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1 Introduction

In the last years, methods based on tensor network states (TNS) have revealed themselves

as very promising tools for the numerical study of strongly correlated quantum many-body

systems. They are ansätze for the quantum state, characterized by their entanglement con-

tent and well suited for lattice systems. The paradigmatic family of TNS is that of matrix

product states (MPS) [1–6], which underlies the well-known density matrix renormalization

group algorithm (DMRG) [7, 8]. The enormous success of DMRG for the study of one di-

mensional condensed matter problems has been better understood within the framework of

TNS (see e.g. [9]). This has also enabled different extensions of the original algorithm, such

as time-dependence [10–12], so that MPS/DMRG methods constitute nowadays a quasi ex-

act method for the study of ground states, low lying excitations and thermal equilibrium

properties of quantum spin chains far beyond the reach of exact diagonalization. Being

free from the sign problem which plagues quantum Monte Carlo (QMC) methods, higher

dimensional TNS [13–15] are seen as powerful candidates for the numerical exploration of

long standing strongly correlated electron problems.

This success has motivated the application of TNS techniques to further problems, and

a relatively new field of application has been found in quantum field theories. Conformal

Field Theory inspires a generalization of MPS [16] useful for critical models. Further-

more, specific generalizations of TNS exist [17–19] which are suitable for non-relativistic

and relativistic QFT in the continuum. The discrete versions, on the other hand, are

adequate for lattice field theories, and can in particular be applied to models relevant to

high energy physics problems. This route was first explored using the original DMRG

formulation [20, 21]. The deeper understanding of the technique achieved thanks to TNS

has increased the power of these methods [22] and new results are now available for criti-

cal QFT [23, 24].
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A particularly interesting study case is that of the Schwinger model [25, 26], or QED

in one spatial dimension, the simplest gauge theory, which nevertheless exhibits features

in common with more complex models (QCD) such as confinement or a non-trivial vac-

uum, and has been adopted as a benchmark model where to explore lattice gauge theory

techniques (see e.g. [27–31] and references cited therein).

The application of MPS techniques to the Schwinger model was first explored by Byrnes

et al. [20] using the original DMRG formulation. The study improved by several orders of

magnitude the precision attained by other Hamiltonian techniques for the ground state and

the first (vector) mass gap, for vanishing and non-vanishing fermion masses, using periodic

boundary conditions (PBC). However, DMRG estimations for higher excited states lose

precision fast, in particular for PBC, and the scalar mass gap was not explored in [20].

In this paper we apply the more stable and numerically efficient MPS for open bound-

ary conditions (OBC) to the same problem. We work in the subspace of physical states

satisfying Gauss’ law, in which the model can be written as a spin Hamiltonian with a

long-range interaction [32, 33]. We improve the existing techniques to find higher excited

states and devise a method to identify vector and scalar excitations in finite open chains,

although the charge that distinguishes them is only a good quantum number in the contin-

uum. Using these methods we compute the ground state and the vector and scalar mass

gaps for vanishing and non-vanishing fermion masses, with enough precision to conduct

the extrapolation to the continuum limit. Our study shows the feasibility of TNS solutions

for similar LGT, in the Hamiltonian formulation.

The rest of the paper is organized as follows. In section 2 we briefly introduce the

Schwinger model, and review its formulation as a spin Hamiltonian. Section 3 presents

the MPS formalism, with special emphasis on the new techniques used to overcome the

challenge posed by this particular kind of problems. In section 4 we present our numerical

results and conclude in section 5 with a discussion and outlook.

2 The model

The massive Schwinger model [25], or QED in two space-time dimensions, is a gauge

theory describing the interaction of a single fermionic species with the photon field, via the

Lagrangian density,

L = Ψ̄(i/∂ − g /A−m)Ψ− 1

4
FµνF

µν , (2.1)

with Fµν = ∂µAν − ∂νAµ, being g the coupling constant and m the fermion mass. The

physics of the model is determined by the only dimensionless parameter m/g. The massless

case, m = 0, can be solved analytically, via bosonization [25], and also the free case, g = 0,

has exact solution, so that for very large or very small values of m/g a perturbative study

is possible around one of the solvable limits, while in general a non-perturbative treatment

may be needed. One of the features of the model is the existence of bound states, the two

lowest ones of which, the vector and the scalar, are stable for any value of m/g [26, 34].

The spectrum of the Schwinger model has been studied with many techniques. The

most accurate numerical estimations have been performed on the lattice. For the vector
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mass the best results were obtained with DMRG [20], while strong coupling expansion

(SCE) got the most accurate prediction for the scalar mass [35, 36] and the most precise

values in the massless case [37].

In the temporal gauge, A0 = 0, the Hamiltonian density reads

H = −iΨ̄γ1(∂1 − igA1)Ψ +mΨ̄Ψ +
1

2
E2. (2.2)

The electric field, E = −Ȧ1, is fixed by the additional constraint of Gauss’ law, ∂1E =

gΨ̄γ0Ψ, up to a constant of integration, which can be interpreted as a background field [26].

The model can be formulated on a lattice. Here we focus on the Kogut-Susskind

staggered formulation [38],

H = − i

2a

∑

n

(

φ†
ne

iθnφn+1 − h.c.
)

+m
∑

n

(−1)nφ†
nφn +

ag2

2

∑

n

L2
n, (2.3)

where a is the lattice spacing. We consider a lattice with open boundaries, with sites

n = 0, . . . N − 1. On each site there is a single-component fermion field φn, while θn are

the gauge variables sitting on the links between n and n+ 1, and connected to the vector

potential via θn = −aqA1
n. Ln is the corresponding conjugate variable, [θn, Lm] = iδnm,

connected to the electric field as gLn = En. We work in a compact formulation, where θn
becomes an angular variable, and Ln can adopt integer eigenvalues. Gauss’ law appears as

the additional constraint

Ln − Ln−1 = φ†
nφn −

1

2
[1− (−1)n] . (2.4)

Instead of the Hamiltonian (2.3), it is usual to work with the dimensionless operator W =
2

ag2
H, and to define parameters x = 1

g2a2
and µ = 2m

g2a
. In this picture, fermions on

even and odd sites respectively correspond to the upper and lower components of the

spinor representing the fermionic field in the continuum. Gauss’ law (2.4) determines the

electric field up to a constant α which can be added to Ln and represents the background

electric field.

Using a Jordan-Wigner transformation, φn =
∏

k<n(iσ
z
k)σ

−
n , where σ± = 1

2(σ
x ± iσy),

the model (2.3) can be mapped to a spin Hamiltonian [32],

H = x
N−2
∑

n=0

[

σ+
n σ

−
n+1 + σ−

n σ
+
n+1

]

+
µ

2

N−1
∑

n=0

[1 + (−1)nσz
n] +

N−2
∑

n=0

(Ln + α)2 . (2.5)

Gauss’ law reads then Ln−Ln−1 =
1
2 [σ

z
n + (−1)n], and can be used to eliminate the gauge

degrees of freedom, leaving the Hamiltonian [39]

H =x
N−2
∑

n=0

[

σ+
n σ

−
n+1 + σ−

n σ
+
n+1

]

+
µ

2

N−1
∑

n=0

[1 + (−1)nσz
n]

+

N−2
∑

n=0

[

ℓ+
1

2

n
∑

k=0

((−1)k + σz
k)

]2

, (2.6)

– 3 –



J
H
E
P
1
1
(
2
0
1
3
)
1
5
8

where ℓ is the boundary electric field, on the link to the left of site 0, which can describe

the background field.

A useful basis for this problem is then

|ℓ〉 ⊗ |i0i1 . . . iN−2iN−1〉, (2.7)

with im = {0, 1} labeling the ±1 eigenstates of σz
m (on site m). An even site in spin

state |1〉 corresponds to the presence of a fermion, while an odd site in state |0〉 is an

antifermion at the corresponding position. The integer valued ℓ = . . . ,−1, 0, 1, . . . is the

only gauge degree of freedom left, but with OBC it is non-dynamical, as the Hamiltonian

cannot connect states with different values of ℓ. Here we choose ℓ = 0 and omit it in the

following, as we will be concerned with the case of zero background field. Moreover, we are

interested in states with zero total charge (
∑

n σ
z
n = 0 in the spin language), so we consider

chains with even N .

3 Method

In this work we use the MPS ansatz to approximate the ground and lowest excited states

of the Hamiltonian (2.6). A MPS for a system of N d-dimensional sites has the form

|Ψ〉 =
d

∑

i0,...iN−1=1

tr(Ai0
0 . . . A

iN−1

N−1 )|i0, . . . iN−1〉, (3.1)

where {|i〉}d−1
i=0 are individual basis states for each site. Each Ai

k is a D-dimensional matrix

and the bond dimension, D, determines the number of parameters in the ansatz. MPS

are known to provide good approximations to ground states of local Hamiltonians in the

gapped phase, but have also been successfully used for more general models.

The MPS approximation to the ground state can be found variationally by successively

minimizing the energy, 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , with respect to each tensor Ak until convergence. Each

such optimization reduces to the eigenvalue problem of an effective Hamiltonian that acts

on site k and its adjacent virtual bonds. The basic algorithm, closely related to the original

DMRG formulation [7, 8], was introduced in [5], and is nowadays widely used.

In DMRG it is possible to target several of the lowest eigenstates [41], or, in the case

of a first excited state with a distinct quantum number, to run the ground state search in

different sectors. In the MPS formalism, it is natural to extend the variational method to

determine excited states by performing a constrained minimization which imposes orthog-

onality with respect to the already computed states (ground and lower excited states), as

proposed in [42] and recently extended in [43]. Here we introduce a simpler variation of

the ground state algorithm, which allows us to compute MPS approximations to the lowest

energy eigenstates at lower cost, without using any explicit symmetry. This is especially

interesting for a finite system with open boundary conditions, where momentum is not a

good quantum number. It is worth noticing that in the case of translationally invariant

(TI) systems, either finite and periodic or infinite, a very successful approach exists based

on the construction of well-defined momentum MPS [44].
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For finite systems, the MPS algorithms for open boundary conditions are numerically

more stable and in general more efficient, although improved methods have been recently

proposed for periodic systems [45, 46]. However, finite-size effects are much larger for

OBC and therefore simulation of larger chains may be needed to reach the thermodynamic

limit reliably.

After having found the ground state of the system, |Ψ0〉, we can construct the projector

onto the orthogonal subspace, Π0 = 1−|Ψ0〉〈Ψ0|. The projected Hamiltonian, Π0HΠ0, has

|Ψ0〉 as eigenstate with zero eigenvalue, and the first excited state as eigenstate with energy

E1. Given that E1 < 0, what we can always ensure by adding an appropriate constant

to H, the first excitation corresponds then to the state that minimizes the energy of the

projected Hamiltonian,1

E1 = min
|Ψ〉
〈Ψ|Π0HΠ0|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ| (H − E0|Ψ0〉〈Ψ0|) |Ψ〉
〈Ψ|Ψ〉 . (3.2)

This minimization corresponds to finding the ground state of the effective Hamiltonian

Heff [1] = Π0HΠ0. The procedure can be concatenated to find subsequent energy levels, so

that, to find the M -th excited state, we will search for the ground state of the Hamiltonian

Heff [M ] = ΠM−1 . . .Π0HΠ0 . . .ΠM−1 = H −
M−1
∑

k=0

Ek|Ψk〉〈Ψk|. (3.3)

Each of these ground state searches can be solved by applying the standard variational

MPS algorithm to the corresponding effective Hamiltonian (3.3), which can be constructed

from the set of all previously computed MPS levels {|Ψk〉} (see figure 2). The expression

to be minimized at each step of the MPS iteration is then minAk

A∗

k
HkAk

A∗

k
NkAk

, where Hk and

Nk are the effective Hamiltonian and norm matrix acting on site k and its two adjacent

virtual bonds, so that each tensor can be found by solving a generalized eigenvalue problem

HkAk = λNkAk. As illustrated in figure 1, Hk and Nk are computed by contracting all

tensors but Ak, and the computational cost can be optimized, as in the original algorithm,

by storing and reusing the partial contractions that compose these effective matrices. In

general this is most easily done when all the terms in the problem Hamiltonian are expressed

as a matrix product operator (MPO) [47]. In this particular case it is more convenient to

keep separate temporary terms for each of the contractions 〈Ψk|Ψ〉, and to reconstruct from

them the effective projectors on every site, before constructing the effective Hamiltonian.

In this way, the number of operations required for each such term scales as dD3, without

increasing the leading cost of the algorithm. Due to the larger number of terms that need

to be kept, however, the cost of finding the M -th level once all the lower ones are known

will be about M times higher than that of the original ground state search,2 and thus the

total cost for computing up to the M -th level will scale as M2D3.

The masses of the particles in the theory are given by the energies of the zero mo-

mentum excitations. In finite systems with OBC momentum is difficult to identify and we

1Alternatively, we can use a Hamiltonian H +∆|Ψ0〉〈Ψ0|, with ∆ > E1 − E0.
2This refers only to the leading computational cost, as in some cases convergence of a particular excited

states may result slower due to small gaps.
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|Ψ〉

Ak

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉

(a) Pictorial representation of the MPS, and Hamiltonian and norm contractions

Hk
eff [M]=

Hk
eff

+
∑M−1

m=0 Em×

(Πm)keff

|Ψm〉keff
(b) Effective Hamiltonian for site k and excited level M .

Figure 1. Scheme of the algorithm for excited states. In 1(a) (left) we show the commonly used

graphical representation of a MPS (see e.g. [40]). Each circle corresponds to one tensor (Ak) and

each of its legs represents one index, with lines that join two tensors representing a contracted

index (as in a matrix multiplication). The open legs correspond to the physical indices on each

site. A particular coefficient in the product basis corresponds to fixing each of the open indices to

a value (0, . . . , d−1). On the right, we show the representation of some usual contractions. We can

contract two MPS by joining their open (physical) indices to compute the norm (lower scheme) or

insert an operator with a matrix product structure, as the Hamiltonian, to obtain the expectation

value of the energy (above). In 1(b) we show the tensor network representation of Hk in the step

of the optimization where site k is computed. The term on the left is simply the contraction of the

TN for 〈H〉 except for tensor Ak. Each term in the sum on the right is the TN for the expectation

value of one projector (〈Ψ|Ψm〉〈Ψm|Ψ〉) leaving out the tensor at site k. The sum of all these terms

produces the effective Hamiltonian at site k.

need to find the excitations that will correspond to the lowest momentum in the continuum

limit. In dynamical DMRG [48] momentum dependent quantities were extracted from finite

DMRG calculations with open boundaries using quasimomentum states defined from the

eigenstates of a free particle in a box. Here we use a different approach, based on the contin-

uum momentum operator for the fermion field, P̂ =
∫

dxΨ†(x)i∂xΨ(x). Its discretization

yields, in the spin representation, and after rescaling by a factor 2
ag2

, the operator

ÔP = −ix
∑

n

[σ−
n σ

z
n+1σ

+
n+2 − h.c.]. (3.4)

The expectation values of Ô2
P can be used to assign a pseudo-momentum to the spectral

levels, in order to reconstruct the dispersion relation (figure 3).

– 6 –
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Input: Hamiltonian for an N -site chain, H; maximum bond dimension, D; tolerance, ǫ

Output: MPS approximation to the ground state, |Ψ{Ak}〉D, with energy E

{A0, . . . AN−1} ← initial guess

E ← 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

δE ← 1

sweeping direction← right

while δE > ǫ do

k ← first site for sweeping direction

while 0 ≤ k ≤ N − 1 do

compute matrices Hk
eff , N k

eff {contraction without tensor Ak (figure 1)}
solve generalized eigenvalue problem Hk

effA = λminN k
effA

Ak ← A, Ek ← λmin

k ← next site according to sweeping direction

end while

δE ←
∣

∣

∣

E−Ek

E

∣

∣

∣

E ← Ek

flip sweeping direction {left ↔ right}
end while

Figure 2. Schematic MPS variational algorithm for the ground state search. An efficient imple-

mentation requires imposing a canonical form of the MPS after each update, and reusing temporary

calculations, among other optimizations (see [9, 40]).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2488

−2486

−2484

−2482

−2480

−2478

−2476

−2474

<O
P
2>

E
m

(a) m/g = 0

0.2 0.4 0.6 0.8 1
−2400

−2398

−2396

−2394

−2392

−2390

−2388

−2386

−2384

−2382

<O
P
2>

E
m

(b) m/g = 0.125

Figure 3. Dispersion relation (energy vs. 〈O2

P 〉) obtained with MPS for x = 25, N = 160 and

m/g = 0 (left) and m/g = 0.125 (right). Shown are the states reconstructed with bond dimensions

D = 40 (crosses), 80 (circles) and 100 (dots) (being on top of each other in the graph) until we have

reached a scalar candidate. The appearance of the scalar is detected by the phase of the expectation

value 〈SR〉, with the scalar (indicated in blue in the plots) being the first state with ϕ ≈ 0 above

the ground state (red) while states with |ϕ| ≈ π belong to the vector branch (green).
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The model gives rise to stable particles, the lowest ones being, in the case of no

background field, the vector and scalar states. In the continuum model, these particles are

distinguished by well-defined parity and charge conjugation quantum numbers [26], with

the scalar living in the same sector as the ground state. On a staggered lattice with PBC

it is possible to exploit the corresponding lattice symmetries to construct two orthogonal

subspaces, one of them containing the vector, and the other the ground state and the

scalar [49]. For a chain with OBC the number of surviving symmetries is even lower, with

translational invariance lost. In practice this means that to calculate the scalar mass,

we need to identify first the momentum excitations of the vector, which appear at lower

energy than the scalar. In [39] this was achieved by starting from the strong coupling limit

(x → 0), where vector and scalar states are known exactly, and smoothly changing the x

parameter while keeping a label on the scalar state. Instead, we use the expectation value

of the spin transformation, SR = ⊗N−1
k=0 σ

x
2k−1T

(1), where T (1) is the (cyclic) translation by

one spin site.3 In a system with PBC this operator basically describes the action of charge

conjugation on the spins, with the translation exchanging the fermionic and antifermionic

character of sites, and the σx rotation accounting for the different meaning of a spin up on

an even (fermion) site (empty) and on an odd one (occupied). Charge conjugation is a good

quantum number and distinguishes the vector state (C = −1) from the sector containing

the scalar and the ground state (C = +1), even for finite systems. On the staggered

lattice with OBC this is no longer true, and SR does not commute with the Hamiltonian.

However the phase of SR keeps memory of this distinction, and allows us to tag the levels

accordingly, with the ground state and the scalar branch of the dispersion relation having

phase ϕ(〈SR〉) ≈ 0 and the vector branch ϕ(〈SR〉) ≈ π, as illustrated in figure 3.

4 Results

We have applied the methods described in section 3 to the Hamiltonian (2.6) to determine

the ground state, and the vector and scalar mass gaps for various values of the fermion mass.

In order to benchmark our results with existing data, we have studied different masses

m/g = 0, 0.125, 0.25 and 0.5, for which reference values can be found in the literature.

Our goal is to compute, for each of these masses, the ground state energy density,

and the vector and scalar mass gaps in the thermodynamic limit (N → ∞) for different

finite values of x, and to extrapolate them to the continuum limit, corresponding to the

lattice spacing a → 0, or x → ∞. We have used values of x ∈ [5, 600]. In order to

extract the thermodynamic limit for each case, we need to simulate different system sizes,

N , and apply finite-size scaling. The system sizes, N , cannot be chosen independently of

the value of x, as the same number of sites N corresponds to different physical volumes

Lphys = Na for different values of x ∝ 1/a2. From numerical simulations, we estimated

that N ≥ 20
√
x ensures small enough finite volume effects. We thus study for each value

of x several different system sizes, large enough for the condition above to be satisfied (for

instance, for x = 5 we take N ∈ [50, 82] while for x = 600, N ∈ [540, 834]).

3The choice of a cyclic translation ensures unitarity of the operator, and is irrelevant in the thermody-

namic limit.
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We have run the MPS algorithms described in the previous section for each set of

parameters, (m/g, x,N), using bond dimensions D ∈ [20, 140], to find the ground state

and excited levels at least until a candidate scalar state is found. We are interested in the

subspace of null total charge, which corresponds to
∑

Sz = 0 and can easily be imposed

by adding a penalty term to the Hamiltonian. For every level, the MPS iteration stops

when the relative change in the energy after one full sweep over the chain is below a

certain tolerance, ǫ. This value has to be small to ensure a good precision after the

extrapolations, but a smaller tolerance translates in more difficult convergence. Therefore

we fixed ǫ = 10−12 for the ground state and the vector calculations, and ǫ = 10−7 for the

longer computations required by the scalar states.

For every set (m/g, x, N) and for each of the levels we are interested in, we extrapolate

our results to 1/D → 0, as illustrated in figure 4. In the case of the ground state and the

vector state, almost all the bond dimensions are converged, while for the scalar mass gap,

depending on a larger number of intermediate excited states, some of the larger systems

are only computed with smaller bond dimension. If the bond dimension reached is large

enough, we extrapolate linearly in 1/D. Otherwise we take the value corresponding to the

largest D as our estimation for the energy, and the error as the difference between this

value and the one for the immediately smaller D.

The results of the extrapolation described above provide accurate estimators for the

energy levels for various finite chains. We then proceed to scale these results with the

finite system size to extract the ground state energy density, E0/(2xN), and the mass

gaps, (E1(2)−E0)/(2
√
x) in the thermodynamic limit for each pair of parameters (m/g, x).

Finite-size corrections to the ground state energy density are linear in 1/N , while for the

energy gaps, the leading corrections arise from a kinetic energy term O(π/N2) [39]. Hence

the bulk limit is extracted by fitting the ground state energy density as

E0

2xN
≈ ω0 +

α

N
+

β

N2
, (4.1)

and the energy gaps as

E1(2) − E0

2
√
x

≈ ω1(2) +
α1(2)

N2
+O

(

1

N3

)

. (4.2)

Figure 5 illustrates this step for x = 100 and masses m/g = 0 and 0.125.

Finally, the values in the continuum limit can be extracted by fitting the results for

each value of the mass to a polynomial in 1√
x
. We include only those values of x for which

the thermodynamic limit could be extracted accurately (i.e. the corresponding level for

the various system sizes was computed for a large enough D). The interval [xmin, xmax]

and the degree of the polynomial used for the fit introduce the largest uncertainty in the

final estimators. We have thus performed a systematic error analysis in which the different

possible fits are taken into account to estimate the continuum values and their errors from

our data. The detailed method is described in the appendix A.

Figures 6 (ground state), 7 (vector) and 8 (scalar) show all the values in the thermo-

dynamic limit as a function of 1/
√
x, for each of the mass values, and illustrate the fits

that produce the continuum limit.
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Figure 4. Convergence of the energy levels with the bond dimension, D, for x = 100 and N = 300.

In the left column, we show the results of the scalar (uppermost plot, blue), vector (middle plot,

green) and ground state (lowest plot, red) for the massless case, m/g = 0, while the right column

contains the corresponding results for the case m/g = 0.125. Plotted is the difference between the

computed energy at a certain bond dimension and the one for the maximum Dmax. The error bars

(sometimes smaller than the marker size) indicate the convergence criterion of the MPS algorithm,

(ǫ = 10−7 for the scalar and 10−12 for the rest). Dashed lines show the extrapolation in 1/D, with

the final value displayed as a star (numerical value inside each panel).

As our final result we obtain for the ground state energy density in the massless case

the value ω0 = −0.318338(22)(24), to be compared to the exact value, −1/π ≈ −0.3183099.
The first error includes the propagated error from infinite D and N extrapolations, as well

as the systematic error from choosing the fitting interval, while the second error is the

difference between results from cubic and quartic fits in 1/
√
x. Note that the latter error
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Figure 5. Finite size scaling for x = 100 and mass m/g = 0 (left column) and m/g = 0.125 (right

column). The two uppermost rows show as a function of 1/N2 the values obtained for finite systems

for the scalar (blue) and vector (green) mass gaps,
E2(1)−E0

2
√

x
. The dashed line corresponds to the

fit (4.2), with the resulting value indicated on the axis. The lowest row corresponds to the ground

state energy density, E0

2xN
, as a function of 1/N , and is fitted according to (4.1). Notice that the

lattice sizes are already close to the thermodynamic limit. The error bars are extracted from the

extrapolation in D, shown in figure 4.

is important only in the case of the ground state energy — for the scalar and vector mass

gaps it is negligible with respect to the former error, as the data are very well described by

polynomials only quadratic in 1/
√
x. Our result for the ground state energy in the massive

cases is compatible with the massless one, and independent of m/g, as expected [35].

The results for the vector binding energies, MV

g := ω1− 2m/g, are shown in table 1 for

each value of m/g studied, together with the DMRG estimates [20] for comparison. In the

massless case, the exact value is also displayed.
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Vector binding energy

m/g MPS with OBC DMRG result [20] exact

0 0.56421(9) 0.5642(2) 0.5641895

0.125 0.53953(5) 0.53950(7) -

0.25 0.51922(5) 0.51918(5) -

0.5 0.48749(3) 0.48747(2) -

Table 1. Vector binding energies for different fermion masses obtained in this work. The second

column shows the best DMRG estimates for the same masses.

Scalar binding energy

m/g MPS with OBC SCE result [36] exact

0 1.1279(12) 1.11(3) 1.12838

0.125 1.2155(28) 1.22(2) -

0.25 1.2239(22) 1.24(3) -

0.5 1.1998(17) 1.20(3) -

Table 2. Scalar binding energies for different fermion masses, compared to the most precise pub-

lished results, from SCE.

For the scalar, the most precise results found in the literature for the binding energy,
MS

g := ω2−2m/g in the massive case, correspond to the strong coupling expansion [36]. We

show them together with our best fit and the exact value for the massless case in table 2.

One of the factors explaining the lower precision attained in the scalar calculation as

compared to the vector results is the longer time required to reach the scalar state with the

MPS algorithm for excited states. As discussed in section 3 the computational cost scales

like the square of the required number of levels. Since in many instances the first scalar

candidate appears at level 7− 8 or above, this represents a cost over 50 times larger than

in the case of the ground state. We have thus opted for a trade-off between precision and

efficiency, and applied for the scalar a less demanding convergence criterion than for the

vector or the ground state, what also translates in less precision in the final results. For

the same reason, the largest bond dimensions are in some cases not available in the scalar

calculations, which leads to somewhat less precise finite-size scaling.

5 Discussion

We have successfully employed open boundary MPS to compute the ground state and

several excited levels of the lattice Schwinger model, using a staggered formulation, and for

various values of the fermion mass. Although in the physical subspace in which we work

the model contains long range interactions which do not decay with the distance, we have

found that MPS produce a very good approximation not only to the ground state, but also

to higher excited levels, and we are able to reach precisions comparable to those available

from other techniques, or in some cases even slightly better. Additionally, the precision
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Figure 6. Ground state energy density as a function of 1/
√
x. The error of each point (smaller

than the markers) reflect the uncertainties of the linear fits (4.1), and the star on the vertical axes

indicates the (exact) solution for the massless theory, ω0 = −1/π ≈ −0.31831. The dashed line

corresponds to the fit of the whole computed range, x ∈ [15, 600], to a cubic function in 1/
√
x.

Excluding small values x < 50 produces a better fit, as shown by the solid line, for the interval

x ∈ [100, 600]. Our final estimate (see appendix A) for the massless case is ω0 = −0.318338(22)(24),
and for all other masses it is compatible with this value.

we reach is not extremely sensitive to the value of the mass, what further points to the

usefulness of TN techniques for the non-perturbative parts of the parameter space.

In order to determine the mass gaps, we have also extended the MPS tools to ap-

proximate excited states, and we have proposed a modified algorithm that is efficient and

allows us to approximate more than ten excited states in chains of hundreds of sites. These

techniques provide an ansatz for the targeted states, so that not only the energies, but also

other observables can be precisely determined [50].

Our results validate the applicability of tensor network techniques, in particular MPS,

for lattice gauge theory problems. We have obtained very precise results, even though the

open boundary MPS cannot represent states with well-defined momentum, a problem that

a TI ansatz might likely overcome.
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Figure 7. Energy gap for the vector state, ω1, as a function of 1/
√
x. The uncertainties of the

quadratic fits (4.2) from finite-size scaling are smaller than the marker size. The exact solution for

the m/g = 0 case, ω1(m/g = 0) = 1/
√
π ≈ 0.5641895 is indicated with a star. Displayed are the

fits for the whole interval x ∈ [20, 500] (dashed line), including up to quadratic terms in 1/
√
x, and

the same fit for [30, 300] (solid line), but they are practically indistinguishable at the scale of the

plots. The final values for the binding energies, MV

g
, and their errors (see appendix A) are displayed

under the corresponding plots.

The long term goal would be to generalize these studies to higher dimensional systems,

getting in this way closer to the target of lattice QCD studies. The MPS ansatz employed in

this work is one-dimensional, and its applicability to higher dimensional problems is limited,

a fact well understood in terms of its entanglement content. Nevertheless, the entanglement

structure in the MPS has a natural generalization to two and higher dimensions in the

PEPS ansatz [13, 40]. Algorithms exist for the ground state search and for simulating the

evolution also in the case of PEPS, and the ansatz can directly be applied to fermionic

systems [51–53]. Although the higher computational costs limit the nowadays feasible

system sizes and bond dimensions, PEPS are good candidates to study higher dimensional

lattice gauge problems. Our MPS study is a first step to assess the feasibility of TNS to

describe the relevant physics in this kind of problems.
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Figure 8. Energy gap for the scalar state, ω2, as a function of 1/
√
x. The error bars correspond

to the uncertainties of the finite-size scaling fits (4.2). The star on the vertical axes in the m/g = 0

plot shows the exact solution ω2(m/g = 0) = 2/
√
π ≈ 1.12838. Fits for the whole range of x (cubic)

and for a smaller interval (x ∈ [15, 150]) are shown (respectively dashed and solid lines). The errors

for large values of x are in this case much more significant, because they require solving larger

systems, for some of which the maximum bond dimension reached was not large enough. The final

values for the binding energies, MS

g
, and their errors (computed as described in appendix A) are

displayed under the corresponding plots.

One of the main advantages of the MPS and other TNS methods is that they easily al-

low us to attack other problems which are more complicated for standard lattice techniques.

In particular, it is straightforward to include a chemical potential term in the Hamiltonian,

which is interesting in many-flavour Schwinger models. Additionally, we could perform

a similar study in a more complicated lattice theory, in particular with a non-Abelian

symmetry. Thermal equilibrium properties can be easily studied with TNS, and it is also

possible to simulate real time evolution, which opens the door to out-of-equilibrium ques-

tions. Thus even if tensor networks are presently not competitive with standard Monte

Carlo techniques for 4D quantum field theories, they might allow us to address problems

that are not amenable for customary lattice field theory techniques.
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A Continuum limit and error analysis

As we have described in the main body of the text, we have a set of data corresponding to

a given bond dimension D, lattice size N and coupling x. Having performed extrapolations

to infinite D and N , we are left with the dependence of our observables on x and we want to

take the continuum limit x→∞. The leading order cut-off effects are O(1/√x), but we are
sensitive also to higher-order corrections (O(1/x), O(1/x3/2), . . .). Therefore, in general,

our continuum extrapolated result depends on the chosen fitting interval in x. To take this

systematic uncertainty into account, we perform the following error analysis procedure,

similar to those employed in data analysis for Lattice QCD (see e.g. refs. [54, 55]).

Let us assume that, for a fixed value of m/g, we have a set of data for the chosen

observable, O: {(xi, Oi, ∆Oi)}ni=1, for n values of x, such that Oi is the observable eval-

uated at a finite lattice spacing corresponding to coupling xi, and ∆Oi is its respective

error (originating both from extrapolations to infinite D and N). We choose some minimal

number of points (nmin) and we fit every possible subset of p consecutive data points, with

p ≥ nmin, to a given polynomial function g(x). Each such fit gives us an estimate of the

continuum value of the chosen observable, Oc — we denote these continuum values by Oc
α,

where α = 1, . . . , Mfits. Each fit has its respective value of χ2, denoted by χ2
α:

χ2
α =

∑

i: xi∈fitα

(g(xi)−Oi)
2

(∆Oi)2
(A.1)

where the sum runs over all data points entering the fit labelled by α.

Our preferred value for the observable in the continuum limit is then defined as the

median of the distribution of estimators Oc
α weighted by exp(−χ2

α/Nd.o.f.), where Nd.o.f. is

the number of degrees of freedom.

To estimate this quantity, the fits are reordered such that for all α, Oα < Oα+1. We

then define the cumulative distribution function fα (α = 1, . . . , Mfits):

fα =

∑α
κ=1 exp(−χ2

κ/Nd.o.f.)
∑Mfits

κ=1 exp(−χ2
κ/Nd.o.f.)

. (A.2)

Our preferred value for the considered observable in the continuum limit is then defined

as the value of Oα for which α is the smallest number that satisfies fα ≥ 0.5. The cor-

responding error (the systematic error from the choice of the fitting range) is computed

as 0.5(O+ − O−), where O+ is the value of Oα corresponding to the smallest α such

that fα ≥ 0.8415 and O− is the value of Oα corresponding to the smallest α such that
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fα ≥ 0.1585. This definition of the error is motivated by the fact that in the limit of an

infinite number of fits, the weighted distribution will be Gaussian and this definition of the

error will correspond to the width of such Gaussian distribution.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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[11] A.J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix

renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech. (2004) P04005

[cond-mat/0403313].

[12] G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial

Dimension, Phys. Rev. Lett. 98 (2007) 070201 [cond-mat/0605597].

[13] F. Verstraete and J. Cirac, Renormalization algorithms for quantum-many body systems in

two and higher dimensions, cond-mat/0407066 [INSPIRE].

[14] G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99 (2007) 220405

[cond-mat/0512165] [INSPIRE].

– 17 –

http://dx.doi.org/10.1007/BF01218021
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,115,477
http://dx.doi.org/10.1088/0305-4470/24/16/012
http://dx.doi.org/10.1007/BF01309281
http://dx.doi.org/10.1007/BF02099178
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,144,443
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://arxiv.org/abs/cond-mat/0404706
http://arxiv.org/abs/quant-ph/0608197
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,69,2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://arxiv.org/abs/cond-mat/0409292
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/1008.3477
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://arxiv.org/abs/quant-ph/0310089
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://arxiv.org/abs/cond-mat/0403313
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://arxiv.org/abs/cond-mat/0605597
http://arxiv.org/abs/cond-mat/0407066
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://arxiv.org/abs/cond-mat/0512165
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0512165


J
H
E
P
1
1
(
2
0
1
3
)
1
5
8

[15] J.I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and

lattices, J. Phys. A 42 (2009) 4004 [arXiv:0910.1130].

[16] J.I. Cirac and G. Sierra, Infinite matrix product states, conformal field theory and the

Haldane-Shastry model, Phys. Rev. B 81 (2010) 104431 [arXiv:0911.3029].

[17] F. Verstraete and J. Cirac, Continuous Matrix Product States for Quantum Fields,

Phys. Rev. Lett. 104 (2010) 190405 [arXiv:1002.1824] [INSPIRE].

[18] T.J. Osborne, J. Eisert and F. Verstraete, Holographic quantum states,

Phys. Rev. Lett. 105 (2010) 260401 [arXiv:1005.1268] [INSPIRE].

[19] J. Haegeman, T.J. Osborne, H. Verschelde and F. Verstraete, Entanglement Renormalization

for Quantum Fields in Real Space, Phys. Rev. Lett. 110 (2013) 100402 [arXiv:1102.5524]

[INSPIRE].

[20] T. Byrnes, P. Sriganesh, R. Bursill and C. Hamer, Density matrix renormalization group

approach to the massive Schwinger model, Phys. Rev. D 66 (2002) 013002

[hep-lat/0202014] [INSPIRE].

[21] T. Sugihara, Matrix product representation of gauge invariant states in a Z2 lattice gauge

theory, JHEP 07 (2005) 022 [hep-lat/0506009] [INSPIRE].

[22] L. Tagliacozzo and G. Vidal, Entanglement renormalization and gauge symmetry,

Phys. Rev. B 83 (2011) 115127 [arXiv:1007.4145] [INSPIRE].

[23] D.J. Weir, Studying a relativistic field theory at finite chemical potential with the density

matrix renormalization group, Phys. Rev. D 82 (2010) 025003 [arXiv:1003.0698] [INSPIRE].

[24] A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods

applied to critical quantum field theory, arXiv:1302.5582 [INSPIRE].

[25] J. Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128 (1962) 2425

[26] S.R. Coleman, More About the Massive Schwinger Model, Annals Phys. 101 (1976) 239

[INSPIRE].

[27] C. Gutsfeld, H. Kastrup and K. Stergios, Mass spectrum and elastic scattering in the massive

SU(2)(f) Schwinger model on the lattice, Nucl. Phys. B 560 (1999) 431 [hep-lat/9904015]

[INSPIRE].

[28] C. Gattringer, I. Hip and C. Lang, The chiral limit of the two flavor lattice Schwinger model

with Wilson fermions, Phys. Lett. B 466 (1999) 287 [hep-lat/9909025] [INSPIRE].

[29] L. Giusti, C. Hölbling and C. Rebbi, Schwinger model with the overlap Dirac operator: Exact

results versus a physics motivated approximation, Phys. Rev. D 64 (2001) 054501

[hep-lat/0101015] [INSPIRE].

[30] N. Christian, K. Jansen, K. Nagai and B. Pollakowski, Scaling test of fermion actions in the

Schwinger model, Nucl. Phys. B 739 (2006) 60 [hep-lat/0510047] [INSPIRE].

[31] W. Bietenholz, I. Hip, S. Shcheredin and J. Volkholz, A Numerical Study of the 2-Flavour

Schwinger Model with Dynamical Overlap Hypercube Fermions,

Eur. Phys. J. C 72 (2012) 1938 [arXiv:1109.2649] [INSPIRE].

[32] T. Banks, L. Susskind and J.B. Kogut, Strong Coupling Calculations of Lattice Gauge

Theories: (1+1)-Dimensional Exercises, Phys. Rev. D 13 (1976) 1043 [INSPIRE].

[33] D. Crewther and C. Hamer, Eigenvalues for the Massive Schwinger Model From a Finite

Lattice Hamiltonian Approach, Nucl. Phys. B 170 (1980) 353 [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://arxiv.org/abs/0910.1130
http://dx.doi.org/10.1103/PhysRevB.81.104431
http://arxiv.org/abs/0911.3029
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://arxiv.org/abs/1002.1824
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1824
http://dx.doi.org/10.1103/PhysRevLett.105.260401
http://arxiv.org/abs/1005.1268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1268
http://dx.doi.org/10.1103/PhysRevLett.110.100402
http://arxiv.org/abs/1102.5524
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5524
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://arxiv.org/abs/hep-lat/0202014
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0202014
http://dx.doi.org/10.1088/1126-6708/2005/07/022
http://arxiv.org/abs/hep-lat/0506009
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0506009
http://dx.doi.org/10.1103/PhysRevB.83.115127
http://arxiv.org/abs/1007.4145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4145
http://dx.doi.org/10.1103/PhysRevD.82.025003
http://arxiv.org/abs/1003.0698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0698
http://arxiv.org/abs/1302.5582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5582
http://dx.doi.org/10.1103/PhysRev.128.2425
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://inspirehep.net/search?p=find+J+AnnalsPhys.,101,239
http://dx.doi.org/10.1016/S0550-3213(99)00447-2
http://arxiv.org/abs/hep-lat/9904015
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9904015
http://dx.doi.org/10.1016/S0370-2693(99)01116-8
http://arxiv.org/abs/hep-lat/9909025
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9909025
http://dx.doi.org/10.1103/PhysRevD.64.054501
http://arxiv.org/abs/hep-lat/0101015
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0101015
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.029
http://arxiv.org/abs/hep-lat/0510047
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0510047
http://dx.doi.org/10.1140/epjc/s10052-012-1938-9
http://arxiv.org/abs/1109.2649
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2649
http://dx.doi.org/10.1103/PhysRevD.13.1043
http://inspirehep.net/search?p=find+J+Phys.Rev.,D13,1043
http://dx.doi.org/10.1016/0550-3213(80)90154-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B170,353


J
H
E
P
1
1
(
2
0
1
3
)
1
5
8

[34] C. Adam, Massive Schwinger model within mass perturbation theory,

Annals Phys. 259 (1997) 1 [hep-th/9704064] [INSPIRE].

[35] C. Hamer, J.B. Kogut, D. Crewther and M. Mazzolini, The Massive Schwinger Model on a

Lattice: Background Field, Chiral Symmetry and the String Tension,

Nucl. Phys. B 208 (1982) 413 [INSPIRE].

[36] P. Sriganesh, R. Bursill and C. Hamer, New finite lattice study of the massive Schwinger

model, Phys. Rev. D 62 (2000) 034508 [hep-lat/9911021] [INSPIRE].

[37] K. Cichy, A. Kujawa-Cichy and M. Szyniszewski, Lattice Hamiltonian approach to the

massless Schwinger model: precise extraction of the mass gap,

Comput. Phys. Commun. 184 (2013) 1666 [arXiv:1211.6393] [INSPIRE].

[38] J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,

Phys. Rev. D 11 (1975) 395 [INSPIRE].

[39] C. Hamer, W.-h. Zheng and J. Oitmaa, Series expansions for the massive Schwinger model

in Hamiltonian lattice theory, Phys. Rev. D 56 (1997) 55 [hep-lat/9701015] [INSPIRE].

[40] F. Verstraete, V. Murg and J.I. Cirac, Matrix product states, projected entangled pair states

and variational renormalization group methods for quantum spin systems,

Adv. Phys. 57 (2008) 143 [arXiv:0907.2796].

[41] K.A. Hallberg, New trends in density matrix renormalization, Adv. Phys. 55 (2006) 477

[cond-mat/0609039] [INSPIRE].

[42] D. Porras, F. Verstraete and J.I. Cirac, Renormalization algorithm for the calculation of

spectra of interacting quantum systems, Phys. Rev. B 73 (2006) 014410 [cond-mat/0504717].

[43] M.L. Wall and L.D. Carr, Out-of-equilibrium dynamics with matrix product states,

New J. Phys. 14 (2012) 125015 [arXiv:1205.1020].

[44] J. Haegeman et al., Variational matrix product ansatz for dispersion relations,

Phys. Rev. B 85 (2012) 100408 [arXiv:1103.2286].

[45] P. Pippan, S.R. White and H.G. Evertz, Efficient Matrix Product State Method for periodic

boundary conditions, Phys. Rev. B 81 (2010) 081103 [arXiv:0801.1947].

[46] B. Pirvu, F. Verstraete and G. Vidal, Exploiting translational invariance in matrix product

state simulations of spin chains with periodic boundary conditions,

Phys. Rev. B 83 (2011) 125104 [arXiv:1005.5195].

[47] B. Pirvu, V. Murg, J.I. Cirac and F. Verstraete, Matrix product operator representations,

New J. Phys. 12 (2010) 025012 [arXiv:0804.3976].

[48] E. Jeckelmann, Dynamical density-matrix renormalization-group method,

Phys. Rev. B 66 (2002) 045114 [cond-mat/0203500].

[49] T. Banks, L. Susskind and J.B. Kogut, Strong Coupling Calculations of Lattice Gauge

Theories: (1 + 1)-Dimensional Exercises, Phys. Rev. D 13 (1976) 1043 [INSPIRE].
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