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1 Introduction

The diffractive production of high momentum particles, such as quark-antiquark dijets,
serves as a probe of various aspects of the hadron structure [1]. For example, in the
diffractive dissociation of photons or pions into dijets, the forward cross section at large
jet transverse momenta maps out the unintegrated gluon distribution of the target [2, 3].
Recently, there has been much interest in a generalization of unintegrated (or transverse
momentum dependent) parton distributions to a five-dimensional quasi-probability phase
space distribution, known as the Wigner distribution [4, 5], which depends on both the
transverse momentum and impact parameter of a parton in the proton or nucleus. When
transformed fully to momentum space these are equivalent to the generalized transverse
momentum distributions (GTMDs), see e.g. [6–8]. In particular, these distributions encode
the dependence on the transverse momentum transfer ∆⃗⊥ to the target and, therefore, are
of relevance for the description of the forward cone in diffractive processes.

The Wigner distribution depends on the transverse momentum k⃗⊥ of partons as well
as the impact parameter b⃗⊥, including a dependence on the azimuthal angle between the
two transverse vectors. In the GTMD approach this translates into a dependence on k⃗⊥
and ∆⃗⊥. This dependence gives rise to a so-called elliptic Wigner function or GTMD [9].
In the region of small-x which is of interest in this paper, the equivalent color dipole ap-
proach for diffractive processes [10, 11] can be used. Here, the dipole amplitude depending
on dipole size r⃗⊥ and impact parameter b⃗⊥ contains the same information as the Wigner
function/GTMD. The azimuthal angle correlation discussed above translates then into a de-
pendence on the dipole orientation with respect to the background color field of the target.
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Figure 1. Feynman diagrams for the diffractive photoproduction of qq̄ pairs in nucleus-proton
collisions, discussed in the present paper.

In inclusive processes this dependence can give rise to flow-like azimuthal correlations, for
example in prompt photons production [12], or in inclusive two-particles’ production [13].

It was advocated that the elliptic gluon distributions could be studied in diffractive
reactions, such as:

• Exclusive dijet production in ep collisions [14, 15]. For calculations in the color dipole
approach, see [16–18];

• Exclusive dijet photoproduction in pA and AA ultra-peripheral collisions (UPCs) [19];

• Exclusive QQ̄ (with Q = c, b) photoproduction in pA and AA UPCs [20].

Here, we revisit the exclusive production of cc̄ pairs in proton-lead collisions at LHC en-
ergies. The dominant reaction mechanism here is the diffractive photoproduction of the
cc̄ pair on a proton by a Weizsäcker-Williams photon emitted by the lead nucleus, see the
diagrams in figure 1. One is then interested in the correlations of

P⃗⊥ = 1
2(p⃗⊥Q − p⃗⊥Q̄) , (1.1)

and the momentum transfer to the proton, which for the exclusive reaction fulfills

∆⃗⊥ = p⃗⊥Q + p⃗⊥Q̄ . (1.2)

In this work we account only for the contribution where the ion serves as a source of the
photon. Here we exploit the fact, that the photon flux scales with the charge of the ion as
Z2. This factor will be missing when the photon is emitted by the proton. On the other
hand, the integrated diffractive process on the nucleus will display a dependence σ ∝ Aα,
with roughly α ∼ 1.4 ÷ 1.5 (see e.g. [1, 3]). While the diffractive photoproduction on the
nucleus may therefore still be a sizeable effect, the extraction of the process discussed in
this paper is possible if proton tagging [21–23] is available, due to the very sharp transverse
momentum dependence of the electromagnetically scattered proton.

In distinction to dijet production, for the heavy quarks already the quark mass mQ can
play the role of a hard scale, and also intermediate and small values of P⃗⊥ are tractable.
Here, we will calculate cross sections and distributions for realistic kinematic conditions at
the LHC. We also discuss some subtleties regarding the correlations in the azimuthal angle

cos ϕ = P⃗⊥ · ∆⃗⊥
P⊥∆⊥

. (1.3)
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At large jet momenta P⊥ the correlations in ϕ expected to be dominantly ∝ cos(2ϕ)
and are unambiguously expressed in terms of the elliptic Wigner function/GTMD. At lower
P⊥, however, the azimuthal correlations are better understood as coming from the matrix
element (or impact factor) at finite ∆⊥. While formally also these correlations can be
absorbed into the Wigner function/GTMD, these would correspond to δ-function terms in
the latter. We discuss the relation between the different approaches and the alternative
formulation in terms of a off-forward gluon density matrix introduced in ref. [24].

This paper is organized as follows. In section 2, we explain how to calculate the
diffractive cross section of interest and discuss the formalism starting from the dipole
representation of the amplitude. Then, in section 3 we present our numerical results for
differential cross sections as functions of various kinematical variables using a variety of the
existing gluon GTMD models. Finally, in section 4 the main conclusions are summarised.

2 Formalism

2.1 Kinematics and cross section

The cross section for the proton-nucleus reaction can be written in the following form

dσ(pA → QQ̄pA; s)
dxQdxQ̄d2P⃗⊥d2∆⃗⊥

= 1
xQ + xQ̄

fγ/A(xQ + xQ̄)
dσ(γp → QQ̄p; (xQ + xQ̄)s)

dzd2P⃗⊥d2∆⃗⊥
, (2.1)

with z = xQ/(xQ + xQ̄). Here, xQ, xQ̄ are the fractions of the nucleus’ Light-Front plus
momentum carried by a heavy quark Q and antiquark Q̄ (with mass mQ), respectively.
The transverse momenta of quark and antiquark are

p⃗⊥Q = P⃗⊥ + ∆⃗⊥
2 , p⃗⊥Q̄ = −P⃗⊥ + ∆⃗⊥

2 , (2.2)

respectively, so that ∆⃗⊥ is the transverse momentum of the QQ̄ pair. As the photon
is collinear to the incoming nucleus, ∆⃗⊥ is also equal, up to a sign, to the transverse
momentum transfer to the proton target.

The Weizsäcker-Williams photons carry the momentum fraction

xA = xQ + xQ̄ . (2.3)

For the flux of quasireal photons,

fγ/A(xA) = dN(xA)
dxA

, (2.4)

we use the well-known expression (see for example the review [25]),

dN(xA)
dxA

= 2Z2αem
πxA

[
ξjAK0(ξjA)K1(ξjA) −

ξ2
jA

2 (K2
1 (ξjA) − K2

0 (ξjA))
]

, (2.5)

where Z correspond to the atomic number of the projectile particle, αem is the fine struc-
ture constant, ξjA = xAmp(Rj + RA) involves the target and nucleus radii (Rj and RA,
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respectively) and effectively excludes the overlap of the projectile and the target in impact
parameter space, and mp is the proton mass.

Let us also quote a useful expression for the cross section which reads in terms of
center-of-mass rapidities yQ, yQ̄ of quarks,

dσ(pA → QQ̄pA; s)
dyQdyQ̄d2P⃗⊥d2∆⃗⊥

= xA
dN(xA)

dxA

(
z(1 − z)dσ(γp → QQ̄p; xAs)

dzd2P⃗⊥d2∆⃗⊥

)∣∣∣∣∣
z=

xQ
xA

, (2.6)

where

xQ =

√
p2
⊥Q + m2

Q

s
exp(yQ), xQ̄ =

√
p2
⊥Q̄

+ m2
Q

s
exp(yQ̄) . (2.7)

We also need the transverse mass of the QQ̄-pair, which square is given by

M2
⊥ = xA

(
p2
⊥Q + m2

Q

xQ
+

p2
⊥Q̄

+ m2
Q

xQ̄

)
. (2.8)

The rapidity of the QQ̄-pair in the cm-frame can then be calculated from

Ypair = 1
2 log

(
xA

xB

)
= log

(
xA

√
s

M⊥

)
, xAxBs = M2

⊥. (2.9)

We will be also interested in the laboratory frame rapidities, which are obtained from
the shift

yLAB
Q,Q̄

= yQ,Q̄ + 1
2 log

(
Z

A

)
, Y LAB

pair = Ypair + 1
2 log

(
Z

A

)
, (2.10)

where for the 208Pb nucleus, we have A = 208, Z = 82.

2.2 Color dipole representation of the diffractive amplitude

We start our discussion from a basic description of the color dipole approach to diffractive
processes [10, 11]. Here, the cross section for the γp → QQ̄ diffractive dissociation process
is written as

dσ(γp → QQ̄p; sγp)
dzd2P⃗⊥d2∆⃗⊥

=
∑

λγ ,λ,λ̄

∣∣∣∣∣
∫

d2⃗b⊥d2r⃗⊥
(2π)2 e−i∆⃗⊥ ·⃗b⊥e−iP⃗⊥·r⃗⊥N(Y, r⃗⊥, b⃗⊥) Ψλγ

λλ̄
(z, r⃗⊥)

∣∣∣∣∣
2

.

(2.11)

Above, z, 1−z are the Light-Front momentum fractions carried by quark/antiquark in the
γ → QQ̄ transition. The corresponding Light-Front wave function for the γ → QQ̄,

Ψλγ

λλ̄
(z, r⃗⊥) = 1√

4πz(1 − z)

∫
d2 l⃗⊥
(2π)2 eir⃗⊥ ·⃗l⊥ Ψλγ

λλ̄
(z, l⃗⊥) , (2.12)

depends on the Light-Front helicities of quarks, λ/2, λ̄/2 and photon, λγ . Its explicit form
in transverse momentum space can be found for example in ref. [26].
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Our main interest is in the dipole scattering amplitude N(Y, r⃗⊥, b⃗⊥). Its energy depen-
dence is encoded through the “rapidity” Y . We define the latter as Y = ln(x0/xP), with
x0 = 0.01. Here,

xP ≡ xB = M2
⊥

sγp
= M2

⊥
xAs

, (2.13)

where M⊥ is the transverse mass of the QQ̄ system. The dipole amplitude is related to
the familiar color dipole cross section (see e.g. the textbook [27]) via

σ(xP, r⃗⊥) = 2
∫

d2⃗b⊥ N(Y, r⃗⊥, b⃗⊥) . (2.14)

It is related to an off-diagonal generalization of the unintegrated gluon distribution — a
gluon density matrix through the relation [24]:

N(Y, r⃗⊥, b⃗⊥) =
∫

d2q⃗⊥d2κ⃗⊥ f

(
Y,

q⃗⊥
2 + κ⃗⊥,

q⃗⊥
2 − κ⃗⊥

)
exp[iq⃗⊥ · b⃗⊥]

×
{

exp
[
i
1
2 q⃗⊥ · r⃗⊥

]
+ exp

[
−i

1
2 q⃗⊥ · r⃗⊥

]
− exp[iκ⃗⊥ · r⃗⊥] − exp[−iκ⃗⊥ · r⃗⊥]

}
.

(2.15)

Quark and antiquark move at impact parameters,

b⃗⊥Q = b⃗⊥ + r⃗⊥
2 , b⃗⊥Q̄ = b⃗⊥ − r⃗⊥

2 , (2.16)

which allow us to relate the four phase factors in the curly bracket in eq. (2.15) to the four
diagrams of figure 1 in an obvious fashion. We write the unintegrated gluon density matrix
in the following form,

f

(
Y,

q⃗⊥
2 + κ⃗⊥,

q⃗⊥
2 − κ⃗⊥

)
= αs

4πNc

F
(
xP, q⃗⊥

2 + κ⃗⊥, q⃗⊥
2 − κ⃗⊥

)
(

q⃗⊥
2 + κ⃗⊥

)2 ( q⃗⊥
2 − κ⃗⊥

)2 , (2.17)

where Nc = 3 for the number of colors in QCD, and we put in evidence the strong coupling
constant αs and gluon propagators here.

Integrating eq. (2.15) over b⃗⊥, we obtain for the dipole cross section the well-known
representation [28]

σ(xP, r⃗⊥) = 2π

Nc

∫
d2κ⃗⊥
κ4
⊥

αsF(xP, κ⃗⊥,−κ⃗⊥)
{

2 − eiκ⃗⊥·r⃗⊥ − e−iκ⃗⊥·r⃗⊥
}

, (2.18)

so that indeed F(x, κ⃗⊥1, κ⃗⊥2) is the proper off-forward generalization of the standard un-
integrated gluon distribution, which relates to its collinear counterpart via

xg(x, µ2) =
∫

d2κ⃗⊥
πκ2

⊥
θ(µ2 − κ2

⊥)F(x, κ⃗⊥,−κ⃗⊥) . (2.19)

Below, we will also use the non-perturbative parameter,

σ0(xP) = 4π

Nc

∫
d2κ⃗⊥
κ4
⊥

αsF(xP, κ⃗⊥,−κ⃗⊥) , (2.20)

which has the interpretation of the dipole cross section for large dipoles.
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Now, inserting the representation of the dipole amplitude given in eq. (2.15) into
eq. (2.11), we obtain for the diffractive amplitude the following convolution structure:

A(Y, P⃗⊥, ∆⃗⊥) ∝
∫

d2κ⃗⊥ f

(
Y,

∆⃗⊥
2 + κ⃗⊥,

∆⃗⊥
2 − κ⃗⊥

) {
Ψλγ

λλ̄

(
z, P⃗⊥ + ∆⃗⊥

2

)
+ Ψλγ

λλ̄

(
z, P⃗⊥− ∆⃗⊥

2

)

−Ψλγ

λλ̄
(z, P⃗⊥ + κ⃗⊥)−Ψλγ

λλ̄
(z, P⃗⊥− κ⃗⊥)

}
.

(2.21)
Here, in the terminology of small-x (or BFKL) factorization, one would refer to the struc-
ture in brackets as the impact factor for the coupling of two off-shell gluons to the γ → QQ̄

amplitude. The two t-channel gluons carry the transverse momenta,

κ⃗⊥1 = ∆⃗⊥
2 + κ⃗⊥, κ⃗⊥2 = ∆⃗⊥

2 − κ⃗⊥ , (2.22)

and the impact factor has the property that it vanishes when either of the gluon transverse
momenta goes to zero, i.e. for κ⃗⊥ = ±∆⃗⊥/2.

Finally, we obtain for our diffractive photoproduction cross section:

dσ(γp → QQ̄p; sγp)
dzd2P⃗⊥d2∆⃗⊥

= e2
f αem 2Nc(2π)2

{(
z2 + (1 − z)2

) ∣∣∣M⃗0
∣∣∣2 + m2

Q |M1|2
}

. (2.23)

Here, M1 and M⃗0 are amplitudes for the sum of quark helicities equal to one or zero,
respectively. Explicitly, we find (see e.g. ref. [29]):

M⃗0(P⃗⊥, ∆⃗⊥) =
∫

d2k⃗⊥
2π

f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

) P⃗⊥ − ∆⃗⊥/2
(P⃗⊥ − ∆⃗⊥/2)2 + m2

Q

+ P⃗⊥ + ∆⃗⊥/2
(P⃗⊥ + ∆⃗⊥/2)2 + m2

Q

− P⃗⊥ − k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

− P⃗⊥ + k⃗⊥

(P⃗⊥ + k⃗⊥)2 + m2
Q

 ,

M1(P⃗⊥, ∆⃗⊥) =
∫

d2k⃗⊥
2π

f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

) 1
(P⃗⊥ − ∆⃗⊥/2)2 + m2

Q

+ 1
(P⃗⊥ + ∆⃗⊥/2)2 + m2

Q

− 1
(P⃗⊥ − k⃗⊥)2 + m2

Q

− 1
(P⃗⊥ + k⃗⊥)2 + m2

Q

 .

(2.24)

In order to understand the origin of azimuthal correlations, it is useful to decompose
our amplitude. To this end, let us introduce

J⃗0(P⃗⊥, q⃗⊥) = P⃗⊥ − q⃗⊥

(P⃗⊥ − q⃗⊥)2 + m2
Q

+ P⃗⊥ + q⃗⊥

(P⃗⊥ + q⃗⊥)2 + m2
Q

− 2P⃗⊥

P⃗ 2
⊥ + m2

Q

,

J1(P⃗⊥, q⃗⊥) = 1
(P⃗⊥ − q⃗⊥)2 + m2

Q

+ 1
(P⃗⊥ + q⃗⊥)2 + m2

Q

− 2
P⃗ 2
⊥ + m2

Q

. (2.25)
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Then, our matrix elements take the form:

M⃗0(P⃗⊥, ∆⃗⊥) = J⃗0

(
P⃗⊥,

1
2∆⃗⊥

)
C(Y, ∆⃗⊥)−

∫
d2k⃗⊥
2π

J⃗0(P⃗⊥, k⃗⊥) f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
,

M1(P⃗⊥, ∆⃗⊥) = J1

(
P⃗⊥,

1
2∆⃗⊥

)
C(Y, ∆⃗⊥)−

∫
d2k⃗⊥
2π

J1(P⃗⊥, k⃗⊥) f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
.

(2.26)
There emerges a rapidity-dependent form factor,

C(Y, ∆⃗⊥) =
∫

d2k⃗⊥
2π

f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
, (2.27)

which is a non-perturbative parameter, as is obvious from its form in the forward limit as
an integral,

C(Y, 0) = 1
4πNc

∫
d2k⃗⊥
2πk4

⊥
αsF(xP, k⃗⊥,−k⃗⊥) , (2.28)

that converges at soft, non-perturbative values of k⊥. Indeed, as can be seen from eq. (2.20),
it is directly proportional to the dipole cross section for large dipoles, σ0(xP).

2.3 GTMD representation

In the literature, often a different momentum-space representation of the diffractive am-
plitude is used (see, for example, refs. [9, 19, 20]). Namely, one introduces the Fourier
transform of the dipole amplitude (using the normalization and notation of ref. [20]),

T (Y, k⃗⊥, ∆⃗⊥) =
∫

d2⃗b⊥
(2π)2

d2r⃗⊥
(2π)2 e−i∆⃗⊥ ·⃗b⊥ e−ik⃗⊥·r⃗⊥ N(Y, r⃗⊥, b⃗⊥) . (2.29)

Here, T (Y, k⃗⊥, ∆⃗⊥) is often referred to as the generalized transverse momentum distribution
(GTMD) of gluons in the proton target. Certainly, just like the gluon density matrix
f
(
Y, q⃗⊥

2 + κ⃗⊥, q⃗⊥
2 − κ⃗⊥

)
, it encodes the same information as the dipole amplitude. What

is the relation between these two momentum space distributions?
To answer this question, let us perform the Fourier transform by inserting eq. (2.15)

into eq. (2.29), which yields

T (Y, k⃗⊥, ∆⃗⊥) = C(Y, ∆⃗⊥)
(

δ(2)
(

k⃗⊥ − ∆⃗⊥
2

)
+ δ(2)

(
k⃗⊥ + ∆⃗⊥

2

))

− f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
− f

(
Y,

∆⃗⊥
2 − k⃗⊥,

∆⃗⊥
2 + k⃗⊥

)
, (2.30)

where C(Y, ∆⃗⊥) of eq. (2.27) multiplies a combination of δ-functions. Now, evidently T is
essentially equal to the f , up to the term containing δ-functions. The latter, however, will
not contribute when convoluted with the impact factor in eq. (2.21). Formally, we might
therefore replace

f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
→ −1

2 T (Y, k⃗⊥, ∆⃗⊥) . (2.31)
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In practical numerical applications, however, this equivalence is not that obvious. In diffrac-
tive interactions the values of ∆⊥ are bounded by the diffractive slope BD, so that at large
values of k⊥ the delta-functions are irrelevant, and the two gluon distributions, f and T

are equal to each other, up to a factor of 1/2.
An immediate corollary of the representation in eq. (2.30) is the sum rule∫

d2k⃗⊥ T (Y, k⃗⊥, ∆⃗⊥) = 0 , (2.32)

which encodes the fact, that N(Y, r⃗⊥, b⃗⊥) → 0 for r⊥ → 0. Generally speaking, as evidenced
by the presence of δ-function terms, the Fourier transform is a non-convergent integral and
does not exist as a function. One therefore needs to regularize the Fourier transform which
is often done by inserting a Gaussian cutoff function [9, 19, 20]:

T (Y, k⃗⊥, ∆⃗⊥) =
∫

d2⃗b⊥
(2π)2

d2r⃗⊥
(2π)2 e−i∆⃗⊥ ·⃗b⊥e−ik⃗⊥·r⃗⊥ N(Y, r⃗⊥, b⃗⊥) e−εr2

⊥ . (2.33)

Now, inserting the representation in eq. (2.15), we obtain the cutoff-dependent T as

T (Y, k⃗⊥, ∆⃗⊥) = C(Y, ∆⃗⊥)
(

δ(2)
ε

(
k⃗⊥ − ∆⃗⊥

2

)
+ δ(2)

ε

(
k⃗⊥ + ∆⃗⊥

2

))

− fε

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
− fε

(
Y,

∆⃗⊥
2 − k⃗⊥,

∆⃗⊥
2 + k⃗⊥

)
, (2.34)

where
δ(2)

ε (k⃗⊥) = 1
4πε

exp
(
−k2

⊥
4ε

)
, (2.35)

is a “smeared out” delta-distribution, and

fε

(
Y,

∆⃗⊥
2 − k⃗⊥,

∆⃗⊥
2 + k⃗⊥

)
=
∫

d2κ⃗⊥ f

(
Y,

∆⃗⊥
2 − κ⃗⊥,

∆⃗⊥
2 + κ⃗⊥

)
δ(2)

ε (k⃗⊥ − κ⃗⊥) (2.36)

is a smeared out version of the gluon density matrix. The regularized T -matrix also fulfills
the sum rule of eq. (2.32).

Let us finally quote the expressions of matrix elements M⃗0, M1 in terms of T ,
which read:

M⃗0 =
∫

d2k⃗⊥
2π

T (Y, k⃗⊥, ∆⃗⊥)

 P⃗⊥ − k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

− P⃗⊥

P⃗ 2
⊥ + m2

Q

 ,

M1 =
∫

d2k⃗⊥
2π

T (Y, k⃗⊥, ∆⃗⊥)

 1
(P⃗⊥ − k⃗⊥)2 + m2

Q

− 1
P⃗ 2
⊥ + m2

Q

 . (2.37)

In its derivation we made use of the sum rule of eq. (2.32). Notice, that in effect here we
use the impact factor for forward scattering, and all dependence on ∆⃗⊥ has been absorbed
into the GTMD T (Y, k⃗⊥, ∆⃗⊥).
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2.4 Benchmark gluon GTMDs

Let us briefly discuss the different GTMD models used in this work. We follow both
approaches presented above, and consider a total of five different models as benchmarks in
our analysis of the differential cross section of charm photoproduction in pA UPCs.

First, we use two different parametrizations of the off-forward gluon density matrix f

of eq. (2.17). Here, we choose to write

f

(
Y,

∆⃗⊥
2 + k⃗⊥,

∆⃗⊥
2 − k⃗⊥

)
= αs

4πNc

F(xP, k⃗⊥,−k⃗⊥)
k4
⊥

exp
[
−1

2B∆⃗2
]

. (2.38)

Such a form has been suggested in ref. [30] for the case of vector meson production (for
a recent use, see ref. [31]). The same approach has also been taken in ref. [12]. For the
diffractive slope, we use B = 4 GeV−2, and the diagonal unintegrated gluon distribution
F is taken from two different models: the Golec-Biernat-Wüsthoff (GBW) model [32], and
the Moriggi-Peccini-Machado (MPM) parametrization [33].

We also consider models based on the regularized Fourier transform of dipole ampli-
tudes as in eq. (2.33). The first model is based on a numerical solution of the Balitsky-
Kovchegov equation for the dipole S-matrix with impact parameter dependence [34, 35].
Such solutions have been obtained, for example in refs. [36–38]. In our work we use the
results of ref. [9]. This solution is based on exploiting a symmetry first observed in [39].
We label it as HHU below.

The second model, based on the original effective McLerran-Venugopalan model of
ref. [40], that has been generalised for the proton target and extended to incorporate inho-
mogeneities in the transverse-plane distribution of gluons in ref. [13]. The latter model has
been applied for exclusive diffractive light and heavy quarks’ photoproduction in refs. [19]
and [20], respectively. We denote this model as MV-IR in what follows. A third model is
the so-called bSat model of Kowalski and Teaney [41]. The Kowalski-Teaney (KT) model
has been adjusted to the proton structure function data and hence it gives a rather realistic
dipole amplitude. We use parameters from table I fit 3 of [41] for the gluon distribution.
In this regard, the HHU and MV-IR models can be considered as rather toy models, they
do, however, incorporate non-trivial dipole orientation effects, which is not the case for the
KT model.

The leading dependence on dipole orientation is quantified by the elliptic part Nϵ of
the dipole amplitude in the Fourier expansion,

N(Y, r⃗⊥, b⃗⊥) = N0(Y, r⊥, b⊥) + 2 cos(2ϕbr) Nϵ(Y, r⊥, b⊥) + . . . . (2.39)

We translate the isotropic and elliptic parts of the dipole amplitude to GTMDs by the
appropriate Fourier-Bessel transforms [14, 19, 20]:

T0(Y, k⊥, ∆⊥) = 1
4π2

∫ ∞

0
b⊥db⊥J0(∆⊥b⊥)

∫ ∞

0
r⊥dr⊥J0(k⊥r⊥) N0(Y, r⊥, b⊥)e−εr2

⊥ ,

Tϵ(Y, k⊥, ∆⊥) = 1
4π2

∫ ∞

0
b⊥db⊥J2(∆⊥b⊥)

∫ ∞

0
r⊥dr⊥J2(k⊥r⊥) Nϵ(Y, r⊥, b⊥)e−εr2

⊥ .

(2.40)
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The explicit form of the matrix element for the elliptic glue for arbitrary quark mass mQ

has been found in ref. [20]. We briefly review its derivation in appendix A.
It is interesting to note that the gluon density matrices, constructed according to

the prescription of eq. (2.38), do also lead to a dipole amplitude that depends on dipole
orientation, as can be seen by plugging the expression of eq. (2.38) into eq. (2.15). It gives
us the expression

N(Y, r⃗⊥, b⃗⊥) = 1
4

{
tN

(⃗
b⊥ + r⃗⊥

2

)
+ tN

(⃗
b⊥− r⃗⊥

2

)
− 2tN (⃗b⊥)

}
σ0(xP) + 1

2 tN (⃗b⊥)σ(xP, r⃗⊥) ,

(2.41)
where

tN (⃗b⊥) =
∫

d2q⃗⊥
(2π)2 exp(−iq⃗⊥ · b⃗⊥) exp

[
−1

2Bq2
⊥

]
. (2.42)

Again, we see that the dipole orientation dependence appears together with the non-
perturbative parameter σ0 — the dipole cross section for large dipoles.

We want to stress, that the correlation between r⃗⊥ and b⃗⊥ emerges, although eq. (2.38)
does not contain any correlation between k⃗⊥ and ∆⃗⊥! The r⃗⊥ · b⃗⊥ correlation is in fact
of a simple geometric origin, as it singles out the contributions of diagrams where only
the quark or antiquark interact and probe the matter density at their respective impact
parameters. There is no obvious way how to construct an off-forward glue that leads to
totally isotropic dipole amplitude. For this to happen, the relevant dipole sizes simply have
to be small enough for the matter density to be constant over distances ∼ r⊥. Then the
shifts in the curly brackets do not matter and only the last term in eq. (2.41) effectively
contributes. Of course, in general one would expect eq. (2.17) to have nontrivial azimuthal
correlations between k⃗⊥ and ∆⃗⊥, in which case the dipole amplitude will have a genuinely
dynamical elliptic piece that can contribute also at hard momenta P⃗⊥.

Finally, to wrap up this section, in figure 2 we show the (k⃗⊥, ∆⃗⊥) maps for various
dipole-nucleon amplitudes T (Y, k⃗⊥, ∆⃗⊥) for comparison. In figure 3 we show for xP = 0.01
and ∆⊥ = 0.01 GeV the function of eq. (2.38) for the GBW and MPM models, and the result
of the Fourier transform eq. (2.40). Notice that the latter do change sign, in accordance
with the sum rule eq. (2.32).

3 Numerical results

We now turn to our numerical results for the production of cc̄ pairs. In this work, we use
the charm quark mass value of mc = 1.5 GeV. In this section, we show the cross-section
distributions for cc̄ photoproduction in pA UPCs differential in yLAB

c , Y LAB
pair , xP, as well

as P⊥, ∆⊥, t and ϕ, for several benchmark models of the gluon GTMD in the proton
discussed above. We will show numerical results for differential distributions integrated
over 0.01 < P⊥ < 10 GeV, as well as over 5 < P⊥ < 10 GeV domains of the phase space.
For all distributions calculated as Fourier transforms of N(Y, r⃗⊥, b⃗⊥) (see eq. (2.33)) we use
the same regularization parameter ε = (0.5 fm)−2 as in ref. [20]. In table 1, we show our
results for the integrated cross section for P⊥ < 10 GeV as well as for 5 < P⊥ < 10 GeV.
In addition we show results for xP < 0.05. The results with the extra cut are only slightly
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Figure 2. Different parametrizations for the gluon distribution in the proton.
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Figure 3. Different parametrizations for the gluon distribution in the proton for ∆ = 0.01 GeV
and xP = 0.01 (on the left side) as well as xP = 0.0001 (on the right side). For the HHU, KT and
MV-IR models, the regularization parameter ε = (0.5 fm)−2 was chosen.
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xP < 1.0 xP < 0.05
GTMD approaches σ [µb] σP⊥>5.0 GeV [µb] σ [µb] σP⊥>5.0 GeV [µb]
GBW 335.199 0.051 330.046 0.046
MPM 321.141 0.201 293.300 0.173

ε = (0.5 fm)−2

HHU 520.691 4.573 520.691 4.573
KT 66.699 0.111 65.023 0.110
MV-IR 136.675 0.606 129.883 0.526

ε = 1
2(0.5 fm)−2

HHU 743.411 4.348 743.411 4.348
KT 85.487 0.106 83.039 0.105
MV-IR 169.561 0.587 161.360 0.510

Table 1. Total cross section for 0.01 < P⊥ < 10.0 GeV and for 5.0 < P⊥ < 10.0 GeV and different
approaches. In this table, the cross sections are integrated over ∆⊥ < 3 GeV and −8 < yc < 8.

smaller, except of the MPM model. In table 1 we also varied the parameter ε by a factor
two in order to give an estimate on the dependence on ε, which turns out to be rather large.

We notice considerable differences for the different GTMDs at large transverse mo-
menta. For instance, the GBW distribution drops off with transverse momentum uch
faster than other GTMDs. This is due to the fact that the GBW UGD does not possess
the perturbative power-law tail at large momenta, but rather features a Gaussian distri-
bution in transverse momenta with an x-dependent width. It should also be noted that
the original MV-IR distribution is formulated in ref. [13] without xP (or Y ) dependence.
To get semi-realistic results for the differential distributions, the original MV-IR has been
modified as

T mod
MV-IR(Y, k⃗⊥, ∆⃗⊥) = TMV-IR(k⃗⊥, ∆⃗⊥) eλY , Y = ln

(0.01
xP

)
, (3.1)

with λ = 0.277. It should be noted that more realistic extensions of the MV-IR model have
been proposed in the literature, see e.g. [42].

We start our presentation from the lab-frame rapidity distributions of charm quarks
in figure 4. Here, the incoming nucleus has a large positive rapidity, and the proton — a
large negative rapidity. The range of the rapidity distribution at large yLAB

c is essentially
controlled by the photon flux. We see that the HHU GTMD leads to a significantly higher
peak in the charm rapidity distribution than other models, and extends at the negative side
only to yLAB

c ∼ −4. This is due to the fact that it has a support only for small xP < 0.01.
The GBW distribution gives results consistent with an earlier calculation of Gonçalves
et al. [43], where only rapidity distributions were studied. In addition, the distributions in
lab-frame rapidity of the cc̄-pair are shown in figure 5. They rather closely resemble the
single-quark rapidity distributions. The related xP distributions are presented in figure 6.
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Figure 4. Distributions in lab-frame rapidity of the charm quark yLAB
c for 0.01 < P⊥ < 10.0 GeV

on the left and for 5.0 < P⊥ < 10.0 GeV on the right.
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Figure 7. Distributions in P⊥.

Values of xP as small as 10−5 enter the calculation. Note that in the case of HHU GTMD,
we assumed that this distribution only applies for xP < 0.01.

A comment on the range of the xP distributions is in order. Notice, that the diffractively
scattered proton will carry a fraction ξ ≈ 1−xP of the beam momentum. Also, the rapidity
gap between the products of photon dissociation rises at small xP as ∝ log(1/(1 − ξ)) ∼
log(1/xP). It is therefore clear that an experiment, which tags protons carrying a sizeable
fraction of the beam momentum, would provide an upper limit on xP. For a discussion of
relevant forward detectors at the LHC, see [21–23]. This goes together with considerations
on the applicability of the dipole amplitudes used in this paper. This will in general require
a large rapidity gap as mentioned above. There will be no sharp value of xP where the dipole
approach breaks down, but one would expect it to require xP ≪ 0.1, with a conservative
upper limit of xP < 0.05. In absence of concrete experimental conditions, below we will
integrate over the whole phase space, i.e. up to xmax

P = 1, expecting that the impact from
large xP to the integrals is in general small. An exception are the distributions in rapidity,
where large negative rapidities are close to the proton beam, and therefore associated with
small gaps. We return to this issue at the end of this section, where we demonstrate the
role of a cutoff xmax

P on the various distributions.
We observe that the cut due to ε in eq. (2.40) has a different impact for different

models. In particular, it has a strong effect on the KT model in the region of small PT ,
where the bulk of the cross section resides. This makes the distributions integrated over
PT for the KT model very small. For PT > 2 GeV, however the results are comparable to
other models. Eventually the value of the ε could be adjusted to experimental data.

Let us now term to transverse momentum distributions of the produced charm quarks.
In figure 7 we show the differential distributions in P⊥. We notice a considerable difference
in the tail of the distributions, with the GBW glue giving the softest behaviour as expected.
In figure 8 we present the charm distribution in ∆⊥. As generically anticipated for diffrac-
tive scattering, such a distribution is peaked at low values of ∆⊥ ∼ 1/

√
B, with B being

the diffractive slope. The HHU model somewhat stands out as it gives rise to a peak in ∆⊥
distribution that is shifted to a softer value than that for the other GTMD models consid-

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

   (GeV)∆

200

400

600

800

1000

1200

b
/G

e
V

)
µ

  
 (

∆
/d

σ
d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV0.0 < P

HHU model KT model MV-IR model 

MPM model GBW model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

   (GeV)∆

0

1

2

3

4

5

6

7

8

b
/G

e
V

)
µ

  
 (

∆
/d

σ
d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV5.0 < P

HHU model KT model MV-IR model 

MPM model GBW model

Figure 8. Distributions in ∆⊥ for 0.01 < P⊥ < 10.0 GeV on the left and for 5.0 < P⊥ < 10.0 GeV
on the right.
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Figure 9. Distributions in −t for 0.01 < P⊥ < 10.0 GeV on the left and for 5.0 < P⊥ < 10.0 GeV
on the right.

ered in this work. These distributions are the result of the dynamics of gluons encoded in
the BK equation. Presumably the behaviour of the ∆⊥ distribution could be made more
realistic by introducing a similar regulator function in the impact parameter variable b⊥ as
in eq. (2.40) for the dipole size r⊥. Here however we restrain from introducing additional
parameters.

Next, in figure 9, we show the distribution in the Mandelstam variable

t = −
∆2

⊥ + x2
Pm2

p

1 − xP
(3.2)

at the proton side. We see the typical diffractive peak for the P⊥-integrated case. Again,
the HHU model stands out with a noticeable curvature and very sharp forward peaking.
In the large-P⊥ tail, the t-distribution flattens out considerably for all considered GTMD
benchmark models. Notice that this case corresponds to a rather large diffractive mass
and, therefore, to a sizeable longitudinal momentum transfer.
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Figure 10. Distributions in the azimuthal angle ϕ between P⃗⊥ and ∆⃗⊥ for 0.01 < P⊥ < 10.0 GeV
on the left and for 5.0 < P⊥ < 10.0 GeV on the right.

We now turn to the angular correlations in azimuthal angle ϕ between P⃗⊥ and ∆⃗⊥,
shown in figure 10, which are one of the main results of this work. There are in general
clearly visible correlations. Notice that for the GBW and MPM GTMDs these correlations
are of the “geometric” origin, such that in momentum space they are fully generated by the
matrix element. The angular modulations obtained from the GBW or MPM GTMDs are of
order 10%. We observe that at large P⊥ they quickly drop and change shape. Notice, that
the calculations with these two GTMDs include all possible harmonics, not only cos 2ϕ. In
the case when these correlations are computed accounting for the elliptic gluon distribution
only (see eq. (2.33)), i.e. when only cos 2ϕ modulations are included, they appear to be at
the level of about 1–5%.

In order to better visualize the strength of the azimuthal correlations in figure 11, we
present also the angular distributions divided by the integrated cross section for a given
GTMD model. Such normalised distributions are easier to compare for different GTMDs.
Again, we show the results for two ranges of P⊥ as explained in the figure. The azimuthal
modulations are of the order of a few percent.

Let us return to the issue on a cutoff in xP. In figures 12, 13, 14 we show the effect
of introducing an upper limit xmax

P into our integration by example of three distributions.
Here we used the MPM model for the GTMD. In figure 12 we clearly see the expected effect
of the cutoff on the distribution at large negative rapidities, beyond yLAB

c ∼ −4 the cross
section quickly drops. The effect of the cutoff is more marked in the high P⊥ domain as
seen from the right panel. The ∆⊥ distribution shown in figure 13 is rather mildly affected,
with again a stronger effect at large P⊥. Finally, the distribution in the azimuthal angle ϕ

shown in figure 14 is practically unaffected.
As these are parton-level observables, these angular distributions are not directly mea-

surable. For the case of dijets, one would expect soft-gluon corrections to have an impact,
see e.g. ref. [44]. For the more relevant case of exclusive (or inclusive diffractive) pairs of
open heavy flavor mesons (D-mesons), a thorough study of hadronization corrections would
be required. Such a study however goes beyond the scope of the present work. Recently,
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Figure 11. Distributions in the azimuthal angle ϕ between P⃗⊥ and ∆⃗⊥ normalised to the total
cross section for 0.01 < P⊥ < 10.0 GeV on the left and for 5.0 < P⊥ < 10.0 GeV on the right.

8− 6− 4− 2− 0 2 4 6 8

LAB
c

y

1

10

210

b
)

µ
 (

L
A

B

c
/d

y
σ

d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV0.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

8− 6− 4− 2− 0 2 4 6 8

LAB
c

y

3−
10

2−10

1−10

b
)

µ
 (

L
A

B

c
/d

y
σ

d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV5.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

Figure 12. Distributions of MPM model in the yLAB
c for xmax

P = 1.0 and xmax
P = 0.05.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

   (GeV)∆

100

200

300

400

500

600

700

b
/G

e
V

)
µ

  
 (

∆
/d

σ
d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV0.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

   (GeV)∆

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

b
/G

e
V

)
µ

  
 (

∆
/d

σ
d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV5.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

Figure 13. Distributions of MPM model in the ∆⊥ for xmax
P = 1.0 and xmax

P = 0.05.

– 17 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
9

0 50 100 150 200 250 300 350

 (deg)φ

0.152

0.154

0.156

0.158

0.16

0.162

0.164

0.166

0.168
σ/

φ
/d

σ
d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV0.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

0 50 100 150 200 250 300 350

 (deg)φ

0.154

0.156

0.158

0.16

0.162

0.164

0.166

0.168

σ/
φ

/d
σ

d

 p Pbc c→p Pb 

 = 8.1 TeV    NNs 

  < 10.0 GeV5.0 < P

MPM model

=1.0IP-maxx =0.05IP-maxx

Figure 14. Distributions of MPM model in the azimuthal angle ϕ between P⃗⊥ and ∆⃗⊥ normalised
to the total cross section for xmax

P = 1.0 and xmax
P = 0.05.

the LHCb collaboration was able to measure the inclusive cc̄ dijets [45] (see also [46]),
whether such a measurement would also be possible in the kinematics discussed here is
an open issue. The different models give slightly different azimuthal angle distributions.
Specially interesting are distributions for 5.0 < P⊥ < 10.0 GeV where the localization of
maxima for some models are reversed.

4 Conclusions

In this paper, we have presented several differential distributions for the diffractive pho-
toproduction of cc̄ pairs in the pA → p(cc̄)A reaction at LHC energies. Our results have
been obtained using different models for gluon GTMDs from the literature. Some GTMDs
were obtained via the Fourier transform of the dipole S-matrix, N(Y, r⃗⊥, b⃗⊥). In this case,
the GTMDs are regularized by an extra factor as done already in the literature for exclu-
sive dijet photoproduction. This regularization leads to rather large uncertainties as far
as normalization of the cross section is concerned. Therefore, for the distributions derived
from dipole amplitudes, one has to focus rather on their shapes than on magnitudes.

In the present work, we go beyond the earlier analysis of ref. [20] considering realistic
conditions of proton-lead collisions at the LHC and integrating over the phase space vari-
ables (such as quark rapidities and transverse momenta) in the measurable domains. We
have paid special attention to azimuthal correlations which were proposed in the literature
to test the models of small-x dynamics encoded in the so-called elliptic gluon distributions.
We find rather small azimuthal angle modulation in ϕ(P⃗⊥, ∆⃗⊥). The modulations as well as
the structure of maxima/minima depends on the GTMD models used in our analysis, so in
principle the models can be tested in actual measurements at the LHC. For completeness,
we have also presented the predictions for differential distributions in P⊥, ∆⊥ (transverse
momentum of the cc̄ pair) and rapidity of the cc̄ pair.

Regarding the possible measurement we need to repeat an important caveat. First,
for the case of open heavy flavour meson production, a thorough analysis of hadronization
corrections would be required to investigate if the sensitivity of our results to the GTMD
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remains visible at the hadron level. For the case of dijet production, one expects soft gluon
emissions (Sudakov resummation) to have an impact, see e.g. ref. [44]. We intend to come
back to some of these issues in future work.

Acknowledgments

The authors would like to thank Yoshitaka Hatta for providing grids for numerical solution
of the BK equation. This work was partially supported by the Polish National Science
Center grant UMO-2018/31/B/ST2/03537 and by the Center for Innovation and Transfer
of Natural Sciences and Engineering Knowledge in Rzeszów. R.P. is supported in part
by the Swedish Research Council grant, contract number 2016-05996, as well as by the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 668679).

A Convolution of amplitude with elliptic GTMD

Here, we collect some steps necessary to analytically perform the azimuthal integration in
the convolution of the hard amplitude with the azimuthally asymmetric part of the gluon
GTMD. The gluon GTMD is expanded as

T (Y, k⃗⊥, ∆⃗⊥) = T0(Y, k⊥, ∆⊥) + 2 cos 2(ϕk − ϕ∆) Tϵ(Y, k⊥, ∆⊥)

= T0(Y, k⊥, ∆⊥) + 2 2(k⃗⊥ · ∆⃗⊥)2 − k2
⊥∆2

⊥
k2
⊥∆2

⊥
Tϵ(Y, k⊥, ∆⊥) . (A.1)

The parts of the amplitudes that we are interested in, are

δM⃗0(P⃗⊥, ∆⃗⊥) = 2
∫

d2k⃗⊥
2π

P⃗⊥ − k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

2(k⃗⊥ · ∆⃗⊥)2 − k2
⊥∆2

⊥
k2
⊥∆2

⊥
Tϵ(Y, k⊥, ∆⊥)

= 2
(

2∆i
⊥∆j

⊥
∆2

⊥
− δij

)∫
d2k⃗⊥
2π

P⃗⊥ − k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

ki
⊥kj

⊥
k2
⊥

Tϵ(Y, k⊥, ∆⊥) ,

δM⃗1(P⃗⊥, ∆⃗⊥) = 2
(

2∆i
⊥∆j

⊥
∆2

⊥
− δij

)∫
d2k⃗⊥
2π

1
(P⃗⊥ − k⃗⊥)2 + m2

Q

ki
⊥kj

⊥
k2
⊥

Tϵ(Y, k⊥, ∆⊥) .

(A.2)

We now concentrate on the integral over azimuthal angles

I⃗ij =
∫ 2π

0

dϕk

2π

P⃗⊥ − k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

ki
⊥kj

⊥
k2
⊥

, I1
ij =

∫ 2π

0

dϕk

2π

1
(P⃗⊥ − k⃗⊥)2 + m2

Q

ki
⊥kj

⊥
k2
⊥

. (A.3)

This vector integral will be proportional to P⃗⊥. We therefore write

I⃗ij = P⃗⊥
P⊥

I0
ij(P⃗⊥, k⊥) , (A.4)
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with

I0
ij(P⃗⊥, k⊥) = 1

P⊥

∫ 2π

0

dϕk

2π

P 2
⊥ − P⃗⊥ · k⃗⊥

(P⃗⊥ − k⃗⊥)2 + m2
Q

ki
⊥kj

⊥
k2
⊥

. (A.5)

Now we decompose I0,1
ij in terms of invariant functions of |P⃗⊥| and |⃗k⊥| and two orthogonal

tensor structures, for which we choose

I0,1
ij (P⃗⊥) =

(
2P i

⊥P j
⊥

P 2
⊥

− δij

)
1
2I0,1

ϵ (P⊥, k⊥) + δij
1
2I0,1

0 (P⊥, k⊥) . (A.6)

When inserting this into eq. (A.2), the contraction with δij vanishes, an we obtain

δM⃗0(P⃗⊥, ∆⃗⊥) = 2
(

2(P⃗⊥ · ∆⃗⊥)2

P 2
⊥∆2

⊥
− 1

)
P⃗⊥
P⊥

∫ ∞

0
k⊥dk⊥ I0

ϵ (P⊥, k⊥) Tϵ(Y, k⊥, ∆⊥)

= P⃗⊥
P⊥

2 cos 2(ϕ∆ − ϕP )
∫ ∞

0
k⊥dk⊥ I0

ϵ (P⊥, k⊥) Tϵ(Y, k⊥, ∆⊥) . (A.7)

We still need to find the expression for the azimuthal integral Iϵ(P⊥, k⊥). Introducing

a = P 2
⊥ + k2

⊥ + m2 , b = 2P⊥k⊥ , (A.8)

we obtain
I1

ϵ (P⊥, k⊥) =
∫ 2π

0

dϕ

2π

cos 2ϕ

a − b cos ϕ
≡ g(a, b) , (A.9)

and

P⊥I0
ϵ (P⊥, k⊥) =

∫ 2π

0

dϕ

2π

P 2
⊥ − 1

2b cos ϕ

a − b cos ϕ
cos 2ϕ

=
∫ 2π

0

dϕ

2π

P 2
⊥ − 1

2a + 1
2(a − b cos ϕ)

a − b cos ϕ
cos 2ϕ

=
(

P 2
⊥ − 1

2a

)∫ 2π

0

dϕ

2π

cos 2ϕ

a − b cos ϕ

= 1
2(P 2

⊥ − k2
⊥ − m2)g(a, b) , (A.10)

where

g(a, b) = 1
b2

2a2 − b2 − 2a
√

a2 − b2
√

a2 − b2

= 1
2P 2

⊥k2
⊥

 (P 2
⊥ + k2

⊥ + m2
Q)2 − 2P 2

⊥k2
⊥√

(P 2
⊥ − k2

⊥ − m2
Q)2 + 4P 2

⊥m2
Q

− (P 2
⊥ + k2

⊥ + m2
Q)

 . (A.11)

Here, we used the identity

a2 − b2 = (P 2
⊥ + k2

⊥ + m2)2 − 4P 2
⊥k2

⊥ = (P 2
⊥ − k2

⊥ − m2)2 + 4P 2
⊥m2 . (A.12)
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