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1 Introduction and general idea of this paper

Exploring the chaotic behaviour and the associated non-integrable structure in the context
of gauge/gravity duality has been one of the thrust areas in modern theoretical physics for
the last couple of decades. In most of these examples, one finds chaotic motion of string
trajectories [1–17], while on the other hand, there are only handful of examples [18–21] that
exhibit non-chaotic dynamics which therefore lead to an integrable structure.

Non-integrable systems are important in the context of the AdS/CFT correspon-
dence [22, 23]. The key idea here is to analyse the classical phase space trajectory governed
by the (semi)-classical string solutions that give rise to various chaos indicators. These indi-
cators guarantee whether the associated phase space would be lacking the usual Kolmogorov-
Arnold-Moser (KAM) tori characterising (quasi)-periodic orbits [1–3]. Identification of these
orbits is the key step towards unveiling an underlying integrable structure of the dynamical
phase space at the classical level.

Following the holographic principle, it is conjectured that the semi-classical strings are
dual to a class of single trace operators in the large N limit. Hence, the above framework
leads to a conjecture about the integrability (or nonintegrability) of the strongly coupled
dual superconformal field theory. There have been standard approaches to prove or disprove
integrability of a classical dynamical system. The most robust way to prove integrability
is through the construction of Lax pairs [24–28]. Classical integrability of supergravity
backgrounds containing an AdS5 and AdS4 factor have been studied extensively using
Lax pairs in [24–29]. On the other hand, a popular approach towards disproving classical
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integrability is based on the Kovacic’s algorithm [12–14, 30–32] that has recently found
extensive applications in the context of gauge/string duality.

Together with the above, it is also equally important to examine the integrable structure
of the “deformed” superconformal field theories using a holographic setup. Among these
theories, β-deformed N = 4 super Yang-Mills (SYM) [33] and γ-deformed Klebanov-
Witten model [9] are worthwhile to be mentioned. It is shown that the real β-deformed
N = 4 SYM gives rise to an integrable structure [29, 34], while it looses integrability for
imaginary β deformation [10]. On the other hand, the deformed Klebanov-Witten exhibits a
chaotic behaviour whose phase space dynamics is controlled by some deformation parameter
supplemented by the energy of the system [9].

Following the above spirit, in the present paper, we are interested in studying the
integrability and/or non-integrability of marginally deformed 4d N = 2 SCFTs that are
introduced recently in [35]. The marginal deformed quiver corresponding to the dual
γ-deformed background is conjectured to be a superconformal fixed point that preserves
N = 1 supersymmetries. It is shown that the dual γ-deformed supergravity background can
be obtained by applying an SL(3, R) transformation in the eleven dimensional M-theory
solution followed by a type-IIA reduction [33, 35–37]. In what follows, we explore semi-
classical string solutions associated to these class of γ-deformed supergravity backgrounds
and estimate various chaos indicators. Based on our findings and the holographic principle,
this would eventually allow us to conjecture about the integrability and/or non-integrability
of the dual N = 1 quiver at strong coupling.

The equations of motion of semi-classical strings are in principle difficult to solve
analytically. Therefore, we solve them numerically, upon fixing the winding numbers
associated with the remaining U(1) isometries. We analyse the Poincaré sections and
estimate the corresponding Lyapunov exponents for different values of γ and show that the
chaotic dynamics of the string is explicitly controlled by the deformation parameter γ.

Upon fixing the winding numbers λ = k = 1, we study various Poincaré sections and
the associated Lyapunov exponents.1 We notice that for large values of the deformation
parameter (γ ≫ 1), the system eventually becomes more and more chaotic. On the other
hand, the string does not exhibit any chaotic behaviour when the deformation is small
enough (γ ∼ 0). This clearly connects to the fact that the integrable structure persists for
the usual Sfetsos-Thompson (ST) background [14, 38, 39] which is a special case of γ = 0.
From the perspective of the bulk theory, the above observation allows us to conjecture that
the γ-deformation acts as an interpolation between an integrable N = 2 SCFTs (γ = 0)
and non-integrable N = 1 SCFTs (γ ≫ 1) in the dual QFT description.2

The rest of the paper is organised as follows. We briefly review the γ-deformed type-IIA
background in section 2. In section 3, we study the Poincaré sections and the Lyapunov
exponents taking specific examples of γ-deformed type-IIA solutions. Finally, we draw our
conclusion in section 4, where we provide physical explanation of our observations.

1One can show that for winding numbers greater than unity, the plots do not change qualitatively.
2Notice that, unlike the ST example [14], here we have a much richer structure in the sense that for small

and non-zero γ, we have a class of type-IIA backgrounds that preserves integrability.
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2 Marginal deformations of 4d N = 2 SCFTs

Here, we first review the marginal deformations of four dimensional N = 2 SCFTs [35].
The marginal deformation of these theories results in a new class of N = 1 SCFTs in four
spacetime dimensions. The holographic dual of which corresponds to a γ-deformed type-IIA
supergravity which was constructed following the prescriptions of [33, 36, 37, 40].

These new class of γ-deformed backgrounds are obtained following an SL(3, R) trans-
formation in eleven dimensional M-theory background while keeping γ as a deformation
parameter. Upon dimensional reduction along one of the U(1) isometric directions,3 one
finds a ten dimensional type-IIA background of the form [35]

ds2
IIA = α′µ2

[
4f1ds2

AdS5 + f2
(
dσ2 + dη2

)
+ f3dχ2 + f3 sin2 χ

1 + γ2f3f4 sin2 χ
dξ2

+ f4
1 + γ2f3f4 sin2 χ

(
dβ − γf5 sin χdχ

)2
]

. (2.1)

In the limit γ → 0, the above ten dimensional solution (2.1) maps into the standard N = 2
supersymmetric Gaiotto-Maldacena background [14, 35, 41–44].

In global coordinates, the AdS5 line element can be expressed as

ds2
AdS5 = − cosh2 rdt2 + dr2 + sinh2 rdΩ2

3 , (2.2)

where dΩ2
3 is the metric of the three-sphere with unit radius.

The warp factors fi(σ, η)s in (2.1) can be expressed in terms of a potential function
V (σ, η) [35]

f1 =
(

2V̇ − V̈

V ′′

) 1
2

; f2 = f1
2V ′′

V̇
; f3 = f1

2V ′′V̇

∆ ; f4 = f1
4V ′′

2V̇ − V̈
σ2

f5 = 2
(

V̇ V̇ ′

∆ − η

)
; f6 = 2V̇ V̇ ′

2V̇ − V̈
; f7 = −4V̇ 2V ′′

∆ ; f8 =
[

4
(
2V̇ − V̈

)3
µ12V ′′V̇ 2∆2

] 1
2

, (2.3)

which satisfies Laplace’s equation of the form

V̈ + σ2V ′′ = 0 . (2.4)

In the expressions of fi and ∆, the dot and the prime of the potential function V (σ, η) can
be explicitly written as

V̇ = σ∂σV , V ′ = ∂ηV , V̈ = σ∂σV̇ , V ′′ = ∂2
ηV , V̇ ′ = σ∂σV ′ ,

∆ =
(
2V̇ − V̈

)
V ′′ +

(
V̇ ′)2. (2.5)

3See [35] for details.
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The γ-deformed type-IIA background in (2.1) is supported by NS-NS two form and
RR one form and three form fluxes along with the background dilaton4 [35]

B2 = µ2α′

1 + γ2f3f4 sin2 χ

(
f5dΩ2(χ, ξ) − γf3f4 sin2 χdξ ∧ dβ

)
,

C1 = µ4√α′
(

f6dβ + γ
(
f7 − f5f6

)
sin χdχ

)
,

C3 = µ6α′ 3
2

1 + γ2f3f4 sin2 χ
f7dβ ∧ dΩ2(χ, ξ) ,

e2Φ = f8
1 + γ2f3f4 sin2 χ

. (2.6)

3 String motion in marginal deformed background

3.1 Sigma model

We begin our analysis with bosonic strings propagating on a curved manifold endowed
with a metric Gµν together with NS-NS two-form field Bµν . The dynamics of the string is
characterised by the Polyakov action

S = −1
2

∫
dτdσ̃

[
ηαβGµν + ϵαβBµν

]
∂αXµ∂βXν , (3.1)

where ηαβ is the two dimensional world sheet metric of the form −ηττ = ησ̃σ̃ = 1 and Xµ

are the string embedding coordinates on the world sheet. Moreover, we set our convention
as −ϵτσ̃ = ϵσ̃τ = −1, throughout the rest of the analysis.

The canonical momentum corresponding to the coordinate Xµ takes the form

pµ = Gµν∂τ Xν + Bµν∂σXν . (3.2)

The Hamiltonian of the system is given by

H = pµẊµ − L = 1
2Gµν

(
∂τ Xµ∂τ Xν + ∂σXµ∂σXν

)
. (3.3)

The equations of motion for Xµ is supplemented by the Virasoro constraints that leads
to the vanishing of the 2d stress tensor

Tττ = 1
2Gµν

(
∂τ Xµ∂τ Xν + ∂σXµ∂σXν

)
= 0 ; Tτσ = 1

2Gµν∂τ Xµ∂σXν = 0 . (3.4)

Notice that, from (3.4), it is straightforward to show that the Hamiltonian (3.3) could be
read as the time-time component of the 2d stress tensor namely H = Tττ .

To begin with, we consider that the string sits at the center (r = 0) of the AdS5 and
wraps the U(1) isometries of the γ-deformed background. We choose an ansatz of the
following form

t = t(τ) ; σ = σ(τ) ; η = η(τ) ; χ = χ(τ) ,

ξ = ξ(σ̃) = kσ̃ ; β = β(σ̃) = λσ̃ . (3.5)
4For the purpose of present analysis, we restrict ourselves only to the NS sector of the full superstring

background. We also set α′ = µ = 1 in our calculation.
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Here {τ, σ̃} are the coordinates of the two-dimensional world sheet and {k, λ} are the
integers which we denote as the winding numbers of the string along the U(1) isometric
directions (ξ and β) of the γ-deformed background (2.1). Following the embedding (3.5),
the world sheet Lagrangian takes the following form

LP = −1
2

[
4f1ṫ2 − f2

(
σ̇2 + η̇2

)
−
(

f3 + γ2 f4f2
5

1 + γ2f3f4 sin2 χ
sin2 χ

)
χ̇2 + f3k2 sin2 χ

1 + γ2f3f4 sin2 χ

+ f4λ2

1 + γ2f3f4 sin2 χ

]
+ kf5

1 + γ2f3f4 sin2 χ
sin χ χ̇ , (3.6)

where dot denotes the derivative with respect to the world sheet time (τ).
The Lagrangian (3.6), leads to the following Hamiltonian

H = 1
2

[
− p2

t

4f1
+ 1

f2

(
p2

σ + p2
η

)
+ f3k2 sin2 χ

1 + γ2f3f4 sin2 χ
+ f4λ2

1 + γ2f3f4 sin2 χ

+
(

f3 + γ2 f4f2
5

1 + γ2f3f4 sin2 χ
sin2 χ

)−1 (
pχ − kf5

1 + γ2f3f4 sin2 χ
sin χ

)2 ]
. (3.7)

3.2 Example I: γ-deformed Abelian T-dual

The potential function for the Abelian T-dual (ATD) case takes the form [44]

VATD(σ, η) = ln σ − 1
2σ2 + η2 . (3.8)

Using (3.8), the associated functions fi(σ, η) in (2.3) take the following form

f1 = 1 ; f2 = 4
1 − σ2 ; f3 = 1 − σ2 ; f4 = 4σ2 ,

f5 = −2η ; f6 = 0 ; f7 = −2
(
1 − σ2)2 ; f8 = 64

1 − σ2 . (3.9)

Using (3.9), the Hamiltonian (3.7) can be expressed as

H= 1
2

[
− p2

t

4 +
(
1−σ2)

4
(
p2

σ +p2
η

)
+
(
1−σ2)k2 sin2 χ+4σ2λ2

1+4γ2σ2(1−σ2)sin2 χ

+
(

pχ+ 2kη sinχ

1+4γ2σ2(1−σ2)sin2 χ

)2((
1−σ2

)
+ 16η2σ2γ2 sin2 χ

1+4γ2σ2(1−σ2)sin2 χ

)−1]
,

(3.10)

which serves as the basis for studying the Hamiltonian dynamics and hence the various
chaos indicators that we compute next.

Using (3.10), the Hamilton’s equations of motion could be read as

χ̇ = pχ

1 − σ2 , (3.11a)

ṗχ =
(
σ2 − 1

)(
k2 − 16γ2λ2σ4)

2
(
1 + 4γ2σ2(1 − σ2) sin2 χ

)2 sin 2χ , (3.11b)

σ̇ = 1
4
(
1 − σ2

)
pσ , (3.11c)
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γ χ σ pσ pχ

0.25 0.5 0.1 0 1.40099
2.0 0.5 0.1 0 1.40425
3.0 0.5 0.1 0 1.40808
5.0 0.5 0.1 0 1.41835

Table 1. Initial conditions for different values of the deformation parameter γ for the Abelian
T-dual case.

ṗσ = 1
4σ

[
p2

σ −
4p2

χ

(1 − σ2)2 + 4
(
k2 sin2 χ − 4λ2)

1 + 4γ2σ2(1 − σ2) sin2 χ

+ 16γ2(2σ2 − 1
)

sin2 χ
(
k2(σ2 − 1

)
sin2 χ − 4λ2σ2)(

1 + 4γ2σ2(1 − σ2) sin2 χ
)2

]
,

(3.11d)

while in writing the above set equations of motion (3.11a)–(3.11d), we choose η = 0 and
pη = 0 for our convenience.

We now numerically estimate the Poincaré sections by solving the Hamilton’s equations
of motion (3.11a)–(3.11d) that is subjected to the Virasoro constraints (3.4). In our
numerical plots, we set the energy of the string to be E = 3. On the other hand, we choose
the following set of values for the deformation parameter: {γ} = {0.25, 2.0, 3.0, 5.0}. The
corresponding plots are found in figures 1(a)–1(d). Also notice that, in our analysis we set
the winding numbers as k = 1 and λ = 1 (for general values of the winding numbers see
appendix A).

We now proceed to choose sets of initial conditions that generate solutions to the
dynamical equations (3.11a)–(3.11d) for different values of the deformation parameter γ.
These initial conditions are indeed consistent with the Virasoro constraints (3.4). In the
following analysis, we choose the initial conditions as σ(0) = 0.1 and pσ(0) = 0. With
this initial set of data and the choice χ(0) = 0.5, the corresponding pχ(0) is fixed while
satisfying the constraint (3.4). For different values of the deformation parameter (γ) this is
shown in table 1 below.

In the present example, the phase space under consideration is four dimensional and
characterised by the following set of generalised coordinates and momenta: {σ, χ, pσ, pχ}. At
fixed energy E = 3 of the string, for small deformation (γ = 0.25) the phase space trajectory
is observed to be quasi-periodic (cf. figure 1(a)). However, as the deformation is increased
the perturbations of the Hamiltonian result the destruction of the quasi-periodicity and
randomly distributed data sets are generated. These are shown in figures 1(b)–1(d). Since
these distributions lack any nice foliation in the form of KAM tori [1–3], which are observed
in an integrable systems, we conclude that the system is chaotic at large deformations.

Next we numerically compute another chaos indicator namely, the Lyapunov expo-
nent [1–3]. During the time evolution of a chaotic system, the system becomes sensitive
to the choice of initial conditions that are imposed on the dynamics. The Lyapunov expo-
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(a) E = 3, γ = 0.25. Initial data: σ =
0.1, χ = 0.5, pσ = 0, pχ = 1.40099.

(b) E = 3, γ = 2. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 1.40425.

(c) E = 3, γ = 3. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 1.40808.

(d) E = 3, γ = 5. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 1.41835.

Figure 1. Plots of Poincaré sections for γ-deformed Abelian T-dual background. Here we fix the
energy of the string E = 3 and choose different values of the deformation parameter γ. As the
deformation increases, the configuration becomes more and chaotic.

nent (λ) measures the deviation between two nearby trajectories in the phase space due to
a small variation in the initial conditions.5

As before, we choose the energy of the string as E = 3, whereas the rest of the
initial conditions are chosen as in table 1. With this initial set of data, we study the
dynamical evolution of two nearby orbits in the phase space which have an initial separation
∆X(0) = 10−7 (cf. (3.12)). The resulting plots are shown in figure 2. We observe that, for
γ > 1, the Lyapunov exponent saturates to positive non-zero values at sufficient late times
indicating the onset of chaos. On the other hand, for small γ < 1, it asymptotes to zero
at sufficiently late times indicating an underlying non-chaotic dynamics of the associated
phase space.

5The Lyapunov exponent is defined as [1–3]

λ = lim
τ→∞

lim
∆X0→∞

1
τ

log ∆X(X0, τ)
∆X(X0, 0) , (3.12)

where ∆X(X0, τ) is the separation between the infinitesimally close trajectories in the phase space at
sufficiently late times.
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Figure 2. Numerical plots of Lyapunov exponent(s) for γ-deformed Abelian T-dual background.
Here we fix the energy of the string as E = 3. Different curves correspond to different values of the
deformation parameter γ, as indicated in the figure.

3.3 Example II: γ-deformed Sfetsos-Thompson solution

For Sfetsos-Thompson (ST) solution (also known as non-Abelian T-dual (NATD) solution)
the corresponding potential function reads as [44]

VST(σ, η) = η

(
ln σ − 1

2σ2
)

+ 1
3η3 . (3.13)

Using (3.13), the associated metric functions fi(σ, η) in (2.3) take the following form

f1 = 1 ; f2 = 4
1 − σ2 , f3 =

4η2(1 − σ2)
4η2 +

(
1 − σ2)2 , f4 = 4σ2 ,

f5 = − 8η3

4η2 +
(
1 − σ2)2 , f6 =

(
1 − σ2)2 , f7 = −

8η3(1 − σ2)2
4η2 +

(
1 − σ2)2 ,

f8 = 256(
1 − σ2)2(4η2 +

(
1 − σ2)2) . (3.14)

Using (3.14) the Hamiltonian of the system (3.7) can be expressed as6

H= 1
8

−p2
t −
(
σ2−1

)
p2

σ−
(
σ2−1

)
p2

η

−

16η2(σ2−1
) k2 sin2 χ

1−
16γ2η2σ2

(
σ2−1

)
sin2 χ

4η2+
(

σ2−1
)2

+
(

8η3k sinχ+4η2pχ

(
−4γ2σ4 sin2 χ+4γ2σ2 sin2 χ+1

)
+
(

σ2−1
)2

pχ

)2

16η4
(

σ2
(

16γ2η2 sin2 χ−1
)

+1
)2


4η2+

(
σ2−1

)2

+
16σ2

(
λ2+ 4γ2η2 sin2 χ

(
8η3k sinχ+4η2pχ

(
−4γ2σ4 sin2 χ+4γ2σ2 sin2 χ+1

)
+
(

σ2−1
)2

pχ

)2(
4η2+

(
σ2−1

)2)2(
σ2
(

16γ2η2 sin2 χ−1
)

+1
)2

)
1− 16γ2η2σ2

(
σ2−1

)
sin2 χ

4η2+
(

σ2−1
)2

 . (3.15)

6Notice that, in writing the above equations of motion (3.16a)–(3.16d) we set η = 1 and pη = 0.
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γ χ σ pσ pχ

0.25 0.5 0.1 0 0.0171369
2.0 0.5 0.1 0 0.0855865
3.0 0.5 0.1 0 0.1647719
5.0 0.5 0.1 0 0.374748

Table 2. Initial conditions for different values of the deformation parameter γ for the non-Abelian
T-dual case. Here we set the string energy E = 2.

The resulting Hamilton’s equations of motion easily follow from (3.15) and can be
summarised as

σ̇ = −1
4(−1+σ2)pσ , (3.16a)

ṗσ = 1
4σ3

(
σ4(p2

σ +p2
χ

)
−

16λ2(σ2−3
)(

σ2 +1
)
σ6(

σ2−1
)(

σ2(8γ2(σ2−1
)
cos2χ−8γ2σ2 +8γ2 +σ2−2

)
+5
)

+
16λ2(σ4−10σ2 +5

)(
σ4−2σ2 +5

)
σ4(

σ2−1
)(

σ2(8γ2(σ2−1
)
cos2χ−8γ2σ2 +8γ2 +σ2−2

)
+5
)2 + k2

γ2

+
k2−σ2(k2 +4γ2pχ

(
4k sinχ+pχ

))
γ2(σ2(8γ2 cos(2χ)−8γ2 +1

)
−1
)2 +

2k2−σ2(k2 +4γ2pχ
(
4k sinχ+pχ

))
γ2(σ2(8γ2 cos(2χ)−8γ2 +1

)
−1
) ) ,

(3.16b)

χ̇ = − 2k sinχ+pχ

σ2(8γ2 cos2χ−8γ2 +1
)
−1

− 1
4(σ2−1)pχ , (3.16c)

ṗχ = − 2pχk cosχ

σ2(8γ2 cos(2χ)−8γ2 +1
)
−1

−
32γ2λ2(σ6−3σ4 +7σ2−5

)
σ4 sin2χ(

σ2(8γ2(σ2−1
)
cos2χ−8γ2σ2 +8γ2 +σ2−2

)
+5
)2

+
4cosχ

(
σ2( sinχ

(
k2 +4γ2p2

χ

)
+kpχ

)
−k
(
k sinχ+pχ

))(
σ2(8γ2 cos2χ−8γ2 +1

)
−1
)2 .

(3.16d)

In the next step, we numerically study the Poincaré sections and the Lyapunov exponents
for the string configuration for different values of the deformation parameter γ. We choose
the initial data as given in table 2. These data sets are indeed consistent with the Virasoro
constraints (3.4). The resulting plots are shown in figures 3(a)–3(d) and figure 4.

Like before, we observe that for small values deformation parameter (γ ≪ 1), the
Poincaré section is quasi-periodic (figure 3(a)) indicating an underline integrable structure.
On the other hand, if the deformation is increased enough, the perturbation of the Hamilto-
nian destroys the quasi-periodicity and the resulting dynamics becomes chaotic. These are
shown in figures 3(b)–3(d).

In figure 4, we plot the Lyapunov exponents (λ) for different values of the deformation
parameter. The Lyapunov exponent for γ ≫ 1 and at sufficiently later times, saturates
to a positive value. On the other hand, in the limit of small deformation (γ ≪ 1), the
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(a) E = 2, γ = 0.25. Initial data: σ =
0.1, χ = 0.5, pσ = 0, pχ = 0.0171369.

(b) E = 2, γ = 2. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 0.0855865.

(c) E = 2, γ = 3. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 0.1647749.

(d) E = 2, γ = 5. Initial data: σ = 0.1,
χ = 0.5, pσ = 0, pχ = 0.374738.

Figure 3. Plots of Poincaré sections for γ-deformed non-Abelian T-dual background. Here we fix
the energy of the string E = 2 and choose different values of the deformation parameter γ. As the
deformation increases, the configuration becomes more chaotic.

Figure 4. Numerical plots of Lyapunov exponent(s) for γ-deformed ST background. Here, we fix
the energy of the string as E = 2. Different curves correspond to different values of the deformation
parameter γ, as indicated in the plot. The initial separation between two nearby phase space
trajectories is set to be ∆X(0) = 10−7.
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Figure 5. We show γ-deformation as an interpolation between Sfetsos-Thompson background and
chaotic dynamics of strings.

conclusion remains same as in the γ-deformed ATD example studied previously. The
Lyapunov asymptotes to zero indicating a non chaotic motion and this is clearly visible in
the figure 4. This observation (for small range of γ) is similar to what has been observed
previously in the context of ST background in [14].

Therefore, we conjecture that, for a small range of γ ∼ 0, we have a class of integrable
N = 1 backgrounds in type-IIA theory whose dual SCFTs are also conjectured to be
integrable. However, as we increase the values of γ-deformation, we deviate away from these
class of integrable theories to a class of non-integrable SCFTs. Therefore, to summarise,
γ-deformation acts like a bulk interpolating parameter (see figure 5) that connects a class of
integrable N = 1 SCFTs (that are obtained from N = 2 SCFTs via marginal deformation)
to a class of non-integrable N = 1 SCFTs at strong coupling.

3.4 Example III: Adding flavor branes

We now generalise our results in the presence of flavor brane [45]. The first one of these
backgrounds is known as the single kink space-time where N6 flavor D6-branes sit at η = P

of the internal manifold, where P (≫ 1) is an integer. The dual SCFT endows with a gauge
group SU(N)×SU(2N)×· · ·×SU(PN) which is closed due to an addition of SU((P +1)N)
flavor group. The second background that we choose is called the periodic Uluru space-time
that corresponds to placing N6 flavor D6-branes at η = P and η = K + P of the internal
manifold. These dual SCFT are characterised by a linear quiver consisting of K SU(N)
gauge group nodes terminated on each end by placing suitable flavor nodes.

The potential function corresponding to the single kink solution may be written as [45]

V (σ ∼ 0, η) = ηN6 ln σ + ηN6σ2

4 Λk(η, P ) − ηN6σ2

4
P + 1

P 2 − η2 , (3.17)

where we define the above function as

Λk(η, P ) =
(
P + 1

) k∑
m=1

( 1
(2m + (2m − 1)P )2 − η2 − 1

(2m + (2m + 1)P )2 − η2

)
+ P

(2k + 1)2(1 + P )2 − η2 .

(3.18)
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Figure 6. Plot of a Poincaré section for γ-deformed single kink profile. Here we fix the energy of
the string E = 3 and choose of the deformation parameter γ = 0.25. Also, we set η = 7, pη = 0,
P = 6 and k = 10.

In what follows, we consider γ-deformation of the above theory and calculate various
chaos indicators. In order to establish the (non-)integrability of the string sigma model, we
numerically study the Poincaré sections corresponding to different values of the deformation
parameter γ. The below figure 6 shows a Poincaré section when the value of the deformation
parameter is set as γ = 0.25. We set the energy of the string as E = 3. Clearly, the Poincaré
section consists of random data points in the σ−pσ plane of the phase space. This indicates
the chaotic dynamics of strings in the phase space.

Next, in the case of Uluru space-time, the potential function may be expressed as [45]

V (σ ∼ 0, η) = −ηN6 ln σ + ηN6σ2

4 Λu(η, K, P ) + ηN6σ2

4(P 2 − η2) , (3.19)

where we define

Λu(η, K, P ) =
u∑

n=1
(−1)n+1

( 1
(nK + (2n − 1)P )2 − η2 − 1

(nK + (2n + 1)P )2 − η2

)
.

(3.20)
In this case as well we observe from figure 7 that the Poincaré section at energy E = 3

and deformation γ = 0.25 is a random sets of data points which are indicator of chaotic
dynamics of the string. The above result is not surprising and in fact is expected since the
presence of flavor branes spoil the integrability in dual SCFTs [14, 46].

4 Summary and outlook

In this present paper, we explore chaotic dynamics for a class of N = 1 supergravity
backgrounds namely the γ-deformed abelian and non-Abelian T-dual of Gaiotto-Maldacena
solutions. The dual N = 1 SCFT is characterised by a linear quiver theory proposed in [35].
The deformed background can be obtained by applying an SL(3, R) transformation in the
eleven dimensional background followed by a type-IIA reduction.

The primary goal was to examine the integrability of the semi-classical string trajectories
in the presence of the γ-deformation as introduced in [35]. In our analysis, we use the
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Figure 7. Plots of Poincaré sections for γ-deformed Uluru profile. Here we fix the energy of the
string E = 3 and choose of the deformation parameter γ = 0.25. Also, we set η = 7, pη = 0, P = 6,
n = 10 and K = 10.

(a) γ = 0.25 (b) γ = 5

Figure 8. Motion in (σ − τ) plane for Abelian T-dual case with E = 3 , k = λ = 1 , η = 0 , pη = 0.

standard Hamiltonian formulation and study the Poincaré sections and the Lyapunov
exponents for different values of the deformation parameter (γ).

We obtain distorted KAM tori and positive Lyapunov exponents for sufficiently large
values of γ. On the other hand, we observe an integrable dynamics for sufficiently small
values of γ ≪ 1. This allows us to interpret the γ-deformation as an interpolation between
an integrable and non-integrable dynamics sitting at two different extrema of the parameter
space (see figure 5). A careful analysis reveals that the string hits σ ∼ 1 singularity (3.9),
(3.14) when the deformation parameter is large enough, γ ≫ 1. One the other hand, the
string never reaches the above singularity for small values of the deformation (γ ≪ 1)
parameter (see figures 8(a)–8(b) and 9(a)–9(b)). From the bulk perspective, we there-
fore argue that the chaotic motion of these semi-classical strings could be an artefact of
σ ∼ 1 singularity as seen by the “extended” string for large values of the deformation
parameter (γ ≫ 1).
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(a) γ = 0.25 (b) γ = 5

Figure 9. Motion in (σ − τ) plane for γ-deformed ST case with E = 2 , k = λ = 1 , η = 1 , pη = 0.

From figures 8(a)–8(b) and 9(a)–9(b), one could see that the string rapidly touches
σ ∼ 1 singularity as the deformation is increased. This results in a sudden change in
the string embedding which eventually causes a chaotic motion. To summarise, one must
therefore treat the γ-deformed solution (2.1) carefully at large values of the deformation
parameter (γ) and see whether it is a trustable classical string background beyond certain
limit [33].

From the perspective of the dual N = 1 SCFTs, this could be an artefact of the
fragmentation of the dual operator [45]. One could imagine, in the simplest possible
scenario heavy single trace operators O ∼ Tr Φij ; where Φijs are adjoint matter of some
vector multiplet Vi. For large γ-deformations these operators are broken and the associated
spin-chain structure is lost. A detailed understanding of the underlying mechanism is still
lacking at this moment and certainly deserves further investigations in the future.
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A String motion for zero and general windings

In this appendix, we provide plots for the Poincaré sections corresponding to the string
configurations with zero (k = λ = 0) as well as general values of the winding numbers
({k, λ} > 1). As illustrative examples, we choose k = λ = 3 and k = λ = 5 for the
latter cases.

As can be seen from figure 10, the point particle limits (k = λ = 0) of the strings for
the Abelian T-dual background preserve the integrability of the string σ-models irrespective
of the values of the deformation parameters (γ). This is seen to follow from (3.11). On the
other hand, in the γ-deformed Sfetsos-Thompson case the point particle limits (k = λ = 0)
preserve integrability at small deformations only, as shown in figure 12. In the large
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Figure 10. Poincaré section for point-particle limit (k = λ = 0) corresponding to γ-deformed
Abelian T-dual background. Here we fix the energy of the string as E = 6 and the deformation
parameters as γ = 0.25, 5.

(a) E = 6, γ = 0.25, k = λ = 3. (b) E = 6, γ = 0.25, k = λ = 5.

(c) E = 6, γ = 5, k = λ = 3. (d) E = 6, γ = 5, k = λ = 5.

Figure 11. Poincaré sections for γ-deformed Abelian T-dual background with non-zero winding
numbers. Here we fix the winding numbers as k = λ = 3 in figures 11(a), 11(c) and k = λ = 5 in
figures 11(b), 11(d). In all cases we set the energy E = 6. The plots in the upper row correspond to
small deformation parameters (γ = 0.25) whereas, those in the lower row correspond to large values
of the deformation (γ = 5).
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Figure 12. Poincaré section for point-particle limit (k = λ = 0) corresponding to γ-deformed
Sfetsos-Thompson background. Here we fix the energy of the string as E = 5, and the deformation
parameter as γ = 0.25.

(a) E = 5, γ = 0.25, k = λ = 3. (b) E = 5, γ = 0.25, k = λ = 5.

(c) E = 5, γ = 5, k = λ = 3. (d) E = 5, γ = 5, k = λ = 5.

Figure 13. Poincaré sections for γ-deformed Sfetsos-Thompson background with non-zero winding
numbers. Here we fix the winding numbers as k = λ = 3 in figures 13(a), 13(c) and k = λ = 5 in
figures 13(b), 13(d). In all cases we set the energy E = 5. The plots in the upper row correspond to
small deformation parameters (γ = 0.25) whereas, those in the lower row correspond to large values
of the deformation (γ = 5).
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deformation (γ ≫ 1) the Hamilton’s equation for pχ (3.16d) can be expanded as

ṗχ =
p2

χ sin 2χ

8(cos 2χ − 1)2σ2γ2
+ O

(
γ−3

)
. (A.1)

Clearly, in the limit χ → 0, ṗχ → ∞. This is the reason we do not get a phase space
plot at large deformation. This also indicates the fact that we can not take arbitrarily large
values of the deformation parameter (γ) – we need to truncate γ at some finite value to
obtain reasonable solution. In this regard, the point particle limit corresponding to the
γ-deformed Sfetsos-Thompson background may be considered as a special case.

Nevertheless, the (non-)integrability of the σ-models for (large) small values of the
deformation parameter (γ) remain preserved even when we set the winding numbers of the
strings greater than 1 (k = λ = 3, 5). These have been shown in figures 11, 13.

B Background dilaton and semi-classical analysis

In γ-deformed Sfetsos-Thompson solution, for sufficiently small values of γ (γ ≪ 1) the
string moves close to σ ∼ 0 as described in figure 9(a). For γ ≪ 1 and around σ ∼ 0 the
background dilaton in (2.6) takes the form

e2Φ|γ≪1 ∼ const. + small fluctuations (O(γ2σ2)) .

Hence for γ ≪ 1, the α′ correction term (α′√gR(2)Φ) in the Polyakov action (3.1) gives a
constant contribution (ignoring the small fluctuations) and the equations of motion still
remain same. Therefore, for γ ≪ 1 the semi-classical analysis holds.

On the other hand, for sufficiently large values of γ (γ ≫ 1) the background dilaton
in (2.6) takes the form

e2Φ|γ≫1 ∼ 1
γ2σ2(1 − σ2)3 + O

( 1
γ3

)
.

As described in figure 9(b) we observe that the string rapidly touches σ ∼ 1 for γ ≫ 1.
Therefore, for γ ≫ 1 the background dilaton blows up and the semi-classical approximation
breaks down. In other words, the α′ corrections are important in the limit of large γ

deformations. Similar remarks hold for the γ-deformed Abelian T-dual example which we
therefore prefer not to repeat here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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