗ =

2√
3

(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
.
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Using the symmetric structure constant dabc, we get

t̃abAa
0A

b
0 =

1

6
wB

α̇i(w
B
α̇i)

∗δabAa
0A

b
0 +

dabc

4
wA

α̇iλ
c
AC(wC

α̇i)
∗Aa

0A
b
0

=
1

3

(
8∑

a=1

(Aa
0)

2

)
(
(ρ1)2 + (ρ2)2 + (ρ3)2

)
+

(
2√
3
A1

0A
8
0 +A4

0A
6
0 +A5

0A
7
0

)
ρ1ρ2

+

(
− 1√

3
A4

0A
8
0 +A1

0A
6
0 −A2

0A
7
0 +A3

0A
4
0

)
ρ1ρ3

+

(
− 1√

3
A6

0A
8
0 +A1

0A
4
0 +A2

0A
5
0 −A3

0A
6
0

)
ρ2ρ3 (3.10)

+

(
1√
3
A3

0A
8
0 +

1

4
(A4

0)
2 +

1

4
(A5

0)
2 − 1

4
(A6

0)
2 − 1

4
(A7

0)
2

)(
(ρ1)2 − (ρ2)2

)

+

(
1

6
(A1

0)
2 +

1

6
(A2

0)
2 +

1

6
(A3

0)
2 − 1

6
(A8

0)
2

)(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)

+

(
− 1

12
(A4

0)
2 − 1

12
(A5

0)
2 − 1

12
(A6

0)
2 − 1

12
(A7

0)
2

)(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
.

Next, we consider 2Aa
0A

0
0j̃

a. Again, due to the simplicity of the ADHM data for the ’t

Hooft instantons, j̃a is nonzero only for a = 1, 4, 6, 3, 8, and we obtain

2Aa
0A

0
0j̃

a = 4A1
0A

0
0ρ

1ρ2 + 4A4
0A

0
0ρ

1ρ3 + 4A6
0A

0
0ρ

2ρ3

+2A3
0A

0
0

(
(ρ1)2 − (ρ2)2

)
+

2√
3
A8

0A
0
0

(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
. (3.11)

In addition, we have
(
A0

0

)2 (∑
A |wA

α̇i|2
)

= 2
(
(ρ1)2 + (ρ2)2 + (ρ3)2

) (
A0

0

)2
. So, in total, the

kinetic term for w is evaluated as

trD0w̄
α̇
i D0wα̇i = 2

(
(ρ1)2 + (ρ2)2 + (ρ3)2

)
(
(
A0

0

)2
+

1

6

8∑

a=1

(Aa
0)

2

)

+ 4ρ1ρ2A1
0A

0
0 + 4ρ1ρ3A4

0A
0
0

+4ρ2ρ3A6
0A

0
0 + 2A3

0A
0
0

(
(ρ1)2 − (ρ2)2

)
+

2√
3
A8

0A
0
0

(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)

+
2ρ1ρ2

√
3
A1

0A
8
0+ρ1ρ2A4

0A
6
0+ρ1ρ2A5

0A
7
0−

ρ1ρ3

√
3
A4

0A
8
0+ρ1ρ3A1

0A
6
0−ρ1ρ3A2

0A
7
0

+ρ1ρ3A3
0A

4
0 −

ρ2ρ3

√
3
A6

0A
8
0 + ρ2ρ3A1

0A
4
0 + ρ2ρ3A2

0A
5
0 − ρ2ρ3A3

0A
6
0

+

(
1√
3
A3

0A
8
0 +

1

4
(A4

0)
2 +

1

4
(A5

0)
2 − 1

4
(A6

0)
2 − 1

4
(A7

0)
2

)(
(ρ1)2 − (ρ2)2

)

+
1

12

(
2(A1

0)
2 + 2(A2

0)
2 + 2(A3

0)
2−2(A8

0)
2−(A4

0)
2−(A5

0)
2−(A6

0)
2−(A7

0)
2
)

×
(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
. (3.12)

Finally, the CS term has only the A0
0 element,

LCS =
162π

λMKK
A0

0 . (3.13)

The total action LA0 involving the gauge field A0 is a sum of (3.4), (3.12) and (3.13), as

LA0 ≡ tr(D0X
M )2 + trD0w̄

α̇
i D0wα̇i + LCS (3.14)
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Procedure (3): integrate out A0. We have to solve the simultaneous equations for

all Aa
0 and A0

0,

∂LA0

∂A0
0

=
∂LA0

∂Aa
0

= 0 (for all a = 1, · · · , 8) (3.15)

Although A0
0 is mixed with the other components Aa

0 a unique solution is found as

A1
0 =

27π

λMKK

(ρ1)2 + (ρ2)2

(rM
3 )2ρ1ρ2

, A4
0 =

108π

λMKK

(ρ1)2 + (ρ3)2

(rM
3 +

√
3rM

8 )2ρ1ρ3
,

A6
0 =

108π

λMKK

(ρ2)2 + (ρ3)2

(rM
3 −

√
3rM

8 )2ρ2ρ3
, A2

0 = A5
0 = A7

0 = 0 , (3.16)

A0
0, A

3
0 and A8

0 have complicated expressions, so we omit to write them explicitly here. We

plug the solution back to the action LA0 given by (3.14), then we obtain integrated action

LA0 in terms of the moduli parameters rM
3 , rM

8 and ρ, as

LA0

(
rM
3 , rM

8 , ρA
)

=

(
54π

λMKK

)2
[

−
3∑

A=1

1

8(ρA)2
− 1

4(rM
3 )2

(
1 +

(ρ1)2

2(ρ2)2
+

(ρ2)2

2(ρ1)2

)

− 1

(rM
3 +

√
3rM

8 )2

(
1 +

(ρ1)2

2(ρ3)2
+

(ρ3)2

2(ρ1)2

)

− 1

(rM
3 −

√
3rM

8 )2

(
1 +

(ρ2)2

2(ρ3)2
+

(ρ3)2

2(ρ2)2

)]

. (3.17)

The total Hamiltonian (potential) V cl is given by

S =
λNcMKK

54π

∫
dt LA0 ≡ −

∫
dt V cl , (3.18)

as in the two-body case. We obtain

V cl =

(
54πNc

λMKK

)[ 3∑

A=1

1

8(ρA)2
+

1

4(rM
3 )2

(
1 +

(ρ1)2

2(ρ2)2
+

(ρ2)2

2(ρ1)2

)

+
1

(rM
3 +

√
3rM

8 )2

(
1 +

(ρ1)2

2(ρ3)2
+

(ρ3)2

2(ρ1)2

)

+
1

(rM
3 −

√
3rM

8 )2

(
1 +

(ρ2)2

2(ρ3)2
+

(ρ3)2

2(ρ2)2

)]

. (3.19)

To find the potential intrinsic to the three-body, we need to subtract the one-body and

two-body Hamiltonians. For the ADHM data for the ’tHooft instantons, they are given

by [1]

V cl
1−body =

27πNc

4λMKK

1

ρ2
, V cl

2−body =
27πNc

4λMKK

(
2 +

ρ2
2

ρ2
1

+
ρ2
1

ρ2
2

)
1

(rM )2
, (3.20)
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where rM is the distance between the two baryons. The subtraction of these give

V cl −
∑

A=1,2,3

V
(A),cl
1−body − 1

2

∑

A 6=B

V
(A,B),cl
2−body = 0. (3.21)

Therefore, the three-body forces vanish, for the baryons sharing the same classical

spin/isospins. This result is the same as the one given in the soliton approach [8].

The “classical” spins and isospins are realized when the magnitude of the spin/isospins

is large, which is only possible for heavy higher spin baryons, but not for spin 1/2 nucleons.

Therefore unfortunately this “classical” treatment does not work for the realistic nucleons.

Next, we keep the quantum spin/isospin degrees of freedom (the phase in w) explicitly

in the computation and provide a framework for nuclear forces with standard quantum

spin/isospins.

3.2 Generic three-body interactions: a set-up

Procedure (1): solving the ADHM constraint. The computations with the ADHM

data for the ’tHooft instantons are easy but they are not realistic system, since the

spin/isospin rotation matrix U is fixed by hand. We have to allow arbitrary U for each

baryon, in general. This means, instead of the previous (3.1), we allow3

wA
α̇i = UA

α̇iρ
A (A = 1, 2, 3) . (3.22)

In order to satisfy the ADHM constraint (2.2) with this generic w, the off-diagonal com-

ponents of the matrices XM should be turned on, instead of (3.2),

XM =
∑

a=3,8

λa

2
rM
a +

∑

a=1,4,6

λa

2
rM
a . (3.23)

The diagonal r3 and r8 specify the positions of the three baryons, while the off-diagonal

r1, r4 and r6 are small.

Although generic three-instanton ADHM data is not available, we may need only the

ADHM data for well-separated instantons,

|r3 +
√

3r8|/2 , | − r3 +
√

3r8|/2 , |r8| ≫ ρ , (3.24)

since the classical size of the instanton (baryon) is quite small as ρ ∼ 1/
√
λ for large λ.

The ADHM data for the well-separated instantons is described in [18]. In our notation, it

3Note that in single instanton case, we have gauge freedom from A0 to chose this ∂0w = 0 gauge. In three

instanton case, we have A0
0, A3

0, and A8
0 gauge freedom to choose this ∂0w

A=1 = ∂0w
A=2 = ∂0w

A=3 = 0.
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is4

rM
1 σM =

dM
12σM

|d12|2
ρ1ρ2

(
(U2)†U1 − (U1)†U2

)

+
ρ1ρ2ρ

2
3d

M
12σM

4|d12|2|d13|2|d23|2
[(

(U3)†U2 − (U2)†U3
)
d†32d31

(
(U1)†U3 − (U3)†U1

)

−
(
(U3)†U1 − (U1)†U3

)
d†31d32

(
(U2)†U3 − (U3)†U2

)]
+ O(1/d5) , (3.25)

rM
4 σM =

dM
13σM

|d13|2
ρ1ρ3

(
(U3)†U1 − (U1)†U3

)

+
ρ1ρ3ρ

2
2d

M
13σM

4|d12|2|d13|2|d23|2
[(

(U2)†U3 − (U3)†U2
)
d†23d21

(
(U1)†U2 − (U2)†U1

)

−
(
(U2)†U1 − (U1)†U2

)
d†21d23

(
(U3)†U2 − (U2)†U3

)]
+ O(1/d5) , (3.26)

rM
6 σM =

dM
23σM

|d23|2
ρ2ρ3

(
(U3)†U2 − (U2)†U3

)

+
ρ2ρ3ρ

2
1d

M
23σM

4|d12|2|d13|2|d23|2
[(

(U1)†U3 − (U3)†U1
)
d†13d12

(
(U2)†U1 − (U1)†U2

)

−
(
(U1)†U2 − (U2)†U1

)
d†12d13

(
(U3)†U1 − (U1)†U3

)]
+ O(1/d5) . (3.27)

Here we have defined

dij ≡ dM
ij σM (3.28)

where dij is the distance vector between the i-th and the j-th instantons. From (3.23), the

location of the first, second, and third instanton is

rM = rM
3 /2 + rM

8 /2
√

3 ,−rM
3 /2 + rM

8 /2
√

3 ,−rM
8 /

√
3 , (3.29)

respectively. Therefore we have

d12 = −d21 = r3 , (3.30)

d13 = −d31 = (r3 −
√

3r8)/2 , (3.31)

d23 = −d32 = (−r3 −
√

3r8)/2 . (3.32)

Procedure (2): substitute the ADHM data to the action. As all UA matrices are

different, we need to consider wA
α̇iλ

c
AC(wC

α̇i)
∗ for all c = 1, · · · , 8. However, because UA

α̇i ∈
SU(2), wA

α̇iλ
c
AC(wC

α̇i)
∗ for c = 2, 5, 7 vanish as they are proportional to UA

α̇i(U
B
α̇i)

†−UB
α̇i(U

A
α̇i)

†

4Our r1/2, r4/2 and r6/2 correspond to b12, b13, and b23 of [18], as they are the off-diagonal elements of

the matrix XM . Our ρiU
i corresponds to qi of [18]. Our formulas (3.25), (3.26), and (3.26) can be obtained

explicitly from eq. (5.13) of [18], by substituting recursively the expression of bij .
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with A,B = 1, 2, 3. The other components are calculated as follows:

wA
α̇iλ

1
AC(wC

α̇i)
∗ = ρ1ρ2

(
U1

α̇i(U
2
α̇i)

† + U2
α̇i(U

1
α̇i)

†
)

= 4ρ1ρ2 u
(12)
0

wA
α̇iλ

3
AC(wC

α̇i)
∗ = 2

(
(ρ1)2 − (ρ2)2

)

wA
α̇iλ

4
AC(wC

α̇i)
∗ = ρ1ρ3

(
U1

α̇i(U
3
α̇i)

† + U3
α̇i(U

1
α̇i)

†
)

= 4ρ1ρ3 u
(13)
0

wA
α̇iλ

6
AC(wC

α̇i)
∗ = ρ2ρ3

(
U2

α̇i(U
3
α̇i)

† + U3
α̇i(U

2
α̇i)

†
)

= 4ρ2ρ3 u
(23)
0

wA
α̇iλ

8
AC(wC

α̇i)
∗ =

2√
3

(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
. (3.33)

Here we have used the fact that the SU(2) matrices UA
α̇i(U

B
α̇i)

† for A 6= B, (A,B) = 1, 2, 3

can be written as u012×2 + i
∑3

i=1 uiτ
i with

∑3
i=0(ui)

2 = 1, in terms of Pauli matrices τ i,

i.e.

UA
α̇i(U

B
β̇i

)† ≡ u
(AB)
0 (12×2)α̇β̇ + i

3∑

i=1

u
(AB)
i τ i

α̇β̇
. (3.34)

The definition of u0 follows that of the two-baryon case, (2.10).

In short, compared with the previous ADHM data for the ’tHooft instantons, we have

new parameters rM
a with a = 1, 4, 6, and uAB

0 . We first describe the integration of A0,

followed by the explanation of the potential due to the mass term tr[(X4)2].

Let us write the terms including A0 in the matrix model action explicitly. They

are the kinetic terms of X and w, and the CS term. Note that due to the fact that

wA
α̇iλ

c
AC(wC

α̇i)
∗ = 0 again for c = 2, 5, 7, the calculation for the w kinetic term Dw(Dw)∗ is

very similar to that of the ADHM data for the ’tHooft instantons. On the other hand, the

kinetic term for X contains terms in (3.4) as well as terms including ra with a = 1, 4, 6.

tr(D0X
M )2 = tr



−i



A0,
∑

ζ=1,3,4,6,8

λa

2
rM
a








2

. (3.35)

Due to the fact that terms including Aa
0 with a = 2, 5, 7 decouple from the terms including

Ab
0 with b = 1, 3, 4, 6, 8, and the fact that all Aa

0 with a = 2, 5, 7 appear in the Lagrangian

as quadratic terms, the equations of motion for Aa
0 with a = 2, 5, 7 are simply solved by

Aa
0 = 0 (a = 2, 5, 7). With this observation, the kinetic term for XM is simplified as

tr(D0X
M )2 =

1

8

((
A4

0

)2
r21 + (A6

0)
2r21 + 4(A1

0)
2r23 + (A4

0)
2r23 + (A6

0)
2r23 − 2A1

0A
4
0r1r4

−2
√

3A6
0A

8
0r1r4 + 6A1

0A
6
0r3r4 − 2

√
3A4

0A
8
0r3r4 + (A1

0)
2(r4)

2 + (A6
0)

2(r4)
2

+3(A8
0)

2(r4)
2 − 2A1

0A
6
0r1r6 − 2

√
3A4

0A
8
0r1r6 − 6A1

0A
4
0r3r6 + 2

√
3A6

0A
8
0r3r6

−2A4
0A

6
0r4r6 + 4

√
3A1

0A
8
0r4r6

+(A1
0)

2(r6)
2 + (A4

0)
2(r6)

2 + 3(A8
0)

2(r6)
2 + (A3

0)
2(4(r1)

2 + (r4)
2 + (r6)

2)

+4
√

3A4
0A

6
0r1r8 + 2

√
3(A4

0)
2r3r8 − 2

√
3(A6

0)
2r3r8 − 2

√
3A1

0A
6
0r4r8

−6A4
0A

8
0r4r8 − 2

√
3A1

0A
4
0r6r8 − 6A6

0A
8
0r6r8 + 3(A4

0)
2r28 + 3(A6

0)
2r28

−2A3
0(4A

1
0r1r3 + 3A6

0r1r4 +A4
0r3r4 −

√
3A8

0(r4)
2

−3A4
0r1r6 +A6

0r3r6 +
√

3A8
0(r6)

2 +
√

3A4
0r4r8 −

√
3A6

0r6r8)
)
. (3.36)
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The kinetic term for w is similar to the previous case with the ’tHooft instanton ADHM

data.

trD0w̄
α̇
i D0wα̇i = 2

(
(ρ1)2 + (ρ2)2 + (ρ3)2

)


(A0
0

)2
+

1

6

∑

η=1,3,4,6,8

(Aη
0)

2



+ 4ρ1ρ2u
(12)
0 A1

0A
0
0

+4ρ1ρ3u
(13)
0 A4

0A
0
0 + 4ρ2ρ3u

(23)
0 A6

0A
0
0 + 2A3

0A
0
0

(
(ρ1)2 − (ρ2)2

)

+
2√
3
A8

0A
0
0

(
(ρ1)2 + (ρ2)2 − 2(ρ3)2

)
+

2ρ1ρ2u
(12)
0√

3
A1

0A
8
0 + ρ1ρ2u

(12)
0 A4

0A
6
0

−ρ
1ρ3u

(13)
0√

3
A4

0A
8
0 + ρ1ρ3u

(13)
0 A1

0A
6
0 + ρ1ρ3u

(13)
0 A3

0A
4
0 (3.37)

−ρ
2ρ3u

(23)
0√

3
A6

0A
8
0 + ρ2ρ3u

(23)
0 A1

0A
4
0 − ρ2ρ3u

(23)
0 A3

0A
6
0

+

(
1√
3
A3

0A
8
0 +

1

4
(A4

0)
2 − 1

4
(A6

0)
2

)(
(ρ1)2 − (ρ2)2

)

+
1

12

(
2(A1

0)
2 + 2(A3

0)
2 − 2(A8

0)
2−(A4

0)
2−(A6

0)
2
) (

(ρ1)2 + (ρ2)2−2(ρ3)2
)
.

With the CS term given by (3.13) the total Lagrangian is again written in the form (3.14).

Again, we have to solve the simultaneous equations (3.15).

Next, we shall describe the potential due to the mass term of the matrix model,

λNcM
3
KK

54π

2

3
tr
[
(X4)2

]
=
λNcM

3
KK

34π

[
1

4
(r43 + r48/

√
3)2 +

1

4
(−r43 + r48/

√
3)2 +

1

3
(r48)

2

+
1

2

(
(r41)

2 + (r42)
2 + (r44)

2 + (r45)
2 + (r46)

2 + (r47)
2
)]

. (3.38)

The first three terms correspond to the square of the diagonal elements X4
ii for i = 1, 2, 3, so

these correspond to the three copies of the one-baryon potential. The terms in the second

line are the two-body and the three-body terms. To evaluate these, we need explicit

expressions for the off-diagonal r1, r2, r4, r5, r6 and r7.

In principle, it is a straightforward calculation to determine the three-body force from

this. However the actual calculation turns out to be extremely messy, and it is hard to get

a physical interpretation from that. To extract the physical essence, next we will choose

a particular alignment of the baryons to simplify the expression, so that final answer is

easier to analyze.

3.3 Three-body Hamiltonian for baryons aligned on a line

We will find that the Hamiltonian is simplified significantly when all the baryons are aligned

on a line. We consider the following case

rM
8 = 0 , rM

3 ≡ rM 6= 0 . (3.39)

This means that the first, the second and the third baryon are placed at xM = rM
3 /2,

xM = −rM
3 /2, and x = 0, respectively. In this case, since rM

8 = 0, the expression for
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the potential is significantly simplified. Still, since we are treating the spin/isospin moduli

quantum mechanically, this gives lots of information on the three-body forces. In addition,

we notice that all the size moduli ρi can be taken to be a classical value, ρ1 = ρ2 = ρ3 = ρ,

since we are dealing with only the leading order in the large Nc limit. The large Nc limit

is the same as classical limit since the action (2.1) has overall Nc. This simplifies the

computation too.

The resultant Lagrangian concerning the gauge field A0 is

LA0 =
λMKKNc

54π
(L1 + L2) (3.40)

where

L1 ≡ 162A0
0π

λMKK
+

(A1
0)

2r2

2
+

(A4
0)

2r2

8
+

(A6
0)

2r2

8

+
(
6(A0

0)
2 + (A1

0)
2 + (A3

0)
2 + (A4

0)
2 + (A6

0)
2 + (A8

0)
2
)
ρ2

+

(
A4

0A
6
0 +

2A1
0A

8
0√

3

)
ρ2u

(12)
0 +

(
A3

0A
4
0 +A1

0A
6
0 −

A4
0A

8
0√

3

)
ρ2u

(13)
0

+

(
A1

0A
4
0 −A3

0A
6
0 −

A6
0A

8
0√

3

)
ρ2u

(23)
0 +4A0

0

(
A1

0u
(12)
0 +A4

0u
(13)
0 +A6

0u
(23)
0

)
ρ2 ,

4L2 ≡ 2(A3
0)

2(rM
1 )2 +

1

2
(A4

0)
2(rM

1 )2 +
1

2
(A6

0)
2(rM

1 )2 −A1
0A

4
0r

M
1 rM

4 − 3A3
0A

6
0r

M
1 rM

4

−
√

3A6
0A

8
0r

M
1 rM

4 +
1

2
(A1

0)
2(rM

4 )2+
1

2
(A3

0)
2(rM

4 )2+
1

2
(A6

0)
2(rM

4 )2+
√

3A3
0A

8
0(r

M
4 )2

+
3

2
(A8

0)
2(rM

4 )2 + 3A3
0A

4
0r

M
1 rM

6 −A1
0A

6
0r

M
1 rM

6 −
√

3A4
0A

8
0r

M
1 rM

6 −A4
0A

6
0r

M
4 rM

6

+2
√

3A1
0A

8
0r

M
4 rM

6 +
1

2
(A1

0)
2(rM

6 )2 +
1

2
(A3

0)
2(rM

6 )2 +
1

2
(A4

0)
2(rM

6 )2

−
√

3A3
0A

8
0(r

M
6 )2 +

3

2
(A8

0)
2(rM

6 )2 . (3.41)

For getting this expression of LA0 = L1 + L2, we have used the equations

rM
3 rM

1 = 0 , (rM
3 +

√
3rM

8 )rM
4 = 0 , (rM

3 −
√

3rM
8 )rM

6 = 0 , (3.42)

to eliminate cross terms between r3,8 and y in the Lagrangian. These can be shown explic-

itly using the solution of the ADHM constraint (2.2) in the expansion of the small ρ2/r2.

The expansion was studied in detail in [18]. Using the expression given in eq. (5.13) of [18],

it is easy to show the equations above. This elimination of the cross terms is important for

a simplification of the computations. In fact, we can show later that L2 is not necessary,

when integrating out A0.

Next we evaluate the contribution from the mass term (X4)2. The alignment (3.39)

simplifies the ADHM data (3.25), (3.26) and (3.27) quite a lot. In fact, we have

rM
1 σM =

1

|r|2 ρ1ρ2 rT21 −
1

|r|4 ρ1ρ2ρ
2
3 r(T32T13 − T13T32) + O(1/|r|5) , (3.43)

rM
4 σM =

2

|r|2 ρ1ρ3 rT31 −
1

|r|4 ρ1ρ3ρ
2
2 r(T32T12 − T12T32) + O(1/|r|5) , (3.44)

rM
6 σM = − 2

|r|2ρ2ρ3 rT32 +
1

|r|4ρ2ρ3ρ
2
1 r(T31T21 − T21T31) + O(1/|r|5) , (3.45)
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where r ≡ rMσM , and Tij ≡ (U i)†U j − (U j)†U i = −Tji. Note that the first term in each

of the right hand side equals the off-diagonal entry of the two-body case, Y in (2.7). The

second terms are corrections due to the three-body effect. So, the three-body contribution

in the mass term tr(X4)2 (3.38) should appear at the leading order as a liner term in these

second terms, multiplied by the first terms. An explicit computation leads to

V mass
3−body =

λNcM
3
KK

2234π

ρ6

|r|6
×
(
tr[rT21]tr[r(T23T13 − T13T23)] − 2tr[rT31]tr[r(T32T12 − T12T32)]

−2tr[rT32]tr[r(T31T21 − T21T31)]
)
. (3.46)

We have already subtracted the one-body and the two-body potentials here, and took

ρ1 = ρ2 = ρ3 = ρ which is the classical value (the leading value in the large Nc expansion).

Procedure (3): integrating out A0. Once we solve the simultaneous equations of

motion for (3.15) for Aζ
0, and plug the solutions into the Lagrangian LA0 , we should obtain

LA0 = −V , V ≡
∑

A=1,2,3

V
(A)
1−body +

1

2

∑

A 6=B

V
(A,B)
2−body + V3−body (3.47)

where the first term is the one-body rest energy, and the second term is the two-body

interaction potential. As obtained in [1], their expressions are

V
(A)
1−body =

27πNc

4λMKK

1

ρ2
, V

(A,B)
2−body =

27πNc

λMKK

(u
(AB)
0 )2

|r(AB)|2 + 2ρ2 − 2(u
(AB)
0 )2ρ2

. (3.48)

Here the inter-nucleon distance is, according to our alignment (3.39),

|r(12)| = r , |r(13)| = |r(23)| = r/2 . (3.49)

The third term V3−body is what we like to compute.

We are interested in the regime of short distances r ≪ 1/MKK. However, as the

classical size of the baryon ρ is quite small, ρ ∼ 1/(
√
λMKK), the region of our interest

is rather a “long-distance” expansion ρ ≪ r in effect. Therefore we need to expand the

resultant Hamiltonian for small ρ/r. As we look at the Lagrangian LA0 = L1+L2, we notice

that L2 is of order ρ4/r2, as we know that the ADHM constraint is solved in this expansion

as y = O(ρ2/r). On the other hand, As is obvious from (3.47), the two-body interaction

is O(1/r2) so the three-body interaction should start from ρ2/r4. (This is suggested also

from the soliton approach, see [8].) Therefore, L2 is not necessary as it is at higher order

in this expansion.5

The Lagrangian L1 can be conveniently written as

L1 = ~ATM ~A+ ~BT ~A (3.50)

5As a check, we can perform a computation with keeping L2 explicitly to confirm this. The computation

is lengthy and is not presented in this manuscript, but we have confirmed it. Note that for the generic case

with nonzero r8, this simplification is not expected, because in general there are terms of the form r8y which

contributes additionally to L1, so one needs explicit expression for y by solving the ADHM constraints.
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where

~AT ≡ (A0
0, A

1
0, A

3
0, A

4
0, A

6
0, A

8
0) ,

~BT ≡ 162π

λMKK
(1, 0, 0, 0, 0, 0) , (3.51)

M ≡ P +Q, P ≡ r2

8
diag (0, 4, 0, 1, 1, 0) , (3.52)

Q ≡ ρ2





6 2u
(12)
0 0 2u

(13)
0 2u

(23)
0 0

2u
(12)
0 1 0 u

(23)
0 /2 u

(13)
0 /2 u

(12)
0 /

√
3

0 0 1 u
(13)
0 /2 −u(23)

0 /2 0

2u
(13)
0 u

(23)
0 /2 u

(13)
0 /2 1 u

(12)
0 /2 −u(13)

0 /2
√

3

2u
(23)
0 u

(13)
0 /2 −u(23)

0 /2 u
(12)
0 /2 1 −u(23)

0 /2
√

3

0 u
(12)
0 /

√
3 0 −u(13)

0 /2
√

3 −u(23)
0 /2

√
3 1





. (3.53)

Since M is a symmetric matrix i.e. MT = M , the equations of motion for A0 is solved by

~A = −1

2
M−1 ~B , (3.54)

which is substituted back to L1 to give the Hamiltonian (which is −LA0)

V =
λMKKNc

54π
· 1

4
~BTM−1 ~B . (3.55)

As ~B has only one non-zero entry, this is nothing but

V =
35πNc

2λMKK

[
M−1

]
(1,1)

(3.56)

which can be evaluated using the first cofactor of the matrix M . By expanding in power

series of ρ2/r2 up to O(ρ4/r6), we obtain,

V =
35πNc

2λMKK

(
1

6ρ2
+

2(u(1,2))2 + 8(u(1,3))2 + 8(u(2,3))2

9r2
+

4ρ2fSI

9r4

)
+ O

(
ρ4/r6

)
, (3.57)

where spin/isospin phase fSI is defined as

fSI ≡ (u
(1,2)
0 )4 − (u

(1,2)
0 )2 + 16(u

(1,3)
0 )4 − 16(u

(1,3)
0 )2 + 16(u

(2,3)
0 )4 − 16(u

(2,3)
0 )2

+4(u
(1,2)
0 )2(u

(1,3)
0 )2 + 4(u

(1,2)
0 )2(u

(2,2)
0 )2 + 16(u

(1,3)
0 )2(u

(2,3)
0 )2

−24u
(1,2)
0 u

(2,3)
0 u

(1,3)
0 . (3.58)

Subtracting the 1-body and 2-body potentials (3.48) from this expression as in (3.47), we

obtain the potential intrinsic to the three-body nature by the expansion of ρ2/r2, which

we call V A0
3−body as

V A0
3−body =

216πNcρ
2

λMKK|r|4
[
(u

(1,2)
0 )2(u

(1,3)
0 )2 + (u

(1,2)
0 )2(u

(2,3)
0 )2 + 4(u

(1,3)
0 )2(u

(2,3)
0 )2

−6u
(1,2)
0 u

(2,3)
0 u

(1,3)
0

]
+ O(ρ4/r6) . (3.59)
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With the potential coming from theX4 mass term (3.46), the total three-body potential

is

V3−body = V A0
3−body + V mass

3−body . (3.60)

With this at hand, we can evaluate this potential with any three-baryon state with any

spin/isospin. Next, we shall choose two wave functions, one is appropriate for the neutron

stars, and the other is for a Helium-3 nucleus and a triton (a nucleus of tritium), to find

the three-body nuclear potential is positive.

We have two remarks on (3.59). First, the three-body Hamiltonian (3.59) is of order

O(1/(λ2r4)) because of ρ ∼ 1/
√
λ, and so it is suppressed by 1/λ2. This is consistent

with the generic observation given in the soliton picture [8] stating that the generic k-body

potential is of order 1/(λk−1r2k−2) in the unit of MKK = 1. Second, in the expression above

if we put all the matrices U (i) equal to each other so that the ADHM data is that of the

’tHooft instantons, we have u
(i,j)
0 = 1 and Aij = 0, resulting in the vanishing three-body

potential. This is consistent with the result of the previous section.

Procedure (4): evaluate the Hamiltonian with baryon states. Now, we are ready

to compute the spin/isospin dependence of the three-body nuclear force at short distances.

Although we can evaluate it for any choice of spin/isospin for each baryon, in this paper

we choose the following two states as explicit examples:

(4-a) three neutrons with spins averaged.

(4-b) proton-proton-neutron (and proton-neutron-neutron).

The reason for these choices is that the first example is relevant for dense states of many

neutrons such as core of neutron stars and supernovae, where the three-body nuclear forces

are quite important. The second is obviously for the spectrum of Helium-3 nucleus where

three-body forces are expected to contribute, and also for a triton.

(4-a): three neutrons with spins averaged. For protons and neutrons, the single-

baryon wave function is given by (2.5). For the neutron stars and the supernovae, we

need neutron states with spins averaged. Thus, for any given operator of the quantum

mechanics, the appropriate expectation value for these is obtained by

〈V 〉 =
1

2

[
〈n ↑ |Ô|n ↑〉 + 〈n ↓ |Ô|n ↓〉

]
(3.61)

For the case of Ô being the three-body Hamiltonian, we need to take the above expectation

value for each of three baryons. As nucleons are fermions, any wave functions should be

anti-symmetric under the exchange of the nucleons. Here, as three neutrons move around

in realistic situations, we do not anti-symmetrize the wave functions6 (in this paper we

have not evaluated nuclear potentials coming from motion of the baryons).

6In fact, once we take three neutrons for the isospin sector, it is impossible to anti-symmetrize the wave

function with the spin sector, without a help of angular momenta.
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Here for a demonstration, let us consider a single baryon case (3.61). Using the coor-

dinate expression of the wave functions, this (3.61) means

〈V 〉 =

∫
dΩ3

1

2

[
O |〈~a|n ↑〉|2 + O |〈~a|n ↓〉|2

]
(3.62)

Here dΩ3 is the integration over the S3 spanned by the unit vector ~a. Using the wave

functions (2.5), we can see

|〈~a|n ↑〉|2 + |〈~a|n ↓〉|2 =
1

π2

[
(a1)

2 + (a2)
2 + (a3)

2 + (a4)
2
]

=
1

π2
(3.63)

So, we obtain a simple expression

〈V 〉 =
1

2π2

∫
dΩ3 O. (3.64)

Using this simple formula, the three-body potential with the spin-averaged wave func-

tion is

〈
V A0

3−body

〉

nnn(spin−averaged)

=
216πNcρ

2

λMKK|r|4
1

(2π2)3

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3

[
(u

(1,2)
0 )2(u

(1,3)
0 )2 + (u

(1,2)
0 )2(u

(2,3)
0 )2

+4(u
(1,3)
0 )2(u

(2,3)
0 )2 − 6u

(1,2)
0 u

(2,3)
0 u

(1,3)
0

]
. (3.65)

This integral over three S3’s can be easily performed. For example, for (u
(1,2)
0 )2, using the

definition below (2.5) and (2.10), we get

u
(i,j)
0 =

1

2
tr
[
U (i)†U (j)

]
= ~a(i) · ~a(j) , (3.66)

where ~a(i) is unit 4-component vector, pointing one phase point on S3 for spin/isospin d.o.f.

U (i). Therefore, we obtain

∫
dΩ

(1)
3 (u

(1,2)
0 )2 =

∫
dΩ

(1)
3 cos2 θ =

∫
cos2 θ sin2 θ sin θ̃dθdθ̃d

˜̃
θ =

π2

2
, (3.67)

where θ is the angle between ~a(1) and ~a(2). Using this and also the following integral

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3 u

(1,2)
0 u

(2,3)
0 u

(1,3)
0 =

π6

2
, (3.68)

we obtain

〈
V A0

3−body

〉

nnn(spin−averaged)
= 0 . (3.69)

Therefore the three-body potential from the A0 term vanishes for the spin-averaged neutron

wave function.
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In the same manner, for V mass
3−body, the expectation value is given as

〈
V mass

3−body

〉
nnn(spin−averaged)

=
λNcM

3
KK

2234π

ρ6

|r|6

× 1

(2π2)3

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3

(
tr[rT21]tr[r(T23T13 − T13T23)]

−2tr[rT31]tr[r(T32T12 − T12T32)] − 2tr[rT32]tr[r(T31T21 − T21T31)]
)

= − λNcM
3
KK

2233π(2π2)3
ρ6

|r|6
∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3

(
tr[rT21]tr[r(T23T13 − T13T23)]

)
. (3.70)

Here in the last equality we have used the invariance under the exchange of the integration

variables, dΩ
(1)
3 ↔ dΩ

(2)
3 ↔ dΩ

(3)
3 . The integration can be performed by using the polar

coordinates of the S3, and the result is

1

(2π2)3

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3

(
tr[rT21]tr[r(T23T13 − T13T23)]

)
= −8|~r|2 , (3.71)

where ~r = (r1, r2, r3) is the three-dimensional vector which specifies the inter-baryon dis-

tance in our space. At the leading order in 1/N expansion, we may use the classical value for

r4 which is zero, so in effect the three-dimensional distance is equal to the four-dimensional

one, |~r| = |r|. We can substituting the classical value ρ = 2−1/437/4√πλ−1/2M−1
KK at the

leading order in the 1/Nc expansion. So, we obtain the three-body potential due to the

matrix model mass term as

〈
V mass

3−body

〉
nnn(spin−averaged)

=
2−1/2315/2π2Nc

λ2M3
KK|r|4

. (3.72)

Therefore, in total, we obtain

〈V3−body〉nnn(spin−averaged) =
〈
V A0

3−body

〉

nnn(spin−averaged)
+
〈
V mass

3−body

〉
nnn(spin−averaged)

=
2−1/2315/2π2Nc

λ2M3
KK|r|4

. (3.73)

This is the three-body nuclear potential for three neutrons placed on a line with equal

spacings |r|/2, with spins averaged. The three-body potential is suppressed compared to

the two-body potential by ∼ 1/λ(rMKK)2 ≪ 1 for large λ, which is generic hierarchy

between N + 1-body potential to N -body one as shown in [8]. MKK roughly indicates the

QCD scale, and our computation is valid at short-distance, 1/(
√
λMKK) ≪ |r| ≪ 1/MKK.7

(4-b): proton-proton-neutron. Let us evaluate the three-body potential with the case

of proton-proton-neutron. We are interested in the three-nucleon state with a total spin

1/2 and a total isospin 1/2. For any choice of the third component of the spin/isospins,

we can find a unique wave function with a complete anti-symmetrization.

7This MKK is about 1GeV if it is fit with ρ meson mass [5], while it is about 0.5 GeV when it is fit with

baryon mass differences [16]. We are working in the large λ expansion. The ’tHooft coupling constant of

QCD, λ, is O(10 − 20) when it is fit with pion decay constant [5].
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The proton-proton-nuetron means the third component of the total isospin is +1/2.

For example, when the third component of the total spin is +1/2,

1√
6

[
|p ↑〉1|p ↓〉2|n ↑〉3 − |p ↓〉1|p ↑〉2|n ↑〉3 − |p ↑〉1|n ↑〉2|p ↓〉3

+|p ↓〉1|n ↑〉2|p ↑〉3 − |n ↑〉1|p ↓〉2|p ↑〉3 + |n ↑〉1|p ↑〉2|p ↓〉3
]
. (3.74)

The calculation with this wave function is straightforward, and we find the integrals
∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3 |ψ(~a1,~a2,~a3)|2(u(1,2)

0 )2(u
(1,3)
0 )2 =

1

36
,

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3 |ψ(~a1,~a2,~a3)|2u(1,2)

0 u
(2,3)
0 u

(1,3)
0 =

1

36
, (3.75)

∫
dΩ

(1)
3 dΩ

(2)
3 dΩ

(3)
3 |ψ(~a1,~a2,~a3)|2

(
tr[rT21]tr[r(T23T13 − T13T23)]

)
= −320

27
|~r|2 .

Using these formula, we obtain again
〈
V A0

3−body

〉

ppn
= 0 , (3.76)

while for the other potential we have a different factor

〈
V mass

3−body

〉
ppn

=
25/239/25π2Nc

λ2M3
KK|r|4

. (3.77)

Therefore, in total, the three-body potential is

〈V3−body〉ppn =
〈
V A0

3−body

〉

ppn
+
〈
V mass

3−body

〉
ppn

=
25/239/25π2Nc

λ2M3
KK|r|4

. (3.78)

The three-body potential is positive, that means, we have a repulsive three-body force at

short distances.

This computation is for (+1/2,+1/2) of the third components of the spin and the

isospin. Computations with three other wave functions, (+1/2,−1/2), (−1/2,+1/2), and

(−1/2,−1/2), can be done in the same manner, and the result for the three-body potential

turns out to be the same as (3.78) for all of these. These are due to the fact that the

action (2.1) has rotational invariance SO(3) and isospin SU(2) invariance. This includes

the case for proton-neutron-neutron, which is the case for a triton (a tritium nucleus).

4 Summary and discussions

With the simple U(k) matrix model for k-nucleon systems which we proposed in [1] together

with P. Yi, in this paper we have computed short-distance three-body nuclear forces. Our

matrix model is not a phenomenological model, but derived in string theory using the

gauge/string duality (the AdS/CFT correspondence). More precisely, our matrix model is

a low-energy effective field theory on baryon vertex D4-branes [7] in the D4-D8 holographic

model [5, 6] of large Nc QCD. In this framework, we can compute nuclear potentials for

arbitrary number k of the nucleons.
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Our computations are straightforward. For three nucleons, we took k = 3, i.e. U(3)

matrix model. The matrix model Hamiltonian evaluated with a quantum three-baryon

state, a tensor product of single-baryon states, gives the three-body nuclear potential. We

subtracted one-body and two-body contributions, thus the remaining is the force intrinsic

to the three-body. The computations are valid only at short range, 1/
√
λMKK ≪ |r| ≪

1/MKK where λ is the ’tHooft coupling constant of the QCD which is O(10) for fitting pion

decay constant [5], and MKK is O(1 − 0.5) GeV [5, 16] when it is fit with meson/baryon

masses (or mass differences). As explicit examples, we took a) three neutrons with spins

averaged, and b) proton-proton-neutron, both aligned on a line with equal spacings. The

resultant three-body nuclear potentials are (3.73) and (3.78), both of which are positive.

Let us discuss possible importance of our result. We have computed (3.73) for three-

body neutrons. But as seen from the form of wave functions (2.5) and isospin SU(2)

invariance of the action (2.1), the results hold also for three-body forces for three-protons.

Therefore the result (3.73) hold as far as all three nucleons have same flavor. In the same

manner, the three-body potential (3.78) for the proton-proton-neutron is equal to the three-

body potential for proton-neutron-neutron, which is responsible for a triton. These results

imply that there are additional repulsive forces in addition to two-body forces for these

states at short distances.

The three-body potentials which we obtained in (3.73) and (3.78) are suppressed by

1/λ(rMKK)2 compared with two-body potential, and at the length scale where our com-

putation is valid, i.e. 1/(
√
λMKK) ≪ |r| ≪ 1/MKK, this suppression factor 1/λ(rMKK)2

is small. This makes our three-body potential computation valid; we have two-body

dominant repulsive potential and furthermore small but nonzero repulsive potential from

three-body forces.

These three-body forces are stronger as distances get shorter. As a result, at very

short distances where neutrons are highly dense, three-body forces give additional repulsive

forces. This statement supports recent observation that the nuclear two-body repulsion is

not enough to explain supernovae explosions, nor the equations of states for the core of

neutron stars. In high density nuclear matters such as the neutron stars, our result suggests

that the repulsive core of neutrons in neutron stars and supernovae has an extra positive

contribution besides the repulsive potential from the two-body nuclear potential. The

necessity of the repulsive three-body forces for neutrons has been indicated by analysis of

mass bounds of neutron stars and supernova explosion simulations.

We also found that the three-body forces for proton-proton-neutron at short distances

is repulsive. In Helium-3 nuclear spectrum, it is expected that a short-range repulsive three-

body forces is necessary, and our result sounds to be consistent with this. Furthermore,

we found a repulsive three-body forces also for a proton-neutron-neutron, which should be

related to a triton. There are other related issues in few-body nuclear spectra.8

Our example is limited to three nucleons on a line, so this is not conclusive for the

questions concerning the interesting situations listed above. However, our results are sug-

gestive. In principle, it is very straightforward to compute the k-body forces at arbitrary

8Spectra of heavy nuclei have been discussed in a holographic approach in [19, 20].
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arrangements of nucleons using our matrix model, therefore this matrix model is effective

for studying short-range many-body nuclear forces.
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