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1 Introduction

The subject of spacetime wormholes in gravity has been long, rich, and confusing (see
e.g. [1]). In Lorentzian signature, maximally extended black hole geometries are examples
of non-traversable wormholes, where the space behind the horizon smoothly connects the
two exteriors of the black hole. Traversable wormholes, however, are abhorred by gravity.
Traversable wormhole solutions to the Einstein’s equations are forbidden by the averaged
null energy condition [2], and in ad hoc models of gravity coupled to exotic matter designed
to support a traversable wormhole, the ensuing solution is usually afflicted by pathologies.
In Euclidean signature, wormholes are in general hard to come by. There are wormhole
solutions in models of gravity coupled to p-form gauge fields [3, 4], including the axion
wormholes of Giddings and Strominger [5]. However these geometries do not lead to
traversable wormholes upon continuation to Lorentzian signature; are difficult to embed
into string theory; and, to this day, it is not known if the successful embeddings are stable.

The status of wormholes in quantum gravity, that is in an off-shell formulation of
gravity, is a matter of ongoing research. In non-perturbatively tractable models of quantum
gravity like worldsheet string theory and Jackiw-Teitelboim gravity (itself likely a corner
in the landscape of worldsheet string theories [6]) one sums over all metrics consistent
with the boundary conditions. A sum over metrics in higher spacetime dimension would
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include a sum over Euclidean wormholes in Euclidean signature and traversable wormholes
in Lorentzian signature. The physics of these off-shell configurations is yet unclear. As
they are not solutions to the field equations, a wormhole is really one point in a sum over
wormhole metrics, and this sum is dominated by those geometries of least action, where the
wormhole pinches off and the geometry becomes strongly curved. That is, the sum over
these off-shell configurations is sensitive to the ultraviolet completion of quantum gravity
and, without help, inaccessible in gravitational effective field theory [7, 8].

The role of wormholes takes on new life in the AdS/CFT correspondence. Two-sided
black holes are dual to thermofield double states [9] of the dual conformal field theory
(CFT), where the non-traversable Einstein-Rosen bridge between the two exteriors encodes
entanglement between the left and right copies of the CFT. The absence of traversable
wormhole solutions connecting two asymptotic boundaries dovetails with the fact that, if
such a traversable wormhole existed, it would violate boundary causality. In Euclidean
signature the paucity (although not complete absence [3, 4, 10]) of wormhole solutions is
consistent with boundary factorization, and as far as off-shell (and certain singular [11])
configurations go, there is evidence that these encode the level statistics of heavy CFT
microstates dual to black holes [7, 11].

As mentioned above, the absence of traversable wormhole solutions in AdS/CFT can be
understood from the boundary as a consequence of causality, the statement that operators
on different boundaries commute with each other. In the bulk it follows from the averaged
null energy condition (ANEC), which is obeyed for perturbative AdS vacua in the string
landscape. However, phrasing the matter this way suggests a way of making traversable
wormholes, as recognized by Gao, Jafferis, and Wall [12]. From the bulk point of view we
need a controlled violation of the ANEC, but from the boundary point of view we need to
couple different asymptotic boundaries to each other.

The simplest setting in which one can realize this idea is with two asymptotic boundaries
and where one considers a phenomenological model of gravity coupled to a very large number
Nf = O(1/G) (with G the gravitational constant) of light matter fields φi dual to relevant
operators OiL and OiR on the two boundaries. If the bulk masses are sufficiently low that
the double trace O2 is relevant, we then add a negative non-local double trace deformation
−
∑Nf
i=1

∫
dtddx g(t, x)OiL(t, x)OiR(t, x) which directly couples the two boundaries. In the

bulk this corresponds to modified boundary conditions on the φi, which leads to an O(1)
violation of the ANEC for each field, and so an effective bulk stress tensor of O(Nf ) =
O(1/G). This is comparable to the curvature contribution to the Einstein’s equations and
so can support a macroscopic wormhole. Models of this sort should be regarded as purely
phenomenological, as they have yet to be embedded into string theory, and the ensuing
wormholes are of conceptual interest.

In their original work, Gao, Jafferis, and Wall studied such models when the double
trace deformation is turned on for a short interval of time, opening up causal connection
(although not perfect transmission of signals [13]) between two asymptotic boundaries for a
window of time. Shortly thereafter Maldacena and Qi [14] studied an eternal version of
the Gao-Jafferis-Wall deformation in JT gravity, with constant double trace coupling g,
matching it against the low-energy limit of two Sachdev-Ye-Kitaev models coupled by a
similar “double trace” interaction between the microscopic fermions of the two copies.
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In this paper we construct and study eternal traversable wormholes in three spacetime
dimensions connecting two asymptotically AdS boundaries. These wormholes are supported
by an eternal negative double trace deformation coupling the two boundaries, a higher-
dimensional version of the wormholes of Maldacena and Qi.

Our construction relies heavily on the previous work of one of us with Cotler [15],
in which pure three-dimensional gravity with negative cosmological constant on certain
spacetimes can be written entirely as a boundary model. For Einstein gravity on spacetimes
with the topology of global AdS3 [16], the resulting boundary model is a higher-dimensional
version of the Schwarzian theory [17–19] that governs the boundary dynamics of JT gravity.
For Euclidean wormholes with the topology of a torus times an interval (i.e. where the
boundary is two disconnected tori) one finds a more complicated boundary model, from
which one can compute the wormhole amplitude to one-loop order. This latter model is
the one relevant for us. Before adding matter fields, this amplitude lacks a saddle-point
approximation. Decompactifying the Euclidean time direction and analytically continuing it
to Lorentzian signature, so as to describe Lorentzian traversable wormholes, we then deform
this model so as to account for a large number of matter fields and double trace deformation.
Our approach, similar to that taken by Maldacena and Qi, is a little indirect. Rather than
computing the effective matter stress tensor directly, we use that, to leading order at small
G, we can replace both by an insertion of exp

(
i
∑Nf
i=1

∫
dtdx g 〈OiL(t, x)OiR(t, x)〉

)
into the

sum over metrics, with 〈OiLOiR〉 the boundary-to-boundary left-right two-point function of
O in the wormhole. The term in the exponent deforms the wormhole action in such a way
as to now admit saddle points, which from the bulk point of view are three-dimensional
traversable wormholes supported by an eternal Gao-Jafferis-Wall deformation.

The main virtue of our approach, besides allowing us to find these wormholes, is that
we can probe some of their physics directly from this boundary action. For example, we
study the spectrum of gravitational fluctuations, which allows us to assess the perturbative
stability of the wormholes we find. In particular we find that gravitational perturbations are
stable as long as the double trace deformation is relevant. In principle we may also use this
model to compute the gravitational contribution to scattering in the wormhole geometry.

These wormholes are also related to the Euclidean wormholes discussed in [20]. One
example those authors considered is a two-torus wormhole where a particle worldline
connects the two boundaries and supports the wormhole. The particle is putatively dual
to a heavy single-trace operator below the BTZ threshold with dimension ∆ = O(c), and
the worldline to a Gao-Jafferis-Wall deformation, which is evidently enough to hold the
wormhole open. Our configuration effectively has a smeared version of the deformation in
the regime with ∆ = O(1).

The remainder of this manuscript is organized as follows. In section 2 we gather some
useful facts about three-dimensional gravity and Euclidean wormholes therein that allow
us to construct the boundary action for our real-time traversable wormholes. We find
wormhole solutions of the latter in section 3 as well as study the spectrum of gravitational
fluctuations. In section 4 we study the graviton propagator for these wormholes, which in
principle allows for a computation of bulk scattering, and a plausible reconstruction of the
three-dimensional wormhole spacetime when the fields φi are scalars. We wrap up with a
Discussion in section 5.
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2 Preliminaries

2.1 First-order formulation of three-dimensional gravity

Pure three-dimensional gravity with negative cosmological constant is described by the action

S = 1
16πG

∫
d3x
√
−g

(
R+ 2

`2

)
+ (bdy) , (2.1)

for an appropriate boundary term. We henceforth choose ` = 1 units. The basic solution to
the field equations of the model is global AdS3,

ds2 = − cosh2(ρ)dt2 + sinh2(ρ)dx2 + dρ2 , (2.2)

with x ∼ x+ 2π.
In the first-order formulation of gravity we decompose the metric into a dreibein eAµ via

gµν = ηABe
A
µ e

B
ν , (2.3)

with A,B = 0, 1, 2. This decomposition introduces a redundancy under local Lorentz
rotations eAµ → ΛA

Be
B
µ . We then divide by that redundancy and introduce an associated

spin connection ωABµ, obeying ω(AB)µ = 0 (flat indices A and B are raised and lowered
with the Minkowski metric ηAB). The ensuing action is

S = − 1
16πG

∫
εABC e

A ∧
(
dωBC + ωBD ∧ ωDC + 1

3e
B ∧ eC

)
+ (bdy) , (2.4)

where eA = eAµ dx
µ and ωAB = ωABµdx

µ. The spin connection appears quadratically and so
can be integrated out. Doing so enforces that the spacetime is torsion-free, and plugging the
result back into the action one recovers Einstein gravity in the second-order formalism. Note
that this action only has a single time derivative, which implies it is in Hamiltonian form.

It is useful [21, 22] to combine the dreibein and spin connection into the variables

AA = 1
2ε

ABCωBC + eA , ĀA = 1
2ε

ABCωBC − eA , (2.5)

and then letting JA and J̄A be the generators of two copies of sl(2; R) in the fundamental
representation, satisfying

[JA, JB] = εABCJ
C , tr (JAJB) = 1

2ηAB , (2.6)

and similarly for the J̄A’s, to define matrix-valued one-forms A = AAJA and Ā = ĀAJ̄A.
In terms of these variables the first-order action becomes

S = − k

4π

∫ (
I[A]− I[Ā]

)
+ (bdy) , k = 1

4G , I[A] = tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
,

(2.7)
resembling a Chern-Simons theory with algebra sl(2; R)× sl(2; R). Indeed the equations of
motion that come from varying this action with respect to A and Ā,

F = dA+A ∧A = 0 , F̄ = dĀ+ Ā ∧ Ā = 0 , (2.8)
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are precisely the torsion-free and Einstein’s equations expressed in terms of A and Ā. In fact
this resemblance goes beyond the action and equations of motion: on a solution to the field
equations, linearized diffeomorphisms and local Lorentz transformations act on A and Ā in
the same way as infinitesimal sl(2; R)× sl(2; R) gauge transformations. These results can be
rephrased as the statement that 3d gravity is classically equivalent to Chern-Simons theory.
One can do a bit better and show a quantum mechanical equivalence between gravity on a
solid cylinder, i.e. the sum over metrics continuously connected to the global AdS3 saddle,
is equivalent to a winding sector of an SO(2, 2) Chern-Simons theory, where SO(2, 2) is a
particular global completion of sl(2; R)×sl(2; R). See [15, 23] for details. However 3d gravity
and Chern-Simons theory differ non-perturbatively; for example the torus times interval
amplitude of 3d gravity computed in [15] is finite, whereas the corresponding amplitude
diverges in SO(2, 2) Chern-Simons theory.

2.2 Boundary action

In this work we are interested in traversable wormholes with the topology of an annulus
times time. These wormholes are closely related to the Euclidean wormholes considered
in [15], which have the topology of an annulus times (compact) Euclidean time. In that work
gravity on such a space was reduced to a boundary theory. (See also [24] for related work.)

In the present work we analytically continue that theory back to Lorentzian signature
and add an eternal double trace deformation. The ensuing action, which we describe in
section 3.1, has saddles that correspond to spacetime wormholes. To arrive at it we take an
excursion and review the derivation in [15] of the boundary action for Euclidean wormholes
of the form annulus times time. (See also [25] for a related derivation in the context of
the two-sided BTZ black hole.) The main result is eq. (2.22), the action for a Euclidean
wormhole in terms of boundary degrees of freedom.

We begin with 3d gravity in the first order formulation and continue to Euclidean
signature. The choice of continuation made in [15], made mostly in order to ensure that
fields that appear linearly in the Euclidean action act as Lagrange multipliers, was to simply
rotate time as t = −iy and rotate the contours of time components of the dreibein and spin
connection, i.e.

eAt = ieAy , ωABt = iωABy , (2.9)

and to integrate over real contours for all fields. In particular the approach of [15] did not
continue the flat Minkowski metric ηAB with a flat Euclidean metric δAB.

After this continuation we explicitly separate the Euclidean time components from the
spatial ones through AA = AAy dy +AAi dx

i, so that the 3d gravity action reads

S = − ik4π

∫
dyd2 εijtr (−Ai∂yAj +AyFij)− (A→ Ā) + Sbdy, . (2.10)

In [15] the authors worked in coordinates xi = (x, ρ) with boundary coordinates x ∼ x+ 2π
and y ∼ y + 2π, while ρ ∈ R is a radial coordinate, interpolating between a torus conformal
boundary with complex structure τ2 as ρ → −∞ and a torus conformal boundary with
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complex structure τ1 as ρ→∞. These boundary conditions amount to the statements1

ρ→∞ : A≈ 1
2

(
dρ 0

eρ(dx+τ̄1dy) −dρ

)
, Ā≈ 1

2

(
−dρ −eρ(dx+τ1dy)

0 dρ

)
, (2.11)

and

ρ→−∞ : A≈ 1
2

(
dρ e−ρ(dx+τ̄2dy)
0 −dρ

)
, Ā≈ 1

2

(
−dρ 0

−e−ρ(dx+τ2dy) dρ

)
, (2.12)

so that the line element is asymptotically

ds2 ≈ e2ρ

4 |dx+ τ1,2dy|2 + dρ2 . (2.13)

The boundary term Sbdy is fixed by the requirement that there is a consistent variational
principle with those boundary conditions, and reads

Sbdy = ik

4π

(∫
ρ→∞

d2x tr
(
τ̄1A

2
x − τ1Ā

2
x

)
+
∫
ρ→−∞

d2x tr
(
τ̄2A

2
x − τ2Ā

2
x

))
. (2.14)

The temporal component Ay appears linearly in the action and so acts as a Lagrange
multiplier enforcing that the spatial field strength vanishes, εijFij = 0. Integrating it out,
we are left with a residual integral over those Ai satisfying the constraint, which can be
parameterized as

Ai = g−1∂ig , Āi = ḡ−1∂iḡ , (2.15)

for some matrix-valued functions g and ḡ. Doing so introduces a redundancy under time-
dependent SL(2; R)× SL(2; R) transformations, which appears as a gauge symmetry and
acts as g(xi, y)→ h(y)g(xi, y) and ḡ(xi, y)→ h̄(y)ḡ(xi, y).

Because the constant time slice is an annulus, these functions need not be single-valued
around the x-circle. We can use the SL(2; R) × SL(2; R) freedom to fix g and ḡ to take
the form

g = eb(y)xJ1 g̃ , ḡ = eb̄(y)xJ̄1 ˜̄g , (2.16)

where g̃ and ˜̄g are single-valued around the x-circle. This partial gauge-fixing leaves behind
a redundancy under those SL(2; R) × SL(2; R) transformations that commute with the
prefactors eb(y)xJ1 and eb̄(y)xJ̄1 , namely a U(1)×U(1) redundancy under

h = ea(y)J1 , h̄ = eā(y)J̄1 . (2.17)

If we were quantizing Chern-Simons theory rather than gravity, then b(y) and b̄(y) would
parameterize time-dependent holonomies for A and Ā around the x-circle.

The gravity action evaluated on these configurations is a pure boundary term. At this
stage there are six real boundary degrees of freedom on each boundary torus, three from g̃

and three from ˜̄g, in addition to the two “quantum mechanical” degrees of freedom b and b̄.
1Here we have made the choice J0 = − iσ2

2 , J1 = σ1
2 , and J2 = σ3

2 , and represented the J̄A in the
same way.
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On each boundary the asymptotically AdS3 boundary conditions fix four of the six degrees
of freedom in g̃ and ˜̄g. In more detail, it is convenient to decompose g̃ and ˜̄g as

g̃ = eφJ1eΛJ2eψ(J1−J0) , ˜̄g = eφ̄J̄1e−Λ̄J̄2eψ̄(J̄1+J̄0) , (2.18)

so that the fields φ and b (and φ̄ and b̄) appear in the combinations

Φ(x, y, ρ) = b(y)x+ φ(x, y, ρ) , Φ̄(x, y, ρ) = b̄(y)x+ φ̄(x, y, ρ) . (2.19)

The U(1)×U(1) gauge symmetry means that we identify

φ(x, y, ρ) ∼ φ(x, y, ρ) + a(y) , φ̄(x, y, ρ) ∼ φ̄(x, y, ρ) + ā(y) . (2.20)

The asymptotically AdS boundary conditions imply that, at large ρ, the fields Λ and ψ are
fixed in terms of Φ, and Λ̄ and ψ̄ in terms of Φ̄ as

Λ ≈ ln
(
eρ

Φ′
)
, ψ ≈ −e

−ρΦ′′

Φ′ , Λ̄ ≈ ln
(
eρ

Φ̄′

)
, ψ̄ ≈ −e

−ρΦ̄′′

Φ̄′
, (2.21)

where ′ = ∂x. There are similar expressions near the other boundary as ρ→ −∞. We denote
the boundary values of Φ and Φ̄ as Φ1 = limρ→∞ Φ, Φ̄1 = limρ→∞ Φ̄, Φ2 = limρ→−∞ Φ, and
Φ̄2 = limρ→−∞Φ.

Evaluating the gravity action (2.10) including the boundary term (2.14) on these
configurations leads to the Euclidean boundary action2

SE = C

24π

∫
d2x

(Φ′′1∂1Φ′1
Φ′21

+ Φ̄′′1∂̄1Φ̄′1
Φ̄′21

+ i

2
(
τ̄1Φ′21 − φ′1∂yφ1 − τ1Φ̄′21 + φ̄′1∂yφ̄1

)
+ Φ′′2∂2Φ′2

Φ′22
+ Φ̄′′2∂̄2Φ̄′2

Φ̄′22
+ i

2
(
τ̄2Φ′22 + φ′2∂yφ2 − τ2Φ̄′22 − φ̄′2∂yφ̄2

))
− iC

24

∫ 2π

0
dy
(
b2∂yY − b̄2∂yȲ

)
,

(2.22)

where C = 3
2G , the derivatives are defined as

∂1 = i

2(τ̄1∂x − ∂y), ∂2 = i

2(τ̄2∂x + ∂y) , (2.23)

and the fields Y and Ȳ are defined as

Y (y) = 1
2πb(y)

∫ 2π

0
dx (φ1(x,y)−φ2(x,y)) , Ȳ (y) = 1

2πb̄(y)

∫ 2π

0
dx
(
φ̄1(x,y)−φ̄2(x,y)

)
.

(2.24)
Note that this action is indeed invariant under the U(1) × U(1) gauge transformations
in (2.20). It has a single time derivative and therefore is in Hamiltonian form.

Let us briefly comment on the quantum mechanical treatment of this model in [15].
One can treat the “twist fields” Y and Ȳ as independent quantum mechanical degrees
of freedom at the cost of introducing a further redundancy under which φi ∼ φi + ai(y)

2This corrects some misprints present in [15].
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and φ̄i ∼ φ̄i + āi(y) with i = 1, 2. The twist fields then only appear in the last line of the
action. Integrating them out enforces that the fields b and b̄ are constant moduli which one
integrates over. Requiring that the spatial geometry is smooth enforces that b2 and b̄2 are
both non-negative. At fixed moduli b and b̄ one can find a saddle point for the remaining
fields φi and φ̄i (where they simply vanish), and in fact the path integral over those fields is
one-loop exact. However the action varies in the directions of b and b̄, so that this model
does not have a true saddle point, consistent with the fact that three-dimensional gravity
lacks a wormhole saddle with this topology. It is helpful to think of b and b̄ as moduli that
have to be stabilized to find a genuine saddle.

2.3 Correlation functions and Wilson lines

We would now like to understand the effect of a Gao-Jafferis-Wall deformation as a
deformation of the action (2.22). As we mentioned in the Introduction, we can replace the
effect of the large number of matter fields and double trace deformation by an insertion
of exp

(
i
∑Nf
i=1

∫
dtdx g〈OiL(t, x)OiR(t, x)〉

)
into the sum over metrics with 〈OiLOiR〉 the left-

right boundary-to-boundary two-point function of O across the wormhole. So, to proceed,
we need the left-right two-point function of a operator O across the Euclidean wormholes
in the previous subsection, in terms of the gravitational degrees of freedom; see eq. (2.28)
for the result; and to then analytically continue to Lorentzian signature.

We compute 〈OLOR〉 where the two insertions are at the same y for a fixed wormhole by
considering a Wilson line in the gauge theory description stretching from (x2, y, ρ→ −∞)
to (x1, y, ρ → +∞). For a scalar field this Wilson line simply encodes the renormalized
geodesic length between these two points. Because the constant−y slice is an annulus,
Wilson lines from one boundary to the other can wind around the x-circle, and we sum
over all such windings.

As we mentioned at the end of the previous subsection, at fixed b and b̄, there is a
Euclidean wormhole saddle with φi = φ̄i = 0. For this wormhole we can reconstruct the
spatial part of the gauge configuration Ai and Āj , and so the spatial metric and spin
connection. The result is

Aidx
i = 1

2

(
dρ be−ρdx

beρdx −dρ

)
, Āidx

i = 1
2

(
−dρ −b̄eρdx
−b̄e−ρdx dρ

)
, (2.25)

or equivalently
g = ebxJ0eρJ2 , ḡ = eb̄xJ̄0e−ρJ̄2 . (2.26)

The holographically renormalized Wilson line in the principal unitary irreducible represen-
tation with scaling weights (h, h̄) [26] that does not wind around the x-circle is

Wh,h̄(x1, x2) = b2hb̄2h̄
(

2 cosh
(
bx12

2

))−2h(
2 cosh

(
b̄x12

2

))−2h̄

. (2.27)

Allowing for a general configuration of boundary graviton degrees of freedom effectively
reparameterizes this quantity, and summing over all possible windings around the x-circle
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we have

Wh,h̄(x1, x2) =
∞∑

n=−∞

 Φ′1(x1)Φ′2(x2)(
2 cosh

(
b(x12+2πn)+φ12

2

))2


h Φ̄′1(x1)Φ̄′2(x2)(

2 cosh
(
b̄(x12+2πn)+φ̄12

2

))2


h̄

,

(2.28)
where x12 = x1 − x2, φ12 = φ1(x1) − φ2(x2), φ̄12 = φ̄1(x1) − φ̄2(x2), and all fields are
implicitly at the same time y. Note that the sum over windings renders the Wilson line
single-valued around the x-circle. As an operator it is also single-valued in y as it is a
function of fields periodic in y.3 We propose that, to leading order as G→ 0, this quantity
is proportional to 〈OLOR〉 where the boundary operator O carries scaling weights (h, h̄).
In the next section we will see that, upon a suitable continuation to real time, this proposal
can also be derived from other considerations. For now we note that it takes the form
of a bilocal operator in the boundary Alekseev-Shatashvili theory [16], a reparameterized
two-point function, similar to the bilocals appearing in the Schwarzian model governing the
edge modes of JT gravity.

Before going on we observe that for h = h̄, i.e. when O is a scalar of dimension ∆ = h+h̄,
the basic Wilson line (2.27) can also obtained from a geodesic in the spatial geometry that
follows from (2.25),

ds2
spatial = dρ2 +

(
bb̄ sinh2(ρ) + (b+ b̄)2

4

)
dx2 . (2.29)

For simplicity take b = b̄ so that ds2
spatial = dρ2 +b2 cosh2(ρ)dx2. Parameterizing the path as

x = x(ρ), the point particle action
∫
dρ
√

1 + b2 cosh2 ρ x′(ρ)2 has a constant of the motion
p = ∂L

∂x′(ρ) that can be traded for x12 with the result p = b tanh
(
bx12

2

)
. The renormalized

geodesic length is

L = 2 ln


(
2 cosh

(
bx12

2

))2

b2

 . (2.30)

This is the length of the geodesic that does not wind around the x-circle. The ones that
do have the same length with the replacement x12 → x12 + 2πn. The geometric optics
approximation to 〈OLOR〉 is then

〈OL(x2)OR(x1)〉 ∼
∑
n

e−∆L =
∞∑

n=−∞

 b2(
2 cosh

(
b(x12+2πn)

2

))2


h+h̄

. (2.31)

The geometric optics approximation is just that, an approximation, valid at large h+ h̄.
However soon we will see that the general expression (2.28) receives no corrections to leading
order in the gravitational interaction.

3In the boundary graviton theory there are, at fixed b and b̄, saddles where the φi and φ̄j wind around
the y-circle. We expect that those saddles contribute to the expectation value of Wh,h̄ in the boundary
theory, in such a way that the result is single-valued both in x and y.
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3 Traversable wormholes in 3d

3.1 Continuing to real time

In the previous section we reviewed the action obtained in [15] describing Euclidean
wormholes in pure three-dimensional gravity on spaces of the topology T2 × R, and found
the semiclassical approximation to the left-right two-point function 〈OLOR〉 across the
wormhole. See eqs. (2.22) and (2.28). Crucially the Euclidean wormhole action did not
possess a saddle point. The parameters b and b̄ appearing there are moduli which have to
be stabilized to find a genuine saddle. Now we analytically continue to real time, add the
Gao-Jafferis-Wall deformation, and search for wormhole saddles.

In Euclidean signature the space at constant ρ is a torus parameterized by circles x
and y. In the derivation of the boundary action (2.22) it was convenient to think of y
as Euclidean time and x as space, but in what follows we find it convenient to flip roles,
thinking of what was the x-circle as Euclidean time, which we will Wick-rotate back to
Lorentzian signature. To do so we have to perform some relabeling gymnastics, since we
would like to still use the label x as a coordinate on the spatial circle. Our first step, in
Euclidean signature, is to exchange x and y:

(x, y)→ (y, x) . (3.1)

In so doing the “quantum mechanical” degrees of freedom b, b̄, Y , and Ȳ become functions
of x alone, so that e.g. Φi = b(x)y + φi(x, y). Since we are interested in a Lorentzian
configuration where the new spatial circle x is periodic with x ∼ x+ 2π and time t = −iy
is non-compact, we first decompactify the Euclidean torus. This can be done by setting
τ1 = τ2 = i and then letting y ∈ R. We also continue φi → iφi and φ̄i → iφ̄i so that the
real-time fields

Φi(t, x) = b(x)t+ φi(t, x) , Φ̄i(t, x) = b̄(x)t+ φ̄i(t, x) , (3.2)

are real. The real-time boundary action so obtained is then

SL = C

24π

∫
dtdx

(
Φ̈1∂+Φ̇1

Φ̇2
1

+
¨̄Φ1∂−

˙̄Φ1
˙̄Φ2

1
− 1

2
(
Φ̇2

1 + φ̇1φ
′
1 + ˙̄Φ2

1 −
˙̄φ1φ̄
′
1

)

+ Φ̈2∂−Φ̇2

Φ̇2
2

+
¨̄Φ2∂+

˙̄Φ2
˙̄Φ2

2
− 1

2
(
Φ̇2

2 − φ̇2φ
′
2 + ˙̄Φ2

2 + ˙̄φ2φ̄
′
2

))

− C

24

∫ 2π

0
dx
(
b2Y ′ − b̄2Ȳ ′

)
,

(3.3)

where ˙ = ∂t, ′ = ∂x, ∂± = 1
2(∂t ± ∂x), and

Y (x) = 1
2πb(x)

∫
dt (φ1(t, x)− φ2(t, x)) , Ȳ (x) = 1

2πb̄(x)

∫
dt
(
φ̄1(t, x)− φ̄2(t, x)

)
.

(3.4)
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The left-right two-point function (2.28) however becomes

〈OL(t2, x)OR(t1, x)〉 =

 Φ̇1(t1)Φ̇2(t2)(
2 cos

(
Φ12

2

))2


h ˙̄Φ1(t1) ˙̄Φ2(t2)(

2 cos
(

Φ̄12
2

))2


h̄

, (3.5)

where Φ12 = Φ1(t1)−Φ2(t2), Φ̄12 = Φ̄1(t1)− Φ̄2(t2), and all fields are evaluated at the same
spatial position x. Note that, unlike (2.28), this expression has no additional images; upon
trading x and y and letting the y circle have a radius L, the images in (2.28) are suppressed
by powers of sech(πbL) and sech(πb̄L) and so vanish as we decompactify Euclidean time.
As an operator in the boundary graviton theory this bilocal is single-valued around the
x-circle, as it depends on fields which are all periodic in x. Its expectation value is rendered
single-valued thanks to saddles where the φi and φ̄j wind around the x-circle.

In the Euclidean problem we had a U(1)×U(1) gauge symmetry identifying φi(x, y) ∼
φi(x, y) + a(x) and φ̄i(x, y) ∼ φ̄i(x, y) + ā(x) (after exchanging x ↔ y). The boundary
graviton action (3.3) and reparameterized two-point function (3.5) are in fact invariant
under a larger SO(2, 2) gauge symmetry that arises after decompactifying y. (A finite circle
size can be thought of as breaking SO(2, 2) to U(1)×U(1).) It acts as

tan
(Φ1

2

)
∼
α tan

(
Φ1
2

)
+ β

γ tan
(

Φ1
2

)
+ δ

, cot
(Φ2

2

)
∼

α cot
(

Φ2
2

)
− β

−γ cot
(

Φ2
2

)
+ δ

,

tan
(

Φ̄1
2

)
∼
ᾱ tan

(
Φ̄1
2

)
+ β̄

γ̄ tan
(

Φ̄1
2

)
+ δ̄

, cot
(

Φ̄2
2

)
∼

ᾱ cot
(

Φ̄2
2

)
− β̄

−γ̄ cot
(

Φ̄2
2

)
+ δ̄

,

(3.6)

where αδ − βγ = ᾱδ̄ − β̄γ̄ = 1 and all of these parameters are periodic functions of x.
In fact, the reparameterized two-point function is the unique gauge-invariant operator

with the right scaling behavior that can couple the two boundaries together. This gives a
complementary argument for how the double trace deforms the boundary graviton theory.

We have taken a bit of a roundabout path to arrive at the Lorentzian action (3.3) and
correlator (3.5), taking a detour through Euclidean signature and performing a double Wick
rotation along the way. A more direct route is, in Lorentzian signature, to first integrate
out Ax. This approach was taken in section 4 of [16] to describe a boundary action for the
two-sided BTZ black hole, but it is actually quite tricky to get the precise field ranges and
action correct. Indeed the action obtained there was almost, but not quite correct. It is for
this reason that we took a long detour through imaginary time.

We reap two benefits as well. First, the dressed two-point function (3.5) has no sum
over images. Second, the action obtained here is conceptually quite similar to that obtained
by Maldacena and Qi in their study of traversable wormholes in JT gravity. Indeed, in a
sense the JT traversable wormhole is the analytic continuation of a two-sided black hole,
and roughly speaking the boundary action obtained here is the analytic continuation of
that of a two-sided BTZ black hole.
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Adding an eternal version of the Gao-Jafferis-Wall deformation we arrive at the to-
tal action

Stotal = SL + SDT , SDT = C

24π

∫
dtdx η

 Φ̇1(t1)Φ̇2(t2)
cos2

(
Φ12

2

)
h ˙̄Φ1(t1) ˙̄Φ2(t2)

cos2
(

Φ̄12
2

)
h̄ ,

(3.7)
where η = O(1) > 0 controls the strength of the double trace deformation. In the remainder
of this section we demonstrate that this action has saddles corresponding to stable wormholes
for h+ h̄ < 1.

3.2 Wormhole saddles and fluctuation spectrum

We wish to find translationally invariant solutions to the field equations of the deformed
action (3.7), characterized by the ansatz

φ1 = φ0 , φ̄1 = φ̄0 , φ2 = φ̄2 = 0 , b(t) = b , b̄(t) = b̄ . (3.8)

The Lagrangian evaluated on this ansatz is simply

L = C

24π

−b2 − b̄2 + η
b2hb̄2h̄

cos2h
(
φ0
2

)
cos2h̄

(
φ̄0
2

)
 . (3.9)

Extremizing with respect to φ0 and φ̄0 we find

φ0 = φ̄0 = 0 , (3.10)

while extremizing with respect to b and b̄ fixes

b =
(
2 (∆− s)(

s−∆
2 ) (∆ + s)(

∆−s
2 −1) η−1

) 1
2(∆−1)

,

b̄ =
(
2 (∆− s)(

s+∆
2 −1) (∆ + s)−( s+∆

2 ) η−1
) 1

2(∆−1)
,

(3.11)

where we have traded h and h̄ for ∆ = h + h̄ and s = h − h̄. One can verify that this
configuration is a solution to the full equations of motion of the model.

As advertised, the double trace deformation stabilizes the moduli leading to a saddle
point which, in three dimensions, is a traversable wormhole. Due to the exponent 1

2(∆−1)
the saddle behaves as b, b̄→ 0 at fixed deformation η as ∆→ 1 from below, i.e. the saddle
becomes singular in the limit that the double trace deformation goes from being relevant to
marginal. Indeed, this is a precursor to the fact that this saddle is stable only when ∆ < 1.

Next we study the spectrum of fluctuations around this saddle. Doing so is a little
tricky, since some of the fields depend only on the spatial circle x, while the others depend
on time as well.

Before going on we note that the saddle point values for b and b̄ satisfy two relations
which are useful in simplifying the fluctuation problem, namely

η = b1−2hb̄1−2h̄
√
hh̄

, b2h̄ = b̄2h . (3.12)
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Now consider a general fluctuation characterized by

Φ1 = (b+ δb(x))t+ φ1(t, x) , Φ2 = (b+ δb(x))t+ φ2(t, x) ,
Φ̄1 = (b̄+ δb̄(x))t+ φ̄1(t, x) , Φ̄2 = (b̄+ δb̄(x))t+ φ̄2(t, x) ,

(3.13)

Fourier transforming the fluctuations we have

φi(t, x) = 1
(2π)2

∑
k∈Z

∫
dω e−iωt+ikxφi(k, ω) ,

φ̄i(t, x) = 1
(2π)2

∑
k∈Z

∫
dω e−iωt+ikxφ̄i(k, ω) ,

δb(x) = 1
2π

∑
k∈Z

eikxδb(k) ,

δb̄(x) = 1
2π

∑
k∈Z

eikxδb̄(k) .

(3.14)

Now we must take into account the SO(2, 2) gauge symmetry. Infinitesimal gauge
transformations act on the perturbations as

δΦ1 = eibtc+(x) + c0(x) + e−ibtc−(x) ,

δΦ2 = −eibtc+(x) + c0(x)− e−ibtc−(x) ,

δΦ̄1 = eib̄tc̄+(x) + c̄0(x) + e−ib̄tc̄−(x) ,

δΦ̄2 = −eib̄tc̄+(x) + c̄0(x)− e−ib̄tc̄−(x) .

(3.15)

None of these terms are linear in t and so δb and δb̄ are inert under them. The terms
involving c0 and c̄0 generate the original U(1)×U(1) symmetry, while those involving c±
and c̄± fill out the rest of SO(2, 2). The former act only the ω = 0 modes of the φi and φ̄i,
while the latter act on the ω = ±b and ω = ±b̄ modes. The U(1)×U(1) subgroup can be
used to set φ2(k, ω = 0) and φ̄2(k, ω = 0) to vanish, and we redefine

φ1(k, ω)→ φ1(k, ω) + 2πδ(ω)Y(k) , φ̄1(k, ω)→ φ̄1(k, ω) + 2πδ(ω)Ȳ(k) , (3.16)

where the new fields φ1(k, ω) and φ̄1(k, ω) vanish at ω = 0. The ω = 0 fields are δb, δb̄,Y,
and Ȳ. We treat the ω = ±b and ω = ±b̄ modes similarly.

3.2.1 ω 6= 0

We begin with the modes carrying generic nonzero frequency, φi(k, ω) and φ̄i(k, ω). The
quadratic action for these modes is

Squad = 1
(2π)2

∑
k∈Z

∫
dω

1
2Φ† ·G−1Φ , (3.17)

where

Φ =


φ1(k, ω)
φ2(k, ω)
φ̄1(k, ω)
φ̄2(k, ω)

 , G−1 = C

24π


χ(k, ω) − b2

2 + hω2
√
hh̄ω2

√
hh̄ω2

− b2

2 + hω2 χ(k,−ω)
√
hh̄ω2

√
hh̄ω2

√
hh̄ω2

√
hh̄ω2 χ̄(k,−ω) − b̄2

2 + h̄ω2
√
hh̄ω2

√
hh̄ω2 − b̄2

2 + h̄ω2 χ̄(k, ω)

 ,

(3.18)
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and we have defined

χ(k, ω) = b2

2 + ω2(h− 1) + ω(b2 − ω2)(k − ω)
b2

,

χ̄(k, ω) = b̄2

2 + ω2(h̄− 1) + ω(b̄2 − ω2)(k − ω)
b̄2

.

(3.19)

The linearized equations of motion are simply

G−1Φ = 0 . (3.20)

As usual solutions exist only for those values of ω and k such that G−1 has a zero-eigenvalue.
To find them we solve detG−1 = 0. That determinant is

detG−1 =
(
C

24π

)4 ω4(ω2−b2)2(ω2−b̄2)2

b4b̄4

(
(ω2−k2)−m2

+)((ω2−k2)−m2
−

)
, (3.21)

with

m2
±= b2(1−h)+b̄2(1−h̄)±

√
b4(1−h)2+b̄4(1−h̄)2+2b2b̄2(hh̄+h+h̄−1) . (3.22)

One can easily verify that G−1 has a single zero-eigenvalue at ω = ±b and ω = ±b̄. These
zero eigenvalues are a consequence of the linearized SO(2, 2) gauge symmetry and do not
correspond to physical excitations. The other zeros are at

ω2 − k2 = m2
± , (3.23)

and these are genuine propagating excitations. Note that the spectrum of fluctuations is
Lorentz-invariant although the action we started with is not manifestly so. Evidently the
wormhole is Lorentz-invariant, which perhaps is not so surprising given that the double trace
deformation preserves Lorentz symmetry. These are fluctuations of the boundary gravitons,
and so we also learn that the deformation gives an effective mass to the boundary gravitons.

The expressions for the masses-squared m2
± are a little complicated. Expressing b and b̄

in terms of the double trace coupling η leads to an unenlightening expression. Let us focus
on the physics. When the operator O is a scalar, with h = h̄ = ∆

2 , the ensuing wormhole
has b = b̄ and the masses simplify to

m2
+ = 2b2 , m2

− = 2b2(1−∆) . (3.24)

Note that the lighter mode becomes tachyonic for ∆ > 1, when the double trace deformation
becomes irrelevant. We conclude that for scalar O, the wormhole is stable only for ∆ < 1.
(At ∆ = 1 the wormhole is singular with b = b̄ = 0.)

The same result holds when O carries spin s = h− h̄. The lighter mass-squared m2
−

passes through zero precisely when ∆ = 1, becoming tachyonic for ∆ > 1. Again the stable
wormholes are those stabilized by a relevant double trace. By boundary unitarity ∆ ≥ |s|
and so the wormhole can only be stabilized by a double trace deformation with spin-0 or
spin-1/2 operators. To get a sense of the masses-squared for both cases we plot them in
figures 1 and 2 at fixed value of the double trace parameter η = 1 (the masses-squared are
homogenous functions of η, going as m2 ∝ η−

1
∆−1 ).
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Figure 1. The boundary graviton masses when the operator O is a scalar, as a function of O’s
dimension ∆, for double trace deformation η = 1.
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Figure 2. The boundary graviton masses when the operator O has spin s = 1/2, again with η = 1.

3.2.2 ω = 0

As we mentioned at the beginning of the section, we have to treat the ω = 0 fluctuations
separately. The quadratic action for these modes is

Squad = 1
2π

∑
k∈Z

1
2Φ†0 ·G

−1
0 Φ0 , (3.25)

where

Φ0 =


δb(k)
δb̄(k)
Y(k)
Ȳ(k)

 , G−1
0 = C

24π


4(h− 1) 4

√
hh̄ −ik 0

4
√
hh̄ 4(h̄− 1) 0 ik

ik 0 b2

2 0
0 −ik 0 b̄2

2

 . (3.26)

The linearized equations of motion G−1
0 Φ0 = 0 again have solutions for those k such that

detG−1
0 = 0. That determinant is simply

detG−1
0 =

(
C

24π

)4
(k2 +m2

+)(k2 +m2
−) , (3.27)

where m2
± were the masses-squared obtained from our analysis at ω = 0, given in (3.22).

– 15 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
8

So there are solutions at
ω2 − k2 = m2

± , (3.28)

for all ω, even ω = 0 where the set of fields differs from the set at generic frequency.

3.3 Comparing with the disconnected saddle

In the bulk the boundary conditions we are imposing are that we have two asymptotically
AdS3 regions and that there is a negative double trace deformation. The wormhole saddle
we have found is not the only one that satisfies these boundary conditions. There is another
one, two disconnected copies of global AdS3, and we ought to compare the action of the
two saddles to see which is dominant.

The disconnected saddle has a total energy of twice the vacuum energy of 3d gravity,
− C

12 , for a total energy of

Edisconnected = −C6 . (3.29)

Meanwhile the energy of the connected solution is, using the action (3.7),

Econnected = C

12
(
b2 + b̄2 − ηb2hb̄2h̄

)
= −C6

bb̄

2
1−∆√
hh̄

, (3.30)

where we have used (3.12). We see that the connected wormhole saddle has lower energy
for sufficiently large bb̄. Since bb̄ ∝ η

1
1−∆ by (3.11) it follows that the wormhole dominates

over disconnected saddle for sufficiently large double trace deformation. There is a phase
transition at finite η = ηc at which Edisconnected = Econnected. For η < ηc the disconnected
saddle dominates.

If we go to finite temperature T there is yet another disconnected saddle, two copies
of a BTZ black hole. At zero double trace deformation there is the usual Hawking-Page
transition from periodically identified Euclidean global AdS3 to Euclidean BTZ. We expect
that transition to persist for η < ηc, while for η > ηc we expect there to be a first order
transition between the wormhole saddle at low temperature and two disconnected copies of
BTZ at high temperature.

3.4 One-loop determinant

By the by, the simplicity of the determinant of the quadratic action, (3.21), can be used to
easily extract the one-loop determinant of boundary gravitons around the wormhole saddle.
The appropriate measure for the φi and φ̄j is, using the symplectic measure associated with
the boundary graviton theory [15, 16],

[dφ1dφ2dφ̄1dφ̄2] ∝
∏
k∈Z

∏
ω∈R

ω2|ω2 − b2||ω2 − b̄2|
b2b̄2

dφ1(k, ω)dφ2(k, ω)dφ̄1(k, ω)dφ̄2(k, ω) .

(3.31)
Those factors of ω2, |ω2−b2|, and |ω2−b̄2| cancel those appearing in the one-loop determinant
∼ 1/

√
det G−1 coming from (3.21), so that the effective one-loop determinant is

ω2|ω2 − b2||ω2 − b̄2|√
det G−1

∝ 1√
(ω2 − k2 −m2

+)(ω2 − k2 −m2
−)

, (3.32)
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i.e. that of two decoupled scalar fields with masses-squared m2
±. The one-loop approximation

to the wormhole partition function (periodically identifying imaginary time t = −iy with
y ∼ y + β in the β →∞ limit) is then

Zwormhole ≈ Z+Z−e
−βEconnected , (3.33)

where Z± is the one-loop determinant of a two-dimensional scalar with mass-squared m2
±.

4 Bulk geometry and boundary correlations

Having identified stable wormhole saddles, we would like to understand some of their
physics. First, we attempt to reconstruct the geometry of the bulk wormhole. Second, we
study the boundary graviton propagator, which is enough to give tree-level correlations
between the two boundaries as well as a first step toward a computation of scattering in
the wormhole geometry.

4.1 Bulk reconstruction

What is the bulk geometry of the wormhole we found in the last section? Here we present
an argument that, when the stabilizing double trace is a scalar operator, it is

ds2 = dρ2 + b2 cosh2(ρ)(−dt2 + dx2) . (4.1)

The two main ingredients we use are the geometric optics approximation to two-point
functions of heavier operators across the wormhole, and the evidence from the fluctuation
spectrum that the wormhole respects boundary Lorentz invariance.

First consider the matrix of two-point functions of a different operator O than the
O whose double trace stabilizes the wormhole. Those two-point functions are operators
in the boundary graviton theory; the left-right two-point function has the same form as
〈OLOR〉, (3.5), just with the scaling weights (h, h̄) replaced by those of O. There are similar
expressions for the left-left and right-right two-point functions.

Now suppose that O is sufficiently heavy that its two-point function may be evaluated
in the geometric optics approximation, that is, in terms of bulk geodesics connecting the
two boundary insertions. Thinking of 〈OL(tL, x)OR(tR, x)〉 in terms of a bulk geodesic at
fixed x, we can reconstruct the bulk geometry at fixed x, with the result

ds2 = dρ2 − b2 cosh2(ρ)dt2 + (terms involving dx) . (4.2)

Given the boundary Lorentz invariance there is a natural guess for the spacetime metric,
namely (4.1).

This guess resonates with a simple picture of the double trace deformation as a uniform
density of Wilson lines (or, if O is a scalar, of geodesics) connecting the two boundaries.
Coupling such a density to 3d gravity would lead to a bulk stress tensor whose only nonzero
component would be Tρρ. Solving the remaining Einstein’s equations for a connected ansatz
of the form

ds2 = dρ2 + e2A(ρ)(−dt2 + dx2) , (4.3)
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leads to a line element of the form (4.1), ds2 = dρ2 + b′2 cosh2(ρ)(−dt2 + dx2), for some
parameter b′ [7, 8]. That value can then be matched to the “b” appearing in the boundary
graviton theory.

However there is some reason to take the argument here with a grain of salt. If correct
the matter stress tensor supporting the wormhole must have only nonzero entry, namely
Tρρ. In contrast the stress tensor supporting the Maldacena-Qi wormhole has nonzero
energy density and pressure. We do not know if, in our three-dimensional wormhole, the
stress tensor has only nonzero Tρρ or not, and so it would be nice to directly calculate it at
one-loop order.

4.2 Boundary correlation functions

Now let us consider simple boundary correlation functions obtained from these traversable
wormholes, focusing on operators constructed from the boundary graviton fields. The
most basic object we could consider is the boundary graviton propagator. However, given
the non-standard field content of the boundary theory, with some fields only depending
on the spatial circle x, as well as the pattern of gauge symmetries, we elect to study a
closely related object, a certain matrix of two-point functions of gauge-invariant operators.
These operators exist on both boundaries, and so the matrix of correlations encodes the
propagation of boundary gravitons on one boundary to the other.

Our boundary action has C = 3/(2G)� 1 and 1/C is a weak coupling. Here we work
in the free field limit.

In the absence of a double trace deformation the boundary graviton action (3.3) is
essentially a sum of four Alekseev-Shatashvili models, two for the Φi and two for the Φ̄i.
(Without a double trace deformation, the “twist fields” Y and Ȳ ensure that b and b̄ are
constants, and on such a constant the total action decouples into a sum of four parts each
involving a Φi or Φ̄i.) Each of those models is chiral with a chiral stress tensor, taking
the form [16]

Ti = C

12

{
tan

(Φi

2

)
, t

}
, T̄i = C

12

{
tan

(
Φ̄i

2

)
, t

}
, (4.4)

where {f(x), x} = f ′′′(x)
f ′(x) −

3
2
f ′′(x)2

f ′(x)2 is the Schwarzian derivative of f(x) with respect to x.
These operators are invariant under x-dependent SO(2, 2) gauge transformations as the
Schwarzian derivative is invariant under fractional linear transformations,

{
af(t)+b
cf(t)+d , t

}
=

{f(t), t}. With the double trace deformation there are additional contributions to the
boundary stress tensor, but for illustrative purposes we consider the Ti and T̄j as they are
the simplest gauge-invariant operators in the theory.

Here we compute the matrix of two-point functions of the Ti and T̄j to leading order at
large C, when the double trace deformation involves a scalar operator O. We focus on this
two-point function at k = 0 in the time domain.

To linear order in fluctuations around the wormhole saddles considered in this work,
we have

Ti = Cb2

24 + C

12

(
bδb+

(
∂3
t φi
b

+ b∂tφi

))
+O(δΦ2) ,

T̄i = Cb̄2

24 + C

12

(
b̄δb̄+

(
∂3
t φ̄i

b̄
+ b̄∂tφ̄i

))
+O(δΦ̄2) .

(4.5)
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In the Fourier domain and using that b̄ = b for scalar O the linearized fluctuations of Ti
and T̄i are

δTi(k, ω) = C

12

(
2πδ(ω) bδb(k) + iω

b
(ω2 − b2)φi(k, ω)

)
,

δT̄i(k, ω) = C

12

(
2πδ(ω) bδb̄(k) + iω

b
(ω2 − b2)φ̄i(k, ω)

)
.

(4.6)

At nonzero frequency we see that the connected two-point function of the Ti and T̄j is
proportional to that of the φi and φ̄j , e.g.

〈Ti(−k,−ω)Tj(k, ω)〉 =
(
C

12

)2 (
ω2(ω2 − b2)2〈φi(−k,−ω)φj(k, ω)〉+O

( 1
C

))
, (4.7)

while at zero frequency e.g.

〈Ti(−k)Tj(k)〉 =
(
C

12

)2 (
b2〈δb(−k)δb(k)〉+O

( 1
C

))
. (4.8)

(All four of these correlation functions coincide to leading order in large C, which is why
there is no index structure on the r.h.s.)

Let us package the Ti and T̄j into a four-component vector Ta = (T1, T2, T̄1, T̄2), and
consider the Fourier-space two-point function

Gab(k, ω) = 〈Ta(−k, ω)Tb(k, ω)〉 . (4.9)

To obtain this at nonzero frequency and zero spatial momentum we use the propagator
for the φi and φ̄j which is given by the matrix iG in (3.18), while at zero frequency we
use the propagator for δb and δb̄ as obtained from the matrix iG0 in (3.26). After some
simplification we find

Gab(k= 0,ω) = πCb2

12
i

(−ω2+m2
+)(−ω2+m2

−)
(4.10)

×

−2h(ω2−b2)2∆ab+(ω2−m2
−)


X(ω) b2 0 0
b2 X(ω) 0 0
0 0 X(ω) b2

0 0 b2 X(ω)

+O
( 1
C

) ,

where ∆ab is the matrix whose entries are 1 for all a and b, and

X(ω) =
2ω2(ω2 −m2

+)
b2

+ b2 . (4.11)

Note that there are poles only at the physical masses-squared m2
±.

The zero-frequency limit of this object agrees with the two-point function at zero
frequency, obtained instead from the propagator for δb and δb̄, e.g.

G11(k = 0, ω = 0) ≈ i
(
C

12

)2
b2〈δb(k = 0)δb(k = 0)〉 ≈ −πiCb

2

24
1− h
1− 2h . (4.12)

That is the expression (4.10) holds at all ω.
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Inverse Fourier transforming back to real time,4

Gab(t) =
∫
dω

2π e
−iωtGab(k = 0, ω) , (4.13)

the time-ordered two-point function is

Gab(t) = πCb4

48 sgn(t)

(1− 4h)2e−im−|t|

m−
∆ab + e−im+|t|

m+


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

+O

( 1
C

) .

(4.14)
This matrix has off-diagonal components indicating correlations between fields on the
different boundaries. Note also that the commutator of operators on the different boundaries
does not vanish, as expected, indicating that these correlations are due to interactions in
the Hamiltonian rather than to correlations in the particular state at hand.

5 Discussion

In this work we have found traversable wormholes in three-dimensional gravity. These
wormholes connect two asymptotically AdS3 regions and are stabilized by an eternal version
of the Gao-Jafferis-Wall deformation. Alternately they are a three-dimensional version of
the traversable wormholes in JT gravity found by Maldacena and Qi [14].

Our analysis relied on two main ingredients. The first was the reduction of three-
dimensional gravity with negative cosmological constant on spacetimes with the topology
of interest (an annulus times time) to a boundary theory. That boundary model is the
continuation of that obtained in [15] in the context of Euclidean wormholes. Roughly
speaking, it is four copies of the Alekseev-Shatashvili model [16, 27], two for each boundary,
giving an effective field theory description of the boundary stress tensor. The second was the
two-point function of light operators, with one insertion on each boundary, expressed as an
operator in the boundary graviton model. That operator is a bilocal operator in the Alekseev-
Shatashvili-like model, conceptually similar to the bilocal operators of the Schwarzian model.
With this operator in hand, we obtained a boundary action for the traversable wormhole by
putting these two ingredients together. Thanks to the negative double trace deformation we
found a stable saddle, at least when the double trace deformation was relevant. By studying
fluctuations around the wormhole saddle we saw that the wormhole was in fact invariant
under boundary Lorentz transformations and that boundary gravitons gain a mass thanks
to the deformation.

The bulk model we require, gravity coupled to a large number of scalars dual to relevant
operators, is rather contrived and unrealistic. While this work has little to do with a generic
AdS3 compactification of string theory we note that the supersymmetric 2d SYK model of
Murugan, Stanford, and Witten [28] offers an arena with a large c CFT and a large number
of light operators where one can put these ideas to work. To the extent that model has a

4It is helpful to think of this object as the spatially integrated two-point function of the Ti and T̄j , with
Gab(t) =

∫ 2π
0 dxGab(t, x).
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gravity dual, it is “stringy,” with light higher spin states, but even so we expect that there
is a “traversable wormhole” saddle in two copies of that model, like that in the standard
SYK model studied by Maldacena and Qi.

Because we work entirely on the boundary our analysis is unable to identify the precise
geometry of the bulk wormhole. By computing boundary correlation functions we can
see that the two AdS3 boundaries are causally connected, and while we gave a candidate
for the bulk geometry thanks to those boundary correlators, it would be nice to have a
direct derivation using the one-loop stress tensor of bulk matter fields with an eternal
Gao-Jafferis-Wall deformation.

Relatedly, in the context of a momentary rather than eternal inter-boundary coupling,
Gao and Liu [13] have shown how to compute correlation functions encoding propagation
and regenesis through the ensuing wormhole directly from considerations in large c CFT,
resumming conformal perturbation theory in the negative double trace deformation. Can
those methods be generalized to describe an eternal negative double trace coupling, making
contact with the wormholes studied in this work?
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