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1 Introduction

Electroweak multiplets that neither mix with Standard Model (SM) fields nor acquire
vacuum expectation values (VEVs) are ubiquitous in physics beyond the Standard Model
(BSM). Such multiplets, which we will refer to as inert, can provide potential dark
matter candidates [1–4], be responsible for baryogenesis [5, 6], or explain certain flavour
anomalies [7].

Inert multiplets can in principle interact at tree level with the Higgs boson h and
therefore affect some of its properties. Interestingly, specifying these interaction terms and
the masses of the particles involved is sufficient to compute their leading contributions to
many Higgs properties. Since these interaction terms can only take a limited number of
forms, this allows for a very broad analysis of the impact of inert multiplets on specific
Higgs properties that are sensitive to new physics contributions. In this paper, we will
study three such properties, all affected by the new particles at the one-loop level.

The first one is the branching ratio of the Higgs boson to a photon and a Z boson. Since
this is a loop process in the SM, new particles could potentially lead to sizable deviations
from the SM prediction. Furthermore, the current measurement of this branching ratio
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is 2.1 ± 0.7 times larger than its SM value, corresponding to a deviation of 1.9σ [8, 9].
Previous works on possible deviations of this branching ratio include refs. [10, 11].

The second Higgs property of interest is the branching ratio of the Higgs to a Z boson
and a massless dark photon A′ [12]. An extensive literature on the decay h→ AA′ already
exists [13–21], but it was recently demonstrated in refs. [19–21] that this branching ratio is
considerably more constrained than the previous analysis ref. [13]. Some of the constraints
on h→ AA′ simply do not apply to h→ ZA′ and no bound on this branching ratio currently
exists in the literature.

The third Higgs property considered is the triple Higgs coupling. This coupling provides
additional information on the form of the Higgs potential. In addition, a larger value of this
coupling could lead to a sufficiently strong first-order electroweak phase transition in the
early Universe and thus explain matter abundance via electroweak baryogenesis [22, 23].

More precisely, the goal of this paper is to study the potential contributions of inert
multiplets to the Higgs branching ratios BR(h → ZA(′)) and the triple Higgs coupling.
To do so, we will consider all possible tree-level interactions between the Higgs and inert
multiplets and then compute their contributions to these Higgs properties. Constraints
from the Higgs signal strengths, the electroweak precision tests and perturbative unitarity
will be taken into account. In many ways, this paper is an extension of the formalism of
refs. [19, 20] and its application to new Higgs properties.

We find the following results. The branching ratio BR(h→ ZA) can easily be enhanced
by O(20%) for simple models. Considerably larger enhancements are possible, but require
more complicated models and careful fine-tuning. The branching ratio BR(h→ ZA′) could
in principle be above 1%. It would however require new neutral particles barely above half
the mass of the Higgs boson. A branching ratio of O(0.1%) is however relatively easy to
obtain. The triple Higgs coupling can easily be enhanced by a factor of several.

This paper is organized as follows. We introduce in section 2 the inert multiplets and
all their relevant interactions with the Higgs doublet. Section 3 explains how we apply
constraints and compute the above-mentioned properties. The results are shown in section 4.
Some concluding remarks are presented in section 5.

2 Possible interaction terms

If inert multiplets are to have any sizable impact on Higgs properties, they need to interact
with the Higgs boson at tree level. In this section, we present all renormalizable interaction
terms relevant to our observables. Most of these terms were already included in refs. [19, 20],
from which we borrow heavily. Contrary to these papers, we will not in general require
the inert multiplets to be charged under a new U(1)′ symmetry. This will allow for a few
additional terms as well as real multiplets. We will require the interaction terms to be
able to contribute to our observables at one loop. In combination with the requirement
of the fields not acquiring VEVs, this will force the interaction terms to always contain
exactly two (distinct or not) inert multiplets. We will write quantum numbers of fields as
(SU(2)L,U(1)Y ,U(1)′). The SU(2)L indices are labeled by Latin letters and range from 1
to the size of the representation of the corresponding field. Considering the constraints on
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new coloured particles, all fields will be assumed to be SU(3)C singlets. Terms that are
equivalent to those below up to a field redefinition are not included in the list, but could
easily be included when the field redefinition cannot be performed simultaneously for all
terms in the Lagrangian. See ref. [24] for a similar exercise but with different assumptions
and motivations.

Fermion case. Consider the fermions

ψ1 : (p, Y p, Q′), ψ2 : (n, Y n, Q′), (2.1)

with Y p = Y n+1/2 and p = n± 1. Throughout the paper, we use the boldfaced p and n to
denote the SU(2)L representation of a multiplet and italic p and n for their corresponding
dimensions. The following term is allowed1

F (ψ1, ψ2) = −d̂pnabcψ
a
1(ALPL +ARPR)ψb2Hc + H.c. (2.2)

The SU(2)L tensor is given by the Clebsch-Gordan coefficient

d̂pnabc = CJMj1m1j2m2 ≡ ⟨j1j2m1m2|JM⟩, (2.3)

where
j1 = n− 1

2 , j2 = 1
2 , J = p− 1

2 ,

m1 = n+ 1− 2b
2 , m2 = 3− 2c

2 , M = p+ 1− 2a
2 .

(2.4)

Depending on their quantum numbers, either ψ1 or ψ2 can be a real multiplet.

Scalar case I. Consider the scalars

ϕ1 : (p, Y p, Q′), ϕ2 : (n, Y n, Q′), (2.5)

with Y p = Y n + 1/2 and p = n± 1. The following term is allowed

S1(ϕ1, ϕ2) = −µd̂pnabcϕ
a†
1 ϕ

b
2H

c + H.c. (2.6)

The SU(2)L tensor is given by
d̂pnabc = CJMj1m1j2m2 , (2.7)

where
j1 = n− 1

2 , j2 = 1
2 , J = p− 1

2 ,

m1 = n+ 1− 2b
2 , m2 = 3− 2c

2 , M = p+ 1− 2a
2 .

(2.8)

Depending on their quantum numbers, either ϕ1 or ϕ2 can be a real multiplet. This case
includes the electroweak (EW) case of refs. [13–17] when their neutral scalar S is replaced
by its expectation value.

1Summation over repeated symbols is implicit when trivial but will be written explicitly otherwise.
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Scalar case II. Consider the scalar

ϕ : (n, Y n, Q′). (2.9)

The following term is allowed

S2(ϕ) = −
∑

r∈{n−1,n+1}
λrd̂nrabcdH

a†Hbϕc†ϕd. (2.10)

The SU(2)L tensor is given by

d̂nrabcd =
∑
M

CJMj1m1j2m2C
JM
j3m3j4m4 , (2.11)

where M is summed over {−J,−J + 1,−J + 2, . . . ,+J} and

j1 = 1
2 , j2 = n− 1

2 , j3 = 1
2 , j4 = n− 1

2 , J = r − 1
2 ,

m1 = 3− 2a
2 , m2 = n+ 1− 2c

2 , m3 = 3− 2b
2 , m4 = n+ 1− 2d

2 .

(2.12)

Unless ϕ is a singlet, there are in general two possible contractions of the SU(2)L indices
and therefore two coefficients. Depending on its quantum numbers, ϕ can be either a real
or complex multiplet.

Scalar case III. Consider the scalars

ϕ1 : (p, Y p, Q′), ϕ2 : (n, Y n, Q′), (2.13)

with p ∈ {n− 2, n, n+ 2} and Y p = Y n. The following term is allowed

S3(ϕ1, ϕ2) = −
∑
r∈R

λrd̂pnrabcdH
a†Hbϕc†1 ϕ

d
2 + H.c., (2.14)

where R = {n− 1, n+ 1} ∩ {p− 1, p+ 1}. The SU(2)L tensor is given by

d̂pnrabcd =
∑
M

CJMj1m1j2m2C
JM
j3m3j4m4 , (2.15)

where M is summed over {−J,−J + 1,−J + 2, . . . ,+J} and

j1 = 1
2 , j2 = p− 1

2 , j3 = 1
2 , j4 = n− 1

2 , J = r − 1
2 ,

m1 = 3− 2a
2 , m2 = p+ 1− 2c

2 m3 = 3− 2b
2 , m4 = n+ 1− 2d

2 .

(2.16)

If p and n differ by two, there is only one possible contraction. If p = n, there are two
possible contractions unless p = n = 1. Depending on their quantum numbers, either ϕ1
and ϕ2 can be a real multiplet.
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Scalar case IV. Consider the scalars

ϕ1 : (p, Y p, Q′), ϕ2 : (n, Y n, Q′), (2.17)

with p ∈ {n− 2, n, n+ 2} and Y p = Y n + 1. The following term is allowed

S4(ϕ1, ϕ2) = −λd̂pnabcdH
aHbϕc†1 ϕ

d
2 + H.c. (2.18)

The SU(2)L tensor is given by

d̂pnabcd =
∑
M1

CJ1M1
j1m1j2m2

CJ2M2
J1M1j3m3

, (2.19)

where M1 is summed over {−1, 0, 1} and

j1 = 1
2 , j2 = 1

2 , j3 = n− 1
2 , J1 = 1, J2 = p− 1

2 ,

m1 = 3− 2a
2 , m2 = 3− 2b

2 m3 = n+ 1− 2d
2 , M2 = p+ 1− 2c

2 .

(2.20)

Only one contraction of the SU(2)L indices is allowed. Depending on their quantum numbers,
either ϕ1 or ϕ2 can be a real multiplet.

Scalar case V. Consider the scalar

ϕ : (n, 1/2, 0). (2.21)

The following term is allowed

S5(ϕ) = −λd̂nabcdHaHbϕc†ϕd† + H.c. (2.22)

The SU(2)L tensor is given by

d̂nabcd =
∑
M

CJMj1m1j2m2C
JM
J3m3j4m4 , (2.23)

where M is summed over {−1, 0, 1} and

j1 = 1
2 , j2 = 1

2 , j3 = n− 1
2 , j4 = n− 1

2 , J = 1,

m1 = 3− 2a
2 , m2 = 3− 2b

2 m3 = n+ 1− 2c
2 , m4 = n+ 1− 2d

2 .

(2.24)

Only one non-zero contraction of the SU(2)L indices is possible. The scalar ϕ must be a
complex multiplet. It must also be of even dimension to be non-zero, which can easily be
verified from a table of Clebsch-Gordan coefficients. This interaction term does not allow ϕ

to be charged under U(1)′ and thus did not appear in refs. [19, 20].
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Scalar case VI. Consider the scalar

ϕ : (n, 0, 0). (2.25)

The following term is allowed

S6(ϕ) = −
∑

r∈{1,3}
λrd̂nrabcdH

a†Hbϕcϕd + H.c. (2.26)

The SU(2)L tensor is given by

d̂nrabcd =
∑
M

CJ1M
j1m1j2m2

CJ2M2
J1Mj3m3

, (2.27)

where M is summed over {−J1,−J1 + 1,−J1 + 2, . . . ,+J1} and

j1 = n− 1
2 , j2 = n− 1

2 , j3 = 1
2 , J1 = r − 1

2 , J2 =1
2 ,

m1 = n+ 1− 2c
2 , m2 = n+ 1− 2d

2 m3 = 3− 2b
2 , M2 =3− 2a

2 .

(2.28)

Two contractions of the SU(2)L indices are possible, though in practice only r = 1 contributes
if n is odd and only r = 3 if n is even. The scalar ϕ can be either real or complex. This
term was not permitted by the requirements of refs. [19, 20].

3 Constraints and observables

In this section, we introduce useful notation, explain how constraints are applied and
present the computations of relevant Higgs properties. Many results from this section can
be found in refs. [19, 20], though we modified the notation and expanded them to apply to
additional scenarios.

3.1 Lagrangian

The only parts of the Lagrangian necessary to compute our observables are the kinematic
terms and the interaction terms of the last section. In this section, we will write down
the most general form of the relevant Lagrangian terms that can result from them. All
new particles considered will be either complex scalars ϕCi , real scalars ϕRi , Dirac fermions
ψDi or Majorana fermions ψMi , the only exception being a potential dark photon A′. The
Lagrangian is expressed in terms of gauge eigenstates. Many parameters will be introduced
for convenience, though some are related either by construction or gauge symmetries.

Mass terms

LMass =− (m2
C)ijϕCi

†
ϕCj − 1

2(m
2
R)ijϕRi ϕRj

− ψ̄Di

(
(mL

D)ijPL + (mR
D)ijPR

)
ψDj − 1

2 ψ̄
M
i

(
(mL

M )ijPL + (mR
M )ijPR

)
ψMj .

(3.1)
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Yukawa interactions

LYukawa =− h(ΩC)ijϕCi
†
ϕCj − h

2 (ΩR)ijϕ
R
i ϕ

R
j

− hψ̄Di

(
(ΩLD)ijPL + (ΩRD)ijPR

)
ψDj − h

2 ψ̄
M
i

(
(ΩLM )ijPL + (ΩRM )ijPR

)
ψMj .

(3.2)

Gauge interactions of complex scalars

LGauge
C =

(
−i(AC)iiAµϕCi

†
∂µϕCi + H.c.

)
+ (BC)iiAµAµϕCi

†
ϕCi

+
(
−i(CC)ijZµϕCi

†
∂µϕCj + H.c.

)
+ (DC)ijZµZµϕCi

†
ϕCj + 2(EC)ijAµZµϕCi

†
ϕCj

+
(
−i(FC)ijW+

µ

(
ϕCi

†
∂µϕCj − ∂µϕCi

†
ϕCj

)
+ H.c.

)
+ 2(GC)ijW+

µ W
−µϕCi

†
ϕCj

+
(
−i(H

1
C)ij√
2

W+
µ (ϕC†

i ∂µϕC†
j − ϕC†

i ∂µϕC†
j ) + H.c.

)

+
(
−i(H

2
C)ij√
2

W+
µ (ϕCi ∂µϕCj − ϕCi ∂

µϕCj ) + H.c.
)

+
(
−i(A′

C)iiA′
µϕ

C
i
†
∂µϕCi + H.c.

)
+ 2(B′

C)iiA′
µA

µϕC
†
iϕ
C
i + (B′′

C)iiA′
µA

′µϕC
†
iϕ
C
i

+ 2(E′
C)ijA′

µZ
µϕCi

†
ϕCj .

(3.3)

Gauge interactions of real scalars

LGauge
R = (CR)ij

2 Zµ
(
ϕRi ∂

µϕRj − ∂µϕRi ϕ
R
j

)
+ (DR)ij

2 ZµZ
µϕRi ϕ

R
j + (GR)ijW+

µ W
−µϕRi ϕ

R
j .

(3.4)

Gauge interactions of both complex and real scalars

LGauge
RC = −i(F 1

RC)ijW+
µ

(
ϕRi ∂

µϕCj − ∂µϕRi ϕ
C
j

)
−i(F 2

RC)ijW+
µ

(
ϕCi

†
∂µϕRj − ∂µϕCi

†
ϕRj

)
+H.c.

(3.5)

Gauge interactions of Dirac fermions

LGauge
D =− (AD)iiAµψ̄Di γµψDi − Zµψ̄

D
i γ

µ
(
(BL

D)ijPL + (BR
D)ijPR

)
ψDj

−W+
µ ψ̄

D
i γ

µ
(
(FLD)ijPL + (FRD )ijPR

)
ψDj + H.c.

− (A′
D)iiA′

µψ̄
D
i γ

µψDi .

(3.6)

Gauge interactions of Majorana fermions

LGauge
M = −Zµ2 ψ̄Mi γ

µ
(
(FLM )ijPL + (FRM )ijPR

)
ψMj . (3.7)

Gauge interactions of both Dirac and Majorana fermions

LGauge
MD =−W+

µ ψ̄
M
i γ

µ
(
(F 1L

MD)ijPL + (F 1R
MD)ijPR

)
ψDj + H.c.

−W+
µ ψ̄

D
i γ

µ
(
(F 2L

MD)ijPL + (F 2R
MD)ijPR

)
ψMj + H.c.

(3.8)
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Quartic couplings

LQuartic = −
λCij
2 h2ϕC†

i ϕCj −
λRij
4 h2ϕRi ϕ

R
j . (3.9)

The different powers of 2 that appear in these equations are chosen to simplify the results
of the following sections. In practice, we compute analytically the different coefficients of
the Lagrangian via a simple program. The mass matrices of eq. (3.1) are then diagonalized
numerically. The resulting mass eigenstates are labelled with a hat and their corresponding
masses are referred to as m̂α

i , with α being either C, R, D or M as in eq. (3.1). The
coefficients in the mass eigenstates basis are also labeled with a hat. The H1

C and H2
C terms

only appear in very exotic cases.

3.2 Relevant Higgs decays and Higgs signal strengths

We present in this section all relevant decay widths of the Higgs boson. We also discuss our
implementation of the constraints on the Higgs signal strengths.

3.2.1 Higgs to (dark) photons

Only complex scalars and Dirac fermions can contribute at one loop to the Higgs decay to
photons or dark photons. The amplitudes take the general form

Mh→A(′)A(′) = Sh→A(′)A(′) (p1 · p2gµν − p1µp2ν) ϵνp1ϵ
µ
p2 + iS̃h→A(′)A(′)

ϵµναβp
α
1 p

β
2 ϵ
ν
p1ϵ

µ
p2 , (3.10)

with pi and ϵi being respectively the momentum and polarization of the gauge bosons. The
new physics contributions to the coefficients are

4π2Sh→A(′)A(′) =
∑
i

(Â(′)
C )ii(Â(′)

C )ii(Ω̂C)iif1(m̂C
i ) +

∑
i

(Â(′)
D )ii(Â(′)

D )iiRe((Ω̂LD)ii)f2(m̂D
i ),

4π2S̃h→A(′)A(′) =
∑
i

(Â(′)
D )ii(Â(′)

D )iiIm((Ω̂LD)ii)f3(m̂D
i ),

(3.11)
where

f1(mi) =
1 + 2m2

iC0(0, 0,m2
h;mi,mi,mi)

m2
h

,

f2(mi) = −2mi

m2
h

[
2 + (4m2

i −m2
h)C0(0, 0,m2

h;mi,mi,mi)
]
,

f3(mi) = −2imiC0(0, 0,m2
h;mi,mi,mi),

(3.12)

with C0(s1, s12, s2;m0,m1,m2) being the scalar three-point Passarino-Veltman function [25].2

In obtaining these results, we have used the fact that certain coefficients are related by
gauge symmetries (e.g., (B̂C)ii = (ÂC)2

ii) and also (Ω̂RD)∗ii = (Ω̂LD)ii. The decay widths are
then

Γh→A(′)A(′) = |Sh→A(′)A(′) |2 + |S̃h→A(′)A(′) |2

32πnS
m3
h, (3.13)

where nS is 2 for AA and A′A′ and 1 for AA′.
2All loop computations were performed with the assistance of Package-X [26].
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3.2.2 Higgs decay to Z and a (dark) photon

Once again, only complex scalars and Dirac fermions can contribute to the Higgs decay to
a Z boson and a photon or dark photon. The amplitudes take the general form

Mh→A(′)Z = Sh→A(′)Z (p1 · p2gµν − p1µp2ν) ϵνp1ϵ
µ
p2 + iS̃h→A(′)Zϵµναβp

α
1 p

β
2 ϵ
ν
p1ϵ

µ
p2 . (3.14)

The new physics contributions to the coefficients are

4π2Sh→A(′)Z =
∑
i,j

(Â(′)
C )ii(CC)ji(Ω̂C)ijf4(m̂C

i , m̂
C
j )

+
∑
i,j

(Â(′)
D )ii

[
(B̂L

D)ji(Ω̂LD)ij + (B̂R
D)ji(Ω̂RD)ij

]
f5(m̂D

i , m̂
D
j )

+
∑
i,j

(Â(′)
D )ii

[
(B̂R

D)ji(Ω̂LD)ij + (B̂L
D)ji(Ω̂RD)ij

]
f5(m̂D

j , m̂
D
i ),

4π2S̃h→A(′)Z =
∑
i,j

(Â(′)
D )ii

[
(B̂L

D)ji(Ω̂LD)ij − (B̂R
D)ji(Ω̂RD)ij

]
f6(m̂D

i , m̂
D
j )

+
∑
i,j

(Â(′)
D )ii

[
(B̂R

D)ji(Ω̂LD)ij − (B̂L
D)ji(Ω̂RD)ij

]
f6(m̂D

j , m̂
D
i ),

(3.15)

where

f4(mi,mj) =
1

m2
h −m2

Z

[
1 +

m2
i −m2

j

2m2
h

ln m
2
i

m2
j

+ m2
Z

(
Λ(m2

h,mi,mj)− Λ(m2
Z ,mi,mj)

)
m2
h −m2

Z

+m2
iC0(0,m2

h,m
2
Z ;mi,mi,mj) +m2

jC0(0,m2
h,m

2
Z ;mj ,mj ,mi)

]

f5(mi,mj) =−mif4(mi,mj) +
mi

2 C0(0,m2
h,m

2
Z ;mi,mi,mj)

f6(mi,mj) =− mi

2 C0(0,m2
h,m

2
Z ;mi,mi,mj),

(3.16)
and Λ(s;mi,mj) is defined as

Λ(s;mi,mj) = lim
ϵ→0+

√
λ(s,m2

i ,m
2
j )

s
ln

m2
i +m2

j − s+
√
λ(s,m2

i ,m
2
j )

2mimj
+ iϵ

 , (3.17)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz being the Källén function. The decay
widths are then

Γh→A(′)Z = |Sh→A(′)Z |2 + |S̃h→A(′)Z |2

32π

(
1− m2

Z

m2
h

)3

m3
h. (3.18)

Note that one major qualitative difference between these decay widths and Γh→A(′)A(′) is
the suppression factor of

(
1−m2

Z/m
2
h

)3 ≃ 0.104 from the phase space.
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3.2.3 Constraints on the Higgs signal strengths

Constraints on the Higgs signal strengths are imposed by using the κ formalism [27]. Given
a production mechanism i with cross section σi or a decay process i with width Γi, the
parameter κi is defined such that

κ2
i =

σi

σSM
i

or κ2
i =

Γi
ΓSM
i

, (3.19)

where σSM
i and ΓSM

i are the corresponding SM quantities. The only two Higgs couplings
affected at leading order are those to AA and AZ. The corresponding κ’s are

κ2
AA = |Sh→AA|2 + |S̃h→AA|2

|Sh→AA
SM |2 + |S̃h→AA

SM |2
, κ2

ZA = |Sh→ZA|2 + |S̃h→ZA|2

|Sh→ZA
SM |2 + |S̃h→ZA

SM |2
, (3.20)

where S̃h→AA
SM and S̃h→ZA

SM are both zero at leading order. The invisible (A′A′) and semi-
invisible (A′A and A′Z) decays of the Higgs boson are accounted for by rescaling the signal
strengths. The experimental input is the Higgs signal strength measurements of ref. [28]
by CMS and ref. [29] by ATLAS. These studies provide the measurements, uncertainties
and correlations necessary to produce our own χ2 fit. The two searches are assumed to
be uncorrelated.

3.3 Oblique parameters

We present in this section all contributions to the oblique parameters [30]. Define

αTϕ(m,C,D,F,G,H1,H2) =

1
32π2m2

W

[∑
i

(
Gii−c2

WDii

)
F1(mi)+

∑
i,j

(
|Fij |2+ |H1

ij |2+ |H2
ij |2−c2

W |Cij |2
)
F2(mi,mj)

]
,

αTψ(m,BL,BR,FL,FR) = 1
32π2m2

W

[
(|FLij |2+ |FRij |2)F3(mi,mj)+2Re(FLijFR∗

ij )F4(mi,mj)

−c2
W

[
(|BL

ij |2+ |BR
ij |2)F3(mi,mj)+2Re(BL

ijB
R∗
ij )F4(mi,mj)

]]
,

αSϕ(m,A,C) = s2
W c

2
W

8π2

∑
i,j

(
|Cij |2−

c2
W −s2

W

cW sW
CijAji−A2

ij

)
F5(mi,mj),

αSψ(m,A,BL,BR) = s2
W c

2
W

8π2

∑
i,j

[
(|BL

ij |2+ |BR
ij |2)F6(mi,mj)+2Re(BL

ijB
R∗
ij )F7(mi,mj)

−
(
c2
W −s2

W

cW sW
(BL

ij+BR
ij)Aij+2|Aij |2

)
[F6(mi,mj)+F7(mi,mj)]

]
,

(3.21)
where

F1(mi) = −4m2
i (1− lnm2

i ),

F2(mi,mj) = (m2
i +m2

j )
(
3−

2(m4
i lnm2

i −m4
j lnm2

j )
m4
i −m4

j

)
,
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F3(mi,mj) = (m2
i +m2

j )
(
1−

2(m4
i lnm2

i −m4
j lnm2

j )
m4
i −m4

j

)
,

F4(mi,mj) = −4mimj

(
1−

(m2
i lnm2

i −m2
j lnm2

j )
m2
i −m2

j

)
,

F5(mi,mj) = −
5m4

i − 22m2
im

2
j + 5m4

j

9(m2
i −m2

j )2 +
2
[
m4
i (m2

i − 3m2
j ) lnm2

i −m4
j (m2

j − 3m2
i ) lnm2

j

]
3(m2

i −m2
j )3 ,

F6(mi,mj) = −
4(m4

i − 8m2
im

2
j +m4

j )
9(m2

i −m2
j )2 +

4
[
m4
i (m2

i − 3m2
j ) lnm2

i −m4
j (m2

j − 3m2
i ) lnm2

j

]
3(m2

i −m2
j )3 ,

F7(mi,mj) = −2mimj

(m2
i +m2

j )
(m2

i −m2
j )2

(
1−

2m2
im

2
j

m4
i −m4

j

ln m
2
i

m2
j

)
. (3.22)

The oblique parameters are then conveniently given by

T = Tϕ(m̂C , ĈC , D̂C , F̂C , ĜC , Ĥ
1
C , Ĥ

2
C) +

1
2Tϕ(m̂R, ĈR, D̂R, 0, ĜR, 0, 0)

+ Tϕ(m̂RC , 0, 0, F̂RC , 0, 0, 0) + Tψ(m̂D, B̂
L
D, B̂

R
D, F̂

L
D, F̂

R
D ) + 1

2Tψ(m̂M , B̂
L
M , B̂

R
M , 0, 0)

+ Tψ(m̂MD, 0, 0, F̂LMD, F̂
R
MD),

S = Sϕ(m̂C , ÂC , ĈC) +
1
2Sϕ(m̂R, 0, ĈR) + Sψ(m̂D, ÂD, B̂

L
D, B̂

R
D) +

1
2Sψ(m̂M , 0, B̂L

M , B̂
R
M ),

(3.23)
where

m̂RC =
(
m̂R m̂C

)
, m̂MD =

(
m̂M m̂D

)
,

F̂RC =
(

0 F̂ 1
RC

F̂ 2
RC 0

)
, F̂

L/R
MD =

(
0 F̂

1L/R
MD

F̂
2L/R
MD 0

)
.

(3.24)

A χ2 fit is performed using [31]

S = −0.01± 0.07, T = 0.04± 0.06, (3.25)

with a correlation of 0.92.

3.4 Unitarity

Consider the amplitude M of a 2 → 2 scattering process. It can be decomposed in terms of
the Legendre polynomials Pℓ(cos θ) as

M = 16π
∑
ℓ

(2ℓ+ 1)aℓPℓ(cos θ). (3.26)

For complex scalars, real scalars, Dirac spinors and Majorana spinors, we will define matrices
of aℓ coefficients called amat

ℓ . Unitarity will then impose

amax
ℓ ≡ max

(∣∣∣Re
(
aeig
ℓ

)∣∣∣) ≤ 1
2 , (3.27)

– 11 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
0

where aeig
ℓ is the list of eigenvalues of amat

ℓ . In the presence of identical particles in the
incoming or outgoing state, a0 is multiplied by a factor of 1/

√
2. The limit of very high

energy is assumed, in which case we can work with gauge eigenstates, though the basis
invariance of the final results will be apparent. We will consider scattering from two
components of an inert multiplet to two Higgs bosons and take inspiration from ref. [32].

As a side note, we mention that the treatment of the fermion case differs from that
of refs. [19, 20]. Although the treatment of these references is very convenient for simpler
cases, its generalization to more general cases can prove cumbersome.

Complex scalars. Consider the basis of field pairs

hh, ϕC†
1 ϕC1 , ϕ

C†
1 ϕC2 , . . . , ϕ

C†
1 ϕCn , ϕ

C†
2 ϕC1 , ϕ

C†
2 ϕC2 , . . . , ϕ

C†
2 ϕCn , . . . ϕ

C†
n ϕC1 , ϕ

C†
n ϕC2 , . . . , ϕ

C†
n ϕCn ,

(3.28)
where n is the number of complex scalars. The amat

0 matrix for scattering from one pair to
another is

amat
0 = − 1

16
√
2π

(
0 vC

vC† 0

)
, (3.29)

where
vC =

(
λC11 λ

C
12 . . . λ

C
1n λ

C
21 λ

C
22 . . . λ

C
2n . . . λ

C
n1 λ

C
n2 . . . λ

C
nn

)
. (3.30)

In practice, this simply gives

amax
0 =

√
Tr[(λC)2]
16
√
2π

. (3.31)

Real scalars. Consider the basis of field pairs

hh, ϕR1 ϕ
R
1 , ϕ

R
1 ϕ

R
2 , . . . , ϕ

R
1 ϕ

R
n , ϕ

R
2 ϕ

R
2 , ϕ

R
2 ϕ

R
3 , . . . , ϕ

R
2 ϕ

R
n , . . . , ϕ

R
nϕ

R
n , (3.32)

where n is the number of real scalars. The amat
0 matrix for scattering from one pair to

another is
amat

0 = − 1
16
√
2π

(
0 vR

vR† 0

)
, (3.33)

where
vR =

(
λR

11√
2 λR12 . . . λ

R
1n

λR
22√
2 λR23 . . . λ

R
2n . . .

λR
nn√
2

)
. (3.34)

In practice, this simply gives

amax
0 =

√
Tr[(λR)2]
32π . (3.35)

Dirac fermions. Consider the basis of field pairs

hh, ψ̄D1 ψ
D
1 , ψ̄

D
1 ψ

D
2 , . . . , ψ̄

D
1 ψ

D
n , ψ̄

D
2 ψ

D
1 , ψ̄

D
2 ψ

D
2 , . . . , ψ̄

D
2 ψ

D
n , . . . ψ̄

D
n ψ

D
1 , ψ̄

D
n ψ

D
2 , . . . , ψ̄

D
n ψ

D
n ,

(3.36)
where n is the number of Dirac fermions. The a0 coefficients for ψ̄Di ψDj → hh are null. The
amat

1 matrix for scattering from one pair to another is

amat
1 = − 1

16
√
2

(
0 vD

vD† 0

)
, (3.37)
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where
vD =

(
AD11 A

D
12 . . . A

D
1n A

D
21 A

D
22 . . . A

D
2n A

D
n1 A

D
n2 . . . A

D
nn

)
, (3.38)

with
ADij =

(∑
k(ΩRD)ik(ΩLD)kj

∑
k(ΩLD)ik(ΩRD)kj

)
, (3.39)

in the helicity basis (↑↓, ↓↑). In practice, this simply gives

amax
1 =

√
Tr[(ΩLDΩRD)2]

16 . (3.40)

Majorana fermions. Consider the basis of field pairs

hh, ψM1 ψM1 , ψM1 ψM2 , . . . , ψM1 ψMn , ψ
M
2 ψM2 , ψM2 ψM3 , . . . , ψM2 ψMn , . . . , ψ

M
n ψ

M
n , (3.41)

where n is the number of Majorana fermions. The a0 coefficients for ψMi ψMj → hh are null.
The amat

1 matrix for scattering from one pair to another is

amat
1 = − 1

16
√
2

(
0 vM

vM† 0

)
, (3.42)

where
vM =

(
AM

11√
2 AM12 . . . A

M
1n

AM
22√
2 AM23 . . . A

M
2n . . .

AM
nn√
2

)
, (3.43)

with
AMij =

(∑
k(ΩRM )ik(ΩLM )kj

∑
k(ΩLM )ik(ΩRM )kj

)
, (3.44)

in the helicity basis (↑↓, ↓↑). In practice, this simply gives

amax
1 =

√
Tr[(ΩLMΩRM )2]

16
√
2

, (3.45)

where we have assumed that ΩRM and ΩLM are constructed such that they are symmetric,
which can always be performed.

3.5 Triple Higgs coupling

With our formalism, the triple Higgs coupling can easily be computed using the Coleman-
Weinberg potential [33]. In the MS renormalization scheme, it is given by

VCW = 1
64π2

[∑
i

(m̂4
R)ii

(
ln
(
(m̂2

R)ii
Q2

)
− 3

2

)
+ 2

∑
i

(m̂4
C)ii

(
ln
(
(m̂2

C)ii
Q2

)
− 3

2

)

−2
∑
i

(m̂4
M )ii

(
ln
(
(m̂2

M )ii
Q2

)
− 3

2

)
− 4

∑
i

(m̂4
D)ii

(
ln
(
(m̂2

D)ii
Q2

)
− 3

2

)]
,

(3.46)
where the different masses are understood to be the field-dependent masses and Q is some
scale that cancels in the final result. Requesting to reproduce the correct mass and VEV of
the Higgs, the triple Higgs coupling λhhh is given by

λhhh
3! = m2

h

2v +
[(

1
2v2

∂

∂h
− 1

2v
∂2

∂h2 + 1
3!
∂3

∂h3

)
VCW

]∣∣∣∣∣
h=0

, (3.47)

where we use the convention that v ≈ 246GeV.
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4 Results

We present in this section the potential contributions of inert multiplets to BR(h→ ZA(′))
and the triple Higgs coupling. We first discuss our scanning procedure and then present
results in the presence of either one or multiple interaction terms.

4.1 Scanning procedure

For each benchmark model considered, the entire parameter space is scanned using a Markov
chain with the Metropolis-Hasting algorithm. To increase the density of points toward the
limits and therefore obtain faster convergence, a non-flat prior is chosen proportional to(

δλhhh
a

)2
+
(
δBR(h→ AZ)

b

)2
+
(BR(h→ A′Z)

c

)2
(4.1)

where we set a = b = 0.1 and c = 0.001. The relative deviation of the triple Higgs coupling
from its SM value is defined as

δλhhh = λhhh − λSM
hhh

λSM
hhh

. (4.2)

The relative deviation of BR(h→ AZ) from its SM value is defined as

δBR(h→ AZ) = BR(h→ AZ)− BR(h→ AZ)SM
BR(h→ AZ)SM

. (4.3)

We have verified that the Markov chain converges to the same results irrespective of the
choice of prior. To keep the number of figures reasonable, the results are finely binned and
presented as histograms. When multiple contractions of SU(2)L indices are possible, all
contractions are considered. For scalar multiplets, points are dismissed in the presence
of tachyons, as the scalars acquiring VEVs fall outside the scope of this work and can
even potentially break electromagnetism.3 Points that contain charged particles below
100 GeV are also rejected, as such particles are ruled out by LEP [34, 35]. As discussed in
refs. [19, 20], constraints from the Higgs signal strengths can be partially avoided by having
purely imaginary Ω̂L/RD couplings. This however leads to a strongly excluded contribution
to the electron electric dipole moment, which forces Ω̂L/RD to be almost purely real. In
practice, the results are equivalent to taking AL/R to be real. For the sake of simplicity and
to speed up computations, we will therefore take AL/R real. For complex scalars, unitarity
imposes a constraint on the couplings to dark photons of [32]∑

i

(A′
C)4

ii < 16π2. (4.4)

3We mention that Higgs vacuum instability could also be a problem, for example because the fermionic
multiplets tend to make the Higgs quartic run more negative. However, bounds on vacuum stability would
imply the assumption that no new physics exists between the electroweak scale and the instability scale.
Since we cannot guarantee this assumption is respected, we do not impose such bounds. In the same vein,
the existence of additional minima that break electromagnetism could potentially be problematic. However,
such bounds would depend on the full potential. The additional terms could address the stability issues
while leaving our observables unchanged at leading order. Because of this, we do not consider this issue
any further.
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For Dirac fermions, we take the less restrictive max(|A′
D|ii) <

√
4π. As a validation

procedure, we have verified that all divergences in the loop decay widths and oblique
parameters cancel for all points of every benchmark. Finally, as pointed out in refs. [19, 20],
the Higgs signal strengths are considerably insensitive to the scenario that the BSM
contributions to Sh→AA (Sh→AZ) are about −2Sh→AA

SM (−2Sh→AZ
SM ), since this simply

changes the sign of Sh→AA (Sh→AZ) which the Higgs signal strengths are insensitive
to. This would however require tremendous tuning, if even possible, and we will ignore
such points.

4.2 One interaction term

We first present results in the presence of a single interaction term of the types presented in
section 2. The chosen benchmarks are presented in tables 1 and 2. Each entry contains the
relevant fields and their interaction Lagrangian as defined in section 2. All bounds are at
95% confidence level.

First, figure 1 shows the relative deviation of BR(h → AZ) from its SM value as a
function of the mass of the lightest new particles mmin. As can be seen, deviations of
±O(20%) are possible. The scalar cases IV and V are especially constrained and do not lead
to any sizable contribution to this observable. This will be the case for all other observables.
The only exception is if the decay of the Higgs boson to two new scalars is allowed, in
which case BR(h → AZ) can be reduced. Many other benchmark models with a single
interaction term have been analyzed, but none allowed for a significantly larger range of
δBR(h→ AZ).

Second, figure 2 displays the allowed range of BR(h → A′Z). As can be seen, this
branching ratio could in principle reach values above 1%. However, doing so would
require new neutral particles just above half the mass of the Higgs boson, which requires
careful fine-tuning between the different parameters and is not possible for every model.
Otherwise, a branching ratio of O(0.1%) is relatively easy to obtain. We mention that the
coefficient Sh→A′Z is less constrained than Sh→A′A. As alluded to before, the reason that
the constraints on BR(h → A′Z) are generally stronger than those on BR(h → A′A) of
refs. [19, 20] is the phase-space suppression in eq. (3.18). The branching ratio Sh→A′Z is
generally optimized for couplings of the dark photon A′

D or A′
C of O(1), with the exact

value being model dependent.
Third, figure 3 shows examples of the relative deviation of the triple Higgs coupling

δλhhh as a function of mmin. As can be seen, certain inert multiplets can easily give large
contributions to the triple Higgs couplings, including both positive and negative ones. Even
larger corrections are possible, though current constraints on the Higgs self-interactions
render such numbers less relevant [36].

We mention that constraints on direct production of the new particles would generally
apply to a fully defined model. However, doing so in our case would require both specifying
the Lagrangian beyond the interaction terms and searches that do not presently exist,
making it practically unfeasible. If this were possible, constraints could be enhanced.
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Name Fields Gauge numbers Type Lagrangian

FA ψ1
ψ2

(2, 1/2, 1)
(1, 0, 1)

Complex
Complex F (ψ1, ψ2)

FB ψ1
ψ2

(1, 0, 1)
(2,−1/2, 1)

Complex
Complex F (ψ1, ψ2)

FC ψ1
ψ2

(3, 0, 1)
(2,−1/2, 1)

Complex
Complex F (ψ1, ψ2)

FD ψ1
ψ2

(2, 1/2, 1)
(3, 0, 1)

Complex
Complex F (ψ1, ψ2)

FE ψ1
ψ2

(2, 1/2, 0)
(1, 0, 0)

Complex
Real F (ψ1, ψ2)

FF ψ1
ψ2

(1, 0, 0)
(2,−1/2, 0)

Real
Complex F (ψ1, ψ2)

FG ψ1
ψ2

(3, 0, 0)
(2,−1/2, 0)

Real
Complex F (ψ1, ψ2)

FH ψ1
ψ2

(2, 1/2, 0)
(3, 0, 0)

Complex
Real F (ψ1, ψ2)

S1A ϕ1
ϕ2

(2, 1/2, 1)
(1, 0, 1)

Complex
Complex S1(ϕ1, ϕ2)

S1B ϕ1
ϕ2

(1, 0, 1)
(2,−1/2, 1)

Complex
Complex S1(ϕ1, ϕ2)

S1C ϕ1
ϕ2

(3, 0, 1)
(2,−1/2, 1)

Complex
Complex S1(ϕ1, ϕ2)

S1D ϕ1
ϕ2

(2, 1/2, 1)
(3, 0, 1)

Complex
Complex S1(ϕ1, ϕ2)

S1E ϕ1
ϕ2

(2, 1/2, 0)
(1, 0, 0)

Complex
Real S1(ϕ1, ϕ2)

S1F ϕ1
ϕ2

(1, 0, 0)
(2,−1/2, 0)

Real
Complex S1(ϕ1, ϕ2)

S1G ϕ1
ϕ2

(3, 0, 0)
(2,−1/2, 0)

Real
Complex S1(ϕ1, ϕ2)

S1H ϕ1
ϕ2

(2, 1/2, 0)
(3, 0, 0)

Complex
Real S1(ϕ1, ϕ2)

S2A ϕ (1, 1, 1) Complex S2(ϕ)
S2B ϕ (1, 2, 1) Complex S2(ϕ)
S2C ϕ (2, 1/2, 1) Complex S2(ϕ)
S2D ϕ (2, 3/2, 1) Complex S2(ϕ)

Table 1. Different benchmarks for the single interaction term case. The type represents whether
the multiplet is real or complex. The gauge numbers are in the format (SU(2)L,U(1)Y ,U(1)′).
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Name Fields Gauge numbers Type Lagrangian
S2E ϕ (3, 0, 1) Complex S2(ϕ)
S2F ϕ (3, 1, 1) Complex S2(ϕ)
S2G ϕ (1, 0, 0) Real S2(ϕ)
S2H ϕ (3, 0, 0) Real S2(ϕ)

S3A ϕ1
ϕ2

(1, 1, 1)
(1, 1, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3B ϕ1
ϕ2

(1, 2, 1)
(1, 2, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3C ϕ1
ϕ2

(2, 1/2, 1)
(2, 1/2, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3D ϕ1
ϕ2

(2, 3/2, 1)
(2, 3/2, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3E ϕ1
ϕ2

(3, 0, 1)
(3, 0, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3F ϕ1
ϕ2

(3, 1, 1)
(3, 1, 1)

Complex
Complex S3(ϕ1, ϕ2)

S3G ϕ1
ϕ2

(1, 0, 0)
(1, 0, 0)

Real
Real S3(ϕ1, ϕ2)

S3H ϕ1
ϕ2

(3, 0, 0)
(3, 0, 0)

Complex
Real S3(ϕ1, ϕ2)

S3I ϕ1
ϕ2

(3, 0, 0)
(3, 0, 0)

Real
Real S3(ϕ1, ϕ2)

S4A ϕ1
ϕ2

(2, 1, 1)
(2, 0, 1)

Complex
Complex S4(ϕ1, ϕ2)

S4B ϕ1
ϕ2

(3, 1, 1)
(1, 0, 1)

Complex
Complex S4(ϕ1, ϕ2)

S4C ϕ1
ϕ2

(3, 1, 1)
(3, 0, 1)

Complex
Complex S4(ϕ1, ϕ2)

S4D ϕ1
ϕ2

(3, 1, 0)
(1, 0, 0)

Complex
Real S4(ϕ1, ϕ2)

S4E ϕ1
ϕ2

(3, 1, 0)
(3, 0, 0)

Complex
Real S4(ϕ1, ϕ2)

S5A ϕ (2, 1/2, 0) Complex S5(ϕ)
S5B ϕ (4, 1/2, 0) Complex S5(ϕ)
S6A ϕ (2, 0, 0) Complex S6(ϕ)
S6B ϕ (3, 0, 0) Complex S6(ϕ)
S6C ϕ (3, 0, 0) Real S6(ϕ)

Table 2. Table 1 continued.
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(a) Fermion case
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(b) Scalar case I
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(c) Scalar case II
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(d) Scalar case III
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(e) Scalar case IV
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(f) Scalar case V + VI
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Figure 1. Allowed range of δBR(h→ AZ) for different cases of a single interaction term. See
tables 1 and 2 for a description of the benchmarks.
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(a) Fermion case
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(b) Scalar case I
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(c) Scalar case II
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(d) Scalar case III
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(e) Scalar case IV
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Figure 2. Allowed range of BR(h→ A′Z) for different cases of a single interaction term. See
tables 1 and 2 for a description of the benchmarks. The missing benchmarks do not contribute
to this decay.
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Figure 3. Examples of allowed δλhhh range. See tables 1 and 2 for a description of the benchmarks.

Name Fields Gauge numbers Type Lagrangian

C1 ϕ1
ϕ2

(3, 0, 1)
(1, 1, 1)

Complex
Complex S2(ϕ1) + S2(ϕ2)

C2 ϕ1
ϕ2

(3, 0, 1)
(2, 1/2, 1)

Complex
Complex S2(ϕ1) + S2(ϕ2) + S1(ϕ2, ϕ1)

C3
ψ1
ψ2
ψ3

(2, 1/2, 1)
(3, 0, 1)
(1, 0, 1)

Complex
Complex
Complex

F (ψ1, ψ2) + F (ψ1, ψ3)

C4 ϕ1
ϕ2

(3, 0, 1)
(3, 0, 1)

Complex
Complex S2(ϕ1) + S2(ϕ2) + S3(ϕ1, ϕ2)

C5
ϕ1
ϕ2
ϕ3

(3, 0, 1)
(2, 1/2, 1)
(2,−1/2, 1)

Complex
Complex
Complex

S2(ϕ1) + S2(ϕ2) + S2(ϕ3) +
S1(ϕ2, ϕ1) + S1(ϕ1, ϕ3)

Table 3. Benchmarks with multiple interaction terms.

4.3 Multiple interaction terms

We now present results in the presence of multiple interactions of the types presented in
section 2. The chosen benchmarks are presented in table 3 and the results in figure 4.

As can be seen, the range of allowed δBR(h → AZ) can be considerably extended.
However, this requires careful tuning between different interaction terms to ensure that
their contributions to constrained observables interfere destructively and constructively
for δBR(h → AZ). This is why much larger values of δBR(h → AZ) are allowed for
combinations of interactions than with a single interaction term. This is reflected in practice
by the numerical difficulty in obtaining such large values and is also why the contours are
less smooth in these plots. Additionally, such careful tuning is not even possible for all
models, as certain combinations of interaction terms do not allow for a larger range than
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(a) δBR(h→ AZ)
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(b) BR(h→ A′Z)

0 200 400 600 800 1000
mmin [GeV]

10 6

10 5

10 4

10 3

10 2

BR
(h

A
′ Z

)

C1
C2
C3
C4
C5

Figure 4. Allowed ranges of (a) δBR(h→ AZ) and (b) BR(h→ A′Z) for the benchmarks with
multiple interactions. See table 3 for a description of the benchmarks.

the individual terms do. We do not observe any qualitative enhancement in the allowed
range of BR(h→ A′Z).

5 Conclusion

Inert multiplets can only interact with the Higgs boson via a finite number of interaction
terms and the forms of these terms are enough to determine their leading contributions to
many Higgs properties. In this paper, we have studied the contributions of inert multiplets
to the branching ratios of the Higgs to a Z boson and either a photon or a dark photon
and to the triple Higgs coupling.

We reach the following conclusions. The branching ratio BR(h → AZ) can deviate
from its SM value by O(20%) even for simple models of inert multiplets. Larger deviations
are possible, but require complicated models and precise fine-tuning. Therefore, the current
measurement of BR(h→ AZ) being 2.1± 0.7 larger than the Standard Model value might
be explainable by inert multiplets, but any such model would have to be contrived and very
fine-tuned.

The branching ratio BR(h→ A′Z) could in principle reach above 1%. However, this
would again require considerable fine-tuning, and values of O(0.1%) are more realistic. Such
small branching ratios are difficult to probe at the LHC for two reasons. First, hadronic
decays of the Z boson would be difficult to reconstruct and its branching ratio to leptons is
small. Second, the fact that the mass of the Z boson is not that far off from that of the
Higgs boson would lead to much less missing transverse momentum than for h→ AA′. It
therefore seems unlikely that this decay channel would be observable at the LHC.

Large deviations on the triple Higgs coupling are however perfectly possible and could be
an ideal observable to probe the inert multiplet scenarios considered in this work. Though a
full study is beyond the scope of this paper, it seems to indicate that a first-order electroweak
phase transition could be explained by inert multiplets.

– 21 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
0

Acknowledgments

This work was supported by the National Science and Technology Council under Grant
No. NSTC-111-2112-M-002-018-MY3, the Ministry of Education (Higher Education Sprout
Project NTU-112L104022), and the National Center for Theoretical Sciences of Taiwan.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An
Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

[2] M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant Gamma Lines from
Inert Higgs Dark Matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [INSPIRE].

[3] F.P. Huang and J.-H. Yu, Exploring inert dark matter blind spots with gravitational wave
signatures, Phys. Rev. D 98 (2018) 095022 [arXiv:1704.04201] [INSPIRE].

[4] A. Betancur, G. Palacio and A. Rivera, Inert doublet as multicomponent dark matter, Nucl.
Phys. B 962 (2021) 115276 [arXiv:2002.02036] [INSPIRE].

[5] T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys.
Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].

[6] G. Gil, P. Chankowski and M. Krawczyk, Inert Dark Matter and Strong Electroweak Phase
Transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].

[7] C.-H. Chen, C.-W. Chiang and C.-W. Su, Top-quark FCNC decays, LFVs, lepton g − 2, and
W mass anomaly with inert charged Higgses, arXiv:2301.07070 [INSPIRE].

[8] ATLAS collaboration, Evidence for the Higgs boson decay to a Z boson and a photon at the
LHC, ATLAS-CONF-2023-025 (2023) [INSPIRE].

[9] ATLAS collaboration, Evidence for the Higgs boson decay to a Z boson and a photon at the
LHC, ATLAS-CONF-2023-025 (2023) [INSPIRE].

[10] P. Archer-Smith, D. Stolarski and R. Vega-Morales, On new physics contributions to the Higgs
decay to Zγ, JHEP 10 (2021) 247 [arXiv:2012.01440] [INSPIRE].

[11] R. Benbrik et al., Higgs-like particle decays into γZ and γγ: Fingerprints of some
non-supersymmetric models, Nucl. Phys. B 990 (2023) 116154 [arXiv:2211.12546] [INSPIRE].

[12] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

[13] E. Gabrielli, M. Heikinheimo, B. Mele and M. Raidal, Dark photons and resonant monophoton
signatures in Higgs boson decays at the LHC, Phys. Rev. D 90 (2014) 055032
[arXiv:1405.5196] [INSPIRE].

[14] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Higgs-boson production in association
with a dark photon in e+e− collisions, JHEP 06 (2015) 102 [arXiv:1503.05836] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2007/02/028
https://arxiv.org/abs/hep-ph/0612275
https://inspirehep.net/literature/735418
https://doi.org/10.1103/PhysRevLett.99.041301
https://arxiv.org/abs/astro-ph/0703512
https://inspirehep.net/literature/746807
https://doi.org/10.1103/PhysRevD.98.095022
https://arxiv.org/abs/1704.04201
https://inspirehep.net/literature/1591550
https://doi.org/10.1016/j.nuclphysb.2020.115276
https://doi.org/10.1016/j.nuclphysb.2020.115276
https://arxiv.org/abs/2002.02036
https://inspirehep.net/literature/1778927
https://doi.org/10.1016/j.physletb.2007.11.069
https://doi.org/10.1016/j.physletb.2007.11.069
https://arxiv.org/abs/0707.0633
https://inspirehep.net/literature/755023
https://doi.org/10.1016/j.physletb.2012.09.052
https://arxiv.org/abs/1207.0084
https://inspirehep.net/literature/1120757
https://arxiv.org/abs/2301.07070
https://inspirehep.net/literature/2623950
https://inspirehep.net/literature/2697408
https://inspirehep.net/literature/2697408
https://doi.org/10.1007/JHEP10(2021)247
https://arxiv.org/abs/2012.01440
https://inspirehep.net/literature/1834640
https://doi.org/10.1016/j.nuclphysb.2023.116154
https://arxiv.org/abs/2211.12546
https://inspirehep.net/literature/2514143
https://doi.org/10.1016/0370-2693(86)91377-8
https://inspirehep.net/literature/219689
https://doi.org/10.1103/PhysRevD.90.055032
https://arxiv.org/abs/1405.5196
https://inspirehep.net/literature/1297206
https://doi.org/10.1007/JHEP06(2015)102
https://arxiv.org/abs/1503.05836
https://inspirehep.net/literature/1353552


J
H
E
P
1
0
(
2
0
2
3
)
1
7
0

[15] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Dark-Photon searches via Higgs-boson
production at the LHC, Phys. Rev. D 93 (2016) 093011 [arXiv:1603.01377] [INSPIRE].

[16] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Dark-photon searches via ZH production
at e+e− colliders, Phys. Rev. D 96 (2017) 055012 [arXiv:1703.00402] [INSPIRE].

[17] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Searching for massless Dark Photons at
the LHC via Higgs boson production, PoS EPS-HEP2017 (2017) 315 [INSPIRE].

[18] H. Beauchesne and C.-W. Chiang, Measuring properties of a dark photon from semi-invisible
decay of the Higgs boson, JHEP 04 (2022) 127 [arXiv:2201.04658] [INSPIRE].

[19] H. Beauchesne and C.-W. Chiang, Is the Decay of the Higgs Boson to a Photon and a Dark
Photon Currently Observable at the LHC?, Phys. Rev. Lett. 130 (2023) 141801
[arXiv:2205.10976] [INSPIRE].

[20] H. Beauchesne and C.-W. Chiang, Observability of the Higgs boson decay to a photon and a
dark photon, Phys. Rev. D 108 (2023) 015018 [arXiv:2304.04165] [INSPIRE].

[21] S. Biswas, E. Gabrielli and B. Mele, Dark Photon Searches via Higgs Boson Production at the
LHC and Beyond, Symmetry 14 (2022) 1522 [arXiv:2206.05297] [INSPIRE].

[22] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon
Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

[23] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Baryogenesis at the weak phase transition, Nucl.
Phys. B 349 (1991) 727 [INSPIRE].

[24] I. Banta et al., Non-decoupling new particles, JHEP 02 (2022) 029 [arXiv:2110.02967]
[INSPIRE].

[25] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ− in
the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

[26] H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop
integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

[27] LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross
Sections: 3. Higgs Properties, arXiv:1307.1347 [DOI:10.5170/CERN-2013-004] [INSPIRE].

[28] CMS collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the
discovery, Nature 607 (2022) 60 [arXiv:2207.00043] [INSPIRE].

[29] ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS experiment
ten years after the discovery, Nature 607 (2022) 52 [Erratum ibid. 612 (2022) E24]
[arXiv:2207.00092] [INSPIRE].

[30] M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys.
Rev. Lett. 65 (1990) 964 [INSPIRE].

[31] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01
[INSPIRE].

[32] K. Hally, H.E. Logan and T. Pilkington, Constraints on large scalar multiplets from
perturbative unitarity, Phys. Rev. D 85 (2012) 095017 [arXiv:1202.5073] [INSPIRE].

[33] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous
Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

– 23 –

https://doi.org/10.1103/PhysRevD.93.093011
https://arxiv.org/abs/1603.01377
https://inspirehep.net/literature/1426130
https://doi.org/10.1103/PhysRevD.96.055012
https://arxiv.org/abs/1703.00402
https://inspirehep.net/literature/1515527
https://doi.org/10.22323/1.314.0315
https://inspirehep.net/literature/1664689
https://doi.org/10.1007/JHEP04(2022)127
https://arxiv.org/abs/2201.04658
https://inspirehep.net/literature/2010427
https://doi.org/10.1103/PhysRevLett.130.141801
https://arxiv.org/abs/2205.10976
https://inspirehep.net/literature/2086423
https://doi.org/10.1103/PhysRevD.108.015018
https://arxiv.org/abs/2304.04165
https://inspirehep.net/literature/2650076
https://doi.org/10.3390/sym14081522
https://arxiv.org/abs/2206.05297
https://inspirehep.net/literature/2095397
https://doi.org/10.1016/0370-2693(85)91028-7
https://inspirehep.net/literature/214544
https://doi.org/10.1016/0550-3213(91)90395-E
https://doi.org/10.1016/0550-3213(91)90395-E
https://inspirehep.net/literature/296667
https://doi.org/10.1007/JHEP02(2022)029
https://arxiv.org/abs/2110.02967
https://inspirehep.net/literature/1940011
https://doi.org/10.1016/0550-3213(79)90234-7
https://inspirehep.net/literature/133460
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://inspirehep.net/literature/1347391
https://arxiv.org/abs/1307.1347
https://doi.org/10.5170/CERN-2013-004
https://inspirehep.net/literature/1241571
https://doi.org/10.1038/s41586-022-04892-x
https://arxiv.org/abs/2207.00043
https://inspirehep.net/literature/2104672
https://doi.org/10.1038/s41586-022-04893-w
https://arxiv.org/abs/2207.00092
https://inspirehep.net/literature/2104706
https://doi.org/10.1103/PhysRevLett.65.964
https://doi.org/10.1103/PhysRevLett.65.964
https://inspirehep.net/literature/296528
https://doi.org/10.1093/ptep/ptac097
https://inspirehep.net/literature/2106994
https://doi.org/10.1103/PhysRevD.85.095017
https://arxiv.org/abs/1202.5073
https://inspirehep.net/literature/1090155
https://doi.org/10.1103/PhysRevD.7.1888
https://inspirehep.net/literature/81406


J
H
E
P
1
0
(
2
0
2
3
)
1
7
0

[34] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL collaborations, Combined lep chargino
results, up to 208 gev for large m0,
http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html.

[35] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL collaborations, Combined LEP Chargino
Results, up to 208 GeV for low DM,
http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html.

[36] ATLAS collaboration, Constraints on the Higgs boson self-coupling from single- and
double-Higgs production with the ATLAS detector using pp collisions at s = 13TeV, Phys. Lett.
B 843 (2023) 137745 [arXiv:2211.01216] [INSPIRE].

– 24 –

http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html
http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html
https://doi.org/10.1016/j.physletb.2023.137745
https://doi.org/10.1016/j.physletb.2023.137745
https://arxiv.org/abs/2211.01216
https://inspirehep.net/literature/2175556

	Introduction
	Possible interaction terms
	Constraints and observables
	Lagrangian
	Relevant Higgs decays and Higgs signal strengths
	Higgs to (dark) photons
	Higgs decay to Z and a (dark) photon
	Constraints on the Higgs signal strengths

	Oblique parameters
	Unitarity
	Triple Higgs coupling

	Results
	Scanning procedure
	One interaction term
	Multiple interaction terms

	Conclusion

