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Abstract: We begin with an E8 × E8 Heterotic model broken to an SU(5)gauge × U(1)X

and a twin SU(5)gauge × U(1)X , where one SU(5) and its spectrum is identified as the
visible sector while the other can be identified as a hidden twin sector. In both cases we
obtain the minimal supersymmetric standard model (MSSM) spectrum after Wilson-line
symmetry-breaking enhanced by a low energy R-parity and ZR

4 symmetry. We argue that
there will not be any observable proton decay in this model.
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1 Introduction

Supersymmetric grand unified theories [SUSY GUTs] [1–3] have many nice properties. These
include an explanation of the family structure of quarks and leptons with the requisite
charge assignments under the Standard Model [SM] gauge group SU(3)C × SU(2)L ×U(1)Y

and a prediction of gauge coupling unification at a scale of order 1016 GeV. The latter is
so far the only direct hint for the possible observation of supersymmetric particles at the
LHC. UV completions of SUSY GUTs in string theory also provide a consistent quantum
mechanical description of gravity. As a result of this golden confluence, many groups have
searched for SUSY GUTs in string theory. In fact, it has been shown that by demanding
SUSY GUTs in string constructions one can find many models with features much like that
of the minimal supersymmetric Standard Model [MSSM] [4–10].

The past several years have seen significant attention devoted to the study of supersym-
metric GUTs in F -theory [11–17]. Both local and global SU(5) F -theory GUTs have been
constructed where SU(5) is spontaneously broken to the SM via a non-flat hypercharge flux.
One problem with this approach for GUT breaking is that large threshold corrections are
generated at the GUT scale due to the non-vanishing hypercharge flux [13–15, 18, 19]. An
alternative approach to breaking the GUT group is using a Wilson line in the hypercharge
direction, i.e. a so-called flat hypercharge line bundle. In this case it is known that large
threshold corrections are not generated at the GUT scale (or, in fact, it leads to precise gauge
coupling unification at the compactification scale in orbifold GUTs) [20, 21] and [22–25].

2 The model

In this letter we discuss baryon number violation in the model of refs. [26–30]. In this F-
theory model starting with E8×E8, each E8 is broken to SU(5)gauge×U(1)X by a 4 + 1 split
spectral cover. This is equivalent to first breaking E8 to SO(10) and then breaking SO(10)
to SU(5)gauge×U(1)X . After a Z2 involution which acts freely on the GUT surface, the GUT
surface is an Enriques surface with a fundamental group Π1(SGUT) = Z2. Simultaneously,
SU(5) is broken to the Standard Model gauge group via a hypercharge Wilson line wrapping
the GUT surface. The model has 3 families of quarks and leptons which reside in the spinor
representation of SO(10) and transform as a 10 and 5̄ representation of SU(5). Under the
involution, Cu,v, the 10 and 5̄ representations split into two seperate states which are either
even (10+, 5̄+) and odd (10−, 5̄−) under the involution. In addition, these states are either
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Σ(4)
10 = {a5 = z = 0} Cu,v LY LHiggs SU(3) × SU(2) × U(1)Y

h0
(
Ľ(4)[±1]

10

)
+1 +1 3 (1, 1)+1

−1 −1 (3, 2)+1/6

+1 +1
(
3̄, 1

)
−2/3

h1
(
Ľ(4)[±1]

10

)
+1 +1 0 (1, 1)+1

−1 −1
(
3̄, 2

)
+1/6

+1 +1 (3, 1)+2/3

Σ(41)
5̄ = {a420 = z = 0} Cu,v LY LHiggs SU(3) × SU(2) × U(1)Y

h0
(
Ľ(41)[±1]

5̄

)
+1 +1 3

(
3̄, 1

)
+1/3

−1 −1 (1, 2)−1/2

h1
(
Ľ(41)[±1]

5̄

)
+1 +1 0 (3, 1)−1/3

−1 −1 (1, 2)+1/2

Table 1. This table contains the spectrum of 10s and 5̄s in our model. Cu,v, [LY ] is the action of
the Z2 involution, [Wilson line]. Only states which are even under the product remain in the model.
h0, h1 gives the dimension of the respective cohomologies for the matter curves. We thus have 3
families of quarks and leptons.

even (+) or odd (-) under the Wilson line, LY . The massless states which remain after the
involution transform as either (++) or (−−) under the combined Z2 involution and Wilson
line.1 The dimension of the respective cohomologies, h0, h1, gives the number of sections in
the 10 and 5̄ representations on the respective matter curves. Table 1.

Note, the quark and lepton doublets are contained in the (−−) sectors, while the SU(2)
singlet states are in the (++) sector, i.e. the doublets are in a Pati-Salam (4, 2, 1), while the
SU(2) singlets are in a (4̄, 1, 2). This means that the SU(5) gauge bosons cannot mediate
proton decay at the tree level since the resulting massless states in the 10 and 5̄ come from
different 10s and 5̄s. Only the Pati-Salam gauge bosons in SU(4) × SU(2)L × SU(2)R act
on these states. But these cannot mediate proton decay at the tree level either. Therefore
there are no tree level dimension 6 operators mediating proton decay.

What about dimension 4 or 5 baryon and lepton number violating operators? The
dimension 4 operators are absent due to R-parity in the model. And the dimension 5
operators are either absent or severely suppressed due the ZR

4 symmetry [31]. The bottom
line is that proton decay is not observable in this model.

1The massless states which transform as (+−) and (−+) are projected out of the theory.
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3 Conclusions

In this brief letter we have argued that the global SU(5) F-theory model presented in [28]
does not produce any observable proton decay with either dimension 4, 5 or 6 operators.
Dimension 4 operators are forbidden by R-parity, dimension 5 are forbidden by a ZR

4
symmetry and dimension 6 are forbidden at tree level due to the Wilson line breaking of
SU(5). Apparently only leptogenesis can be used as a mechanism in the early universe to
produce the net matter-anti-matter asymmetry.
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