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1 Introduction

The study of B-meson decays plays a crucial role in testing the Standard Model (SM), as
well as in searching or constraining possible New Physics (NP) scenarios. Among these
decays, those involving only non-leptonic final states are notoriously the most challenging
to be described, due to the complicated underlying hadronic structure. Their investigation,
however, can allow one to test the different QCD based methods designed specifically for
the study of these processes. In the present work, we focus on two particularly interesting
examples of non-leptonic two-body B-meson decays, namely B̄0 → D+K− and B̄0

s →
D+
s π

−. In fact, as the flavour of all the quarks in the final state is different, see figure 1,
neither the penguin nor the weak-annihilation topologies can contribute, and these are
generally considered to be among the theoretically cleanest non-leptonic B-meson decays.
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Figure 1. Schematic representation of the decays B̄0 → D+K− and B̄0
s → D+

s π
−.

By now these modes are determined experimentally quite precisely, and the Particle Data
Group (PDG) quotes the following values [1]

Br(B0
s → D−

s π
+ )
∣∣∣
exp.

= (2.98± 0.14)× 10−3 , (1.1)

Br(B0 → D−K+)
∣∣∣
exp.

= (2.05± 0.08)× 10−4 , (1.2)

based on measurements by the LHCb, Belle and CDF collaborations [2–7].
On the theoretical side, the amplitude for the decays B̄0

(s) → D+
(s)L

−, with L = {π,K},
can be computed by introducing the effective Hamiltonian Heff , governing the tree-level
non-leptonic b-quark transition b→ cūq, with q = {d, s}. This reads [8]

Heff = GF√
2
VcbV

∗
uq

(
C1O

q
1 + C2O

q
2

)
+ h.c. , (1.3)

where GF is the Fermi constant, Vq1q2 denote the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix elements, and the ∆B = 1 current-current operators Oq1,2 are defined in the Chetyrkin-
Misiak-Münz (CMM) basis respectively as [9, 10]1

Oq1 = (c̄Γµb) (q̄Γµu) , Oq2 = (c̄Γµtab) (q̄Γµtau), (1.4)

with Γµ = γµ(1−γ5), and ta being the SU(3)c generators in the fundamental representation.
In eq. (1.3), the Wilson coefficients C1,2 are evaluated at the renormalisation scale µb ∼ mb,
and are currently known up to NNLO logarithmic accuracy [11]. The amplitude then takes
the form

A(B̄0
(s) → D+

(s)L
−) = −GF√

2
VcbV

∗
uq

(
C1⟨Oq1⟩+ C2⟨Oq2⟩

)
, (1.5)

where we have introduced the shorthand notation ⟨Oqi ⟩ ≡ ⟨D+
(s)L

−|Oqi |B̄0
(s)⟩.

The simplest approach to determine the two matrix elements appearing in eq. (1.5)
is naive QCD factorisation (NQCDF). Within this approximation, the matrix element of
the colour-singlet operator factorises into the product of the light meson decay constant
fL and of the scalar form factor fB(s)D(s)

0 (q2), parameterising the B(s) → D(s) transition,
whereas the matrix element of the colour-octet operator vanishes, namely

⟨Oq1⟩
∣∣∣
NQCDF

= ifL(m2
B(s)

−m2
D(s)

)fB(s)D(s)
0 (m2

L) , and ⟨Oq2⟩
∣∣∣
NQCDF

= 0 . (1.6)

1Note that the notation in eq. (1.4) is opposite to the one used in refs. [9, 10].
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Because of eq. (1.6), in the literature, ⟨Oq1⟩ and ⟨Oq2⟩ are commonly referred to as the
factorisable and non-factorisable matrix elements. Also in the present work we follow
this notation, however with the remark that the distinction applies strictly only to LO-
QCD, since, by including perturbative gluon corrections, both the matrix elements receive
factorisable and non-factorisable contributions. We stress in fact that the accuracy of our
study limits at LO-QCD and, unless explicitly stated, ⟨Oq1⟩, ⟨O

q
2⟩ should always be intended

as the corresponding tree-level matrix elements.
A first estimate of the non-factorisable matrix element ⟨Oq2⟩ beyond the NQCDF ap-

proximation was obtained by Blok and Shifman in 1992 [12]. Using the framework of QCD
sum rule (QCDSR) [13, 14] with a two-point correlation function, the authors found posi-
tive non-factorisbale corrections of the order of few percent, to the amplitude in eq. (1.5).
Specifically, with the NLO values C1 = 1.01 and C2 = −0.32, their result leads to2

C2⟨Od2⟩
C1⟨Od1⟩

∣∣∣∣∣
QCDSR

∼ 8% , B̄0
s → D+

s π
− . (1.7)

It is worthwhile pointing out that a later study, of the theoretically less clean mode B̄0 →
D0π0, was performed in ref. [15], using the light-cone sum rule (LCSR) method [16] with
pion light-cone distribution amplitudes (LCDAs). Also in the latter work, estimates of
⟨Oq2⟩ gave a sizeable and positive result, in consistency with ref. [12]. However, a more
recent analysis of the same decay B̄0 → D0π0 performed in ref. [17], again with the LCSR
framework and pion LCDAs, but starting from a three-point correlation function, closely
following the approach introduced in ref. [18], found the non-factorisable contribution to
be sizeable, but negative.

At the end of the ’90s, a new framework for the computation of several non-leptonic
two-body B-meson decays was developed in refs. [19–21], the QCD factorisation (QCDF)
method. Within QCDF, the matrix elements ⟨Oqi ⟩ in eq. (1.5) can be computed respec-
tively as

⟨Oqi ⟩
∣∣∣
QCDF

=
∑
j

f
B(s)D(s)
j (m2

L)
1∫

0

duTij(u)φL(u) +O
(ΛQCD

mb

)
, (1.8)

where Tij(u) are the corresponding hard-scattering kernels, which can be calculated per-
turbatively in QCD, ϕL(u) denotes the L-meson LCDA, and f

B(s)D(s)
j (q2) are the form

factors parametrising the B(s) → D(s) transition. The latter two inputs are related to
the hadronic structure of the mesons considered and therefore must be determined using
some non-perturbative technique like Lattice QCD or QCD sum rule. In some cases, they
could also be extracted from data. It is important to emphasize that since the factorisation
formula in eq. (1.8) holds up to power corrections of the order of ΛQCD/mb, the QCDF
framework allows one to systematically compute only the leading power contribution to
the amplitude, however, to higher order in αs.3 Furthermore, the matrix element ⟨Oq2⟩,

2Using the LO values for the Wilson coefficients C1 = 1.03 and C2 = −0.53, which corresponds to the
accuracy of ref. [12], yields instead C2⟨Od

2⟩/C1⟨Od
1⟩ ∼ 13%.

3Recently, progress has been made in understanding the technical difficulties involved in extending the
QCDF framework beyond the leading power, see e.g. ref. [22] and the references therein.
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vanishing at LO-QCD, constitutes at this order a purely next-to-leading power effect i.e.
⟨Oq2⟩ = O(ΛQCD/mb) +O(αs).

The QCDF method was proven to be a very powerful tool for the computation of several
non-leptonic B-meson decays. Remarkably, the hard-scattering kernels Tij(u) are known up
to NNLO-QCD corrections [23]. However, a systematic study of these processes beyond the
leading power becomes challenging. A recent analysis of the decays B̄0

(s) → D
(∗)+
(s) L− within

QCDF was performed in ref. [24]. The authors have included NNLO-QCD corrections
for the hard-scattering kernels from ref. [23], and the B(s) → D

(∗)
(s) form factors from

ref. [25], where the latter were obtained fitting the corresponding Isgur-Wise functions up
to corrections of the order O

(
Λ2

QCD/m
2
c

)
in the Heavy Quark Expansion, by combining

both Lattice QCD data [26–31] and QCDSR results [25, 32]. In addition, they have also
obtained a first estimate of the next-to-leading power corrections, by computing, within
LCSR, the corresponding hadronic matrix element emerging in QCDF [20]. This effect was
found to be very small, of the order of sub-percent, namely [24]

A(B̄0
(s) → D+

(s)L
−)|NLP

A(B̄0
(s) → D+

(s)L
−)|LP

≃ −[0.06, 0.6]% , (1.9)

leading all together to very precise predictions for the branching fractions, which resulted
to be significantly above the corresponding experimental data. Specifically, the authors of
ref. [24] have obtained

Br(B̄0
s → D+

s π
− )
∣∣∣
QCDF

= (4.42± 0.21)× 10−3 , (1.10)

Br(B̄0 → D+K−)
∣∣∣
QCDF

= (3.26± 0.15)× 10−4 , (1.11)

in clear tension with the values shown in eqs. (1.1), (1.2).4 Finally, a later study of the
same decays within QCDF, however only at leading power, was performed in ref. [35]. The
conclusions obtained were similar to those in ref. [24] and also their analysis revealed a
large discrepancy with the data.5 This puzzling pattern has attracted significant attention
in the recent literature, and has led to further investigations of these decays, both within
the SM and beyond [34, 35, 37–43]. A conclusive explanation is, however, still missing.

The current status of the non-leptonic decays B̄(s) → D+
(s)L

− represents a strong
motivation to revisit the estimates of the non-factorisable contribution due to ⟨Oq2⟩. Given
the two very different results shown in eqs. (1.7), (1.9), we present a new determination of
the matrix element ⟨Oq2⟩ within LCSR, starting from a three-point correlation function with
B-meson LCDAs, partially following the method suggested in ref. [18]. Moreover, we also
compute for the first time within LCSR, the factorisable matrix element ⟨Oq1⟩, including

4Note that in the SM, the direct CP-asymmetry in these decays is negligible, therefore Br(B̄0
(s) →

D+
(s)L

−) = Br(B0
(s) → D−

(s)L
+). However, this might not necessarily hold in the presence of NP. In this

respect, a clear experimental test was suggested in refs. [33, 34].
5We note that in ref. [36], these branching fractions have been predicted within the factorisation ap-

proach, using the relativistic quark model for the form factors. The quoted values are in the ballpark of the
QCDF results, and also considerably above the experimental ones. However, the authors do not provide
any uncertainties.
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both two- and three-particle LCDAs, and thus obtain predictions for the corresponding
branching fractions entirely within the same framework.

The paper is organised as follows. In section 2, we describe the computation of the
non-factorisable matrix element ⟨Oq2⟩ within LCSR. More precisely, a detailed derivation
of the operator product expansion for the three-point correlator is presented in section 2.1,
the light-cone dominance of the correlation function and the problem associated with the
lack of generalised B-meson quark-gluon-quark matrix elements with non-aligned fields, are
discussed in section 2.2, while the hadronic dispersion relations are derived in section 2.3.
In section 3, we briefly discuss the computation of the factorisable matrix element ⟨Oq1⟩
within LCSR. Our numerical analysis is presented in section 4. In particular, a detailed
discussion of the inputs used in the analysis can be found in section 4.1, while our results
are shown in section 4.2. Finally, in section 5, we present our conclusions, as well as a
comprehensive outlook for future improvements.

2 Determination of ⟨O2⟩ from LCSR

2.1 Derivation of the OPE for the correlator

To compute the hadronic matrix element ⟨O2⟩,6 within the framework of LCSR, we start
by introducing the following three-point correlation function

F O2
µ (p, q) = i2

∫
d4x eip·x

∫
d4y eiq·y ⟨0|T

{
jD5 (x), O2(0), jπµ(y)

}
|B̄(p+ q)⟩ , (2.1)

where jD5 (x) = imc s̄γ5c and jπµ(y) = ūγµγ5d are suitable interpolating currents with the
quantum numbers of the D+

s - and π−-mesons, and momenta pµ and qµ, respectively. We
consider eq. (2.1) in the kinematical domain P 2 ≡ −p2 ≫ Λ2, and Q2 ≡ −q2 ≫ Λ2, with Λ
denoting a small hadronic scale of the order of ΛQCD. With this choice, as discussed further
in section 2.2, the dominant contribution to the correlator originates from the region in
which both xµ and yµ are approximately light-like and aligned along different light-cone
(LC) directions, i.e.

x2 ∼ 0 , y2 ∼ 0 , (x− y)2 ̸∼ 0 . (2.2)

A double LC expansion, however, currently can not be consistently performed due to the
lack of the proper hadronic input functions, that is of the B-meson three-particle non-local
matrix element with the gluon and the spectator quark aligned on different LC directions.
For this reason, in the following, we consider the specific case of LC-local dominance, which
is also compatible with the present kinematics, see section 2.2, and expand the time-ordered
product in eq. (2.1) around x2 ∼ 0 but yµ ∼ 0.7 In this way, in fact, the relevant hadronic
matrix element can be derived from the expression for aligned fields given e.g. in ref. [44],
by setting the LC coordinate of the gluon field to zero. We return to this point later on.

6Unless explicitly stated, we assume, for definiteness, the mode B̄s → D+
s π−, and often drop, for the

sake of a cleaner notation, all labels. The discussion presented here, in fact, straightforwardly extends to
the mode B̄0 → D+K−, once the proper replacements are taken into account.

7In principle, also the opposite choice i.e. expanding around y2 ∼ 0 and xµ ∼ 0 could be considered. We
leave the investigation of this alternative scenario for a future study.
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Figure 2. Diagram describing the leading contribution in the OPE for the correlator F O2
µ (p, q).

The cross indicates the second possible point of gluon emission.

Expanding the time-ordered product in eq. (2.1), we thus obtain

F O2
µ (p, q) =− imc

∫
d4x

∫
d4y eip·x eiq·y ⟨0|s̄i(x)γ5 iS

(c)
ij (x, 0)γρ(1− γ5)

× iS(u)
mn(0, y)γµγ5 iS

(d)
nl (y, 0)γ

ρ(1− γ5)bk(0)|B̄(p+ q)⟩ tajktalm , (2.3)

where Sij(x, y) denotes the corresponding quark propagator, with the specific quark indi-
cated in the superscript. In deriving eq. (2.3), the operator O2 has been Fierz-transformed
to avoid the computation of traces involving γ5 in dimensional regularisation. Note that
this can be consistently done since, with the present choice of the operator basis, the Fierz
symmetry is respected also at the one-loop order, see e.g. ref. [45]. Owing to the colour
structure of eq. (2.3), the first non-vanishing contribution corresponds to the emission of
one gluon from either the u- or d-quark propagators, as shown in figure 2. In the Fock-
Schwinger gauge, the local expansion of the quark propagator in an external background
gluon field, including the leading one-gluon corrections, can be found e.g. in refs. [46–48].
The corresponding expression, in the case of massless quark, i.e. for q = {u, d}, takes the
following form

S
(q)
ij (x, y) =

∫
d4k

(2π)4 e
−ik(x−y)

[
δij /k

k2 + iε
−
Gaµνt

a
ij

4
(/k σµν + σµν/k)

(k2 + iε)2

]
+ . . . , (2.4)

where Gµν is the gluon field strength tensor evaluated at the origin, σµν = (i/2)[γµ, γν ], and
the ellipses denote terms of higher order neglected at the current accuracy. Substituting
eq. (2.4) into eq. (2.3), the integral over yµ can be easily calculated.8 This yields

F O2
µ (p, q) = −mc

2

∫
d4x eip·x ⟨0|s̄i(x)γ5S

(c)
0 (x)Gaνρ(0)taij I νρ

µ (q)bj(0)|B̄(p+ q)⟩, (2.5)

with S
(c)
0 (x) denoting the free charm-quark propagator, and the tensor Iµνρ being

Iµνρ(q) =
i

4π2(q2 + iε)
(
qν q

λϵµρτλ − qµ q
λϵνρτλ − q2ϵµνρτ

)
γτ (1− γ5) . (2.6)

8Manipulations involving the Dirac algebra are performed using the Mathematica package FeynCalc [49].
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The result in eq. (2.6) has been obtained by computing the corresponding loop integral in
naive dimensional regularisation (NDR) with d = 4 − 2ϵ and anticommuting prescription
for γ5. We note that the divergent 1/ϵ contributions exactly cancel when considering the
gluon emission from both the u- and d-quark propagators, leading to a finite expression,
in consistency with refs. [50, 51]. In addition, we have also performed the computation
of the loop function in eq. (2.6) using the explicit coordinate representation of the local
expansion of the propagator, details of which are given in appendix C.

To proceed with the calculation of F O2
µ , we must evaluate the non-local matrix ele-

ment appearing in eq. (2.5). At leading order in the heavy quark effective theory (HQET),
the non-local vacuum-to-B three-particle matrix element with the gluon and the specta-
tor quark aligned on the same light-cone direction can be parametrised in terms of eight
LCDAs [52]. The matrix element in eq. (2.5) corresponds to the specific configuration
in which the gluon field is fixed at the origin, and its parametrisation can be derived by
taking the local limit of the result given e.g. in ref. [44]. We present below only the final
expression and refer to appendix B for the intermediate steps. At leading order in HQET,
we then have

⟨0|s̄α(x)Gµν(0)bβ(0)|B̄(p+ q)⟩ =
1
2FB(µ)

√
mB

∫ ∞

0
dω1 e

−iω1v·x
{
P+
[
(vµγν − vνγµ)(ψ̂A − ψ̂V )− iσµνψ̂V − i(xµvν − xνvµ) ¯̂ψXA

+ i(xµγν − xνγµ)( ¯̂ψW + ¯̂
ψYA

)− ϵµνητx
ηvτγ5

¯̂
ψX̃A

+ ϵµνητx
ηγτγ5

¯̂
ψỸA

+ (xµvν − xνvµ)/x
¯̂̄
ψW − (xµγν − xνγµ)/x

¯̂̄
ψZ
]
γ5
}
βα

(ω1;µ) , (2.7)

where α, β, are spinor indices, vµ = (pµ + qµ)/mB is the velocity of the B meson, FB(µ)
is the HQET decay constant, and P+ = (1 + /v)/2. Three comments are in order with
respect to ref. [44]. First, the terms proportional to ϵµνητ appear with an opposite sign
because of the different convention adopted in our work for the Levi-Civita tensor, namely
ε0123 = +1, see also appendix A. Second, we have relabelled some LCDAs to make the
notation throughout the paper more transparent. Third, the extra mass factor in eq. (2.7)
follows from the conversion from HQET to QCD for the B-meson state. Moreover, we have
also introduced the notation9

¯̂
ψ(ω1) =

∫ ω1

0
dη ψ̂(η) ,

¯̂̄
ψ(ω1) =

∫ ω1

0
dη

∫ η

0
dη′ ψ̂(η′) . (2.8)

Given the explicit x-dependence of eq. (2.7), the integration over xµ in eq. (2.5) can be
now performed. To this end, it appears to be more convenient to use the coordinate
representation of the free charm-quark propagator, which reads

S
(c)
0 (x) = − im

2
c

4π2

[
K1(mc

√
−x2)√

−x2
− i

/x

x2K2(mc

√
−x2)

]
, (2.9)

9The µ-dependence of the LCDAs is often omitted, however it should always be understood.

– 7 –



J
H
E
P
1
0
(
2
0
2
3
)
1
8
0

with Kn(z) being the modified Bessel function of the second kind of order n. Taking into
account eqs. (2.7), (2.9), we are then left with the evaluation of tensor integrals of the type∫

d4x eip̃·x
K1(mc

√
−x2)√

−x2

{
1, xµ, xµxν , . . .

}
, (2.10)∫

d4x eip̃·x
K2(mc

√
−x2)

x2

{
xµ, xµxν , xµxνxρ, . . .

}
, (2.11)

where, for simplicity, we have introduced the compact notation p̃µ = pµ−ω1v
µ. The result

for the inverse Fourier transform of Bessel functions in eqs. (2.10), (2.11), is explicitly given
in appendix D. Using eqs. (D.2)–(D.10), we then arrive at the final form of the correlator
in eq. (2.1), that is

F O2
µ (p, q) =

(
(p · q) qµ − q2pµ

)
F O2(p2, q2) , (2.12)

with F O2(p2, q2) denoting the corresponding Lorentz invariant amplitude. On this point,
an important remark is in order. The result for the correlation function in eq. (2.12) is
transversal with respect to the momentum of the light-quark current qµ, as expected, since
in the limit of massless u- and d-quark, the axial-vector current jπµ must be conserved.10

However, when trying to compute the correlator in eq. (2.1) by expanding the time-ordered
product around x2 ∼ 0, y2 ∼ 0, and by using the expression for the B-meson three-particle
matrix element with both the gluon and the spectator quark aligned on the same light-
cone direction, i.e. implicitly assuming that also (x− y)2 ∼ 0, we obtain an expression for
F O2
µ which is not transversal.11 In this respect, we also note that in the case of charm

loop with photon coupling studied e.g. in refs. [50, 51], the expression of the non-local
amplitude due to soft gluon emission appears actually to be not transversal with respect to
the photon momentum. Surprisingly, this has not been pointed out in the above references,
nor, to our best knowledge, elsewhere in the literature. Further investigations of this issue
would clearly be of utmost importance not only to improve the current estimate of the
non-factorisable amplitude in non-leptonic B-meson decays, but also in light of the impact
that a better understanding of these non-local effects could have on the present status of
the B anomalies, see e.g. the reviews [53, 54].

Returning to eq. (2.12), we isolate the coefficients of the two Lorentz structures and
rewrite

F O2
µ (p, q) = F O2

q (p2, q2) qµ + F O2
p (p2, q2) pµ, (2.13)

where the LC-local operator product expansion (OPE) for the amplitude F O2
q (p2, q2), rel-

evant for the hadronic dispersion relations, see section 2.3, can be expressed as

[
F O2
q (p2, q2)

]
OPE = FB

√
mBmc

∞∫
0

dω1
∑
ψ̂

ψ̂(ω1)
3∑

n=1

cψ̂n(ω1, q
2)

(q2 + iε)
[
s̃(ω1, q2)− p2 − iε

]n .
(2.14)

10Since we neglect the mass of the strange quark in the loop, the same argument applies also to the decay
B̄0 → D+K−.

11Specifically, we find that the transversality of the correlator is violated by terms proportional to
u ω2/mB , with ω2 being the momentum of the gluon field and u ∈ [0, 1] a LC parameter. We have
also explicitly checked that these terms do not vanish in the final result, i.e. after integration over u and ω2.
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In the above equation ψ̂ = ψ̂A, ψ̂V , . . . , and for later convenience, the coefficients of the
LCDAs have been suitably manipulated so that in eq. (2.14) the dependence on p2 is
contained exclusively in the denominators. Finally, the function s̃(ω1, q

2) reads

s̃(ω1, q
2) =

(
mB

mB − ω1

)[
m2
c + ω1mB − q2 ω1

mB
− ω2

1

]
, (2.15)

while the analytic expressions of the OPE coefficients cψ̂n(ω1, q
2) can be found in appendix E.

2.2 Light-cone dominance of the correlator

In this section we investigate the conditions for the LC dominance of the correlation func-
tion in eq. (2.1) and discuss the corresponding kinematics. The correlator F O2

µ , in fact,
describes the decay of a heavy B meson into two currents with momenta pµ and qµ, namely

mBv
µ = pµ + qµ , (2.16)

where vµ = pµB/mB is the B-meson velocity. In order to be far away from hadronic
thresholds originating from the two interpolating currents, we consider the kinematical
region in which

Q2 ∼ P 2 ∼ mBΛ, P 2 ≡ −p2 , Q2 ≡ −q2 , (2.17)

with Λ being a small non-perturbative scale of the order of ΛQCD. Hence, both p2 and q2

are assumed to be space-like and large, leading to the following power counting

m2
B ≫ Q2 ∼ P 2 ≫ Λ2 . (2.18)

It is convenient to study eq. (2.16) in the rest frame of the B meson, i.e. vµ = (1, 0⃗ ), align-
ing, for simplicity, the z-axis along the direction of the decay. Furthermore, we introduce
the two light-cone vectors nµ±, with n2

+ = n2
− = 0, such that vµ = (nµ++nµ−)/2. Specifically

nµ+ = (1, 0, 0, 1) , nµ− = (1, 0, 0,−1) , (n+ · n−) = 2 . (2.19)

A solution for pµ and qµ, up to corrections of the order P 4/m4
B and Q4/m4

B, is given by12


pµ =

(
m2
B +Q2

2mB

)
nµ+ +

(
− P 2

2mB

)
nµ− ,

qµ =
(
− Q2

2mB

)
nµ+ +

(
m2
B + P 2

2mB

)
nµ− ,

(2.20)

where, due to our choice of the coordinate system, the components transversal to the light-
cone vectors vanish, namely pµ⊥ = qµ⊥ = 0. From eqs. (2.17), (2.20), it then follows that
whereas pµ has a large component along nµ+ and a small component along nµ−, since the two
coefficients respectively scale as (p · n−) ∼ mB, (p · n+) ∼ −Λ, the behaviour is opposite
for the two components of qµ, i.e. (q · n−) ∼ −Λ, (q · n+) ∼ mB.

12Eq. (2.16) admits also a second solution obtained by exchanging the coefficients of nµ
− and nµ

+. Without
loss of generality, however, we parametrise the momenta according to eq. (2.20).
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Having fixed the kinematics, we can turn to discuss the structure of the correlation
function FO2

µ . The integrals in eq. (2.1) are dominated by the values of xµ and yµ in
correspondence of which the argument of the exponentials is not large.13 With the choice
of momenta in eq. (2.20), the absence of fast oscillations, see also e.g. refs. [55, 56] for
details, is ensured given that

exp{ip · x} ≃ exp{imB x0/2︸ ︷︷ ︸
≲O(1)

} exp{−i (mB + 2Λ)x3/2︸ ︷︷ ︸
≲O(1)

} ,

exp{iq · y} ≃ exp{imB y0/2︸ ︷︷ ︸
≲O(1)

} exp{i (mB + 2Λ) y3/2︸ ︷︷ ︸
≲O(1)

} ,
(2.21)

yielding respectively the bounds
|x0| ≲

2
mB

, |x3| ≲
2

mB + 2Λ ,

|y0| ≲
2
mB

, |y3| ≲
2

mB + 2Λ .

(2.22)

From eq. (2.22) it then follows that14


x2

0 − x2
3 ≲

4
m2
B

≤ 4
m2
B

+ x2
1 + x2

2 ,

y2
0 − y2

3 ≲
4
m2
B

≤ 4
m2
B

+ y2
1 + y2

2 ,

⇒


0 ≤ x2 ≲

4
m2
B

,

0 ≤ y2 ≲
4
m2
B

,

(2.23)

showing that the region in which the time-ordered product in eq. (2.1) dominates, corre-
sponds to both xµ and yµ being approximately on the light-cone, i.e.

x2 ∼ 0 , y2 ∼ 0 . (2.24)

On the other side, expressing the integrals in terms of light-cone coordinates, the exponen-
tials in eq. (2.1) read

exp{ip · x} ≃ exp{−iΛ(x · n−)/2︸ ︷︷ ︸
≲O(1)

} exp{i (mB + Λ)(x · n+)/2︸ ︷︷ ︸
≲O(1)

} ,

exp{iq · y} ≃ exp{i (mB + Λ)(y · n−)/2︸ ︷︷ ︸
≲O(1)

} exp{−iΛ(y · n+)/2︸ ︷︷ ︸
≲O(1)

} ,
(2.25)

and the absence of fast oscillations now leads to the conditions
|x · n−|

2 ≲
1
Λ ,

|x · n+|
2 ≲

1
mB + Λ ,

|y · n+|
2 ≲

1
Λ ,

|y · n−|
2 ≲

1
mB + Λ .

(2.26)

13This follows from the Riemann-Lebesgue theorem.
14The lower bound for x2 and y2 follows from the causality property of correlation functions, see e.g.

refs. [57–59].
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Eq. (2.26) thus shows that whereas the x-component along nµ− is strongly suppressed, the
behaviour is opposite for yµ, meaning that the integrals in eq. (2.1) are actually dominated
by the region in which xµ and yµ are approximately aligned along different light-cone
directions, namely15

xµ ∼ (x · n−)
2 nµ+ , yµ ∼ (y · n+)

2 nµ− , (x− y)2 ̸∼ 0 . (2.27)

Had we used the light-cone expansion of the propagator, instead of its local limit given in
eq. (2.4), the resulting matrix element would be ⟨0|s̄α(x)Gµν(uy)bβ(0)|B̄(p + q)⟩. Due to
eq. (2.27), the computation of the time-ordered product in eq. (2.1) in terms of a double
LC expansion would thus require the knowledge of the B-meson quark-gluon-quark matrix
element with non-aligned fields, which, as already stressed, is not yet available in the
literature for generic Dirac structures.16 In this connection, we note that by using the
B-meson three-particle matrix element with aligned fields, as previously done in similar
computations, see e.g. refs. [50, 51], one might miss the actual dominant contributions
and obtain potentially incomplete results. This issue was also recently pointed out in
refs. [62–64]. Hence, since the local limit yµ ∼ 0 is also compatible with the present
kinematics, as it follows from eq. (2.22),17 we have chosen to perform instead a LC-local
expansion, which, albeit less accurate than a double LC expansion, allows us to circumvent
the problem associated with the lack of the corresponding matrix element and to compute
the correlation function in terms of known hadronic input functions without incurring
potential inconsistencies.

2.3 Hadronic dispersion relations and sum rule

The OPE result in eq. (2.14) must now be linked to ⟨O2⟩, the matrix element we aim to
estimate. To this end, we proceed with the derivation of the hadronic dispersion relations
for the correlator F O2

µ . Starting with the p2-channel, we insert into eq. (2.1) a complete
set of intermediate states with the D+

s -meson quantum numbers. This gives

F O2
µ (p, q) = m2

DfD
m2
D − p2 F̂

O2
µ (pD, q) + qµ

∞∫
s

(D)
h

ds
ρh(s, q2)
s− p2 + . . . , (2.28)

where the decay constant of the Ds meson is defined as ⟨0|jD5 |D⟩ = m2
DfD, and we have

introduced the two-point correlation function F̂ O2
µ (pD, q), describing the transition of a

15From eqs. (2.24), (2.26), it also follows that |x · n+| ≪ |x⊥| ≪ |x · n−| and |y · n−| ≪ |y⊥| ≪ |y · n+|,
where we have introduced the notation aµ

⊥ ≡ a⊥nµ
⊥ with n2

⊥ = −1.
16Non-local B-meson matrix elements with non-aligned fields have been investigated in e.g. refs. [60–62].

In particular, vacuum-to-B three-particle matrix elements with the gluon and the light spectator quark
aligned on different light-cone directions have been discussed in ref. [62]. In the latter reference, the authors
have also proposed a parameterisation for the novel soft function corresponding to the matrix element
⟨0|q̄(z1n+)Gµν(z2n−)nν

−/n+γµ
⊥γ5hv(0)|B̄⟩.

17We note that e.g. in the first study by Blok and Shifman of the non-leptonic decays here considered [12],
or in the determinations of the pion decay constant from QCDSR [13, 14], the local expansion of the light-
quark propagator is used in correspondence of a typical scale of Q2 ∼ 1 GeV2, which is consistent with our
kinematics, cf. eq. (2.17).
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B̄s-meson into a D+
s -meson and a current jπµ , namely

F̂ O2
µ (pD, q) = i

∫
d4y eiq·y ⟨D(pD)|T{O2(0), jπµ(y)}|B̄(pD + q)⟩ , (2.29)

with p2
D = m2

D. In eq. (2.28), the spectral density ρh(s, q2) accounts for the contribution
of excited states and of the continuum in the p2-channel, with s

(D)
h indicating the lowest

hadronic threshold. Note that, taking into account the Lorentz decomposition shown in
eq. (2.13), we have already isolated the coefficient of qµ, which is the only one relevant
for the final result, and that the ellipses in eq. (2.28) denote the remaining contribution
proportional to pµ. As the complicated structure of the spectral density is in general
difficult to determine, the integral on the r.h.s. of eq. (2.28) is often estimated by recurring
to the principle of quark-hadron duality (QHD), see e.g. ref. [65]. By analytically continuing
the function

[
F O2
q (p2, q2)

]
OPE in eq. (2.14) in the complex p2-plane, we can express it in

the form of a dispersive integral as

[
F O2
q (p2, q2)

]
OPE = 1

π

∞∫
m2

c

ds
Ims

[
F O2
q (s, q2)

]
OPE

s− p2 , (2.30)

with m2
c being the fist pole on the real axis p2 = s. Using QHD, we thus approximate

∞∫
s

(D)
h

ds
ρh(s, q2)
s− p2 = 1

π

∞∫
sD

0

ds
Ims

[
F O2
q (s, q2)

]
OPE

s− p2 , (2.31)

valid at sufficiently large and negative values of p2. Here, sD0 is an effective threshold
parameter to be determined. Finally, we perform a Borel transform with respect to the
variable p2. This leads to

F̂ O2
µ (pD, q) =

qµ
m2
DfDπ

sD
0∫

m2
c

ds e(m2
D−s)/M2 Ims

[
F O2
q (s, q2)

]
OPE , (2.32)

where M2 is the corresponding Borel parameter. Proceeding in a similar way with the
two-point correlator F̂ O2

µ (pD, q), we can derive the corresponding dispersion relations in
the q2-channel. Inserting into eq. (2.29) a complete set of states with the quantum number
of the π− meson, yields

F̂ O2
µ (pD, q) =

ifπqµ
m2
π − q2 ⟨D(pD)π(pπ)|O2|B̄(pD + pπ)⟩+ qµ

∞∫
s
′ (π)
h′

ds′
ρh′(s′)
s′ − q2 + . . . , (2.33)

with p2
π = m2

π and (pD + pπ)2 = m2
B. In eq. (2.33), the pion decay constant is defined as

⟨0|jπµ |π(q)⟩ = ifπqµ, while the spectral density ρh′(s′) describes the contribution of excited
states and of the continuum in the q2-channel. Note that in writing the integral on the r.h.s.
of eq. (2.33), we have again taken into account that the correlation function F̂ O2

µ (pD, q)
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admits the Lorentz decomposition analogous to the one in eq. (2.13), however now with
coefficients which can depend only on the variable q2 since the first invariant is fixed. The
matrix element we aim to determine is now on the r.h.s. of eq. (2.33). Combining the latter
with eq. (2.32), we obtain

ifπ⟨O2⟩
m2
π − q2 = 1

m2
DfDπ

sD
0∫

m2
c

ds e(m2
D−s)/M2 Ims

[
F O2
q (s, q2)

]
OPE −

∞∫
s
′ (π)
h′

ds′
ρh′(s′)
s′ − q2 . (2.34)

The matrix element ⟨O2⟩ could in principle be extracted by fitting the r.h.s. of eq. (2.34).
In this case, one could further isolate the next resonance due to the a1-meson state and
employ an ansatz, usually polynomial, to parametrise the remaining contribution due to
the continuum. However, this turns out to be practically not feasible, given that the current
size of the theoretical uncertainties, strongly affected by the limited accuracy of many input
parameters, see section 4.1, makes the disentanglement of the pion state, of the a1 state
and of the continuum extremely challenging. On the other hand, taking into account the
approximate 1/q2 behaviour of the OPE result in eq. (2.6), which almost perfectly matches
the dominant contribution due to the pion pole on the l.h.s. of eq. (2.34), one can already
obtain a good estimate of the matrix element ⟨O2⟩, by considering only the first term on
the r.h.s. of eq. (2.34).

Alternatively, expressing the OPE result on the r.h.s. of eq. (2.34) as a dispersive
integral in the complex q2-plane, with the first pole being on the real axis s′ = 0, and
recurring again to QHD, we can approximate

∞∫
s
′ (π)
h′

ds′
ρh′(s′)
s′ − q2 = 1

m2
DfDπ

2

∞∫
sπ

0

ds′
sD

0∫
m2

c

ds e(m2
D−s)/M2 Ims′Ims

[
F O2
q (s, s′)

]
OPE

s′ − q2 , (2.35)

with sπ0 denoting the effective threshold parameter in the π channel. From eqs. (2.34), (2.35),
after applying a Borel transform with respect to the variable q2, we arrive at the following
sum rule for the non-factorisable matrix element

i⟨O2⟩ =
−em2

π/M
′2

fπfDm2
D

sD
0∫

m2
c

ds

∞∫
0

dω1
∑
ψ̂

ψ̂(ω1)
3∑

n=1

cψ̂n(ω1, 0)
(n− 1)! e

(m2
D−s)/M2

δ(n−1)
s (s̃(ω1, 0)− s) ,

(2.36)

where M ′2 denotes the corresponding Borel parameter in the q2-channel and the expression
for Ims′Ims

[
F O2
q (s, s′)

]
OPE follows from using eq. (A.5), with δ

(n−1)
x (f(x)) indicating the

(n − 1)-derivative of the delta function with respect to the variable x. Finally, note that
also in this way, in consistency with what discussed below eq. (2.34), because of the 1/q2

structure of the OPE result, only the contribution due to the pion pole enters eq. (2.36)
and the sum rule becomes independent of sπ0 .
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3 Determination of ⟨O1⟩ from LCSR

The computation of the factorisable part of the amplitude ⟨O1⟩ within the framework
of LCSR proceeds in a very similar manner to that discussed in the previous section.
Therefore, here we limit ourselves to describing only the key steps. The starting point is
now the following three point correlation function

F O1
µ (p, q) = i2

∫
d4x eip·x

∫
d4y eiq·y ⟨0|T

{
jD5 (x), O1(0), jπµ(y)

}
|B̄(p+ q)⟩ , (3.1)

where the two interpolating currents coincide with those in eq. (2.1). The kinematics is
also chosen to be the same, i.e. P 2 ≡ −p2 ≫ Λ2 and Q2 ≡ −q2 ≫ Λ2, so that the time-
ordered product in eq. (3.1) is again calculated around x2 ∼ 0 and yµ ∼ 0. Specifically,
from eq. (3.1) we obtain

F O1
µ (p, q) =− iNcmc

∫
d4x

∫
d4y eip·x eiq·y ⟨0|s̄i(x)γ5 iS

(c)
ij (x, 0)γρ(1− γ5)

× iS
(u)
0 (−y)γµγ5 iS

(d)
0 (y)γρ(1− γ5)bj(0)|B̄(p+ q) ⟩ , (3.2)

with S(c)(x, 0) denoting the charm-quark propagator expanded near the light-cone. Includ-
ing the leading one gluon corrections, this reads [48, 66]

S
(c)
ij (x, 0) =− im2

cδij
4π2

[
K1(mc

√
−x2)√

−x2
+ i

/x

−x2K2(mc

√
−x2)

]

−
i taij
16π2

1∫
0

du

[
mcK0(mc

√
−x2)Gaµν(ux)σµν

+ imc√
−x2

K1(mc

√
−x2)

[
ū/xGaµν(ux)σµν + uGaµν(ux)σµν/x

] ]
+ . . . , (3.3)

where the first line corresponds to the free-quark propagator already introduced in eq. (2.9),
and the ellipses indicate subleading corrections with at least one additional covariant deriva-
tive of the gluon field strength tensor; note also that in writing eq. (3.2) we have already
taken into account that the colour structure now forbids the emission of one gluon from the
light-quark loop and we have thus replaced the two propagators with the corresponding
free quark ones, see figure 3.

The integral over yµ in eq. (3.2) can be easily performed. In dimensional regularisation
it yields the standard massless one-loop two-point function, and, as expected, the result
is transversal with respect to the momentum of the light-quark current qµ. On the other
hand, the integration over xµ can be computed once a parametrisation for the corresponding
two- and three-particle B-meson matrix elements is implemented. Using the results given
in appendix B, again in the HQET limit, we have respectively

⟨0|s̄α(x)bβ(0)|B̄(p+ q)⟩ =− FB(µ)
√
mB

∫ ∞

0
dω e−iωv·x

{
i

2
(
ϕ+ + x2g+)P+γ5

+ 1
4
[
(ϕ̄+ − ϕ̄−) + x2(ḡ+ − ḡ−)

]
P+ /x γ5

}
βα

(ω;µ) , (3.4)
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Figure 3. Diagrams describing the leading contributions due to two-particle (left) and three-
particle (right) LCDAs in the OPE for the correlator F O1

µ (p, q).

and

⟨0|s̄α(x)Gµν(ux)bβ(0)|B̄(p+ q)⟩ =
1
2FB(µ)

√
mB

∫ ∞

0
dω1

∫ ∞

0
dω2 e

−i(ω1+uω2)v·x

×
{
P+
[
− iσµνψV + (vµγν − vνγµ)(ψA − ψV )− i(xµvν − xνvµ)ψ̄XA

+ i(xµγν − xνγµ)(ψ̄W + ψ̄YA
)− ϵµνητx

ηvτγ5ψ̄X̃A
+ ϵµνητx

ηγτγ5ψ̄ỸA

+ (xµvν − xνvµ)/x ¯̄ψW − (xµγν − xνγµ)/x ¯̄ψZ
]
γ5
}
βα
(ω1, ω2;µ) , (3.5)

with the notation introduced in eqs. (B.5), (B.10). Substituting eq. (3.3) into eq. (3.2) and
using eqs. (3.4), (3.5), we are left with the evaluation of the same type of tensor integrals
as those in eqs. (2.10), (2.11), together with the following one∫

d4x eip̃·xK0(mc

√
−x2)

{
1, xµ, xµxν , . . .

}
, (3.6)

with p̃µ = pµ − ωvµ, and p̃µ = pµ − (ω1 + uω2)vµ, respectively for the two- and three-
particle contributions. Using the expressions for the inverse Fourier transforms of Bessel
functions collected in appendix D, we arrive at the final form of the three-point correlator
in eq. (3.1), that is

F O1
µ (p, q) = F O1

q (p2, q2) qµ + F O1
p (p2, q2) pµ , (3.7)

where the contributions to the invariant amplitude F O1
q (p2, q2) due to the two- and three-

particle matrix elements are written in terms of a LC OPE, respectively, as

[
F O1
q (p2, q2)

]
OPE,2p

= FB
√
mBmc

∞∫
0

dω
∑
ϕ

ϕ(ω)
4∑

n=1

cϕn(ω, q2)
[s̃(ω, q2)− p2 − iε]n ln

(
− q2

µ2

)
,

(3.8)
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with ϕ = ϕ+, ḡ+, . . ., and

[
F O1
q (p2, q2)]OPE,3p = FB

√
mBmc

1∫
0

du

∞∫
0

dω2

∞∫
uω2

dω
∑
ψ

ψ(u, ω2, ω)

×
4∑

n=1

cψn(u, ω, q2)
[s̃(ω, q2)− p2 − iε]n ln

(
− q2

µ2

)
, (3.9)

with ψ = ψA, ψV , . . .. The function s̃(ω, q2) in eqs. (3.8), (3.9), is defined as in eq. (2.15),
while the analytic expressions of the OPE coefficients cϕn(ω, q2), cψn(u, ω, q2) can be found
in appendix E. Note that both the divergent 1/ϵ piece and the remaining constant term
originating from the light-quark loop have been omitted, as only the coefficient proportional
to ln(−q2/µ2) is relevant for the derivation of the dispersion relations. To this end, we follow
the same procedure as done in the previous section, employing QHD as well as applying
a Borel transform in both the p2- and q2-channels. The final result can be compactly
presented as

i⟨O1⟩ =
1

π2fπfDm2
D

sπ
0∫

0

ds′
sD

0∫
m2

c

ds e(m2
D−s)/M2

e(m2
π−s′)/M ′2 Ims′Ims

[
F O1
q (s, s′)

]
OPE , (3.10)

where
[
F O1
q (s, s′)

]
OPE includes both the two- and three-particle contributions given in

eqs. (3.8), (3.9), and the corresponding imaginary part can be easily obtained from the
identities given in eqs. (A.5), (A.6).

4 Numerical analysis

4.1 Discussion of the inputs

Below we discuss the numerical value of the inputs used in our analysis.18 Following
ref. [44], the eight LCDAs, arising in the parametrisation of the three-particle B-meson
matrix element in eq. (B.1), are decomposed in terms of DAs of definite collinear twist, see
eq. (B.3). These non-perturbative inputs can then be estimated by constructing specific
model-dependent parametrisations, all satisfying the same normalisation conditions and
asymptotic behaviour for small value of the arguments [44]. In our analysis, we employ the
exponential model. Specifically, we follow refs. [44, 67] for the twist-3 and twist-4 LCDAs
and use, respectively

ϕ3(ω1, ω2) = λ2
E − λ2

H

6ω5
0

ω1ω
2
2 e

−(ω1+ω2)/ω0 , (4.1)

ϕ4(ω1, ω2) = λ2
E + λ2

H

6ω4
0

ω2
2 e

−(ω1+ω2)/ω0 , (4.2)

ψ4(ω1, ω2) = λ2
E

3ω4
0
ω1ω2 e

−(ω1+ω2)/ω0 , (4.3)

ψ̃4(ω1, ω2) = λ2
H

3ω4
0
ω1ω2 e

−(ω1+ω2)/ω0 , (4.4)

18In this section the notation B0 and Bd is used interchangeably.
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whereas for the twist-5 and twist-6 LCDAs we use the parametrisation proposed in ref. [68],
namely

ϕ̃5(ω1, ω2) = λ2
E + λ2

H

3ω3
0

ω1 e
−(ω1+ω2)/ω0 , (4.5)

ψ5(ω1, ω2) = − λ2
E

3ω3
0
ω2 e

−(ω1+ω2)/ω0 , (4.6)

ψ̃5(ω1, ω2) = − λ2
H

3ω3
0
ω2 e

−(ω1+ω2)/ω0 , (4.7)

ϕ6(ω1, ω2) = λ2
E − λ2

H

3ω2
0

e−(ω1+ω2)/ω0 . (4.8)

In the studies performed e.g. in refs. [32, 51], the expansion has been truncated at twist-4 so
that the DAs in eqs. (4.5)–(4.8) were neglected. In fact, the LCDAs of twist-5 and twist-6
were not expected to contribute at the current accuracy of O(1/mB) [44], and in addition,
the four DAs in eqs. (4.5)–(4.8) would not be exhaustive for a complete description of the
three-particle matrix element up to twist-6, since other LCDAs of the same order would
still be missing [32]. However, we stress that the inclusion of the twist-5 and twist-6 DAs in
eqs. (4.5)–(4.8) is actually necessary to ensure that eq. (B.1) has the correct local limit,19

and therefore we refrain from truncating the expansion at twist-4. Moreover, as discussed
in the next section and as shown in table 2, we find that neglecting these higher-twist DAs
leads to pronounced cancellations, mainly because, in this case, the contribution due to
ψỸA

is found to largely compensate the one due to ψV . On the other hand, when including
also the twist-5 and twist-6 LCDAs, the coefficient of ψỸA

becomes roughly one order of
magnitude smaller and no cancellations between LCDAs arise.

Turning to the two-particle DAs, we again adopt the exponential model20 and use, for
the LCDAs up to twist-4, the parametrisation given in ref. [44], i.e.

ϕ+(ω) = ω

ω2
0
e−ω/ω0 , (4.9)

ϕ−(ω) = e−ω/ω0

ω0
− λ2

E − λ2
H

9ω3
0

e−ω/ω0

[
1− 2 ω

ω0
+ 1

2
ω2

ω2
0

]
, (4.10)

g+(ω) = ω2

2ω0

(
1− λ2

E − λ2
H

36ω2
0

)
e−ω/ω0 − λ2

E

6ω2
0

[
(ω − 2ω0) Ei

(
− ω

ω0

)

+(ω + 2ω0) e−ω/ω0

(
ln ω

ω0
+ γE

)
− 2ω e−ω/ω0

]
, (4.11)

where Ei(z) is the exponential integral and γE is the Euler constant, while for the twist-5

19From the local limit of eq. (B.1), cf. eq. (5.1) of ref. [44], it follows that ΨV (0, 0) = (1/3)λ2
H , ΨA(0, 0) =

(1/3)λ2
E , and ΨXA (0, 0) = . . . = ΨZ(0, 0) = 0. However, truncating at twist-4, i.e. neglecting Φ̃5, . . . , Φ6,

in eq. (B.3), leads instead to ΨYA (0, 0) = (−1/6)λ2
E and ΨỸA

(0, 0) = (1/6)λ2
H .

20Several different models, mostly for the twist-2 LCDA ϕ+, have been proposed and studied in the recent
literature, see e.g. refs. [44, 69, 70].
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LCDA we follow ref. [68] and use

g−(ω) = ω

[
3
4 − λ2

E − λ2
H

12ω2
0

(
1− ω

ω0
+ 1

3
ω2

ω2
0

)]
e−ω/ω0 . (4.12)

The models in eqs. (4.1)–(4.12) depend on the parameters ω0, λ2
E , and λ2

H . Within the
exponential model and using EOM relations, it follows that ω0 = λB [44], with λB being the
inverse moment of the two-particle B-meson distribution amplitude ϕ+(ω). The remaining
two parameters λ2

E and λ2
H characterise the local vacuum-to-B-meson quark-gluon-quark

matrix element. These inputs must be determined with some non-perturbative techniques,
and are currently still quite poorly known. Specifically, for the parameter λB, there exist
several determinations in the literature, obtained either with QCD sum rules [71, 72],
OPE-based methods [73–75],21 or from studies of the B → γℓν̄ decay [69, 77–81]. In our
analysis, we use the recent sum rule result from ref. [72] where, for the first time, the
complete SU(3)F breaking effects due to the strange quark mass have been taken into
account, hence providing estimates of the parameter λB for both the B mesons, i.e.

λBd
(1GeV) = (0.383± 0.153)GeV , (4.13)

λBs(1GeV) = (0.438± 0.150)GeV . (4.14)

As for the parameters λ2
E and λ2

H , in the case of the Bd meson, several studies within the
framework of QCD sum rule have been performed [82–84]. The first estimates, obtained in
ref. [82], included only LO-QCD contributions up to dimension-five in the corresponding
OPE, yielding respectively λ2

E,Bd
(1GeV) = (0.11±0.06)GeV2 and λ2

H,Bd
(1GeV) = (0.18±

0.07)GeV2. Later, perturbative QCD corrections to the dimension-five contribution, as well
as the LO-QCD dimension-six contributions were taken into account in ref. [83]. These
corrections improved the overall stability of the sum rule, leading to the smaller values
λ2
E,Bd

(1GeV) = (0.03 ± 0.02)GeV2 and λ2
H,Bd

(1GeV) = (0.06 ± 0.03)GeV2. Recently, a
new study, performed using a different expression for the correlation functions and including
dimension-seven contributions, has been carried out in ref. [84]. The authors have obtained
the values λ2

E,Bd
(1GeV) = (0.01±0.01)GeV2 and λ2

H,Bd
(1GeV) = (0.15±0.05)GeV2, where

the former is consistent with the result of ref. [83], while the latter is considerably above.
Therefore, to account for the spread in the two determinations, in our analysis we use the
following intervals

λ2
E,Bd

(1GeV) = (0.03± 0.03)GeV2 , (4.15)

λ2
H,Bd

(1GeV) = (0.12± 0.09)GeV2 , (4.16)

which cover the results of both refs. [83, 84]. On the other hand, since there are still no
estimates of the parameters λ2

E,Bs
and λ2

H,Bs
available in the literature, we fix their central

values to be the same as the corresponding ones for the Bd meson, adding an extra 20%

21Very recently, a study of the strange quark mass effects has been preformed in ref. [76].
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uncertainty to account for SU(3)F breaking effects. This gives

λ2
E,Bs

(1GeV) = (0.03± 0.04)GeV2 , (4.17)

λ2
H,Bs

(1GeV) = (0.12± 0.11)GeV2 . (4.18)

Another important ingredient of the computation is the choice of the sum rule parameters.
For the threshold continuum sD0 and the Borel parameter M2 in the D(s)-meson channel,
we adopt the same intervals as used in the recent QCD sum rule studies of the form factors
for the B → D [32] and Bs → Ds [25] transitions, see also refs. [67, 85, 86]. We thus use
respectively

sD
+

0 = (6.8± 1.0)GeV2 , M2
D+ = (3± 1.5)GeV2 , (4.19)

sD
+
s

0 = (9.0± 2.1)GeV2 , M2
D+

s
= (3± 1.5)GeV2 , (4.20)

while, for the corresponding sum rule parameters in the π- and K-meson channels, we use
the following values [14, 55, 67, 87]

sπ
−

0 = (0.7± 0.1)GeV2 , M2
π− = (1.0± 0.5)GeV2 , (4.21)

sK
−

0 = (1.05± 0.10)GeV2 , M2
K− = (1.0± 0.5)GeV2 . (4.22)

The QCD decay constants are determined with high precision within Latice QCD, and for
all the mesons considered we take the corresponding FLAG values [88]. As for the HQET
decay constant FB(µ), which enters eq. (2.7), we use the one-loop relation to the QCD
decay constant fB, valid up to power corrections of the order of 1/mb [89], namely

FB(µ) = fB
√
mB

[
1− CF αs(µ)

4π

(
3 ln mb

µ
− 2

)]
+ . . . , (4.23)

with CF = 4/3. In our analysis, the central value of the renormalisation scale in eq. (4.23)
is set to µ = 1GeV, corresponding to the scale at which the inputs λB, λ2

E , and λ2
H , have

been determined. Taking then into account the scale-dependence of the latter parame-
ters [71, 83, 90], the total uncertainty due to µ-variation is obtained varying this scale in
the interval 1GeV ≤ µ ≤ 1.5GeV. For the strong coupling αs(µ), we include the five-loop
running implemented in the Mathematica package RunDec [91] and use the most recent
result [1]

αs(MZ) = 0.1179± 0.0009 .

For the quark masses, we use the corresponding values in the MS-scheme, i.e. mb(mb) =
(4.18± 0.03)GeV and mc(mc) = (1.27± 0.02)GeV [1]. Values of the meson masses, known
very precisely, are also taken from the PDG [1].

In order to obtain predictions for the branching fractions, we need in addition to fix
the value of the Wilson coefficients, of the CKM matrix elements, and of the B0

(s)-meson
lifetime. For the former, we use the corresponding results at NLO accuracy, see e.g. ref. [11].
The central value of the Wilson coefficients is obtained setting µb = mb, and this scale is
then varied in the interval mb/2 ≤ µb ≤ 2mb. We stress that the choice of using NLO
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mB0 5.27965GeV [1] mB0
s

5.36688GeV [1]
mD+ 1.86965GeV [1] mD+

s
1.96834GeV [1]

mK+ 0.493677GeV [1] mπ+ 0.13957GeV [1]

τB0 (1.519± 0.004) ps [1] τB0
s

(1.527± 0.011) ps [1]

fBd
0.1900GeV [88] fBs 0.2303GeV [88]

fD+ 0.2120GeV [88] fD+
s

0.2499GeV [88]
fK+ 0.1556GeV [88] fπ+ 0.1302GeV [88]

λBd
(0.383± 0.150)GeV [72] λBs (0.438± 0.150)GeV [72]

λ2
E,Bd

(0.03± 0.03)GeV2 [83, 84] λ2
E,Bs

(0.03± 0.04)GeV2 SU(3)F
λ2
H,Bd

(0.12± 0.09)GeV2 [83, 84] λ2
H,Bs

(0.12± 0.11)GeV2 SU(3)F
M2
D+ (4.5± 1.5)GeV2 [32] M2

D+
s

(4.5± 1.5)GeV2 [25]

sD
+

0 (6.8± 1.0)GeV2 [32] sD
+
s

0 (9.0± 2.1)GeV2 [25]

M2
K− (1.0± 0.5)GeV2 [67] M2

π− (1.0± 0.5)GeV2 [67]
sK

−
0 (1.05± 0.1)GeV2 [87] sπ

−
0 (0.7± 0.1)GeV2 [87]

|Vud| 0.97435± 0.00016 [1] |Vus| 0.22500± 0.00067 [1]
|Vcb| 0.04182+0.00085

−0.00074 [1] αs(MZ) 0.1179± 0.0009 [1]
mb(mb) (4.18± 0.03)GeV [1] mc(mc) (1.27± 0.02)GeV [1]

Table 1. Summary of the inputs used in the numerical analysis. The values of the parameters λB ,
λ2

E , and λ2
H , correspond to µ = 1GeV.

results, despite the LO accuracy of the corresponding matrix elements, is motivated by the
fact that there is a sizeable shift of ∼ −40% in the value of C2, when going from LO to
NLO,22 which strongly affects the prediction of the non-factorisable part of the amplitude.
The computation of the missing perturbative QCD corrections to the matrix elements
would be clearly of utmost importance in order to assess the total size of NLO effects.

For the CKM matrix elements, we use the best-fit values, obtained from a global fit,
provided by the PDG [1], i.e.

|Vud| = 0.97435± 0.00016, |Vus| = 0.22500± 0.00067, |Vcb| = 0.04182+0.00085
−0.00074 .

Finally, B0
(s)-meson lifetimes are by now measured very precisely and their values are taken

from ref. [1].23 For convenience, all the inputs used in our analysis are collected in table 1.

22The shift from NLO to NNLO can be instead neglected, given the current accuracy of our study.
23B0

(s)-meson lifetimes can also be computed using the framework of the Heavy Quark Expansion.
However, the current theoretical uncertainties are still much larger than the corresponding experimental
ones [92].
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4.2 Results

In this section we present our predictions, obtained within the framework of LCSR and
at LO-QCD, of the factorisable and non-factorisable matrix elements for the non-leptonic
decays B̄0

s → D+
s π

− and B̄0 → D+K−, as well as of the corresponding branching fractions.
Let us start by discussing the predictions for the non-factorisable matrix element ⟨Oq2⟩,

which represents the main result of the paper. The final sum rule is given in eq. (2.36), and
in order to illustrate the main sources of uncertainty, in figure 4 we show the dependence
of i⟨Od2⟩ on different inputs, fixing in each plot the remaining parameters to their central
values. For easier comparison, all plots are displayed in the same interval, namely i⟨Od2⟩ ∈
[0, 0.50]GeV3, and for brevity, we only show the mode B̄0

s → D+
s π

−, since the behaviour
of the corresponding matrix element in the case of the B̄0 → D+K− decay is completely
analogous. We find that the sum rule prediction for the non-factorisable matrix element is
extremely sensitive to the value of the parameter λ2

H which, on the other hand, as discussed
in the previous section, is still poorly known. The result is also quite sensitive to the size of
λB, while the dependence on λ2

E appears softer. Clearly, a more precise determination of
these non-perturbative inputs is essential in order to improve the accuracy of the present
analysis. The sensitivity to the value of the threshold continuum sD0 , and of the Borel
parameters M2

D, and M2
π , is found to be quite mild, thus reflecting the overall stability of

the sum rule. The dependence on the charm quark mass and on the renormalisation scale
µ is also very moderate.

The partial contribution to i⟨Od2⟩, for each of the eight LCDAs entering the parametri-
sation of the three-particle B-meson matrix element in eq. (B.1), is shown in the third
column of table 2, in correspondence of the central values of all the input parameters. We
find that the function ψV gives the dominant contribution to the non-factorisable matrix
element, while the remaining LCDAs lead all together to a small effect. As stated in the
previous section, in our analysis we use the results for the LCDAs up to twist-six accuracy;
however, for comparison, in the last column of table 2, we also provide the correspond-
ing partial contributions to i⟨Od2⟩ obtained neglecting the twist-5 and twist-6 LCDAs in
eqs. (4.5)–(4.8). In this case, there is a strong cancellation between the coefficients of ψV
and ψỸA

, leading to a much smaller value for ⟨Od2⟩. Again, a similar picture is found in the
case of ⟨Os1⟩ and we thus refrain from showing the corresponding results.

Varying the input parameters within their intervals and combining all the correspond-
ing uncertainties in quadrature, we obtain the following results for the matrix element
i⟨Oq2⟩, for both the modes considered, namely

i⟨Od2⟩ = (0.24+0.22
−0.22)GeV3 , B̄0

s → D+
s π

− , (4.24)

i⟨Os2⟩ = (0.24+0.21
−0.19)GeV3 , B̄0 → D+K− , (4.25)

where, as already discussed, the total uncertainties are strongly dominated by the limited
accuracy of the parameter λ2

H .
We can now turn to discuss our results for the factorisable matrix element ⟨Oq1⟩. The

final sum rule is given in eq. (3.10) and includes the contribution of both the two- and
three-particle LCDAs. The relative size of each of the LCDAs contributions is shown in
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Figure 4. Dependence of the non-factorisable matrix element i⟨Od
2⟩ on the LCDAs inputs

λ2
E , λ

2
H , λB , the sum rule parameters M2

D+ , sD
0 ,M

2
π− , as well as on the charm-quark mass mc and

the renormalisation scale µ. In each plot, the remaining parameters are fixed to their central values.
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LCDA i⟨Od1⟩ i⟨Od2⟩ i⟨Od2⟩ (up to tw-4)

ϕ+ −0.916 – –
ϕ− −0.863 – –
g+ 0.243 – –
g− 0.056 – –
ψV −0.021 0.264 0.264
ψA −0.006 0.030 0.030
ψXA

−0.001 0.000 0.000
ψYA

0.002 −0.016 −0.026
ψX̃A

0.000 −0.020 −0.020
ψỸA

−0.002 −0.018 −0.194
ψW 0.001 0.000 0.020
ψZ 0.000 0.000 0.007
Σ −1.507 0.240 0.081

Table 2. Partial contribution of the two- and three-particle LCDAs to the LCSR predictions for
the matrix elements ⟨Od

1⟩ and ⟨Od
2⟩, in the case of the B̄0

s → D+
s π

− decay. All results are in units
of GeV3 and correspond to using the exponential model for all the LCDAs, as well as central values
for all inputs. The last column does not include the contribution of the twist-5 and twist-6 LCDAs
in eqs. (4.5)–(4.8).

the second column of table 2. We find, as expected, that the dominant effect is due to ϕ±,
with the twist-4 and twist-5 LCDAs g± yielding a smaller contribution. On the other hand,
the three-particle LCDAs appear to be strongly suppressed, in consistency with what found
e.g. in the LCSR study of the B → D form factors [32]. As for the uncertainty budget,
the LCSR prediction is extremely sensitive to the value of the non-perturbative parameter
λB, while the dependence on the sum rule inputs i.e. the threshold continuum and the
Borel parameters is found to be mild, and that on the parameters λ2

E and λ2
H very small.

Furthermore, also in this case, the uncertainty due to µ-variation is moderate.
Varying all the input parameters within their intervals and again adding all individual

uncertainties in quadrature, we obtain the following estimates of the factorisable matrix
element i⟨Oq1⟩, for both the modes considered, i.e.

i⟨Od1⟩ = −(1.51+0.66
−0.61)GeV3 , B̄0

s → D+
s π

− , (4.26)

i⟨Os1⟩ = −(2.03+1.00
−0.75)GeV3 , B̄0 → D+K− . (4.27)

Note that the above values are consistent with the QCDF results [24], however the uncer-
tainties are significantly larger.

Before discussing our predictions for the branching fractions, two more remarks with
respect to the error budget are in order. First, we emphasise that using other models for
the LCDAs, like the local duality model, see ref. [44] for a detailed discussion, and ref. [68]
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for new parametrisations of the twist-5 and twist-6 LCDAs, does not lead to any significant
difference, within the quoted uncertainties, in the values for both the factorisable and non-
factorisable matrix elements. Moreover, additional sources of uncertainties, like missing
1/mb corrections to the expression in eq. (2.7), are also expected to be effectively covered
by our large error ranges.

Combining the above results with the corresponding Wilson coefficients, our estimates
for the ratio of the non-factorisable over the factorisable parts of the amplitude for the
B̄0
s → D+

s π
− and B̄0 → D+K− decays read, respectively

C2⟨Od2⟩
C1⟨Od1⟩

= 0.051+0.059
−0.052 , B̄0

s → D+
s π

− , (4.28)

C2⟨Os2⟩
C1⟨Os1⟩

= 0.039+0.042
−0.034 , B̄0 → D+K− . (4.29)

The non-factorisable matrix element ⟨Oq2⟩ is thus found to lead to a sizeable positive effect,
of the order of few percent, to the total amplitude for both the non-leptonic decays consid-
ered. This is in perfect agreement with the first estimates of ref. [12], however in contrast
with the results of ref. [24]. On the other hand, the uncertainties in eqs. (4.28), (4.29)
appear still very large, and are of the order of 100%. It is worth pointing out that, despite
computing the ratio of the two matrix elements within the same theoretical framework,
we only obtain a minor reduction of the total uncertainty from the simultaneous variation
of the common inputs. This follows from the large sensitivity of ⟨Oq2⟩ and ⟨Oq1⟩ on differ-
ent non-pertubative parameters. That is, as already stressed, λ2

H for the former matrix
element, and λB for the latter. Furthermore, due to the stronger scale dependence of the
Wilson coefficient C2 compared to that of C1, also the ratio C2/C1 does not provide a
significant reduction of the total uncertainty. We note in particular that, because of the
additional variation of the scale µb, the relative uncertainty in the non-factorisable part of
the amplitude becomes even larger.

The results in eqs. (4.24)–(4.27) lead to the following predictions for the branching
fractions

Br(B̄0
s → D+

s π
− ) = (2.15+2.14

−1.35)× 10−3, (4.30)

Br(B̄0 → D+K−) = (2.04+2.39
−1.20)× 10−4, (4.31)

in agreement with the experimental data shown in eqs. (1.1), (1.2), and also consistent with
the QCDF results in eqs. (1.10), (1.11), although again within very large uncertainties. On
the other hand, our central values are considerably lower than the latter.

Finally, note that naively combining our results in eqs. (4.28), (4.29), with the QCDF
prediction of the leading power amplitude for the corresponding decays, actually leads to
a reduction of the observed tension with the data, despite the positive shift, due to the
increased size of the uncertainties. However, we would like to emphasise that one should be
careful when combining LCSR and QCDF results because of different assumptions adopted,
e.g. the different treatment of the charm quark.
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5 Conclusion and outlook

In this work we have presented new determinations, obtained within the framework of
LCSR, of the non-factorisable contributions to the amplitude of the non-leptonic decays
B̄0
s → D+

s π
− and B̄0 → D+K−, due to soft gluon emission. The computation is based on

the derivation of a LC-local OPE for a suitable three-point correlation function, and on the
use of B-meson LCDAs. Our analysis, in particular, has raised several questions that have
been overlooked in many previous similar studies, and that require further clarifications.
First, the fact that performing a double LC expansion of the correlation function seems
to actually lead to a result which is not transversal. Second, in this case, the dominant
contribution to the correlator originates from generalised non-local three-particle B-meson
matrix elements with non-aligned fields, which are still unknown in the literature for arbi-
trary Dirac structures. First steps in this direction have been taken in ref. [62]. Third, we
have found that truncating the expansion of the three-particle B-meson LCDAs at twist-4,
i.e. neglecting the twist-5 and twist-6 DAs, seems to contradict the local limit of the cor-
responding non-local matrix element, and in addition lead to pronounced cancellations.
In our work, the first two points have been circumvented by employing a LC-local OPE,
which, albeit less accurate, has allowed us to consistently compute the correlator in terms
of known hadronic input functions. As for the third point, we have included the contribu-
tion of the twist-5 and twist-6 LCDAs in our analysis, thus ensuring the correct local limit
for the three-particle matrix element, and also the lifting of the apparent cancellations.
However, in light of the above findings, further investigations are certainly needed in order
to improve the current understanding of these decays, as well as shed more light on the
size of non-local hadronic effects in rare semileptonic B-meson decays.

Another important result of the paper is the computation of the factorisable matrix
elements for the decays B̄0

s → D+
s π

− and B̄0 → D+K−, at LO-QCD accuracy, within
LCSR, which represents the first determination using this framework. In this respect, it
is important to stress that, despite so far the limited precision compared to QCDF at
leading power, LCSR provides a well established method for the computation of the whole
amplitude, including next-to-leading power effects, entirely within the same framework.

Our predictions, shown in eqs. (4.24)–(4.29), indicate that the non-factorisable matrix
element leads to a sizeable and positive contribution, of the order of few percent, to the
amplitude for the decays B̄0

s → D+
s π

− and B̄0 → D+K−, in consistency with the first
estimates by Blok and Shifman [12], but in contrast with the findings of ref. [24]. On the
other hand, we emphasise that the total uncertainties are also found to be very large, mainly
due to the limited accuracy of many non-perturbative inputs, particularly those entering
the parametrisation of the two- and three-particle B-meson LCDAs, i.e. λB, and λ2

H .
Finally, combining our results for the factorisable and non-factorisable matrix elements,

we have also obtained new estimates for the branching fractions of the B̄0
s → D+

s π
− and

B̄0 → D+K− decays, shown in eqs. (4.30), (4.31), respectively. Our predictions appear to
be in good agreement with the corresponding experimental data, however, given the very
large uncertainties, and the LO accuracy of the current analysis, we refrain from drawing
any conclusion on the status of these observables, in light of the discrepancies found in
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ref. [24]. We consider instead to be more justified to conclude with a comprehensive outlook
for future studies and investigations. Specifically, in order to improve the present analysis,
one would require:

⋄ More accurate determination of the parameter λB, for both the B̄0
d and B̄0

s mesons,
either by improving the current QCD sum rule analyses [71, 72] or by performing first
Lattice QCD investigations. Alternatively, stronger constraints on the size of these
inputs could also be derived by extending the OPE-based studies of refs. [73, 74], or
from the anticipated data by the Belle II collaboration on B → γℓν decays [69].

⋄ Improved determination of the parameters λ2
E and λ2

H either within QCD sum rules
or Lattice QCD, as well as the computation of the corresponding SU(3)F -breaking
effects which are, so far, still missing in the literature.

⋄ Study of the generalised three-particle B-meson non-local matrix elements, with the
light spectator quark and the gluon aligned on different light-cone directions. As
already stressed in ref. [62], the knowledge of these novel soft functions would also
be crucial in order to improve the current analyses of the non-local soft-gluon con-
tributions in rare semileptonic B-meson decays, and thus to shed more light on the
apparent tensions in b→ sℓ+ℓ− transitions.

⋄ Further studies of higher-twist effects in the three-particle B-meson matrix elements,
and of the corresponding LCDAs. The investigation of alternative models for the
DAs would be important to reduce the corresponding model dependent uncertainty.

⋄ Computation of NLO-QCD corrections in the OPE for both the factorisable and non-
factorisable matrix elements, within LCSR. We note that, very recently, a first step
in this direction has been made in ref. [93].

⋄ Alternative estimate of the factorisable and non-factorisable matrix elements using
the LCSR framework with the light meson, i.e. the π- and K, LCDAs. This would
in fact provide an important cross-check of our study, and allow one to circumvent
the current challenges associated with the B-meson LCDAs.
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A Conventions and definitions

In this appendix, we collect the main conventions and definitions adopted throughout the
paper. For the Levi-Civita tensor we use ϵ0123 = +1 which, together with γ5 = iγ0γ1γ2γ3,
leads to

Tr[γµγνγργσγ5] = −4iϵµνρσ . (A.1)

The SU(3)c generators in the fundamental representation taij satisfy the completeness rela-
tion

taijt
a
lm = 1

2

(
δimδjl −

1
Nc
δijδlm

)
, (A.2)

and are normalised as Tr[tatb] = (1/2)δab. The gluon field strength tensor is defined as
Gµν = i[Dµ, Dν ], with the covariant derivative given by Dµ = ∂µ − iAµ(x). Note that the
strong coupling gs is absorbed in the definition of the gluon field Aµ(x) = Aaµ(x)ta.

The matrix element of the axial and axial-vector currents jD5 (x) = imc q̄γ5c, and
jLµ (x) = ūγµγ5q, with q = {d, s}, between the D- and the L-meson and the vacuum, are
respectively defined as

⟨0|jD5 (x)|D(p)⟩ = m2
DfD e

−ip·x , ⟨0|jLµ (x)|L(p)⟩ = ifL pµ e
−ip·x , (A.3)

where fD and fL are the corresponding meson decay constants. Moreover, for the matrix
element of the vector current jµ(x) = c̄γµb between a B- and a D-meson, we use the
following parametrisation

⟨D(p)|jµ|B(p+ q)⟩ = fBD+ (q2)
[
2pµ +

(
1− m2

B −m2
D

q2

)
qµ
]

+ fBD0 (q2)m
2
B −m2

D

q2 qµ , (A.4)

with fBD+ and fBD0 being, respectively, the vector and scalar form factors for the B → D

transition.
In order to write down the final sum rules, the following results for the imaginary part

of the functions entering the OPE are used. From limε→0+ 1/(x ± iε) = P(1/x) ∓ iπδ(x),
we obtain

Im 1
(x− iε)n = π

(−1)n−1

(n− 1)! δ
(n−1) (x) , n ≥ 1 , (A.5)

where δ(n−1)(x) denotes the (n − 1)-derivative of the delta function with respect to its
argument. Furthermore, the analytic continuation of the logarithm function at negative
values of the argument is defined as

ln(−x) = ln |x| − iπθ(x) , (A.6)

so that the logarithms in eqs. (3.8), (3.9), develop an imaginary part for q2>0 equal to −π.
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B B-meson LCDAs

The non-local matrix element corresponding to both the light spectator quark and the
gluon in the B-meson aligned along the same light-cone direction nµ,24 in the rest frame
of the heavy B-meson vµ = (nµ + n̄µ)/2 = (1, 0⃗ ), can be parameterised in terms of eight
three-particles LCDAs as [44]25

⟨0|q̄α(nz1)Gµν(nz2)hv,β(0)|B̄(v)⟩ =
1
2FB(µ)

{
P+
[
(vµγν − vνγµ)(ΨA −ΨV )− iσµνΨV

− (nµvν − nνvµ)ΨXA
+ (nµγν − nνγµ)(ΨW +ΨYA

) + iϵµνητn
ηvτγ5ΨX̃A

− iϵµνητn
ηγτ

× γ5ΨỸA
− (nµvν − nνvµ)/nΨW + (nµγν − nνγµ)/nΨZ

]
γ5
}
βα
(z1, z2;µ) , (B.1)

where α, β, denote spinor indices, hv(x) = eimbv·xb(x) + O(1/mb) is the HQET field, see
e.g. the review [94], and the sign difference with respect to ref. [44] in the coefficients of
the Levi-Civita tensor follows from using the opposite convention for ϵµνρσ, cf. appendix A.
Moreover, we point out the change of notation for some of the DAs as compared to ref. [44],
i.e. XA → ΨXA

etc.
In eq. (B.1), the two parameters z1, z2, specify, respectively, the position of the light

quark and of the gluon field on the light-cone vector nµ. Performing a Fourier transform,
each LCDA can be expressed in terms of the corresponding momentum space distribu-
tions as

Ψ(z1, z2) =
∫ ∞

0
dω1

∫ ∞

0
dω2 e

−iω1z1−iω2z2 ψ(ω1, ω2) , (B.2)

Ψ = {ΨV ,ΨA, . . .}. Note that following ref. [44], we also adopt the convention that DAs in
coordinate space are written in upper case, whereas the lower case is used for the momentum
space representations.

In order to reorganise eq. (B.1) in terms of its twist expansion rather than its Lorentz
decomposition, in ref. [44], the DAs appearing in eq. (B.1) have been recast in terms of
LCDAs of definite collinear twist. Specifically [44]

ΨA(z1, z2) =
Φ3 +Φ4

2 ,

ΨV (z1, z2) =
Φ4 − Φ3

2 ,

ΨXA
(z1, z2) =

−Φ3 − Φ4 + 2Ψ4
2 ,

24The notation follows ref. [44] so, when comparing with section 2.2, it is nµ
+ ≡ nµ and nµ

− ≡ n̄µ.
25In the definition of the matrix element, the gauge link [x, y] = P exp

{
i
∫ 1

0 du (x − y)µAµ(ux + ūy)
}

,
with ū = 1 − u, is always implicitly assumed. We note however that in the Fock-Schwinger gauge, which
we use in our computation, this factor equals to unity.
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ΨX̃A
(z1, z2) =

−Φ3 +Φ4 − 2Ψ̃4
2 , (B.3)

ΨYA
(z1, z2) =

−Φ3 − Φ4 +Ψ4 −Ψ5
2 ,

ΨỸA
(z1, z2) =

−Φ3 +Φ4 − Ψ̃4 + Ψ̃5
2 ,

ΨW (z1, z2) =
Φ4 −Ψ4 − Ψ̃4 + Φ̃5 +Ψ5 + Ψ̃5

2 ,

ΨZ(z1, z2) =
−Φ3 +Φ4 − 2Ψ̃4 + Φ̃5 + 2Ψ̃5 − Φ6

4 ,

where Φ3, and Φ4,Ψ4, Ψ̃4, are LCDAs of twist-3 and twist-4, whereas Φ̃5,Ψ5, Ψ̃5, and Φ6,
are of twist-5 and twist-6, respectively.

At leading order in HQET, the three-particle matrix elements required for the compu-
tation of both the factorisable and non-factorisable amplitudes can be then simply derived
from eqs. (B.1). In doing so, one obtains additional factors of the type (v ·x)−1 and (v ·x)−2,
which can be simplified by introducing respectively the replacements

ψ(ω1, ω2) → i(v · x)ψ̄(ω1, ω2) , ψ(ω1, ω2) → −(v · x)2 ¯̄ψ(ω1, ω2) , (B.4)

with
ψ̄(ω1, ω2) ≡

∫ ω1

0
dη ψ(η, ω2) , ¯̄ψ(ω1, ω2) ≡

∫ ω1

0
dη

∫ η

0
dη′ ψ(η′, ω2) . (B.5)

The results in eq. (B.4), (B.5), can be easily derived by using the identities∫
d4x f(x)

∫ ∞

0
dω1

d

dω1

[
e−iω1v·x

∫ ω1

0
dη ψ(η, ω2)

]
= 0 , (B.6)∫

d4x f(x)
∫ ∞

0
dω1

d2

dω2
1

[
e−iω1v·x

∫ ω1

0
dη

∫ η

0
dη′ ψ(η′, ω2)

]
= 0 , (B.7)

where f(x) absorbs the remaining x-dependence in the correlation function. Note that
eqs. (B.6), (B.7), follow from the fact that the boundary terms are always zero. Specifically,
they vanish when ω1 → 0 due to the integration over η, and also when ω1 → ∞, because
of the exponential suppression of the integral over xµ, in accordance with the Riemann-
Lebesgue theorem.

In our computation of the non-factorisable amplitude, we actually need the corre-
sponding three-particle matrix element with the gluon field fixed at the origin, cf. eq. (2.5).
Setting z2 = 0 in eq. (B.1), the integral over ω2 in eq. (B.2) can be readily performed. To
this end, we introduce the compact notation

ψ̂(ω1) ≡
∫ ∞

0
dω2 ψ(ω1, ω2) . (B.8)

Finally, a new parametrisation of the two-particle B-meson matrix element including
higher-twist DAs, at leading order in HQET, has been obtained in ref. [44]

⟨0|q̄α(x)hv,β(0)|B̄(v)⟩ =− i

2FB(µ)
√
mB

∫ ∞

0
dω e−iωv·x

{(
ϕ+ + x2g+)P+γ5

− 1
2(v · x)

[
(ϕ+ − ϕ−) + x2(g+ − g−)]P+ /x γ5

}
βα
(ω;µ) , (B.9)
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where ϕ+, ϕ−, are LCDAs of twist-2 and twist-3, whereas g+, g−, are of twist-4 and twist-5,
respectively. The expression in eq. (3.4) immediately follows from eq. (B.9), taking into
account that

ϕ(ω) → i(v · x)ϕ̄(ω) , with ϕ̄(ω) ≡
∫ ω

0
dη ϕ(η) , (B.10)

with ϕ = {ϕ+, g+, . . .}.

C Computation of the loop integral in coordinate space

The one-loop integral in eq. (2.3), can be also explicitly computed in coordinate space, since
in the limit of massless quark, the expression of the corresponding propagator simplifies and
does not contain Bessel functions. In fact, in dimensional regularisation, with d = 4− 2ϵ,
the local expansion of a massless quark propagator, up to leading one-gluon contributions,
reads [47]

S
(q)
ij (x, y) = Γ(d/2)

2πd/2
/x− /y[

− (x− y)2]d/2 δij

+ Γ(d/2− 1)
32πd/2

(/x− /y)σµν + σµν(/x− /y)[
− (x− y)2]d/2−1 Gaµν t

a
ij + . . . , (C.1)

where q = {u, d, s}, Γ(z) is the gamma function, and the ellipses denote higher order correc-
tions with at least one covariant derivative of the gluon field strength tensor. Substituting
eq. (C.1) into eq. (2.3), the integration over yµ can be easily performed by taking into
account the following results [46]

∫
ddy eiq·y

1
(−y2)a = −i 2d−2aπd/2 Γ(d/2− a)

Γ(a) (−q2)a−d/2 , (C.2)

∫
ddy eiq·y

yµyν

(−y2)a = i 2d−2a+1πd/2 Γ(d/2− a)
Γ(a)

(
a− d

2

)
(−q2)a−d/2−2

×
[(
a− d

2 − 1
)
2qµqν + q2gµν

]
, (C.3)

with a = d − 1, and eq. (C.3) has been obtained by differentiating twice both sides of
eq. (C.2) with respect to qµ. Performing the calculation in NDR, the divergent 1/ϵ contri-
butions cancel when considering the gluon emission from both the light-quark propagators,
leading to the finite result shown in eq. (2.6). Finally, the computation of the loop integral
in eq. (3.2) proceeds in an analogous way, although now only the first line of eq. (C.1)
contributes.
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D Inverse Fourier transform of Bessel functions

In this appendix, we list the results for the tensor integrals introduced in eqs. (2.10), (2.11)
and (3.6). Starting with those of lowest rank

∫
d4x eip·xK0(m

√
−x2) = −8π2i

1
(p2 −m2 + iε)2 , (D.1)

∫
d4x eip·x

K1(m
√
−x2)√

−x2
= 4π2i

m

1
p2 −m2 + iε

, (D.2)

∫
d4x eip·x

K2(m
√
−x2)

x2 xµ = −4π2

m2
pµ

p2 −m2 + iε
, (D.3)

the remaining tensor integrals can be obtained by differentiating multiple time
eqs. (D.1)–(D.3) with respect to the four-momentum pµ. This gives

∫
d4x eip·x K0(m

√
−x2)xµ = 32π2 pµ

(p2 −m2 + iε)3 , (D.4)

∫
d4x eip·x K0(m

√
−x2)xµxν = 32π2i

[
6pµpν − (p2 −m2)gµν

(p2 −m2 + iε)4

]
, (D.5)

∫
d4x eip·x

K1(m
√
−x2)√

−x2
xµ = −8π2

m

pµ

(p2 −m2 + iε)2 , (D.6)

∫
d4x eip·x

K1(m
√
−x2)√

−x2
xµxν = 8π2i

m

[
(p2 −m2)gµν − 4pµpν

(p2 −m2 + iε)3

]
, (D.7)

∫
d4x eip·x

K1(m
√
−x2)√

−x2
x2xµ = 192π2m

pµ

(p2 −m2 + iε)4 , (D.8)

∫
d4x eip·x

K2(m
√
−x2)

x2 xµxν = 4π2i

m2

[
(p2 −m2)gµν − 2pµpν

(p2 −m2 + iε)2

]
, (D.9)

∫
d4x eip·x

K2(m
√
−x2)

x2 xµxνxρ = −8π2

m2

[
(p2 −m2)g{µνpρ} − 4pµpνpρ

(p2 −m2 + iε)3

]
, (D.10)

∫
d4x eip·x K2(m

√
−x2)xµxν = −16π2i

m2

[
(p2 − 4m2)(4pµpν − gµνp2)− 3m4gµν

(p2 −m2 + iε)4

]
,

(D.11)

where the curly brackets in eq. (D.10) denote the symmetrisation of the tensor gµνpρ with
respect to the three Lorentz indices.
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E Results for the OPE coefficients

The coefficients cψ̂n(ω1, q
2) in eq. (2.14) read respectively26

cψ̂V
1 (ω1, q

2) =− 1
16π2 (mB − ω1)3

(
3m2

B + 4mBmc − 6mB ω1 +m2
c − q2

− 4mc ω1 + 3ω2
1

)(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
, (E.1)

cψ̂A
1 (ω1, q

2) =− 1
16π2 (mB − ω1)3

(
m5
B − 4m4

B ω1 − 2m3
B

(
m2
c − 3ω2

1

)
+ 2m2

B ω1
(
2m2

c + q2 − 2ω2
1

)
+mB(m4

c − 2m2
c ω

2
1 − q4 − 4q2ω2

1 + ω4
1)

+ 2q2ω1(−m2
c + q2 + ω2

1)
)
, (E.2)

c
¯̂
ψYA
1 (ω1, q

2) = 1
4π2 (mB − ω1)2

(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 3q2ω1
)
, (E.3)

c
¯̂
ψYA
2 (ω1, q

2) =− mB

8π2 (mB − ω1)3

(
m2
B − 2mB ω1 −m2

c − q2 + ω2
1

)
×
(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
, (E.4)

c
¯̂
ψX̃A
1 (ω1, q

2) =− mB +mc − ω1

4π2 (mB − ω1)3
(
m2
Bmc −mBmc(mc + ω1) + q2ω1

)
, (E.5)

c
¯̂
ψX̃A
2 (ω1, q

2) = mB(mB +mc − ω1)
8π2 (mB − ω1)4

(
m2
B − 2mB(mc + ω1) +m2

c − q2

+ 2mc ω1 + ω2
1

)(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
, (E.6)

c
¯̂
ψỸA
1 (ω1, q

2) = 1
4π2 (mB − ω1)2

(
m3
B + 2m2

B(mc − ω1)

+mB(m2
c − 2mc ω1 − q2 + ω2

1) + q2ω1
)
, (E.7)

c
¯̂
ψỸA
2 (ω1, q

2) = mB

8π2 (mB − ω1)3

(
m2
B + 4mBmc − 2mB ω1 + 3m2

c − q2

− 4mc ω1 + ω2
1

)(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
, (E.8)

c
¯̂
ψW
1 (ω1, q

2) = 1
4π2 (mB − ω1)2

(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 3q2ω1
)
, (E.9)

c
¯̂
ψW
2 (ω1, q

2) =− mB

8π2 (mB − ω1)3

(
m2
B − 2mB ω1 −m2

c − q2 + ω2
1

)
×
(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
, (E.10)

26Here and in the rest of the section, we only show the non-vanishing coefficients.
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c
¯̂̄
ψZ
1 (ω1, q

2) = mBmc

2π2 (mB − ω1)2 , (E.11)

c
¯̂̄
ψZ
2 (ω1, q

2) = mBmc q
2ω1

π2 (mB − ω1)3 , (E.12)

c
¯̂̄
ψZ
3 (ω1, q

2) =− m2
Bmc

2π2 (mB − ω1)4

(
m2
B − 2mB ω1 −m2

c − q2 + ω2
1

)
×
(
m3
B − 2m2

B ω1 −mB(m2
c + q2 − ω2

1) + 2q2ω1
)
. (E.13)

∗ ∗ ∗

The coefficients cϕn(ω, q2) in eq. (3.8) read respectively

c
ϕ+
1 (ω, q2) = mB +mc − ω

8π2 (mB − ω)2

(
m3
B − 2ωm2

B −mB(m2
c + q2 − ω2) + 2q2ω

)
, (E.14)

c
ϕ̄+
1 (ω, q2) =− 1

8π2 (mB − ω)2

(
m3
B +m2

B(mc − 2ω)−mB

(
ω(mc − ω) + q2

)
+ 2q2ω

)
,

(E.15)

c
ϕ̄+
2 (ω, q2) =− mBmc(mB +mc − ω)

8π2 (mB − ω)3

(
m3
B − 2ωm2

B −mB(m2
c + q2 − ω2) + 2q2ω

)
(E.16)

c
ϕ̄−
1 (ω, q2) = 1

8π2 (mB − ω)2

(
m3
B +m2

B(mc − 2ω)−mB

(
ω(mc − ω) + q2

)
+ 2q2ω

)
,

(E.17)

c
ϕ̄−
2 (ω, q2) = mBmc (mB +mc − ω)

8π2 (mB − ω)3

(
m3
B − 2ωm2

B −mB(m2
c + q2 − ω2) + 2q2ω

)
, (E.18)

c
g+
1 (ω, q2) =− mB

2π2 (mB − ω) , (E.19)

c
g+
2 (ω, q2) =− mB

2π2 (mB − ω)3

(
m4
B − 3ωm3

B +m2
B

(
m2
c − q2 + 3ω2

)
+mB

(
−ωm2

c + 2m3
c + 3q2ω − ω3

)
− 2q2ω2

)
, (E.20)

c
g+
3 (ω, q2) =− m2

Bm
2
c(mB +mc − ω)
π2 (mB − ω)4

(
m3
B − 2ωm2

B −mB(m2
c + q2 − ω2) + 2q2ω

)
,

(E.21)

c
ḡ+
3 (ω, q2) = 3m3

Bm
3
c (mB +mc − ω)

π2 (mB − ω)4 , (E.22)

c
ḡ+
4 (ω, q2) = 3m3

Bm
3
c (mB +mc − ω)

π2 (mB − ω)5

(
m3
B − 2ωm2

B −mB

(
m2
c + q2 − ω2

)
+ 2q2ω

)
,

(E.23)
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c
ḡ−
3 (ω, q2) =− 3m3

Bm
3
c (mB +mc − ω)

π2 (mB − ω)4 , (E.24)

c
ḡ−
4 (ω, q2) =− 3m3

Bm
3
c (mB +mc − ω)

π2 (mB − ω)5

(
m3
B − 2ωm2

B −mB

(
m2
c + q2 − ω2

)
+ 2q2ω

)
.

(E.25)

∗ ∗ ∗

Finally, the coefficients cψn(u, ω, q2) in eq. (3.9) read respectively

cψV
1 (u, ω, q2) = 1

8π2 (mB − ω)3

(
mB (mB +mc − ω)

(
mB(4u− 1) + 4mc(1− u)

− 4uω + ω
)
+ 4q2(u− 1)ω

)
, (E.26)

cψV
2 (u, ω, q2) = mB

8π2 (mB − ω)4

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
×
(
(mB +mc − ω) (mB(2u− 1) + 2mc(1− u)− (2u+ 1)ω)

+ 2q2(u− 1)
)
, (E.27)

cψA
1 (u, ω, q2) = 1

8π2 (mB − ω)3

(
mB

(
3mBmc − 2mB(2uω + ω) + (2u+ 1)m2

B

+ 4(u− 1)m2
c − 3ωmc + (2u+ 1)ω2)− 4q2(u− 1)ω

)
, (E.28)

cψA
2 (u, ω, q2) = mB

8π2 (mB − ω)4

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
×
(
mB (3mc − 8uω + 2ω) + (4u− 1)m2

B + 2m2
c(u− 1)− 3ωmc

− 2q2(u− 1) + 4uω2 − ω2
)
, (E.29)

c
ψ̄XA
1 (u, ω, q2) =− mB

8π2 (mB − ω)3

(
(2u− 1)mB + 2mc − 2uω + ω

)
, (E.30)

c
ψ̄XA
2 (u, ω, q2) = mB

8π2 (mB − ω)4

(
q2(mB(ω − 2uω) + (1− 2u)m2

B

+ 2ω
(
(2u− 1)ω − 2mc

))
+mB

(
−2ωmB +m2

B −m2
c + ω2

)
×
(
(2u− 1)mB − 4mc − 2uω + ω

))
, (E.31)

c
ψ̄XA
3 (u, ω, q2) = m2

B

(
mB

(
−2ωmB +m2

B −m2
c + ω2)− q2 (mB − 2ω)

)
4π2 (mB − ω)5

×
((

2ωmB −m2
B +m2

c − ω2
)
(−2umB +mB +mc + (2u− 1)ω)

− q2((2u− 1)mB +mc − 2uω + ω
))
, (E.32)
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c
ψ̄YA
2 (u, ω, q2) = 3m2

Bmc

2π2 (mB − ω)3

(
mB + (2u− 1)mc − ω

)
, (E.33)

c
ψ̄YA
3 (u, ω, q2) = 3m2

Bmc
(
mB

(
−2ωmB +m2

B −m2
c + ω2)− q2 (mB − 2ω)

)
2π2 (mB − ω)4

×
(
mB + (2u− 1)mc − ω

)
, (E.34)

c
ψ̄X̃A
1 (u, ω, q2) = mB (mB + 2mc − ω)

8π2 (mB − ω)3 , (E.35)

c
ψ̄X̃A
2 (u, ω, q2) = mB

8π2 (mB − ω)4

(
q2
(
ωmB +m2

B + 4ωmc − 2ω2
)

+mB

(
mB

(
−8ωmc +m2

c − 3ω2
)
+m2

B (4mc + 3ω)

−m3
B + 4ω2mc − ωm2

c − 4m3
c + ω3)) , (E.36)

c
ψ̄X̃A
3 (u, ω, q2) =− m2

B (mB +mc − ω)
4π2 (mB − ω)5

(
2q2(m2

B (mc + 3ω)− 3ωmB (mc + ω)

−m3
B + ω (mc + ω)2)+mB (mB −mc − ω)3 (mB +mc − ω)

+ q4 (mB − 2ω)
)
, (E.37)

c
ψ̄ỸA
2 (u, ω, q2) =− 3m2

Bmc

2π2 (mB − ω) 3 (mB +mc − ω) , (E.38)

c
ψ̄ỸA
3 (u, ω, q2) =− 3m2

Bmc (mB +mc − ω)
2π2 (mB − ω) 4

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
, (E.39)

cψ̄W
2 (u, ω, q2) = 3m2

Bmc

2π2 (mB − ω)3

(
mB + (2u− 1)mc − ω

)
, (E.40)

cψ̄W
3 (u, ω, q2) = 3m2

Bmc

2π2 (mB − ω)4

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
×
(
mB + (2u− 1)mc − ω

)
, (E.41)

c
¯̄ψW
2 (u, ω, q2) = 3(2u− 1)m2

Bm
2
c

2π2 (mB − ω) 4 , (E.42)

c
¯̄ψW
3 (u, ω, q2) =− 3m2

Bmc

2π2 (mB − ω) 5

(
q2
(
ωmB −m2

B + 2(1− 2u)ωmc

)
+mB

(
−2ωmB +m2

B −m2
c + ω2

)
(mB + (2− 4u)mc − ω)

)
, (E.43)
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c
¯̄ψW
4 (u, ω, q2) =− 3m3

Bmc

2π2 (mB − ω) 6

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
×
(
q2 (−mB − 2umc +mc + ω) +

(
−2ωmB +m2

B −m2
c + ω2

)
× (mB − 2umc +mc − ω)

)
, (E.44)

c
¯̄ψZ
2 (u, ω, q2) = 3m2

Bmc

π2 (mB − ω) 3 , (E.45)

c
¯̄ψZ
3 (u, ω, q2) = 3m2

Bmc

π2 (mB − ω) 4

(
mB

(
(3− 6u)mBmc − 2ωmB +m2

B + 3(2u− 1)ωmc

− 4m2
c + ω2)− q2 (mB − 2ω)

)
, (E.46)

c
¯̄ψZ
4 (u, ω, q2) =− 9m3

Bm
2
c

π2 (mB − ω) 5

(
mB

(
−2ωmB +m2

B −m2
c + ω2

)
− q2 (mB − 2ω)

)
×
(
(2u− 1)mB +mc − 2uω + ω

)
. (E.47)
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