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1 Introduction

The investigation of chaotic systems has captivated numerous prominent researchers across
different fields for several decades. Defining chaos rigorously remains a subject of ambi-
guity to this day. However, it is now widely accepted that the sensitivity to the initial
condition of a classical dynamical system subject to some constraints is believed to define
a chaotic system. Here, we will also follow this definition accompanied by well-known
chaotic indicators such as the Poincare section, Fast Lyapunov indicator(FLI), etc.

In a true sense, integrability means that a system of differential equations can be solved
by a method of quadratures i.e. its solution can be obtained in a finite number of algebraic
operations [1]. Most of the studies involve the existence of the integrals of motion for
showing the integrability of a dynamical system. Due to the Liouville theorem, a Hamil-
tonian system of N degrees of freedom is said to be integrable if it has exactly N integrals
of motion and these conserved quantities Qi = f(p, q) including the energy can be used to
construct the solution where the corresponding phase space is 2N dimensional consisting of
coordinates qi and the canonical momenta pi. These charges define a N-dimensional torus
in the phase space. To every tori of rational winding number, there exists infinitesimally
close to it, the tori having irrational winding number. Such a tori is known as KAM tori.
According to the KAM theorem, when deformed the majority of the tori undergo a slight
deformation but manage to survive. However, tori characterized by the rational frequency
ratios experience destruction and therefore leading to chaotic motion on these tori. For
such a system, integrability and chaos are considered to be complementary to each other.

The dynamical behavior of a point particle in various curved backgrounds has been
extensively studied [2–9]. Around a black hole spacetime, the dynamics turn out to be in-
tegrable [2]. However, the dynamics of such a geodesic becomes chaotic and non-integrable
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if we consider more complicated geometries like in [8–10]. Moreover, the point particle
dynamics near the horizon shows chaotic behaviour [11–13]. Even after all these develop-
ments geodesics are not considered as the most suitable means for investigating the chaos
produced by black holes. Despite the fact that geodesics being integrable in a large class of
simple backgrounds, they exhibit thermalisation and chaos due to finite Hawking temper-
ature. This motivates to work with the string dynamics. The works of Hadamard-Anosov
and others [14–19] delving into the constant curvature spaces, have shed light on the sen-
sitive instability of phase space trajectories within them- a characteristic feature of chaos.
It appears that chaos is a recurring feature in the dynamics of semiclassical strings within
AdS backgrounds [14, 19–21] with the notable exceptions for e.g, AdS5×S5 in which string
dynamics turns out to be integrable, see [22–25]. All these advancements [15, 21, 26–34] col-
lectively indicate that the class of string integrable backgrounds constitutes only a limited
subset within the larger class of particle integrable backgrounds. The (non)-integrability
aspect can also be considered when examining the behavior of string dynamics in Dp-
branes [35, 36]. Previous studies [35] have shown that the classically extended string in
Dp-brane in extremal scenarios having charge as the interpolation parameter between flat
space and AdS5 × S5 are non-integrable. In this paper, our aim is to explore this concept
and conduct a numerical analysis of the circular string dynamics in a black p-brane. Specif-
ically, we will focus on two cases: p=5 and p=6. We shall begin with the non-extremal
scenarios first and then eventually examine the extremal situation as well by means of
varying the suitable parameter.

Another interesting paradigm in recent times is the remarkable application of quantum
information theoretic tools to study the quantum effects of gravity. Black holes are not only
quantum in nature but also thermal and therefore share the basic property of chaos which
in the light of quantum information are commonly postulated to be the fastest scramblers in
Nature [37]. For a finite temperature QFT, it is well-known that the defining characteristic
of chaos is bounded by what is called Maldacena, Shenker, Standford (MSS) bound given
as: λ ≤ 2πkBT [38]. Currently, such a bound is saturated by holographic dual models
such as SYK model [39–42]. The relationship between the chaos bound and the study of
string dynamics in p-black branes has not been explored thus far. A generalized bound
inequality for string dynamics in AdS geometries has been predicted in [43]. Our numerical
investigation of the Lyapunov exponent associated with the orbits of the different string
modes, to our surprise, suggests the existence of such a bound even though the bound was
originally formulated for the field theories having classical gravity dual. Several efforts have
been made to investigate the existence of such a bound in point particle dynamics [12, 44–
49]. The rest of the paper is organized as follows. In section 3.1 and 3.2, we analyze the
pulsating string in non-extremal charged and neutral p=5 brane respectively, using the
underlying Hamiltonian dynamics. In the next subsection 3.3, we repeat a similar analysis
for p=6 brane. In section 4, we discuss the role of the winding number pertaining to our
study. Finally, in section 5, we summarize the numerical results of our analysis and give
possible future directions.
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2 Black p-branes

In this section, we shall briefly explain the black p-branes in D=10 dimensions. Non-
extremal black p-branes are the solutions of 10-dimensional low energy string theory [50, 51]
and the corresponding metric (p < 7) is:

ds2 = −∆+∆−1/2
− dt2 + ∆1/2

−

p∑
i=1

dx2
i + ∆−1

+ ∆γ
−dr2 + r2∆γ+1

− dΩ8−p (2.1)

where ∆± = 1 − ( r±
r )7−p, γ = −1

2 − 5−p
7−p with r+ and r− representing outer horizon and

inner horizon radii respectively. The charge and mass per unit p-volume of the black brane
are respectively given by

Q = 7 − p

2 (r+r−)(7−p)/2

M = Ω8−p

2k2
10

(
(8 − p)r7−p

+ − r7−p
−

)
where Ω8−p is the volume of unit (8 − p)- sphere and k2

10 = 8πG10.
Black-p-branes are characterized by a non-zero Hawking temperature which can be

derived by a series of transformations [52–54] as given below:

r7−p = r̃7−p + r7−p
− , r̃7−p

+ = µ7−p cosh2 β, r̃7−p
− = µ7−p sinh2 β

This reduces the metric (2.1) to the form:

ds2 = H−1/2
(
− fdt2 +

p∑
i=1

dx2
i

)
+ H1/2

(
f−1dr2 + r2dΩ8−p

)
(2.2)

where H = 1 + ( r−
r )7−p and f = 1 − (µ

r )7−p

Then we need to expand the metric in the vicinity of horizon, followed by a Wick
rotation of the time coordinate. The periodicity of the Euclidean time gives the inverse
temperature [53, 54]

β = 4πµ cosh β

7 − p

or β = 2π

( 2r+
7 − p

[
1 −

(
r−
r+

)7−p ] −5+p
2(7−p)

)
When r− = 0, we have the neutral black brane solution:

ds2 = −
(

1 −
(

r0
r

)7−p )
dt2 +

(
1 −

(
r0
r

)7−p )−1
dr2 + r2dΩ8−p +

p∑
i=1

dx2
i (2.3)

One can also obtain the supersymmetric extremal black brane solutions by setting
r+ = r− and then performing a change of coordinate r̃7−p = r7−p − r7−p

+ , we find

ds2 =
(

1 +
(

r0
r

)7−p )−1/2(
− dt2 +

p∑
i=1

dx2
i

)
+

(
1 +

(
r0
r

)7−p )1/2(
dr2 + r2dΩ8−p

)
(2.4)
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The integrability of strings and geodesics in such extremal backgrounds have been studied
through Normal Variational Equations (NVE) approach in [10, 35]. Note that such an
approach can be implemented via metric (2.2). However our main objective is to study
the behavior of closed string in p-branes through numerical analysis. To achieve this goal,
we will pivot ourselves particularly around two types of branes namely p=5 and p=6.
These branes offer more feasible access in handling the situation numerically that can be
realized. However, when dealing with branes of lower dimensions, we have to deal with
more coordinates transverse to the brane which need to be eliminated. Typically, this is
achieved through a consistent truncation method [55, 56] but we shall completely ignore it
and plan to address it in the future.

3 Circular string in p-brane

The propagation of a closed circular string in any arbitrary curved background can be
modeled by the Polyakov action given as,

S = − 1
2πα′

∫
dσdτ

√
−ggαβGµν(∂αXµ∂βXν) (3.1)

where α′ = l2s (ls represents the string length). Xµ represents the target space co-ordinates,
Gµν is the target space metric and gαβ is the worldsheet metric. We utilise the reparameter-
ization and Weyl symmetries of the action and fix the conformal gauge, gαβ = ηαβ . In this
gauge, the vanishing of energy-momentum tensor Tαβ = 0 leads to the following constraints

Gµν∂τ Xµ∂σXν = 0 (3.2)

Gµν

(
∂τ Xµ∂τ Xν + ∂σXµ∂σXν

)
= 0 (3.3)

The target space metric Gµν is given by equation (2.1). Now, we use the pulsating string
ansatz for p = 5 brane and the action (3.1), to construct the Hamiltonian and the corre-
sponding equation of motion.

3.1 Black 5-brane

We will consider the following ansatz representing the circular string

t = t(τ) , r = r(τ) , ϕ1 = ϕ1(τ) , ϕ2 = ϕ2(τ) , ϕ3 = nσ (3.4)

where n denotes the winding number of the string along ϕ3 direction. We assume the
spatial coordinates xi are constant.

In this case, dΩ3 = dϕ2
1 + sin2 ϕ1dϕ2

3 + cos2 ϕ1dϕ2
2. Substituting in the Polyakov ac-

tion (3.1), we get the following Lagrangian

L = − 1
2πα′

(
∆+∆−1/2

− ṫ2 − ∆−1
+ ∆−1/2

− ṙ2 − r2∆1/2
− (ϕ̇2

1 + cos2 ϕ1ϕ̇2
2) + ∆1/2

− r2n2 sin2 ϕ1
)

where ∆±(r) = 1 − ( r±
r )2 and dot represents the derivative with respect to τ .
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The corresponding Hamiltonian and the equations of motion can be obtained as follows:

H = πα′

2

(
∆+∆1/2

− p2
r +

pϕ2
1

r2∆1/2
−

+
pϕ2

2

r2∆1/2
− cos2 ϕ1

− p2
t

∆−1
+ ∆1/2

−

)
+ 1

2πα′n
2r2∆1/2

− sin2 ϕ1

ṗt = 0 (3.5)

ṫ = −πα′∆+
pt

∆1/2
−

(3.6)

ṗr = πα′

2
∂

∂r

(
p2

t ∆−1/2
− ∆+ − p2

r∆1/2
− ∆+ −

(
pϕ2

1
+

pϕ2
2

cos2 ϕ1

) 1
r2∆1/2

−

− n2

2πα′ r
2∆1/2

− sin2 ϕ1

)
(3.7)

ṙ = πα′∆+∆1/2
− pr (3.8)

ṗϕ1 = −πα′

r2ϕ1
p2

ϕ2 sec2 ϕ1 tan ϕ1 −
n2

πα′ r
2∆1/2

− sin ϕ1 cos ϕ1 (3.9)

ϕ̇1 = πα′ pϕ1

r2 (3.10)

ṗϕ2 = 0 (3.11)

ϕ̇2 = πα′ pϕ1

r2∆1/2
− cos2 ϕ1

(3.12)

Equations (3.5) and (3.11) give two constants of motion- pt = E (energy) and pϕ2 = l
(angular momentum). The constraint (3.2) is trivially satisfied, however equation (3.3)
gives H = 0.

A. String trajectory for different values of charge

Without loss of generality, we set the following initial conditions and parameters- pr(0) =
0, ϕ1(0) = 0, E = 7, l = 8 to numerically solve the equations of motion and we set πα′ =
1, n = 1, G10 = c = 1 throughout the rest of the paper. We fix the mass M = 3π/8, then
the charge and mass satisfy the inequality Q ≤ 4M/π for unit volume. Considering the
charge Q as a control parameter, we monitor the string dynamics by varying Q. For the
visualisation of string dynamics, we mostly follow the procedures of [57]. In figure 1, we
present the string trajectory for two different initial radial positions of the string. First,
we consider the string initially close to the brane (figure 1(a),(b)). For a small charge
(Q = 0.1), we find that the string gets trapped in the black brane very quickly, whereas
in the extremal limit (Q = 1.5) the string deviates from the horizon and rapidly escapes
to infinity. However, when we keep the string at a large distance away from the brane
(figure 1(c),(d)), the string escapes to infinity for both small and large value of charge.
However, the rate of escape is very small unlike the first screnario (figure 1(b)).

B. Fast Lyapunov indicator

One of the salient features of the chaotic system is that its dynamics are extremely sensi-
tive to the initial condition for which one has to study the chaotic indicators. The Largest
Lyapunov Exponent(LLE) is a commonly used method which is based on the algorithm of

– 5 –



J
H
E
P
1
0
(
2
0
2
3
)
1
8
9

(a) r(0)=11 (b) r(0)=11

(c) r(0) = 300 (d) r(0) = 300

Figure 1. Plot showing the evolution of radial coordinate for different charges (Q=0.1,1.5) with
different initial conditions r(0) = 11 (top panel) and r(0) = 300 (bottom panel).

measuring the average separation between the two initially nearby trajectories to character-
ize the nature (regular or chaotic) of orbits. However, there are some subtilities regarding
LLE, for instance, sometimes it costs a large computation time to achieve a stable limiting
value. Also, LLE is not suitable for distinguishing different regular orbits. Reference [58]
shows that the value of LLE is not co-ordinate invariant and so not reliable for relativistic
systems. Some of these issues can be overcome by implementing a closely related method
known as Fast Lyapunov Indicator (FLI). FLI is quicker for detecting chaos and order
and easier to implement. A detailed discussion on the Lyapunov indicators can be found
in [59–61]. In this work, we mostly employ FLI [57, 59, 62] which is based on the following
definition:

FLI = log10
||d(t)||
||d(0)|| = λt (3.13)

where λ is the LLE, d(0) represents the initial separation between two nearby trajectories
and d(t) represents the separation at time t. Thus from this equation, the FLI increases
linearly (approximately) with t for chaotic orbit with a positive slope whereas the slope is
equal to zero for integrable motion. Note that, if the slope is very close to zero then orbit is
quasi-periodic. In other words, the distance between two orbits increases exponentially for
chaotic orbit and linearly (approximately) for non-chaotic orbit. For practical computation,
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(a) r(0)=11 (b) r(0)=11

(c) r(0)=300 (d) r(0)=300

Figure 2. Plot showing the behaviour of FLI for different Q with different initial conditions r(0)
= 11 (top panel) and r(0) = 300 (bottom panel).

we use the following expression:

FLI(t) = −k(1 + log10 ||d(0)||) + log10
||d(t)||
||d(0)|| (3.14)

where k(k = 0, 1, 2 . . .) denotes the number of renormalization. We choose ||d(0)|| ≈ 10−7

and ||d(t)|| = 0.1 as critical value to implement the process of renormalization. Now, in
order to speculate the string dynamics, especially on the intermediate charges, we present
FLIs in figure 2. When r(0) = 11 and Q = 0.1, 0.65, 1.1 (figure 2(a)), the FLI curve
increases linearly at the beginning and then becomes vertical. The underlying reason for the
sudden jump is due to the capture of the string in the black brane. Because of this collapse
of string orbit, the calculation stopped at that instance and with the further increase of
that critical times, we observe a shoot-up in FLI. Note that the time of capture increases
with charge. However, when Q > 1.1 (figure 2(b)), the FLI increases approximately linearly
and the string escapes to infinity. The rate of escape increases very slightly with charge
as evident from the corresponding value of FLI. Next, we concentrate on r(0) = 300
(figure 2(c),(d)). Here, the corresponding FLI curve shows a linear growth and the string
escapes to infinity with uniform rate for all values of charges. We clearly observe the
consistencies between figure 1 and 2. Thus by tuning control parameter(charge), we can
visualise different chaotic modes.
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3.2 Neutral black 5-brane

Now, we investigate the chaotic dynamics by setting Q = 0. Then the metric (2.3) reduces
to the product of 5-dimensional Euclidean space and 5-dimensional Schwarzschild one:

ds2 = −
(

1 −
(

r0
r

)2 )
dt2 +

(
1 −

(
r0
r

)2 )−1
dr2 + r2dΩ3 +

5∑
i=1

dx2
i

With the same ansatz as we assumed in the beginning, we find the Hamiltonian

H = πα′

2

(
∆+p2

r +
pϕ2

1

r2 +
pϕ2

2

r2 cos2 ϕ1
− p2

t

∆+

)
+ 1

2πα′n
2r2 sin2 ϕ1 (3.15)

The equations of motion are (3.5)–(3.12) with ∆− = 1. After solving the equations of mo-
tion, one obtains various possible modes of the string. Here, we present the two asymptotic
modes of the string - escape to infinity and long times oscillations around the event horizon
in figure 3. We comment on the chaotic behaviour by numerically evaluating the Poincare
section and Fast Lyapunov Indicator.

A. String trajectory

(a) (b)

Figure 3. Plot showing the time evolution r(τ) indicating (a) escape to infinity and (b) quasiperi-
odic behavior of the string. For both the plots, we use E = 9, l = 8, n = 1, r+ = 1. The initial
conditions are pr(0) = 0, ϕ1(0) = 0, r(0) = 8 for (a) and pr(0) = 0, ϕ1(0) = 0, r(0) = 11 for (b).

B. Poincare section

Taking energy E as a control parameter, we provide the Poincare sections in the phase
space (r, pr) corresponding to different energies in figure 4. From the first two plots, we
observe a quasi-periodic nature of the KAM tori when E = 10 and E = 12. However, the
tori starts deforming with the further increase of energy (E > 12) and finally, when E =
15, we see a complete deformation and a collection of discrete points of the tori. Thus,
with the increase of energy, our system becomes more and more chaotic.
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(a) (b)

(c) (d)

Figure 4. Plot showing the nature of poincare sections on the plane ϕ1 = 0 for (a) E = 10 (b) E
= 12 (c) E = 14 (d) E = 15 indicating the distortion of tori with the increase of energy. We have
set r(0) = 11, pr(0) = 0, ϕ1(0) = 0, l = 8, n = 1, r+ = 1.

C. Fast Lyapunov indicator

We also present FLI in figure 5 for the corresponding energies. Note that for E=10 and E
= 12, the corresponding string orbit is quasiperiodic (characterised by almost zero slope).
However, with the increase of energy, the FLI increases almost linearly with a much higher
slope. Thus, transition to chaos with the increase of E is consistent with figure 4.

Figure 5. Plot showing the behaviour of FLI for r(0) = 11 in uncharged p=5 brane. The other
parameters are same as that of figure 4.
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Figure 6. Plot showing the behaviour of FLI for r(0) = 300 in uncharged p=5 brane. The other
parameters are same as that of figure 4.

As we increase the initial radial coordinate of the string (r(0)=300), we find a similar
transition i.e the disappearance of the quasiperiodic behaviour and transition to more and
more chaotic behaviour with the increase of energy (figure 6).

We now focus on the behaviour of pulsating string in p = 6 brane. In the next
subsection, we construct our Hamiltonian and the equations of motion following the string
ansatz and continue our discussion on chaotic dynamics.

3.3 Black 6-brane

We make the following ansatz for the circular string

t = t(τ), r = r(τ), ϕ1 = ϕ1(τ), ϕ2 = nσ

where n represents the winding number of the string along ϕ2 direction.
In this case, dΩ3 = dϕ2

1+sin2ϕ1dϕ2
2. Substituting in the Polyakov action equation (3.2)

we get the following Lagrangian

L = − 1
2πα′

(
∆+∆−1/2

− ṫ2 − ∆−1
+ ∆1/2

− ṙ2 − r2∆3/2
− ϕ̇1

2 + ∆3/2
− r2n2 sin2 ϕ1

)
The corresponding Hamiltonian and the equation of motion are as follows:

H = πα′

2

(
∆+∆−1/2

− p2
r +

pϕ2
1

r2∆3/2
−

− p2
t

∆+∆−1/2
−

)
+ 1

2πα′n
2∆3/2

− r2 sin2 ϕ1

ṗt = 0 (3.16)

ṫ = −πα′∆1/2
− ∆−1

+ pt (3.17)

ṗr = πα′

2
∂

∂r

(
− p2

r∆−1/2
− ∆+ + p2

t ∆1/2
− ∆−1

+ − pϕ2
1

1
r2∆3/2

−
− n2

2πα′ r
2∆3/2

− sin2 ϕ1

)
(3.18)

ṙ = πα′∆+∆−1/2
− pr (3.19)

ṗϕ1 = − n2

πα′ r
2∆3/2

− sin ϕ1 cos ϕ1 (3.20)

– 10 –
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(a) r(0)=12 (b) r(0)=12

(c) r(0)=300 (d) r(0)=300

Figure 7. Plot showing the evolution of radial coordinate for different charges (Q=0.01,1) with
different initial conditions r(0) = 12 (top panel) and r(0) = 300 (bottom panel).

ϕ̇1 = πα′ pϕ1

r2∆3/2
−

(3.21)

The conformal gauge constraint gives H = 0 and the only constant of motion is the
energy (pt = E).

A. String trajectory for different values of charge

Once again, we study the dynamics by increasing the charge Q for two different initial
positions of the string. Without loss of generality, our choice of initial conditions and
parameters are pr(0) = 2, ϕ(0) = 0, E = 7. We also set the mass M = 0.5, then the charge
and mass satisfy the inequality Q ≤ 2M . When we consider the string initially close to
the brane, figure 7(a),(b) reflects the capture mode in the small charge limit and escape
mode in the extremal limit. However, only the escape mode survives when the string is
initially at a large distance away from the brane (figure 7(c),(d)). In the latter case, the
overall dynamics is not much distinct from the corresponding p=5 case. To show this, we
numerically evaluate FLI and display for different charges in figure 8.

B. Fast Lyapunov indicator

First, we concentrate on the case when the string is initially close to the brane (fig-
ure 8(a),(b)). When 0 < Q < 0.5, we observe that after some initial transient, the FLI
curve becomes vertical indicating the capture of the string. However, unlike p = 5 case,

– 11 –
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(a) r(0)=12 (b) r(0)=12

(c) r(0)=300 (d) r(0)=300

Figure 8. Plot showing the behaviour of FLI for different Q with different initial conditions r(0)
= 12 (top panel) and r(0) = 300 (bottom panel).

the capture time decreases with charge. When 0.5 ≤ Q ≤ 1, the string escapes to infinity.
When the string is initially far from the brane, we find the string escapes to infinity with
uniform rate (figure 8(c),(d)). The approximate linear growth of FLI curve reflects the
chaotic motion.

Thus, in both charged p=5 and p=6 brane, the chaotic dyanmics do not change when
the string starts from a large distance away from the brane!

Before concluding this section, we comment on the motion of closed string in uncharged
p=6 brane. Note that when Q = 0, the corresponding metric becomes a product of 6-
dimensional Euclidean space and 4-dimensional Schwarzschild. We obtain the following
expression of Hamiltonian:

H = πα′

2

(
∆+p2

r +
p2

ϕ1

r2 − p2
t

∆+

)
+ 1

2πα′n
2r2 sin2 ϕ1

The given system is equivalent to the motion of a string in four dimensional Schwarzschild
space-time which has been studied in [16] where all the three asymptotic modes namely
escape to infinity, capture of the string in the event horizon and escape to infinity via back
scattering along with an infinite set of unstable periodic orbits has been reported. Therein
a critical energy threshold has been figured out above which the system turns out to be
chaotic.
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Figure 9. Plot showing the FLI for r(0) = 11 (top panel) and r(0) = 300 (bottom panel) for
different n and Q in charged p=5 brane. The other parameters are same as in figure 2.

4 Role of winding number

We shed some light on the role of winding number in string dynamics. The case n=0
corresponds to the point particle. The metric in equation (2.2) has (p+1) translational
symmetries due to coordinates xµ(µ = 0, 1, . . . , p) and so has (p+1) constants of motion.
By suitable parametrization of the sphere in one higher dimensional sphere, it can be shown
that the (D-p-2)-sphere possesses (D-p-2) constants of motion [35]. Therefore, in total, we
have p + 1 + D − p− 2 + 1 = D integrals of motion where the additional integral of motion
is coming from the Hamiltonian. Numerically, for n=0, the slope of FLI curve is equal
to zero (see figure 9, 10, 11) which implies that the corresponding motion is integrable as
expected. However, at higher winding numbers, the dynamics is essentially non-integrable
which we explain below.

First, we consider the charged p=5 brane (figure 9). When r(0) = 11 (figure 9(a)) and
Q = 0.1, the string escapes to infinity for n > 1. However, the string falls very quickly
when n = 1 (see figure 2(a)). With increasing charge (upto Q = 1.5), we see the escape
of the string for n = 1(figure 9(b)) also. When r(0) = 300 (figure 9(c),(d)), for both small
and large value of Q, the string dynamics at higher n is not very different from what we
obtained for n = 1. Note that in all cases, FLI increases linearly and the rate of escape
increases with n.
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Figure 10. Plot showing the FLI for r(0) = 11 (top panel) and r(0) = 300 (bottom panel) for
different n and E in uncharged p=5 brane. The other parameters are same as in figure 5 and 6.

Next, we consider the uncharged p=5 brane (figure 10) where we have taken E as a con-
trol parameter. When r(0) = 11 (figure 10(a)) and E = 10, the FLI curve shows quasiperi-
odic motion for n = 1. The slope (approximately) increases with n reflecting the transition
to chaos. For larger energy (E = 15) (figure 10(b)), we observe the escape mode for all n ≥
1. When r(0) = 300 (figure 10(c),(d)), the string escapes to infinity for both n = 1 and 2.

Thus, irrespective of where the string is initially located, the distance between two
nearby trajectories increases with the winding number.

Now, we move on to charged p=6 brane (figure 11). First, we consider the case of
r(0) = 12. For Q = 0.01, 0.45, 0.75 (figure 11(a),(b),(c)), the chaotic dynamics for n = 1
(see also figure 8(a)) and n > 1 are not much different except the fact that time of capture
of the string decreases with n. At the extremal limit (Q = 1), the string escapes to infinity
for all n > 1 (figure 11(d)), however, we do not observe any correlation between the rate
of escape and n. When r(0) = 300 (figure 11(e),(f)), the string escapes to infinity for all
charge and the rate of escape also increases with n.

Finally, we describe the role of n and E in uncharged p=6 brane (figure 12) for two
different initial locations r(0) = 12 and r(0) = 300. When r(0) = 12 and E = 4,6 we observe
linear growth of FLI curve for n ≥ 1 and the growth increases with n. By increasing energy
(E = 10 and E = 11), we observe very quick capture for n ≥ 1. Note that in the former, the

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
1
8
9

(a) (b)

(c) (d)

(e) (f)

Figure 11. Plot showing the FLI for r(0) = 12 (top and middle panel) and r(0) = 300 (bottom
panel) for different n and Q in charged p=6 brane. The other parameters are same as in figure 8.

capture time is largest for n = 2 whereas in the latter, the capture time seems to decrease
with n. However, for r(0) = 300 (figure 12(e),(f)), the string with any non-zero n escapes
to infinity for all E, the rate of escape increases with both n and E.

5 Conclusion and future directions

In this work, we have numerically investigated the chaotic behaviour of a circular string
in p=5 and p=6 brane and provide sufficient evidence of its chaotic motion. Based on the
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Figure 12. Plot showing the FLI for r(0) = 12 (top and middle panel) and r(0) = 300 (bottom
panel) for different n and E in uncharged p=6 brane. The other parameters are same as in figure 11.

control parameters of our theory, we summarise the key findings as follows:

• Irrespective of the brane-background, the dynamics for n = 0 is integrable.

• In both charged p=5 and p=6 brane, when the string is initially at a large distance
away from the brane, the charge seems to have an insignificant effect on the chaotic
dynamics. The effect of winding number is only to increase the rate of escape of the
string with n for fixed charge!

• For the charged 5-brane, when the string initially starts near the brane, the capture
time of the string increases as a function of charge and eventually at a large charge,
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the chaotic dynamics change from capture to escape mode. At a higher winding
number, the string escapes to infinity, independent of charge and once again, the rate
of escape increases with n.

• When we disable the charge (Q=0) in 5-brane and study the dynamics by suitably
varying energy, independent of where the string is initially located, the dynamics
change from quasi periodic to the escape mode at larger energies. However, the
energy at which such a transition occurs that depends on the initial location. With
the increase of n, the tendency of the string escaping to infinity increases.

• For both charged and uncharged 6-brane, when the string initially starts near the
brane, our numerics show some non-monotonic behaviour of FLI curve with n for a
certain range of parameters.

• For the charged 6-brane, when r(0) = 12, we mostly observe the capture mode of the
string, and the capture time decreases with the increase in both charge and n. Near
the extremal limit, the dynamics change from capture to escape mode for all n.

• For the uncharged 6-brane and when r(0) = 12, we see a transition from escape
to capture mode for n ≥ 1 as we keep increasing control parameter(E). Going far
away from the brane (r(0) = 300), we observe only the escape mode of the string.
The dynamics at higher winding number follow the same trend, however, the linear
growth of FLI seems to increase with n.

In future, we want to explore further the following thought-provoking questions:

• It was argued in [43] that for a closed circular string of winding number n in an AdS
black hole, the MSS bound generalizes to

λ ≤ 2πkBTn (5.1)

For n = 0, the inequality (5.1) implies that λ = 0, which is consistent with our
findings. We find strong evidence that the dynamics is sensitive to winding number.
Also, note that β ∼ r+ for p=5 and β ∼ r+

√
1 − r−

r+
for p=6. This shows that with

the increase of charge, Hawking temperature decreases for p=5 and increases for p=6.
We do observe that the chaotic nature depends on charge/temperature at least when
the string is initially close to the brane. This motivates us to do a comprehensive
study of the near-horizon dynamics together with the relation (5.1) in the context of
the p-black brane. We plan to address this gap by employing the NVE scheme [63, 64]
in future work similar to [43].

• Expanding the directions of chaos, it would be interesting to study the scrambling
properties of our system [65, 66].

• In the future for lower and higher dimensions of branes, we would like to do a de-
tailed study of the generic p-branes involving a method of consistent truncation and
dimensional reduction.
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Figure 13. The evolution of H in charged p=5(blue), uncharged p=5(green), charged p=6(red)
and uncharged p=6(black) brane.

• It would be interesting to explore the chaotic behaviour of string and point particle
in intersecting non-extremal p-branes of [67].

Numerical accuracy and error. In this paper, we use the Projection method of
NDSolve routine of Mathematica to solve the equations of motion. Note that we are dealing
with nonlinear differential equations and one has to keep track of the constraint H = 0 at ev-
ery integration step. We have checked this numerical accuracy and found that the maximum
possible error (with in a reasonable computation time) is of the order of 10−6 (figure 13).
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