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1 Introduction

Calabi-Yau compactification plays a central role in the study of string theory in all of its
guises and duality frames. One of the oldest of these is the realization that compact Calabi-
Yau manifolds have an intimate relation to non-trivial two-dimensional superconformal
theories (SCFTs) with (2,2) supersymmetry. Indeed, there is a well-motivated conjecture
that given a compact smooth Calabi-Yau manifold X, the (2,2) supersymmetric non-linear
sigma model with target space X can be endowed with a smooth Kähler metric g and
a closed Kalb-Ramond field B such that the resulting theory is superconformal. More
precisely, it is believed that for a fixed choice of complex structure and complexified Kähler
class there is a unique Kähler metric g compatible with these structures such that the non-
linear sigma model with target space X and metric g is a superconformal field theory [1].
Furthermore, when the volume of X is taken to be large in string units the metric on g
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approaches the unique Ricci-flat Calabi-Yau metric for the fixed complex structure and
Kähler class. These familiar notions are of course textbook material [2] discussed in detail
in many classic reviews such as [3, 4].

Except at special points in the moduli space, the SCFTs obtained in this way are not
solvable, and this is both the challenge and the appeal of the construction. To probe the
physics of the putative SCFT a number of powerful methods have been devised. Many of
these approaches are unified via (2,2) gauged linear sigma models introduced in this context
in [5]: for an appropriate choice of parameters these two-dimensional gauge theories are
believed to flow to the same SCFT as given by the non-linear sigma model with target space
X, where X is realized as a complete intersection in a toric (or, in the non-abelian case,
a Grassmannian or closely related) variety. Techniques based on topological field theory
and localization can then be used to probe the strongly-coupled IR dynamics described by
the SCFT via UV computations based on a Lagrangian gauge theory. A recent review of
these constructions was given in [6].

The results based on such computations have had a profound impact on both math-
ematical physics, primarily through applications to mirror symmetry, as well as on string
compactification, but all such applications have an important caveat: they can only be
applied to those IR computations that have a simple UV lift. In this work we tackle the
simplest but perhaps also the foundational aspect of this problem: typically a UV lift does
not describe the full deformation space of the putative superconformal theory. The issue
was already clear in the earliest large-scale constructions of such Calabi-Yau manifolds, the
so-called “CICY” manifolds obtained as complete intersections in products of projective
spaces [7–9]: in general when X is obtained as such as space, only a subset of deformations
of complex structure is obtained from deformations of the defining polynomial equations.
This subset is exactly the set that has a good presentation in a corresponding linear sigma
model, and we are then faced with a general question: can we describe the remaining
deformations in terms of the fields of the UV theory?

We will describe a solution to this problem relevant to another large class of Calabi-
Yau compactifications: hypersurfaces in toric varieties. These manifolds were introduced
by Batyrev in the context of mirror symmetry [10] and subsequently generalized to complete
intersections in toric varieties [11]. These models have a simple gauged linear sigma model
presentation [12], and their moduli spaces give a precise distinction between those moduli
with a simple UV lift, and those that do not have such a lift. Explicitly, the moduli space
of the SCFT is locally a product of two special Kähler manifolds Mac×Mcc, with the first
factor describing the complexified Kähler deformations associated to the (a,c) ring of the
SCFT, while the second factor describes the complex structure deformations associated to
the (c,c) ring of the SCFT. There is then a canonical identification between the tangent
spaces to these with cohomology groups on X:

TMac ≃ H1(X,Ω1
X) , TMcc ≃ H1(X, TX) . (1.1)

Here TX is the (holomorphic) tangent sheaf on X, while Ω1
X is its dual, which can also

be thought of as the sheaf of (1,0)-forms on X. The dimensions of the spaces are then
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given by

dimMac = h1(X,Ω1
X) = h1,1(X) , dimMac = h1(X, TX) = h1,2(X) . (1.2)

Furthermore, there is a decomposition [10, 13], nicely reviewed in [14],

h1,1(X) = h1,1
toric(X) + h1,1

non-toric(X) , h1,2(X) = h1,2
poly(X) + h1,2

non-poly(X) . (1.3)

The first term in each equation has a straightforward interpretation in the gauged linear
sigma model: each “toric” deformation can be understood as a deformation of the complex-
ified Fayet-Iliopoulos parameters encoded in the twisted chiral superpotential, while each
polynomial deformation can be understood as a deformation of the chiral superpotential de-
termined by the defining equation of the hypersurface. In (2,2) SCFTs the decompositions
turn out to be mirror-symmetric, i.e. mirror symmetry exchanges the toric deformations of
the original theory with the polynomial deformations of the mirror.1 On the other hand,
the remaining deformations do not have a simple UV description.

There are several ways to address this issue. The most pragmatic is simply to stick
to examples where the non-toric and non-polynomial deformations are absent. This is
for example done in the CICY literature by restricting to what are termed “favorable”
configurations. On the other hand, if one’s interest is in a particular X, then one may
try to find a more general construction that presents X as a complete intersection in some
other variety where the analogues of the non-toric and non-polynomial deformations are
absent. An early approach of this sort was made in [17]; the more recent construction
of “generalized CICYs” [18] offers another set of promising candidates for finding such
generalizations. However in general it is not obvious how to construct such a desired UV
theory given a particular X.

In addition, there is an important question of principle. Given an RG flow from a (2,2)
UV theory to the SCFT we can ask whether it is possible to describe marginal operators
in the SCFT in terms of operators constructed from the UV fields based on a classical
Lagrangian. We know that in general this is too much to ask: for example, a classical
field theorist equipped with the Lagrangian of a compact boson will be hard-pressed to
discover the marginal operators that exist at the self-dual radius! However, we can hope
that the situation is under better control when the flow leads to a weakly-coupled large
radius non-linear sigma model with target space X, and we will see our hope borne out,
so that we will be able to present candidate operators in the chiral algebra of a UV theory
that describe the full set of marginal deformations of the IR SCFT.

We term the UV theory we study a “hypersurface hybrid theory.”2 Such a theory
arises as a phase in the gauged linear sigma model for a hypersurface X in a toric variety
V , and it can be formally obtained by taking the linear sigma model deep in a geometric
phase and sending the gauge coupling to infinity while keeping the chiral superpotential

1This is not preserved by (0,2) marginal supersymmetric deformations [15, 16].
2In some literature — for example [19–21]—these theories are referred to as Landau-Ginzburg models.

We choose not to use that terminology to emphasize the significant differences between a Landau-Ginzburg
theory and a curved non-linear sigma model.
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couplings finite. The result is a non-linear sigma model with target space Y , the total space
of the canonical bundle OV (KV ) → V equipped with a chiral superpotential W = ΦP ,
where Φ is the distinguished fiber coordinate, and P is a section of the anticanonical
bundle OV (−KV ) → V chosen to be suitably generic so that X = {P = 0} ⊂ V is a
smooth manifold. We can think of this theory as an example of a hybrid theory, such
as those introduced in [22] and recently studied in a number of works including [23]. A
generic hybrid theory is constructed as a fibration of a (2,2) Landau-Ginzburg theory over
a suitable base manifold V , where the Landau-Ginzburg fields are sections of certain vector
bundles over V , while the Landau-Ginzburg superpotential varies holomorphically over the
base. Our theory is a special and rather degenerate case, where the Landau-Ginzburg
potential is linear in the fiber field. This means, for example, that we cannot think of the
theory as a fibration of a supersymmetric Landau-Ginzburg model on a curved base. A
related property is that the introduction of the superpotential term decreases the value of
the central charge, while in the hybrid theories considered in [22] the Landau-Ginzburg
degrees of freedom made a non-negative contribution to the central charge. Nevertheless,
we will see that much of the technology developed in [22] continues to apply in this case
and gives a computable framework, in particular for the Ramond sector of the theory.

Our central result is to find explicit representatives for non-toric and non-polynomial
deformations of the SCFT in the chiral algebra of the theory: the cohomology of the right-
moving supercharge, or, in a superfield formulation, the cohomology of the super-covariant
derivative D, which we denote by HD. Working in the classical UV theory we obtain
subspaces Hac

D and Hcc
D which we expect to flow to marginal (a,c) and (c,c) operators in

the SCFT. While already solving a problem in principle, we primarily view this result as a
positive step in providing a similar description of deformations at the level of the gauged
linear sigma model.

The rest of the note is organized as follows: we introduce some (2,2) superspace no-
tation in section 2 and then apply it to give a large radius description of deformations in
a compact Calabi-Yau non-linear sigma model. Next we give a discussion of deformations
of a hypersurface X in V in terms of algebraic geometry and phrase the non-toric and
non-polynomial deformations solely in terms of properties of algebraic geometry of V . Our
key results are then obtained in section 4, where we lift these deformations to the hyper-
surface hybrid based on the non-linear sigma model with target space Y . In section 5 we
re-examine the marginal deformations by studying the NS-R sector of the theory via the
techniques of [22] and reproduce the results obtained in previous sections. We conclude
with a discussion of future directions.

Acknowledgments

IVM’s work is supported in part by the Humboldt Research Award as well as the Edu-
cational Leave program at James Madison University. Our work on this project was also
supported by the NSF Grant PHY-1914505. We thank P. Aspinwall and R. Plesser for use-
ful discussions. IVM acknowledges an ancient collaboration with B. Wurm that attempted
to tackle some closely related questions.

– 4 –



J
H
E
P
1
0
(
2
0
2
3
)
1
8
6

2 Warm up: deformations of Calabi-Yau non-linear sigma models

In this section we set out the notation that we will use in the rest of our note, and we
will illustrate the basic ideas in the familiar setting of the chiral algebra of a large radius
compact Calabi-Yau manifold. Additional details may be found in, for example, [6, 22].

2.1 Superspace conventions

Our conventions for superspace are those of [6]. We work in Euclidean signature on a flat
worldsheet Σ = C and (2,2) superspace coordinates (z, θ′, θ

′; z, θ, θ). Using the short-hand
notation ∂z = ∂

∂z and ∂̄z = ∂
∂z , a representation of the right-moving (or anti-holomorphic)

supersymmetry algebra is furnished by the antiholomorphic superspace derivatives and
supercharge operators

D = ∂θ + θ∂̄z , Q = ∂θ − θ∂̄z ,

D = ∂θ + θ∂̄z , Q = ∂θ − θ∂̄z . (2.1)

The non-trivial anti-commutators for these are {D,D} = 2∂̄z and {Q,Q} = −2∂̄z. We also
have their “holomorphic” versions

D′ = ∂θ′ + θ
′
∂z , Q′ = ∂θ′ − θ

′
∂z ,

D′ = ∂
θ
′ + θ′∂z , Q′ = ∂

θ
′ − θ′∂z , (2.2)

which have non-trivial anti-commutators {D′,D′} = 2∂z and {Q′,Q′} = −2∂z.
We will be working with Lagrangian field theories based on bosonic chiral superfields

Yα, which satisfy the constraints

DYα = 0 , D′Yα = 0 , (2.3)

as well as their anti-chiral charge-conjugates Yα, which are annihilated by D and D′. These
fields have superspace expansions

Yα = yα + · · · , Yα = yα + · · · , (2.4)

and the bosonic fields yα(z, z) and yα(z, z) take values in a Kähler manifold Y — the
target space of the non-linear sigma model. Denoting the embedding map as f : Σ → Y ,
the superfields DYα and DYα have spin −1/2 and take values in pullback bundles f∗(TY )
and f∗(T Y ) respectively.3 In what follows we will lighten notation and not write the explicit
pullback by the map f . The superfields D′Yα and D′Yα are valued in the same bundles as

3More precisely, these superfields take values in appropriate pullbacks of the target space tangent bundle
TY tensored with a spin bundle on the worldsheet. For example, DYα is a section of f∗(TY ) ⊗ K

1/2
Σ . In our

case the canonical bundle KΣ and its conjugate KΣ are trivial, and so are the spin bundles. The spin bundles
play an important role when we place the theory on a curved worldsheet, when we consider topologically
non-trivial field configurations, or when we perform a topological twist to obtain a cohomological topological
field theory see, e.g. [4, 24]. These subtleties will not play a role in our classical considerations, and we will
just keep track of the spin eigenvalues.
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their anti-holomorphic counter-parts but carry spin +1/2. This geometric structure allows
us to formulate the action and path integral of the non-linear sigma model. Given a cover
{Ua}a∈I of Y with holomorphic transition functions relating the coordinates in overlapping
patches Ua ∩ Ub ̸= ∅ as yα

a = F α
ab(yb), the superfields of the theory transform accordingly:

Yα
a = F α

ab(Yb) , Yα
a = F α

ab(Yb) , (2.5)

and the superspace derivatives transform covariantly. For example,

(DYα)a = ∂F α
ab

∂Yβ
b

(DYβ)b . (2.6)

Note that this implies that the higher order terms in the θ, θ′ expansion of the superfields
pick up connection terms in their transformations. This is a familiar feature of super-
space [25, 26].

Before we proceed further we will fix some notation for a holomorphic vector bundle
E over a Kähler manifold Y of dimension d. We denote the dual bundle by E∗, and the
complex conjugate bundle by E . We denote by Ap,q

Y (E) the vector space of sections of
(p,q) forms on Y valued in E . The vector space of (p,q) forms on Y will just be denoted
by Ap,q

Y . Although we will primarily work in the smooth category, it will be useful for
us to think of the bundles as sheaves. We will denote by OY the structure sheaf on Y ,
TY will be the tangent sheaf, and Ωp

Y the sheaf of (p, 0)-forms; of course Ω1
Y = T ∗

Y . KY

denotes the canonical divisor on Y . For all examples we consider KY will be Cartier, so
that OY (KY ) ≃ Ωd

Y is the canonical bundle. When Y is compact and smooth we will
frequently make use of the isomorphism between Dolbeault and Čech cohomology groups
Hp,q

∂̄
(Y, E) ≃ Hq(Y,Ωp

Y ⊗ E). The former naturally show up in the physical theory, while
the latter are computationally more accessible.

2.2 The action and its key symmetries

To write down an explicit action, we fix a Kähler metric G on Y , locally given by a
Kähler potential K. It is also possible to include the coupling to a closed B-field, but
this will not play a role in our classical discussion. If Y is non-compact and admits a
global holomorphic function W(Y), then we can also add a chiral superpotential term to
the action. Letting m be a parameter with units of mass, the standard 2-derivative action
with a chiral superpotential is

S = Skin + Spot , (2.7)

with

Skin = 1
4π

∫
d2z DDD′D′︸ ︷︷ ︸

=Dtot

[1
2K(Y,Y)

]
, Spot =

m

4π

∫
d2z DD′W(Y) + h.c . (2.8)

It is understood that the Grassmann coordinates θ, θ′ and their conjugates are to be set to
zero after all of the superspace derivatives are taken.
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While the kinetic term is defined only patch by patch, the action is nevertheless well-
defined since Kähler transformations give rise to terms annihilated by the superspace
derivatives. Moreover, because the fermion couplings are non-chiral the action and the
path integral are invariant under (complex) diffeomorphisms, which allows both to be well-
defined despite the curvature of the target space. As we will be mostly concerned with
aspects of the classical field theory, the equations motion will play an important role. In
superspace these take the form

D′DYβ = −Γβ
αγD

′YαDYγ + 2mGβαWα ,

D′DYα = −Γα
βγD′YβDYγ − 2mWαGαα . (2.9)

Here Gβα denotes the inverse Kähler metric, while Γ and Γ are the Chern connections on
TY and T Y respectively:

Γα
βγ = GααGβα,γ , Γα

βγ = GααGαβ,γ . (2.10)

The notation Wα is a short-hand for the components of ∂W = ∂W
∂yα dyα, and similarly Wα

denote the components of ∂̄W.4 We will find another form of the equations of motion
useful as well:

DD′Kα = −2mWα , DD′Kα = 2mWα . (2.11)

Here again Kα = ∂K
∂yα , and Kα = ∂K

∂yα . In this notation the Kähler metric is Gαβ = Kαβ .
When W = 0 the action has a classical U(1)L × U(1)R global R-symmetry with the

following action:

θ′ θ
′

θ θ Yα

U(1)L +1 −1 0 0 0

U(1)R 0 0 +1 −1 0

(2.12)

These symmetries are chiral and in general anomalous, and the anomaly is proportional to
c1(TY ). However, we will insist that the canonical bundle of Y is trivial, i.e. OY (KY ) = OY ,
which implies c1(TY ) = 0. While the superpotential in general breaks the symmetry, if Y

and K admit a holomorphic Killing vector v such that the Lie derivative with respect to
v preserves the superpotential, i.e. LvW = W, then the action will preserve a modified
U(1)L ×U(1)R symmetry, which has the infinitesimal action

δθ′ = iαLθ′ , δθ = iαRθ , δYα = iαLLvYα + iαRLvYα . (2.13)

In all of our theories the symmetries will be compact and turn out to act with integral
charges on a natural basis of the fields. These symmetries will be crucial in making the
connection between the UV theory and the IR SCFT. In particular, we will assume that

4Our notation for the spacetime Dolbeault differential operators ∂ and ∂̄, with d = ∂ + ∂̄ is close to the
world-sheet derivatives ∂z and ∂̄z; we hope the subscripts on the latter will lessen the confusion.
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these symmetries flow to the U(1)L×U(1)R R-symmetries of the (2,2) superconformal alge-
bra. This seems to be a sound assumption for flows to compact and unitary (2,2) SCFTs,
made implicitly or explicitly in most Lagrangian constructions of such theories. In the
more general case of (0,2) supersymmetric flows the circumstances when this assumption
is justified remain to be understood [27].

2.3 A view of Calabi-Yau deformations

In this section we develop some of the main tools that we will use in our study of marginal
deformations in a particularly well-understood context: the deformations of the SCFT as-
sociated to a smooth compact Calabi-Yau manifold Y based on a large-radius non-linear
sigma model description. Our perspective is particularly inspired by [28], as well as obser-
vations on conformal perturbation theory such as those given in [29] in a four-dimensional
context.

Before proceeding, we fix our definition of a compact Calabi-Yau manifold as a smooth
Kähler manifold Y , dimC Y = d, with trivial canonical bundle and H i(Y,OY ) = 0 for
0 < i < d − 1. The last condition excludes cases such as T 6 or K3 × T 2: there is a good
physical reason to do this, since in those cases the superconformal algebra is enhanced,
which leads to a different structure of the moduli space of marginal deformations. A recent
discussion of the SCFT moduli space in this enhanced context can be found in [30].

With these definitions fixed, we consider the perspective of conformal perturbation
theory: the marginal deformations of a (2,2) superconformal theory are encoded in the
deformation of an “action”5

∆SCFT =
∫

d2z DD′Ψ̃(z, z) +
∫

d2z DD′Ψ + h.c., (2.14)

where Ψ̃ is an (a,c) field with U(1)L × U(1)R charges (−1, 1), while Ψ is a (c,c) field with
U(1)L ×U(1)R charges (1, 1).

When working in a large radius limit, meaning the typical length scale of the com-
pactification geometry is much larger than the string length, we should be able to use the
non-linear sigma model fields to describe the spectrum of (a,c) and (c,c) operators and the
associated (infinitesimal) deformations, and we will reproduce the familiar results relating
the space of infinitesimal deformations to Dolbeault cohomology on Y :

TMcc ≃ H0,1
∂̄

(Y, TY ) , TMac ≃ H0,1
∂̄

(Y, T ∗
Y ) . (2.15)

We begin with the (a,c) deformations. The superfield Ψ̃ should have the following proper-
ties:

1. Ψ̃ is well-defined on the NLSM target space and is expressed in terms of the superfields
Y,Y, and their superspace derivatives;

2. it has U(1)L ×U(1)R charges (−1, 1);
5This does not require a Lagrangian definition of the SCFT: more generally ∆S is used to define (after

suitable regularization and renormalization) the perturbed correlation functions via ⟨· · · e−∆S⟩.
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3. it carries (classical) dimensions (hL, hR) = (1
2 , 1

2);

4. Ψ̃ is twisted chiral up to the NLSM equations of motion.

Denoting the space of (p, q) forms on Y by Ap,q
Y , we find that properties 1,2,3 imply

Ψ̃ = ωαβD
′YαDYβ +D′Df , (2.16)

where ω ∈ A1,1
Y , and f ∈ A0,0

Y . Property 4 holds if and only if dω = 0.
Before we continue, we point out a frequent super-abuse of notation. We will often

discuss a geometric quantity, for example the form

ω = ωαβ(y, y)dyα ∧ dyβ , (2.17)

that we will use to construct a superfield expression such as Ψ̃. In the latter it should be
understood that we replace the coordinate dependence by the corresponding superfields,
so that we should really write (already omitting the pullback to the worldsheet!)

Ψ̃ = ωαβ(Y,Y)D′YαDYβ +D′Df(Y,Y) . (2.18)

We will choose to leave this promotion of coordinates to superfields implicit rather than
make the notation unreadable.

Returning now to the Ψ̃, we see that the space of fields satisfying all of the requirements
is infinite dimensional. To obtain a sensible description of the deformation space, we
recall one more statement from conformal perturbation theory and Calabi-Yau NLSMs: a
supersymmetric deformation of the theory by a global D-term of the form

∆SD =
∫

d2zDtotf , (2.19)

amounts to a shift of the Kähler potential by a global function. We expect any such small
perturbation to be marginally irrelevant, i.e. to lead to the same IR fixed point. This fits
well with the statement in conformal perturbation theory that a supersymmetric D-term
deformation of a compact unitary (2,2) SCFT is necessarily irrelevant.6

With this extra condition, we now observe that if ω − ω′ = ∂∂̄f for any function
f ∈ A0,0(Y ), then we expect ω and ω′ to lead to the same IR fixed point. Hence, the space
of marginal (a,c) deformations is isomorphic to the quotient

{ω ∈ A1,1
Y |dω = 0}/{ω = ∂∂̄f |f ∈ A0,0

Y } . (2.20)

This is precisely the definition of the Bott-Chern cohomology group H1,1
BC(Y,C).7 Because

Y is a compact Calabi-Yau space, it obeys the ∂∂̄ lemma, and that in turn implies the
isomorphism

Hp,q
BC(Y,C) ≃ Hp,q

∂̄
(Y ) . (2.21)

6This is a well-known statement — see, for example, [31, 32].
7A useful review of various cohomology theories on a complex manifold is given in [33].
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Taking the case of p = q = 1 and using H1,1
∂̄

(Y ) ≃ H0,1
∂̄

(Y,Ω1
Y ), we recover the expected

result for TMac .
In the same spirit, we now tackle the (c,c) deformation. We seek fields Ψ with the

following properties:

1. Ψ is well-defined on the NLSM targetspace and is expressed in terms of the superfields
Y,Y, and their superspace derivatives;

2. it has U(1)L ×U(1)R charges qL = 1 and qR = +1;

3. it carries (classical) dimensions hL = hR = 1
2 ;

4. Ψ is chiral up to the NLSM equations of motion.

The first three properties then require

Ψ = ωαβDYαD′Yβ +DD′
f , (2.22)

where ω ∈ A0,0
Y (T̄ ∗

Y ⊗ T̄ ∗
Y ), and f ∈ A0,0

Y .
Using the NLSM equations of motion, we find that the last requirement translates into

two differential conditions that involve the Kähler connection, which we denote by ∇:

∇αωγβ = ∇γωαβ , ∇βωαγ = ∇γωαβ . (2.23)

To solve these conditions it is convenient to define ηβ
α = ωαβG

βα. The first differential
condition is then equivalent to ∂̄η = 0, while the second becomes

∇γµαβ = 0 , (2.24)

where µ ∈ A0,2
Y is given by

µβα = Gββηβ
α − Gβαηβ

β
. (2.25)

The condition (2.24) is restrictive. If we use the metric to raise the indices and contract
with the unique holomorphic d-form Ω, we obtain

µ̃β1···βd−2 = µαβG
ααGββΩαββ1···βd−2 , (2.26)

and the condition on µ is equivalent to ∂̄µ̃ = 0, i.e. µ̃ defines a class in Hd−2,0
∂̄

(Y,OY ).
This group is empty because Y is Calabi-Yau, which implies µ̃ = 0. Because Ω is non-
degenerate, we conclude that µ = 0 as well. So, the only way to satisfy our conditions is
to solve

∂̄η = 0 , Gββηβ
α − Gβαηβ

β
= 0 . (2.27)

Let η be a representative of a cohomology class [η] ∈ H0,1
∂̄

(Y, TY ). We will now show that
we can always find another representative

η̃ = η + ∂̄λ (2.28)

for some λ ∈ A0,0(Y, TY ) such that η̃ satisfies the second condition in (2.27).
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We need to find λ such that

∇βλβGβα −∇αλβGββ = Gββηβ
α − Gβαηβ

β
. (2.29)

Using ∂̄η = 0 it is not hard to show that the right-hand-side is a ∂̄-closed (0,2) form. On
Y any such form is ∂̄-exact, so that there exists some (0,1) form ρ such that

Gββηβ
α − Gβαηβ

β
= ∇βρα −∇αρβ . (2.30)

We can therefore set λβ = Gββρβ .
We have shown that every cohomology class [η] ∈ H0,1

∂̄
(Y, TY ) has a representative

η satisfying (2.27); we can change the representative to η′ = η + ∂̄λ, which will also
satisfy (2.27) if and only if λ obeys

∇β(λ
βGβα)−∇α(λβGββ) = 0 . (2.31)

On Y this is only possible if λβ = ∇βf for some function f . Coming back to the form of
the deformation, we see that such a shift amounts to ωαβ → ωαβ + ∇α∇βf . Using our
equations of motion we have

DD′
f = D

[
∇βfD′Yβ

]
= ∂α

(
∇βf

)
DYαD′Yβ +∇βfDD′Yβ = ∇α∇βfDYαD′Yβ

.

(2.32)

So, the remaining freedom in shifting the representative of [η] yields an irrelevant D-term
deformation. We have recovered the other familiar result: TMcc ≃ H0,1

∂̄
(Y, TY ).

It is not surprising that we have reproduced the expected structure for the first order
deformations of a large radius non-linear sigma model, because the supposition is that this
Lagrangian theory is indeed superconformal for an appropriately chosen Kähler metric G.
We note that the two types of deformation differ in one important aspect: we did not use the
equations of motion in discussing the (a,c) deformations, and, indeed, there is no issue with
adding to the action a small but finite (a,c) deformation of the form above. This will shift
the complexified Kähler class of the theory, and of course the action so obtained is equivalent
to one with a new Kähler potential Knew. On the other hand, the (c,c) deformation as we
have written it is only infinitesimal because the supersymmetry requirements only hold up
to equations of motion. This is easy to understand: the action written in terms of a choice
of chiral superfields uses a fixed complex structure, so while the deformation is certainly
integrable (either in the sense of complex geometry or superconformal field theory), we
cannot hope to express the form of a finite deformation in terms of the original chiral
superfields.

2.4 A chiral algebra perspective

Before we leave this warm-up exercise, we point out one more perspective that will be
useful to us below, a view based on the chiral algebra of the theory, which we can think of
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as the cohomology of D.8 This is a structure that exists in any (0,2) quantum field theory,
and in favorable circumstances we can assume that it is isomorphic to the cohomology of
the right-moving supercharge G+

−1/2 of the IR SCFT. In the case of (2,2) theories that
we consider the D cohomology contains a holomorphic N=2 superconformal algebra that
includes a representative of the U(1)L current [22]. We will assume that in the IR this
algebra indeed becomes the left-moving superconformal algebra.

This offers a straightforward way to identify representatives of marginal (a,c) and (c,c)
operators: we need to merely identify the cohomology classes of operators with qR = +1,
qL = ±1, and spin 0. If our assumption about the RG flow is correct, then each such
cohomology class corresponds in the SCFT to a chiral primary operator on the right with
qR = +1. Since the RG flow preserves the spin hL − hR = 0, we also have

hL = hR = 1
2qR = 1

2 . (2.33)

Since qL = ±1, the operator must therefore either be anti-chiral primary on the left (qL =
−1) or chiral primary on the left (qL = +1). It is a simple exercise to apply this the
(a,c) and (c,c) deformations of the classical non-linear sigma model to easily reproduce the
results we reviewed above. However, the point for us is that studying the chiral algebra
will be much simpler in the massive theories that are our main interest.

Although we will not pursue this in this work, it is important to keep in mind that this
identification is computationally powerful. For example, it allows us to evaluate correlation
functions and OPEs of these operators in a half-twisted theory, and these computations
are essentially as powerful as similar computations in a topologically twisted theory [6, 40],
at least at genus 0.

Denoting by HD the full chiral algebra of the theory, we are then interested in char-
acterizing the subspaces Hac

D and Hcc
D corresponding to spin 0 operators with qL, qR as

described above. These vector spaces have subspaces defined by the toric and polynomial
deformations:

Htoric
D ⊆ Hac

D , Hpoly
D ⊆ Hcc

D . (2.34)

Non-toric and non-polynomial deformations are then naturally thought of as equivalence
classes belonging to, respectively, the quotient vector spaces Hac

D /Htoric
D and Hcc

D/Hpoly
D ,

and our goal is to provide an appropriate operator for each equivalence class.

3 Hypersurface geometry

In this section we use a geometric perspective to characterize the deformations for a special
class of Calabi-Yau manifolds: X is a smooth hypersurface in a projective and simplicial
4-dimensional NEF Fano toric variety V with at worst terminal singularities. Recall that

8Foundational papers on this structure in two-dimensional theories include [34–36]. The structure has
a close relationship to the chiral de Rham complex [37] and its generalizations. It has been explored more
recently in the context of Landau-Ginzburg models in [38] and in hybrid CFTs in [22, 39]. A pedagogical
discussion is given in [6], and subtleties in (0,2) applications are pointed out in [27].
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a variety V is NEF Fano if and only if it is complete, and its anti-canonical divisor −KV is
NEF, i.e. has a non-negative intersection with every curve in V . Moreover, V is a Gorenstein
variety, and its only singularities are terminal Gorenstein singularities which occur in co-
dimension 4 [14]: these singularities are missed by a generic hypersurface. We focus on
this class because it contains an enormous set of examples [41] with a simple combinatorial
description, a canonical lift to a UV gauged linear sigma model [12], and a beautiful mirror
construction [10]. Moreover, there is a concrete description of the deformation spaces and
their splits into toric/non-toric and polynomial/non-polynomial sets.

The characterization of the deformations was crucial for early tests of mirror symmetry
in this construction [10, 13], but instead of giving the usual treatment — for example
reviewed in [14]—we will give a presentation that is well-suited for our purposes following
a method given in [42].

3.1 A little toric geometry

We begin by setting notation and summarizing a few key results in toric geometry, mostly
following the excellent text [43].

Fix a d-dimensional lattice N ≃ Zd. Let V be a projective simplicial toric variety
with fan ΣV ⊂ NR = N ⊗Z R. Denote by ΣV (1) the collection of 1-dimensional cones,
indexed by the primitive generators uρ ∈ N , with ρ = 1, . . . , n = |ΣV (1)|. In terms of the
homogeneous Cox coordinates, for every ρ there is a homogeneous coordinate Zρ for Cn,
and we can describe V as a quotient

V = {Cn \ F} /
{
(C∗)n−d × H

}
, (3.1)

where H is a finite abelian group, F is a union of intersections of hyperplanes determined
by the fan, and the C∗ action is encoded in a matrix of charges q. The toric divisors Dρ,
obtained as projections of the loci {Zρ = 0} will play an important role in our story. We
note two key properties:

1. the canonical divisor of the toric variety is given by

KV = −
∑

ρ Dρ; (3.2)

2. each toric divisor is Cartier, and the group of line bundles Pic(V ) is generated by the
corresponding line bundles OV (Dρ), where OV is the structure sheaf of V . We set
W = Pic(V )⊗Z C.

The tangent sheaf TV and the cotangent sheaf Ω1
V fit into the exact sequences9

0 W ∗ ⊗OV
⊕

ρ OV (Dρ) TV 0 ,

0 Ω1
V

⊕
ρ OV (−Dρ) W ⊗OV 0 ,

E

ET
(3.3)

9When V is smooth, these sheaves have their usual geometric meaning. More generally, when V is
a projective and simplicial, these sheaves should be understood as the appropriate generalizations of the
geometric objects. A careful discussion is given in [43].
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where the map E is given by

E(v) = (v · q1Z1, v · q2Z2, . . . , v · qnZn) . (3.4)

Using these exact sequences it is possible to prove a number of remarkable vanishing
theorems that hold for NEF Fano simplicial toric varieties, including10

Hp(V,Ωq
V ) = 0 for p ̸= q , (3.5)

and for any NEF divisor D on V

Hp(V,OV (D)) = 0 for p > 0 . (3.6)

We will often use these vanishing results together with Serre duality (which holds since V

is Gorenstein):

Hp(V, E) ≃ Hd−p(V, E∗ ⊗OV (KV )) . (3.7)

Using these results we can prove another vanishing result that will play an important role
in what follows:

H i(V,OV (−Dρ)) = 0 . (3.8)

This can be seen as follows. First we observe that H0(V,OV (−Dρ)) = 0 because given a
section λ ∈ H0(V,OV (−Dρ)) we would obtain a non-constant section Zρλ ∈ H0(V,OV ),
which is impossible on a projective variety. Next, the cotangent sheaf exact sequence leads
to a long exact sequence in cohomology which includes

· · · H i(V,Ω1
V )

⊕
ρ H i(V,OV (−Dρ)) H i(V, W ⊗OV ) · · · ,

(3.9)
so that using (3.5) we see H i(V,OV (−Dρ)) = 0 for i ≥ 2. The remaining part of the long
exact sequence is

0 H0(V, W ⊗OV ) H1(V,Ω1
V )

⊕
ρ H1(V,OV (−Dρ)) 0 ,

(3.10)
but since the first two terms are isomorphic for a projective simplicial toric variety, the
desired result holds for i = 1 as well.

3.2 Complex structure deformations

We set X = {P = 0} ⊂ V , where P is a generic holomorphic section of the anticanonical
bundle: P ∈ H0(V,OV (−KV )). We reviewed above that TMcc ≃ H1(X, TX). Our goal
now is to describe H1(X, TX) for the hypersurface in a way that explicitly identifies the

10Proofs and details of these theorems can be found in chapter 9 of [43].

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
1
8
6

polynomial and non-polynomial deformations. In this section we closely follow [42]. The
first step is to observe that the adjunction sequence together with the Euler sequence
of (3.3) imply that the tangent sheaf TX is obtained as the cohomology of the complex

E• = 0 W ∗ ⊗OX

⊕
ρ

OX(Dρ)︸ ︷︷ ︸
=E0

OX(−KB) 0 .E dP (3.11)

This complex is exact except at the 0-th position, and when V is smooth it has the inter-
pretation that vectors on X are the vectors on V that preserve the hypersurface.11 The
sheaves on X that show up in (3.11) are obtained by pulling back divisors from V to X,
and are related to sheaves on V through the exact sequence

0 OV (D + KV ) OV (D) OX(D) 0 . (3.12)

The total cohomology, also known as hypercohomology, of the complex E•, calculated by
a spectral sequence whose first page is Ep,q

1 = Hq(X, Ep), converges to Hp+q(X, E•). Since
TX is obtained as the ordinary cohomology of E•, which fails to be exact just at the middle
E0 term, this gives a method for calculating H1(X, TX). In more detail, the first page of
the spectral sequence only has non-zero entries for |p| ≤ 1, which include

H2(X, W ∗ ⊗OX)
⊕

ρ H2(X,OX(Dρ)) H2(X,OX(−KV ))

H1(X, W ∗ ⊗OX)
⊕

ρ H1(X,OX(Dρ)) H1(X,OX(−KV ))

H0(X, W ∗ ⊗OX)
⊕

ρ H0(X,OX(Dρ)) H0(X,OX(−KV ))

q

pp = −1 p = 0 p = 1

To obtain H1(X, TX) we focus on the cohomology along the dashed line, and this is easily
evaluated because the groups marked in light pink are zero. The groups on the left are
zero because X is Calabi-Yau. The groups on the right are zero because (3.12) implies
H i(V,OV (−KV )) ≃ H i(V,OX(−KV )) for i > 0, and the latter groups vanish by (3.6) .

The bottom row corresponds to deformations of the defining hypersurface equation,
while the second row gives the non-polynomial deformations:

TMcc/ TMcc |poly =
⊕

ρ H1(X,OX(Dρ)) . (3.13)

While this result was given in [42], we will next take it a step further and show

TMcc/ TMcc |poly =
⊕

ρ H1(X,OX(Dρ)) = H1(V, TV ) , (3.14)
11This is familiar to gauged linear sigma model experts, making its appearance in that context already

in [5].
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i.e. the non-polynomial deformations of the hypersurface X ⊂ V are exactly the deforma-
tions of complex structure of the ambient variety V — a satisfying result that was already
obtained through a somewhat different approach in [44].

To prove the desired isomorphism we note that Serre duality and (3.8) imply that
H i(V,OV (Dρ + KV )) = 0 for all i. This in turn implies via (3.12) that H i(X,OX(Dρ)) =
H i(V,OV (Dρ)) . Finally, taking the long exact sequence associated to the Euler sequence
for tangent sheaf on V , the result follows.

3.3 Complexified Kähler deformations

While the results in the previous section were a review of previous work, reproducing
a known result from a somewhat different point of view, we will now apply the same
machinery to discussing the toric and non-toric complexified Kähler deformations, which
to our best knowledge have not been previously considered from this point of view.

The conventional view on these deformations is obtained in three statements [14]. First,
we observe that given the inclusion i : X ↪→ V we can pull back divisors on V to those on
X. However, some divisors on V do not intersect X, and these pull back to 0 (up to linear
equivalence) on V . Taking this into account we obtain the toric divisors on X and then
of course also the corresponding classes in H1(X,Ω1

X). Finally, it can be that some of the
toric divisors become reducible when pulled back to X, leading to independent complexified
Kähler deformations on X that cannot be obtained by pulling back a complexified Kähler
class from V .

We will instead follow a different approach to describe the non-toric deformations
directly in terms of properties of V . The idea is simple: we can apply exactly the methods
of the previous section but now to the cotangent sheaf represented as the cohomology of
the complex

F• = 0 OX(KV )
⊕

ρ

OX(−Dρ)︸ ︷︷ ︸
=F0

W ⊗OX 0 .dP ET

(3.15)

The first page of the spectral sequence for the total cohomology of F• is then

H2(X,OX(KV ))
⊕

ρ H2(X,OX(−Dρ)) H2(X, W ⊗OX)

H1(X,OX(KV ))
⊕

ρ H1(X,OX(−Dρ)) H1(X, W ⊗OX)

H0(X,OX(KV ))
⊕

ρ H0(X,OX(−Dρ)) H0(X, W ⊗OX)

q

pp = −1 p = 0 p = 1

Once again we marked the vanishing groups in light pink; this time it is the groups on the
left that vanish by combining (3.12) with (3.5) and (3.6), while the groups on the right
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vanish because X is Calabi-Yau. The bottom row encodes the toric deformations, while
from the first row we obtain

TMac/ TMac |toric =
⊕

ρ H1(X,OX(−Dρ)) = H2(V,Ω1
V ⊗OV (KV )) . (3.16)

The last isomorphism can be obtained in two steps. First, the long exact sequence associ-
ated to (3.12) with D = −Dρ and the vanishing (3.8) yield the isomorphism

H1(X,OX(−Dρ)) = H2(V,OV (−Dρ)⊗OV (KV )) . (3.17)

Next, taking the cotangent sheaf exact sequence and tensoring with OV (KV ) we obtain
the exact sequence

0 Ω1
V ⊗OV (KV )

⊕
ρ OV (−Dρ)⊗OV (KV ) W ⊗OV (KV ) 0 ,ET

(3.18)
and since by Serre duality H i(V,OV (KV )) = 0 for i ̸= 4, the associated long exact sequence
yields the claimed isomorphism.

4 Marginal operators in the hypersurface hybrid

In the previous section we obtained a characterization of the non-toric and non-polynomial
deformations of a hypersurface X ⊂ V :

TMcc/ TMcc |poly = H1(V, TV ) , TMac/ TMac |toric = H2(V,Ω1
V ⊗OV (KV )) . (4.1)

We will now use this characterization to find D cohomology classes in the hybrid theory
that represent each type of deformation.

We will make a stronger assumption that V is smooth. This is the simplest setting
for hybrid theories, since then the base degrees of freedom can be described by a smooth
non-linear sigma model. The gauged linear sigma model suggests that it should be possible
to extend the analysis to any simplicial NEF Fano toric variety V , but we will not pursue
this extension here. At any rate even assuming that V is smooth leaves us with plenty of
examples with non-toric and non-polynomial deformations.

4.1 The Lagrangian of the hypersurface hybrid

Let L = OV (KV ) and take Y to be the total space of the line bundle L, with projection
π : Y → V . The fibration gives us a way to construct the action patch by patch. Suppose
{Ua}a∈I is a cover for V , with Ua ≃ C4 with local holomorphic coordinates ui and their
complex conjugates uı. We can then cover Y with patches Ua × C, and denote the fiber
coordinate by ϕ.

The hybrid superfields are obtained by promoting the holomorphic coordinates just
described to chiral superfields U i and Φ, and their conjugates to anti-chiral superfields U

ı,
Φ. To make a connection with the previous description we can set Y0 = Φ and Y i = U i. To
specify the hybrid action (2.8) we choose a superpotential W = ΦP , where P is obtained
by pulling back a section of the dual bundle L∗, and we observe that the geometry has a
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natural vector field v = ϕ ∂
∂ϕ which assigns charge +1 to Φ and leaves the U i invariant.

Thus, if we can pick a Kähler metric for which v generates an isometry, the action will
have a U(1)L × U(1)R symmetry. Moreover, the symmetry will be anomaly-free since by
construction Y has a trivial canonical bundle.

To describe the Kähler potential further, we pick a Hermitian metric on L, that is a
positive section h ∈ A0,0

V (L∗ ⊗ L
∗). The most general Kähler potential consistent with the

isometry generated by Lv is then

K = K(u, u,R) , (4.2)

where R = ϕh(u, u)ϕ. To leading order in the fiber direction

K = ϕhϕ +Kbase(u, u) + O(R2) , (4.3)

where Kbase is a Kähler potential for a Kähler metric on the base V .
Using the metric h we define the Chern connection A = ∂ log h on the bundle L, as

well as its conjugate A = ∂̄ log h. These connections have Hermitian curvature F ∈ A1,1
V ,

with

∂A = 0 , ∂̄A = 0 , ∂̄A = −∂A = F = Fiȷdui ∧ duȷ , (4.4)

where Fiȷ = −∂ȷAi satisfies Fiȷ = Fıj . All of these pull back to Y , so that for example
π∗(h) gives a metric on the pullback bundle Lv = π∗(L). To keep the notation reasonably
uncluttered we will not write the pullbacks explicitly in what follows unless it is likely to
cause confusion.

When derived from a linear sigma model the Kähler potential K is determined in
terms of a solution to |ΣV (1)|−dim V algebraic equations on each affine patch, but we will
not need the explicit details of this metric. We remark that in keeping with the hybrid
philosophy really any choice of smooth K should do, but a canonical choice is not readily
available for a general NEF Fano V . If V is Fano, then we can choose K = ϕhϕ+Kbase(u, u)
because it is possible to find a smooth metric h so that the curvature F has positive
eigenvalues at every point on the base, and the resulting Kähler form is non-degenerate
on Y . However, for a general NEF (as opposed to ample) line bundle it is not possible
to choose such a metric h [45], and this simple Kähler potential will lead to a degenerate
Kähler form.

Having set up this basic machinery, we will now construct representatives in the D
cohomology HD of the hybrid theory for each of the (a,c) and (c,c) deformations identified
above. We will work at the level of classical field theory, but we expect our results to be
robust at the level of the chiral algebra.

4.2 The toric (a,c) deformations

With a little more diagram chasing, it is not hard to see that the toric (a,c) deformations
are described by the quotient H1(V,Ω1

V )/H1(V,Ω1
V ⊗L), where the map H1(V,Ω1

V ⊗L) →
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H1(V,Ω1
V ) is simply multiplication by P . To translate this to a statement in D cohomology

we define the superfield

Θ = D′Kϕ = (K′ + RK′′)h
(
D′Φ+

(
Aı +

1
K′ +RK′′K

′
ı

)
D′

U
ıΦ

)
. (4.5)

This is useful because the equations of motion (2.11) imply

DΘ = −2mWϕ = −2mP . (4.6)

Now the toric deformations are described as follows. Given [ω] ∈ H1(V,Ω1
V ) with repre-

sentative ω, we set

Otoric[ω] = ωiȷD′U iDU
ȷ

. (4.7)

This is clearly D-closed, and shifting ω by a ∂̄-exact form leads to a D-exact shift of
Oac

toric[ω]. Thus, we have a well-defined map

Otoric : H1(V,Ω1
V ) → HD . (4.8)

However, not all of these operators define non-trivial classes in HD: given [λ] ∈ H1(V,Ω1
V ⊗

L) with representative λ, we can construct a well-defined operator

− 1
2m

ΘλiȷD′U iDU
ȷ (4.9)

which satisfies

D
(
− 1
2m

ΘλiȷD′U iDU
ȷ
)
= PλiȷD′U iDU

ȷ
. (4.10)

So, we characterize the toric deformations as a subset of the chiral algebra

Htoric
D =

{
Otoric[ω] | [ω] ∈ H1(V,Ω1

V )/H1(V,Ω1
V ⊗ L)

}
. (4.11)

4.3 The non-toric (a,c) deformations

We start with a class [ξ] ∈ H1,2
∂̄

(V, L) with representative ξ. Since Pξ ∈ A1,2
V is a ∂̄-closed

form, and since H2(V,Ω1
V ) = 0, there exists µ ∈ A1,1

V such that

Pξ = ∂̄µ . (4.12)

Any two solutions, say µ and µ′, will differ by (a possibly trivial) toric deformation, i.e.
[µ − µ′] ∈ H1(V,Ω1

V ).
Given such a ξ, we would like to find a D-closed local field O[ξ] with the following

properties:

1. it should be linear in ξ;

2. it should have spin 0;

3. it should have qL = −1;
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4. it should have qR = +1;

5. it should transform trivially from patch to patch (i.e. it should be well-defined in field
space).

If we limit ourselves to fields constructed from the fundamental fields and their superspace
derivatives, then these requirements have a unique solution of the form

Oguess = (D′Φ+ · · · )hξiȷkD
′U iDU

ȷDU
k

, (4.13)

where · · · denotes connection terms that make the term in the parentheses transform co-
variantly with respect to bundle transformations. Such an improvement is exactly provided
by the Θ defined in the previous section, so that

Oguess = ΘξiȷkD
′U iDU

ȷDU
k

. (4.14)

Because ξ is ∂̄-closed it follows that

DOguess = −2mPξiȷkD
′U iDU

ȷDU
k = D

(
−4mµiȷD′U iDU

ȷ
)

, (4.15)

where the second equality follows from our observation Pξ = ∂̄µ. We conclude that the
field Oac[ξ] defined by

Oac[ξ] = ΘξiȷkD
′U iDU

ȷDU
k + 4mµiȷD′U iDU

ȷ (4.16)

is D-closed and is well-defined in Hac
D /Htoric

D . In fact Oac[ξ] gives a well-defined map between
the cohomology groups:

Oac : H2(V,Ω1
V ⊗ L) → Hac

D /Htoric
D . (4.17)

It suffices to show that Oac[∂̄η] is D-exact. When ξ = ∂̄η we can set µ = Pη, and, using
again (4.6),

Oac[∂̄η] = ΘD
(
ηiȷD′U iDU

ȷ
)
+ 4mPηiȷD′U iDU

ȷ = D
(
−2ΘηiȷD′U iDU

ȷ
)

. (4.18)

So, we have a well-defined injective map H2(V,Ω1
V ⊗L) → Hac

D /Htoric
D , and we expect each

of these D-cohomology classes to correspond to an (a,c) non-toric deformation of the IR
theory.

4.4 The polynomial deformations

These deformations are understood as deformations of the chiral superpotential, and the
corresponding (c,c) field is simply

Opoly[f ] = mΦf(U) , (4.19)

where f ∈ H0(V, L∗). While the operator is obviously D-closed and carries correct charges,
some of these are also D-exact, as we see from the zeroth row of the spectral sequence
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computation of the (c,c) deformations above, which characterizes the polynomial defor-
mations as H0(V, L∗)/H0(V, TV ). The map H0(V, TV ) → H0(V, L∗) arises as follows.
Let t ∈ A0,0(TV ) be a holomorphic vector field. Because H1(V,OV ) is empty the form
t⌞F = tiFiȷduȷ is ∂̄-exact: t⌞F = ∂̄η for some η ∈ A0,0

V , and there is a corresponding
holomorphic vector field t ∈ A0,0

Y (TY ) given by

t = ti
(

∂

∂ui
− Aiv

)
− ηv , (4.20)

where v is the vertical holomorphic Killing vector v = ϕ ∂
∂ϕ . It is now easy to see that

the function g = t⌞∂W = tαWα is holomorphic and of the form g = ϕg for a section
g ∈ H0(V, L∗) given by

g = −ηP + ti(Pi − AiP ) . (4.21)

The map t 7→ g is the desired map H0(V, TV ) → H0(V, L∗), and corresponding to this we
have

Opoly[g] = mΦg = D
(
−1
2tαD′Kα

)
. (4.22)

4.5 The non-polynomial deformations

The non-polynomial deformations can be understood in a more familiar geometric frame-
work than the non-toric ones. The total space of the line bundle L → V is a holomorphic
manifold Y , and given a deformation of complex structure of the base V we can ask the
natural question whether the deformation can be lifted to a deformation of complex struc-
ture of Y . Fortunately for us, the answer has been provided in a much wider setting in
classic work from more than sixty years ago [46]: if τ represents a class in H1(V, TV ) and
F the curvature of the line bundle, we can construct [τ⌞F ] ∈ H2(V,OV ), and τ can be
lifted to a deformation of complex structure of Y if and only if [τ⌞F ] = 0. Explicitly, if
there exists ξ ∈ A0,1

V such that

τ i
k
Fiȷ − τ i

ȷ Fik = ∂kξȷ − ∂ȷξk , (4.23)

then we define τ ∈ A0,1
Y (TY ) by12

τ =
(

ξȷv + τ i
ȷ

(
∂

∂ui
− Aiv

))
⊗ duȷ . (4.24)

It is easy to check that ∂̄τ = 0. In our case ξ exists because H2(V,OV ) = 0. Moreover, if
τ = ∂̄ρ for some ρ ∈ A0,0

V (TV ), then we can set ξȷ = ρiFiȷ, and in this case τ is ∂̄-exact:

τ = ∂̄ρ , ρ = ρi
(

∂

∂ui
− Aiv

)
. (4.25)

Thus, we have a well-defined map on cohomology: H1(V, TV ) → H1(Y, TY ).
12Note this is similar to our discussion of lifting a holomorphic vector t to a holomorphic vector t on Y .
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Using the map τ 7→ τ and a little bit of foresight, we make an Ansatz for the corre-
sponding (c,c) field:

Occ[τ ] = τ α
β
D′Kα DYβ + 2mf , (4.26)

where f is a function on Y ; we will choose f presently. We then calculate, using (2.11),

DOcc[τ ] = 2m
(
Φfβ − τ α

β
Wα

)
DYβ

. (4.27)

Since W is a well-defined function on Y ,

τ⌞∂W = τ α
β
Wαdyβ ∈ A0,1

Y , (4.28)

and explicitly it is given by

τ⌞∂W = ϕλ , (4.29)

where

λ =
(
ξȷP + τ i

ȷ (Pi − AiP )
)

duȷ ∈ A0,1
V (L∗) (4.30)

is ∂̄-closed by (4.23). Furthermore, (3.6) implies H1(V, L∗) = 0, which means λ = ∂̄σ for
some σ ∈ A0,0

V (L∗). Putting these results together it follows that

τ⌞∂W = ∂̄(ϕσ) , (4.31)

so that choosing f = ϕσ leads to a D-closed field

Occ[τ ] = τ α
β
D′Kα DYβ + 2mf . (4.32)

The choice of σ is ambiguous up to shifts by elements of H0(V, T ∗
V ). Just as in the preceding

discussion of the non-toric deformations, this means Occ[τ ] is well-defined in the quotient
Hcc

D/Hpoly
D .

It remains to show that this gives a well-defined map on cohomology:

Occ : H1(V, TV ) → Hcc
D/Hpoly

D , (4.33)

and it suffices to check that Occ[∂̄ρ] is D-exact. But, since τ = ∂̄ρ implies τ = ∂̄ρ, we set
f = ρ⌞∂W = ραWα, and using again (2.11)

D
(
−ραD′Kα

)
= τ α

β
D′Kα DYβ − ραDD′Kα = Occ[∂̄τ ] . (4.34)

5 The NS-R sector of the hypersurface hybrid

We now discuss the computation of the marginal deformations in the NS-R sector of the
hybrid theory. That is, assuming the hybrid theory flows to a compact SCFT, we know that
every right-moving chiral primary operator has an image as a right-moving ground state
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ui ρi χi χi ϕ ρ0 χ0 χ0
qL 0 0 −1 1 1 −1 0 0
qR 0 0 0 0 1 −1 1 −1
2hL 0 2 1 1 1 1 2 0

Table 1. Fields and their charges.

in the NS-R sector. Using the technology developed in [22] it is possible to compute all the
states that correspond to massless spacetime fermions in a string compactification based
on the SCFT. A subset of these states, those with qL = ±1 and hL = 1/2, is isomorphic
to the marginal deformations in the NS-NS sector. Since the left-moving weights can be
calculated using the chiral algebra, this gives an effective way to check our results and to
also check that the techniques of [22] really do apply to hypersurface hybrids.

We will see that the deformations are captured by the cohomology of the right mov-
ing supercharge Q, which in the hybrid decomposes into the sum of two anticommuting
operators: Q0, the supercharge of the base NLSM, and QW , the supercharge contribution
from the inclusion of the superpotential W = ΦP . The (2,2) superfields are decomposed
into their (0,2) components,

Yα = Y α +
√
2θ′Xα + θ′θ

′
∂Y α, Yα = Y

α −
√
2θ

′Xα − θ′θ
′
∂Y

α

Y α = yα +
√
2θηα + θθ∂̄yα, Y

α = yα −
√
2θηα − θθ∂̄yα

Xα = χα +
√
2θHα + θθ∂̄χα, Xα = χα +

√
2θH

α − θθ∂̄χα (5.1)

We identify yα as coordinates on the total space Y and decompose these into (ϕ, ui) as
above. For the other component fields, we denote the fiber component with a 0 superscript
or subscript. We use the equations of motion to eliminate the auxiliary fields and then
make the following field redefintions,

χα = Gαβχβ , ρα = Gαα∂yα + Γδ
αβχδχβ . (5.2)

As described in [22], in the large radius limit these degrees of freedom can be treated as
a free curved bc–βγ system, while the right-moving degrees of freedom are taken in their
ground states.

A general state in the Q cohomology in the NS-R sector is represented of a (0, k)
form Ψ valued in a product bundle (T ∗

Y )⊗s ⊗ (TY )⊗t contracted into k copies of the zero
modes ηī and a combination of χα, χα, and ρα. The charges and weights of the fields are
given in the table 1, and this allows us to select the states that correspond to the marginal
deformations.

5.1 (a,c) deformations

Given these, we construct the most general set of operators obeying our charge and weight
constraints. The corresponding states are then constructed by letting these act on the NS-
R Fock vacuum. Starting with the (a,c) deformations, we find operators and the eigenvalue
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of their coefficients Ψ under the Lie derivative Lv that can contribute to NS-R states with
qL = −1:

O2 = Ψ2
αχα , O5 = Ψ5,β

α χβχα , O6 = Ψ6,βρβ +Ψ6,β
α χβχα , O7 = Ψ7,αβραχβ ,

LvΨ2 = 0 , LvΨ5 = −Ψ5 , LvΨ6 = −Ψ6 , LvΨ7 = −2Ψ7 .

(5.3)

The coefficients Ψ are sections of the following bundles,

Ψ2 ∈ A0,u
Y (T ∗

Y ) , Ψ5 ∈ A0,u
Y (T ∗

Y ⊗ TY ) , Ψ6 ∈ A0,u
Y (TY ) , Ψ7 ∈ A0,u

Y (TY ⊗ TY ) . (5.4)

By utilizing the decomposition Q = Q0 + QW , we can compute the cohomology via a
spectral sequence with zeroth stage d0 = Q0 and first stage d1 = QW . We start by taking
the d0 = Q0 cohomology, which acts on the component fields as Q0 = −ηi ∂

∂ui
and thus

forces the Ψ into cohomology groups Hu(Y, (T ∗
Y )⊗s⊗ (TY )⊗t), which we will shorten on the

diagram to Hu(Bs,t). To organize these states into a complex, we define p = qR − u, and
parameterize the complex by (p, u). Below we have the first page of the spectral sequence,

p

u

0 H3(Y, B0,2) H3(Y, B1,1)⊕ H3(Y, B0,1) H3(Y, B1,0) 0

0 H2(Y, B0,2) H2(Y, B1,1)⊕ H2(Y, B0,1) H2(Y, B1,0) 0

0 H1(Y, B0,2) H1(Y, B1,1)⊕ H1(Y, B0,1) H1(Y, B1,0) 0

0 H0(Y, B0,2) H0(Y, B1,1)⊕ H0(Y, B0,1) H0(Y, B1,0) 0

The states we are after correspond to qR = 1, which is denoted by the dashed line. Before
applying the d1 stage of the sequence, we make use of the sheaf cohomology results devel-
oped in appendix C of [22]. Given a section of a bundle E on Y at fixed grade r in ϕ, we
are able to find an isomorphic bundle on V in cohomology. Each of the relevant bundles
on Y will have a corresponding exact sequence relating the base and fiber components of
the bundle. For instance, consider the sequence for T ∗

Y ,

0 (π∗(T ∗
V ))r (T ∗

Y )r (π∗(L−1))r−1 0 (5.5)

We wish to evaluate this sequence at grade r = 0, i.e. the eigenvalue of Ψ2 under Lv.
This tells us that T ∗

Y at grade 0 is equivalent to the pullback of T ∗
V , which after taking

cohomology allows us to use the isomorphism

H•
r (Y, π∗(E)) ≃ H•(B, E ⊗ L−r) (5.6)
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to obtain
H•

0 (Y, T ∗
Y ) = H•(V, T ∗

V ) (5.7)

We carry this exercise out for the remaining bundles, and are able to reduce the first page
of the spectral sequence to

p

u

0 H3(V, L2) H3(V, T ∗
V ⊗ L)⊕ H3(V, L) H3(V, T ∗

V ) 0

0 H2(V, L2) H2(V, T ∗
V ⊗ L)⊕ H2(V, L) H2(V, T ∗

V ) 0

0 H1(V, L2) H1(V, T ∗
V ⊗ L)⊕ H1(V, L) H1(V, T ∗

V ) 0

0 H0(V, L2) H0(V, T ∗
V ⊗ L)⊕ H0(V, L) H0(V, T ∗

V ) 0

From here, we can make use of various vanishing theorems and Serre duality for the coho-
mology of vector bundles on toric varieties. The new complex then takes the form

p

u

0 0 H3(V, T ∗
V ⊗ L) 0 0

0 0 H2(V, T ∗
V ⊗ L) 0 0

0 0 H1(V, T ∗
V ⊗ L) H1(V, T ∗

V ) 0

0 0 H0(V, T ∗
V ⊗ L)⊕ H0(V, L) 0 0

Ultimately, we are interested in the cohomology along the diagonal corresponding to qR = 1.
So, we can zoom into the relevant parts and consider the d1 = QW map,

H2(V, T ∗
V ⊗ L) 0

H1(V, T ∗
V ⊗ L) H1(V, T ∗

V )

QW

QW
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The QW action on the component fields is given by

QW · χα = Wα, QW · ρα = χβWβα (5.8)

and thus the QW map quotients out elements of H1(V, T ∗
V ⊗ L) multiplied by P from

H1(V, T ∗
V ). and acts by 0 on H2(V, T ∗

V ⊗L). So, the terminal stage of the spectral sequence
converges to the cohomology of Q, giving

H2(V, T ∗
V ⊗ L) 0

H1(V, T ∗
V ⊗ L) H1(V,T ∗

V )
Ψ2∼Ψ2+Ψ5P

The bottom right corner is isomorphic to the toric deformations, while the top left gives
the non-toric deformations as H2(V, T ∗

V ⊗ L), matching our result in section 3.3.

5.2 (c,c) deformations

This analysis is easily extended to the (c,c) deformations. We now search for all operators
with U(1)L × U(1)R charges (1, 1) and weight h = 1

2 . The full list and their ϕ grading are
given below.

O1,0 = Ψ1,0, LvΨ1,0 = Ψ1,0, Ψ1,0 ∈ A0,u
Y

O1,1 = Ψ1,1αχα, LvΨ1,1 = 0, Ψ1,1 ∈ A0,u(TY ) (5.9)

O1,2 = Ψ1,2αβχαχβ , LvΨ1,2 = −Ψ1,2, Ψ1,2 ∈ A0,u
Y (∧2TY )

The first stage of the spectral sequence gives the complex

p

u

0 H3(Y,∧2TY ) H3(Y, TY ) H3(Y,OY ) 0

0 H2(Y,∧2TY ) H2(Y, TY ) H2(Y,OY ) 0

0 H1(Y,∧2TY ) H1(Y, TY ) H1(Y,OY ) 0

0 H0(Y,∧2TY ) H0(Y, TY ) H0(Y,OY ) 0
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where again we are interested in the cohomology along the dashed line at qR = 1. Applying
the same isomorphisms to this complex and utilizing Serre duality gives

H1(V, TV ) 0

H0(V, TV )⊕ H0(V,OV ) H0(V, L∗)

QW

QW

The QW map acts as before, and on the bottom row quotients out elements of H0(V, L∗)
proportional to ∂W. The d2 map would take every entry into an empty group, so the
spectral sequence already converges at this stage, and the cohomology is given by

H1(V, TV ) 0

H0(V, TV ) H0(V,L∗)
Ψ1,0∼Ψ1,0+dW⌟Ψ1,1

The bottom right gives the polynomial deformations, while the non-polynomial deforma-
tions are given in the top left by H1(V, TV ), as expected.

6 Further directions

In this paper we investigated a UV Lagrangian theory — the hypersurface hybrid, which is
expected to a compact (2,2) SCFT. We established two main results. First, we obtained ex-
plicit representatives for all marginal operators of the SCFT in terms of cohomology classes
in the chiral algebra HD. Second, we demonstrated that although the hypersurface hybrid
is a rather degenerate example of a hybrid theory, nevertheless the hybrid methodology
can be used to study its NS-R sector.

While our results certainly settle some questions of principle, they also bear on practi-
cal matters. First, our construction of representatives of the non-toric and non-polynomial
marginal operators could be used to evaluate correlation functions of all marginal operators
in the theory, and perhaps they could already play a role in the mathematical formulations
of topological field theories as in [19, 21, 47]. This will require an analysis of quantum
corrections to our results, which are probably best analyzed in the language of the curved
bc–βγ system that encodes the chiral algebra of the hybrid theory [22]. It seems reasonable
to conjecture that the quantum corrections to the form of the operators we gave can be
absorbed into a redefinition of the Kähler potential K, which made its appearance in the
construction through the superfield Θ. Of course there would be non-perturbative correc-
tions to OPE of the (a,c) operators, and it would be extremely interesting to understand
these directly in terms of the hybrid theory. The results obtained recently in [23] should
be of use in uncovering these quantum corrections.
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More importantly, the work is a step towards a more ambitious UV lift of the infinites-
imal deformations to the gauged linear sigma model. Our construction of the operators
was given in a particular large radius phase of the GLSM, and it relied on a number of
geometric properties of this phase. It would be interesting to study the chiral algebra of
the GLSM in detail in order to find the non-toric and non-polynomial deformations in that
UV description. We hope that our explicit representatives might serve as a guide to finding
that structure, which by its nature will be more combinatoric rather than geometric and
will require some further developments of the gauged linear sigma model’s chiral algebra.
Whatever the motivation for those explorations, a systematic understanding of the latter
will be of great use to future generations of linear sigma model experts.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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