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1 Introduction

One of the main captivating unveilings of the heavy-ion programs at RHIC and the LHC
was the detection of long-range two-particle correlations in the collision of small systems,
i.e proton-proton (p+p) and proton-nucleus (p+A) collisions [1-8]. In these events, the
produced hadrons emerge collimated in their azimuthal angle (¢) and separated over large
rapidity () intervals. Notably, these correlations recall those noticed before in relativistic
heavy-ion data from RHIC [9, 10], a phenomenon dubbed as the ridge because of its
appearance on the ¢ —n 3D chart.

As correlations spread over a wide rapidity interval, causality arguments lead to
the conclusion that they have their roots in the very early stages of the collision. The
thinking behind this is that relativistic particles propagating out of the interaction region
would otherwise be causally disconnected and, eventually, uncorrelated. Building on those
arguments, pioneering calculations of these early-stage correlations emerged [11-14]. They
are referred to as Glasma graph calculations, and are based on the dilute-dilute limit of the
Color Glass Condensate (CGC) framework.

On the other hand, a number of alternative mechanisms designed to justify the ridge in
p+p and p+ A collisions were also proposed (see e.g. [15-19], among others). In particular,
the relativistic hydrodynamic approach which in nucleus-nucleus collisions explains these
correlations as the quark-gluon plasma’s response to initial spatial anisotropies, can also



account for most of the phenomenon in small systems. Indeed, when characterizing
the anisotropic distribution of the final-state particles in terms of Fourier harmonics
vn = (cosnAg), it was observed by the PHENIX collaboration [8] that 15" < pgAu ~ yHeAu

and ngu ~ v§e < pfledu

, which brought consensus on the hydrodynamical origin of the
correlations in small-systems. However, recently the PHENIX collaboration obtained new
results using a sub-detector located at forward rapidites, and in that case the data clearly

A
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shows evidence of non-flow behaviour, such as v and v2 < 0, leaving room for
other initial state explanations such as the CGC rooted ones.

On the theoretical side, the CGC computations went beyond the Glasma-graph approx-
imation [20-24], yielding many successful phenomenological applications [25-36]. For some
time, the main difficulty was that the two-particle production probability is symmetric with
respect to the reflection of one of the transverse momenta [21], i.e., o(k,p) = o(—k,p) —
which in literature has become known as the accidental symmetry of the CGC —, leading
to vanishing odd anisotropy harmonics. By now several possible origins of odd harmonics
have been identified [37-45]. In this manuscript, we investigate an alternative associated
with low projectile density contributions, that are parametrically of the same order as the
(k,p) +> (—k,p) symmetric cross-section.

The manuscript is organized as follows. In section 2, we introduce the theoretical
framework and recall the derivation of the probability amplitude for double-inclusive gluon
production. Section 3 deals with the so-called averaging procedure with respect to the
projectile and target wave functions. It presents the prescriptions used, discusses the physics
behind the various resulting contributions to the correlations, and also highlights their
limitations. A numerical evaluation of the second and third harmonic Fourier coefficients is
presented in section 4. Lastly, a summary of our results wraps up this manuscript, together

with the details on the actual derivations provided in appendix A.

2 Theoretical formulation

2.1 Contextualization

We consider the CGC framework where observables are first computed for a given config-
uration of the color charge densities, and then projectile and target averages over those
configurations are performed. We denote pp and pr the projectile and target color charge
densities, respectively, and use the convention that the Poisson equation connecting charges
to fields is —V?A = gsp. Then, a dense hadron or nucleus is characterized by A ~ 1/gs or
p ~ 1/g%, while a dilute one corresponds to A ~ g5 or p ~ 1.

In the dense-dense regime pp ~ 1/g2 and pr ~ 1/g2, prior to the averaging over the
color sources the leading-order contribution for multi-gluon production involves disconnected
diagrams [46, 47], i.e. the gluons are produced independently for a given configuration
of the color sources and the correlations then arise through the averaging procedure. As
explained in [48], the dilute projectile limit of this dense-dense result does not yield the
correct dilute-dense answer. Nevertheless, this dilute projectile limit of the dense-dense
result has been considered in the literature as a first approximation to the full result, whose
complete all-order evaluation remains challenging.



In particular, this dilute limit has been widely used in the case of two-gluon production
(see refs. [49, 50] for reviews). Expanding the full result in powers of pp gives a zeroth-
order term that is parametrically of order gﬁp‘}; (the color source of the target is still
resummed to all orders). Corrections towards the full result, of order (g2pp)"**/g* and
called projectile saturation corrections, have been considered (for n = 2) in the search for
odd harmonics [37, 39, 40]. When the projectile is truly dense (pp ~ 1/¢2), any order in
that expansion scales as 1/g* and should in principle be taken into account. We note that
more work on saturation corrections exist in the context of single gluon production [51-55].

In the present work, we approach the problem from the opposite side, and consider
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4p% term, but also terms of

the full dilute-dense result. It contains the aforementioned g
order g2p3 and g}p%. When the projectile is genuinely dilute (pp ~ 1), they are all equally
important and keeping only the gip} is then not consistent. Our goal is to extract the

anisotropy harmonics from those terms not considered before in the literature.

2.2 Review of the framework

Our starting point is the two-gluon emission probability amplitude computed at the
beginning of the appendix of ref. [20], using the formalism introduced earlier in [56-59]. For
gluons with transverse momenta k and p, it is given by

Agjb(k7p): / eik-z—l—ip-u/ fi(zixl)[Sz*S:h]acfj(uixZ)[Suisrz]bdﬁgzﬁgl

u?

(2.1)
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with (T%)pe = —ifape and [, = [d*z. Note that our conventions are different to those
of [20], and therefore sign differences will occur. Here p%(x) is the projectile color charge
density quantum operator (we are dropping the P subscript from now on). S%(z) is the
eikonal scattering matrix determined by the target color charge density pr, and fi(z —y)
denotes the Weiszacker-Williams (WW) field:

2 e e (ot ab gs (. —y)i
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We continue with the explicit derivation that is given by means of words in the main
body of ref. [20]. To make the link with the traditional CGC classical averaging procedure,
the quantum operators must be first totally symmetrized:
b g A |
P = 10" 0" = ST (2.3)
One can then replace the symmetric quantum operator %{[}a, A’} by the classical expression
p®p?, and replace p® by p® in the commutator term of eq. (2.3) and in the other terms of
eq. (2.1). Explicitly,
Aep) = [ et [ L= anlS. = S lwos, H il - 0[S0 - Sul 0, }
z Z1,22
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= filz = 21)[S: — 52, ] fj(u — @2)[Su — sz]bd§T§cP§15($l — T2)
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(2.4)



We note p, has the dimension of momentun squared as the longitudinal degree of freedom
has been integrated out.
Now integrating once the third line of eq. (2.4) and renaming x9 — 1 gives

Al = [

U,z

eik'z‘”p'“/ { - fz(Z - U) [Sz - Su]acfj (u - xl)SZmTTCndpgl
- (2.5)

+ filz = 20)[S: = Su]"fi (w — 21)SU Tt }

where the first term can be reorganised in a more compact manner as follows,

. . ab
Ag]b(k,p)[g(l)] — _/ ezk~z+lp~u/ f1<z — u)f](u — {L‘l){[SZ — Su]ﬁ(.fl)SZ} R (26)

u,z T
with p:= T%p%. This term was first obtained in ref. [60]. There remains to work out the
second line of both eq. (2.4) and (2.5), and combining the two delivers
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which finally gives rise to

1
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(2.7)

Putting the results together, the two-gluon production probability amplitude finally reads

A= [

u7

+{ | {ranis=sapes, H{ i w-eolS. 5., )

+3 [ fe=an e {iS.~Salpalsl+sL])” (28)

_/z fi(z—u)fj(u—:rl){[sz—Su]pxlsl}ab}.

As indicated by the presence of the WW fields, the soft approximation was used in the
gluon emission vertices. Also, it was assumed that the gluon with momentum £k is softer
than the one with momentum p (but close enough in rapidity so as to circumvent evolution
in between), and therefore the expression is not fully symmetric under the k <+ p exchange.
Each contribution in eq. (2.8) can be given a diagrammatic representation, as pictured in
figure 1. The first line, of parametric order g2p?, corresponds to the independent production
of the two gluons. The second term, on the other hand, accounts for the consecutive
emission of the two gluons off the same color source in the projectile wave-function. It is of
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Figure 1. Schematic view of the three contributions to the amplitude for the double inclusive gluon
production process, in terms of the projectile color charge densities. The scatterings off the target
color field are not represented.

parametric order g2p, just as the third contribution, in which the softer gluon is emitted in
the wave-function on the hands of the former hard gluon, itself emitted off the color source.

We note that ref. [60] also attempts to derive this amplitude, providing two alternative
frameworks to do so: one rooted in the perturbative expansion of the WW cloud operator
which can be applied to a generic projectile, and one based on a Fock state expansion.
However, the contribution that emerges from consecutive emissions of the two gluons from
the same color charge does not seem to arise naturally within those approaches.’

2.3 Dilute-dense two-gluon production cross-section

Squaring eq. (2.8) gives rise to several terms in the double-inclusive gluon production
cross-section (with the rapidities denoted n and &):

dN _ ab *ab
7d2pd2kdnd§ = <Aij (k7p)Aij (k’p)>P,T (2.9)

= (04 + 03 +0'2>p?T .

The square of the first line of eq. (2.8) is the denoted 4. This is the p*-order term,
which as mentioned before corresponds to independent production of the two gluons for
fixed configurations of the projectile sources p(x) and of the target ones inside S(x). It is
pictured in figure 2 and can indeed be written as

04 = a(k)o(p),

2.10
with o(k) = / (210)

76’”{-(272)/ ) f(Z — Zfl) . f(Z - xl){ﬁwl [Sl - SJHHSE - Sfl]pil} .

)

1One can establish a heuristic equivalence between the various formalisms which allows to highlight how
they differ, at least for the case of two-gluon production.
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Figure 2. Diagrammatic depiction of the contribution to the double inclusive gluon production
cross section accounting for the independent production of the two partons, following the style of
ref. [23].

The previous contribution has been extensively studied. Using models for the projectile
and target averaging, which we shall introduce in the next section, two-gluon correlations
dubbed Bose enhancement and HBT interference effects have been identified [23, 61, 62]. o4
is also (k,p) — (k, —p) symmetric (provided the projectile p’s are real, which we assume),
and therefore it contains no odd anisotropy harmonics. We are going to review this in the
next section.

The other two contributions to the cross section, namely the p?- and p3-order terms,
are more complicated, thus hindering the discussion regarding the emergence of correlations.
Unlike o4, which is the most enlightening term in this context, in o2 and o3 both gluons
are already correlated with each other for fixed configurations of the color charge densities.

Explicitly, using p! = p:
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These formulae were first obtained in [20]. They were also discussed recently in ref. [63],
but to our knowledge never investigated further.

3 Projectile and target averaging

3.1 The averaging procedure over the color charge densities in the projectile

Adopting the McLerran-Venugopalan (MV) model for the averaging over the projectile
charge densities [64] allows to perform pairwise Wick contractions of the p’s,

(Papphofln) = (P5arts) (b)) o+ (paphy) (prh)

(05t ) (Phrss)

F (3.1)

and, using the simple form of the two color charge density correlator in the MV model, the
average of the four projectile densities reads

(Papptofl) = 07 u?0 (s — 1) 60?6 (22 — 21)py
+ (5Cd,u,25(2) (.772 - fg) 6abu26(2) (561 — fl)p] (32)
+ 6P (wy — 21) %26 (w1 — To) 3,

with u? the average charge density squared, which for simplicity we take independent of
the coordinates. This is to be implemented in eq. (2.10), or graphically in figure 2.
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Figure 3. The Uffi), eq. (3.5), component corresponding to a pairwise Wick contractions on the
basis of the MV model.

The MV model allows to decompose (o4)pr in three pieces:

T B fE=3) - f(z=21) f(@=F2) - flu—2)

1,22,T1,T2

< (otant ot ) ([51—1][5: — 5[50 - St 1 - 52,] ),
_y L | e eD

{/ f( — ) flz @) fia—E) - fu— )

« ([31 = s[5 = 5] 51— 5L, [50 = 52 ]")

[ fE-w) f ) f@— ) - flu )

{51 58] 5 ] i - s8] s - 5]

+ f(z—x2) flz—m1) flu—z1) flu—z2)

Z1,T2

< ([51 - 1] [85 = 8ua) " [L - L] [ 2 - 5] )

T [()]
T [(id)]

T [(m’)]} '
(3.3)
We can now write each contribution in terms of the following target averages of adjoint
Wilson lines:

_ 1 t
D(u,u) = NTZ 1<Tr SﬁSu>T,
1
T 7) = tg gts.
Q(u,u,z,2) = NZ = 1<Tr SuSuSzSz>Ta (3.4)
- P i Tg.
DD(u,u,z, %) (NZ = 1>2<Tr SySu Tr SZSZ>T,

i.e., dipole (D), quadrupole (@), and double dipole (DD) amplitudes. The middle term
(i)

oy, illustrated in figure 3, contains dipole and double dipole operators (although we shall

(i)

not explicitly indicate it any longer, from now on cross-section contributions such as o,
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Figure 4. The last two diagrams that emerge from the adopted projectile averaging procedure, ay)

(left) and O'Yii) (right), eq. (3.6).

are projectile and target averaged quantities, i.e. < Ufi) >pr):

i (k,p) = (5(k)5(p))

with &(k) = 12 / el /x Fma) f ) THST - SIS — 5], D)

which is the simplest of the three pieces and contains the uncorrelated part. The other

two contributions, aii) and ayii), involve dipole and quadrupole amplitudes. Explicitly,

these terms of eq. (3.3), encapsulating the Wick contraction illustrated in figure 4 now take
the form

k)= [ ekCDreD

<[ pE-a)-f-a) fa-a)- fu—a)

x (N2 = Du{Q(z, 2,u,0) = Q(2,2,u,31) — Q(2, 2,21, @)
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- Q(E,xl,u,ﬂ) + Q(g’xl’uvi‘l) + D(E, ﬂ) - D(Evi‘l) + Q(ilaxlau’ ﬂ)
— D(x1,u) - D(31,8) + 1},

o\ (k,p) = o (k, —p),

(3.6)

an expression that contains the dilute-dilute Glasma-graph approximation mentioned in the
introduction. To recover it one should both expand the Wilson lines to first non-zero order
in the target fields and use the MV averaging (3.2) on the resulting (p+)7 target average.

In the MV model, the weight functional is Gaussian, so all odd point functions of the
projectile p’s are zero, and therefore so is (03)p in that model. Prior to discussing (o2) p7,
we carry on with (o4) p7 by implementing a model-dependent simplification of the averaging
over the configurations of the target field.



3.2 Performing the averaging with respect to the target configurations

To perform the target averages, we will resort to the so-called area-enhancement model
(AEM). It amounts to retain only configurations where the four points are combined into
pairs, each pair being a singlet distant from the other one. A target average involving a
product of any even number of S matrices is then factorized into averages of singlet pairs.
This model was first introduced in [64, 65] to deal with four-point correlators of fundamental
Wilson lines, and then first applied to adjoint Wilson lines in [23]. The replacement to be
enforced is

(N2 = 1)? (S Set9ef 59" 2 §epadegdpn D, u)D(z, 2)

+ bagOpn0ecdar D(T, 2)D (2, u) (3.7)
+ 5a66bf6c95dh D(’[L, Z)D(ua 2) )

which for the quadrupole and double-dipole cases implies

Q(u,u,z,z2) — D(u,u)D(z,2) + D(u,z)D(z,u) +

bt
(Vg —1)?

mD(a, 2)D(u, z),
¢ (3.8)
DD(u,u,z,2) — D(u,u)D(z, %) + | D, 2)D(,u) + D(it, ) D(u, 2)]

It is important to be aware of the limitations of this model. It does not preserve SU(IV,)
properties; for instance, applying it separately in the adjoint and fundamental representation
will lead to results which do not obey Fierz identities anymore. Along similar lines, it
does not preserve basic coincidence limits such as Q(u,u,z,2z) = D(z,z). In particular,
performing first the projectile averaging (3.2) and then applying the AEM (3.8) (which is
what we are doing) does not yield the same results as doing the opposite. For example, a
quadrupole Q(u,u, z, Z) which upon a coincidence limit — such as those imposed by (3.2) —
would turn into a dipole D(z, Z), now turns into D(z, z2)+D(u, Z)D(z,u) if the coincidence
limit u=wu is applied after the AEM. This non-commutation between the two averaging is
at the origin of differences between our aii) results below and those of [66], where the AEM
was applied prior to the coincidence limits of the MV p* averaging. The difference between
the two procedures, which consist in additional terms to eq. (3.10), is not numerically
small. This indicates that the projectile-area enhanced contributions are not necessarily the
dominant ones. Lastly, the AEM expression does not encompass the correct dilute target
limit. One should keep these shortcomings in mind, and regard them as the price to pay to
go beyond the Glasma-graph approximation in an analytically tractable way.

Nevertheless, the AEM remains a good option to obtain tractable expressions and
qualitative results on gluon angular correlations. We give already here the following AEM
expression, which will be needed later for the case of (o2)pr:

ma=z

(U, 817 ST STV )| — Ne(N2 = )D(@,w)D(z,2) = NeD(@ 2)D(w, 7). (39)

Below, we shall keep only the terms that are leading in N,.
The area enhancement approach now allows us to rewrite every contribution to the
double inclusive gluon production cross section in terms of the dipole amplitude D, which
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will help in order to streamline further cumbersome algebra. We carry on with the three
contributions stemming from (o4)p7:

o) = [ et [ gy fe ) fa—2) - fu-a)

U2, U2

—D(z,z)D(z,u) — D(z,2)D(x,u) — D(z,u)D(z,x)
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— D(z,u)D(z,u) + D(z,u) + D(z,2z)D(x,u) + D(Z,u)D(z,z
— D(z,z) — D(z,2)D(u,u) — D(z,u)D(x,u) + D(z,2)D(u, x)
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= Ul(lZZZ)(k7 _p)7 (310)
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olk) = 2N = 1) [ [ fE—a) f - ) (3.11)

x [D(z,2) = D(z,2) - D(x,2) +1].

Because we dropped the N.-suppressed term in the double-dipole AEM expression,
Uffi) is now fully uncorrelated. We note that those correlations are 1/N2 suppressed in the
AEM. However, in genuine double-dipole calculations, there are correlations already arising
at order 1/N? [42], which therefore feature the same N, counting as the leading terms of
ay)’(iii). Depending on the values of |p| and |k|, those corrections can induce correlations
which are comparable to those coming from the other pieces of afli) (#8),

Let us now turn our attention to oo. The same steps as outlined for the above calculation
apply. Starting from eq. (2.11), we decompose that contribution in four pieces:

B o (2 3) i (0— i
<02>P,T _ / N et (2—2)+ip-(u—a) 7
U,2,U,2 x1,T1

LE—T) - fe o) @ m) - flu— )

X Tr{ [Su + Sa:]pa: [S] = 1,185 — S5,105,[SL + 51,1}

/G -0 - w)f@—@)- f(u—a)
x Tr{Supin [81 - 81115z - SlomiSL} (3.12)

()]

GG =) fz =W E)  flu—2)

X Tr{Suﬁm [Si - S:[L] [SE - Sil]ﬁfl [S:IL + 8;1]}[(”1)]

S fE =) fle ) f( - 71) - flu )
5. ST — St 11S. — S.15. ST
X Te{[Su + Sy )oms ST — SLIS: = SulpaiSL}

11 -



We then apply the MV correlator <pglpg2>P = 5abp25(2) (z9 — x1) on the projectile side
and the AEM on the target side (sticking to the leading term in ).
Using
(05,08, ) (ST T ST ST ST ) | NEO®) @y — ) D(w, w)D(z,2) - (3.13)

the four labelled term of eq. (3.12) become
A kp)= [ e [ g oa) fz ) fa- ) fu-a)

X %NEIU,Z{D(U, u)D(z,2) + D(u,z)D(z,2) — D(u,u)D(z, x)
— D(u,x)D(2,x) + D(x,u)D(2,2) + D(2,2) — D(x,u)D(z,x) — D(2,x)
— D(u,u)D(z,z) — D(u,x)D(z, 2) + D(u, u) + D(u,z) — D(x,u)D(z, 2)
~ D(x,2) + D(w,u) + 1}, (3.14)
O-éu) (kap) = /

U2, U2

pik (=) ip(u=7) o / f(z—a) f(z—u) flu—2)- flu—2)

x N2u2D(u,u){D(z, %) = D(z,u) - D(u,2) + D(u, )}, (3.15)

oA gy = = [ e o [ fE gy fe - ) S a) - - )

Y %Ngm{p(u, @)D (z, 2) — D(u,@)D(z ) — D(u, @) D(u, 2)
+ D(u,u)D(u,z) + D(u,x)D(2,2) — D(u,x)D(z,2) — D(u,x)D(u, z)
+ D(u,2)}, (3.16)

o) = = [ e [ gz fz—a) fa—a)- fu—a)

X %NE’MQ{D(U, @)D (2, 2) — D(u, @)Dz 1) — D(u, @)Dz, 2)

+ D(u,u)D(x,u) + D(x,u)D(z,2z) — D(z,u)D(z,u) — D(z,u)D(x, z)

+ D(z,u)}, (3.17)
corresponding to the sketchs shown in figure 5.

3.3 Final expressions

Those equations for (o2) p7, as well as the previous ones for (o4) p7, have to be integrated
further. In order to do so, we need to employ a model for the dipole scattering amplitude,
and for simplicity we use the well-known GBW [67] parametrization. Explicitly writing the
following Fourier transformations,
oy 9s (@) / Pq iy T
e A
2 (3.18)
B d*q 1 a

2 H—igr _— 22
= e s
2 Q? ’

S

D(r)
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(z,k) 1 (2,k)

Figure 5. Diagrammatic representation of the four contributions to the quadratic term in the

density of the projectile within the cross section. From left to right: agi), aéii), O’;iii) and O'éw) .

one can carry on with the calculations. Note that with our notation, Qs is v/N./(2CF)
times the quark saturation scale of the target. It differs by a factor v/2 from the notation
of [66] where Qs denotes the gluon saturation scale. Appendix A provides an elaborate
handling of the actual integration pathway followed in order to obtain the compact outcomes
which we present now.

We start with the uncorrelated piece

() 9 7k2+p2
(2 2
o, (k,p) =05 e 2%

2 2 k2 2

" 2%8_%6@+1 mi [ F

K2k 2 2Q2
202 Q% 2, 1
o T i S
p P 2

D)
— Fi (Wﬂ } (3.19)
PP [ P*A
- (ng) (mz)” |

where A is an infrared cut-off and the normalization factor is the square of

12

o0 = g?(Ng - 1)SJ-@7

(3.20)

with S| denoting the transverse area of the projectile. Typically, the cut-off is of order
A~ 1/(81LQ7).

The remaining pieces of (04) p,r can be split into two contributions, identified previously
as a Bose-enhancement contribution,

Ui[(i)+(iii)].1)(k7p) _ 277Ni e_%
20 (k4 +pt+2(k -P)2> 8QS (k + p)*
) l K2p? (k —p)" k22 (k—p)° (3.21)
N 6405 (4 + 4(k - p)2 + p* + 8(k - p) (K2 + p?) + 14K2p?)
k2p? (k — p)®
+(—-p),
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and an HBT contribution,

2
1)+(412)]. a
oDk, p) = 22Q3(em)? [5) (k + p) + 33 (k — p)

with the factor
Ny = (N2 -1)8.Q3 (3.23)

indicating the magnitude of the suppression of these contributions with respect to the
uncorrelated ones. For proton-nucleus collisions, a reasonable estimation is (N2 —1)S,Q? ~
(N2 =1)7R2Q% ~ 8+ (0.8 5)2GeV 2 % 1GeV? ~ 400. Because of the magnitude of Ny, the

contribution of Ui[(i)ﬂiii)]) to the angular-integrated cross-section (which in the denominator
is the definition of the anisotropy harmonics) is negligible compared to that of aill).

By proceeding the same way for o9, we obtain

2 4 k24p2
) o2 QF -
oéz)(k%p) — A kG;ﬁ e 2Q2

p2 2

&2 &2 2’ 22 2’
% | kA4 e202 k2Q§+4ezgg Qﬁ} [(262@ _1> p4_’_62Q§p2Q§+4€2Q§ Q‘Sl

+(k<p), (3.24)

- 5%+2k451 _ 5%72;7452

.. 2 k2 +p?
(09 ()= 20 ) L 750 / 11 202
72 (h.p) 2Ny (27T)26 51,52 S% (31_32)26 ‘

. 52 .5 32— -8
Ll SR s 1 A e
272 k2 Js, 50 8% (51—52)2
2 _ (k) L 2 L 2)\
112 1Q2 1Q2
+(k<p), (3.25)

N 2
Gl 1y 00

. N 2 . . .
SR () 1
(2m)? sise |\ 87 k2 s3 p2) k2p
y 52 -S 527 -S
(o) e

(51—52)?

4 . _ (k+p)?
k? p*(k+p)?

+(k<p), (3.26)

)

with
Ny=-~—¢_"28 1% (3.27)
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The k£ + p symmetrization is accounting for the fact that either the gluon with
momentum (p,7n) or the one with momentum (k, £) maybe be the softer of the two. This
time the suppression factor with respect to the uncorrelated piece is still large, but it is
numerically smaller than Ny, as it goes as N, instead of N2 and contains u? instead of Q2.
Using 1 ~ 500 MeV and S| = 50 GeV 2 as before gives Ny ~ 30.

3.4 Some remarks on the nature of the obtained resuls

The fact that correlations coming from the new contribution (o2)pr are N.Q?/u? times
bigger than the ones coming from (o4)pr is the first important finding of this work. Before
we study numerically the implications for the anisotropy harmonics, let us discuss further
the various contributions to the double inclusive gluon production cross section.

e As mentioned before, under the present assumptions agji) is fully uncorrelated and
boils down to the square of the single-inclusive cross-section. However, because
DD(u,u,z,2z) — D(i,u)D(2,2) = O(1/N?), correlations exist with the same N.
counting as for the other (o4)pr terms [42], but go completely unnoticed in the
area-enhancement model.

. ai[(i)ﬂiii)}'n), as can be seen from eq. (3.22), consists of two pieces, each one involving

a final-state momenta delta-function: 6 (k + p) and 6 (k — p). Given that, these
contributions embody the typical Hanbury-Brown-Twiss correlations between the
emitted gluons for anticollinear and collinear momenta, respectively [23].

o The Bose-enhancement nature of Jfl[(i)ﬂiii)]'l)

, also discussed in [23], is not as evident,
but it can be unravelled by looking carefully at the delta-functions of the gluon

momenta appearing in one of the interim steps leading to the final result.

o (03)p1r = 0 because of our MV model assumption for the projectile p averaging, but
does in principle also enclose correlations.

. aéi) will not contribute to the Fourier harmonics as it contains no angular dependence.

e The remaining new pieces, aéii)’([(iii)ﬂiv)]), hold a strong angular correlation which
we want to remove: the di-jet peak. Indeed, the back-to-back contribution to the
correlation function that has its origin in the hard scattering already present in dilute-
dilute processes is, in experimental measurements, subtracted from the correlation

function prior to the Fourier decomposition.

4 Numerical evaluation of the azimuthal anisotropy harmonics

A Fourier decomposition of the azimuthal angle distribution between the outgoing gluons
into harmonics constitute a convenient way of addressing particle correlations. It also
allows comparisons with experimental measurements, although matching the two definitions
can be cumbersome. Given the extraordinary amount of simplifications we have made,
this is not our goal. Rather, it suffices for our purposes to focus on purely exhibiting
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Figure 6. A numerical evaluation of the second Fourier coefficient v corresponding to the Bose
enhancement correlated piece Ui[(l)ﬂm)]'l) — eq. (3.21) —, as a function of the transverse momentum
in units of Q5. Here the momentum of the pair is shifted by the saturation momentum of the target,

Qs = 2A, so as to set the HBT interference effect aside.

the non-cancellation of vs for any of the novel pieces computed above, which is the main
motivation of this paper.
We follow the definition used in [66]:

E+A/2 '+A/2 . )
_ k’—A//2 kedk fzg—A//Q pdp [ dpdp,e™ ¢p)g2i\;2p

2010 1
v (k' p',A) = A
" "+A/2 '+A/2 d2N®2)
K'—A/2 kdk f;i—A/Q pdpfdd)kdﬁbpdzkcpp

, (4.1)

where the numerator contains all the correlated pieces, as the uncorrelated one ayi) cancels
out when integrating over the angles. By contrast, as explained above, the denominator
contains only the offi) piece — eq. (3.19) —, with the cutoff set to the value A = 1/25
(the outcomes are not appreciably sensitive when moving around reasonable numbers).
Given that some of the expressions could only be computed using a large transverse
momentum expansion (we do keep three orders in the expansions), we should consider
K, p > A ~ Qs. However, we are equally prevented from considering very large values
of transverse momentum, since the GBW model employed for the dipole amplitude does
not provide an appropriate parametrization for k, p > @Q)s. Thus, our numerical study is
restricted to an intermediate window of transverse momentum values.

The first numerical evaluation to highlight is the second Fourier harmonic v3 as a
function of momentum, obtained from the traditional (o4)p7 term. As is well known,
v3 = 0 in this case due to the (k,p) <> (k, —p) symmetry. v3 is shown in figure 6, where the
momentum values were chosen so that only the correlated piece due to the Bose-enhancement
effect contributes. It will be informative to compare those values to the ones generated by
the (o2)pr term.

With regard to aéi) — eq. (3.24) —, as has already been pointed out above, this does
not show any angular dependence, hence it will give rise to vanishing harmonics. The other

~16 —



= 4x107} 7000
=<

5 6000
~— -
ﬁ 3x10"F F5' 5000
e \54000
_* 2x107f ~
8 & 3000
= N 2000
NS =

~N

< 1000

95 20 25 3.0 35 40 45 9% 2.0 25 3.0 35 4.0 45
¢ (Rad) @ (Rad)

Figure 7. On the one hand, in the left panel we display, as an example, the correlation peak
structure coming out of eq. (3.25)’s second component around d¢ =~ m. The y-axis notations
come from the integrals explicitly worked out in appendix A. There, it can be seen that similar
contributions also show up inside of eq. (4.2). On the other hand, the right panel shows eq. (4.2),
namely the contributions that are not attributable to back-to-back correlations. Even though also
they feature a smoother peaked behaviour around d¢ = 7, the magnitude of such a peak has nothing
to do with the one emerging from the contributions here coined as the jet-peaked ones.

(o2)pr contributions feature integrals that are infrared divergent. This does not come as a
surprise, as already the single inclusive gluon cross-section is infrared divergent. This is
related to the fact that we do not have saturation corrections on the projectile’s side.

The agi)’([(iii)Jr(w)]) terms also contain correlations associated with the back-to-back
di-jet peak, which one should not take into account in order to mirror the experimental
procedure. These correlations are already present in the dilute-dilute case, and were studied
in [68]. Tt is not straightforward to analytically subtract them given the approximations
we have used. Instead, in order to accomplish this we regularize the integrals and study
their Ap = ¢, — ¢, dependence numerically. The integral contributions individually have a
peak around A¢ = 7 that is orders of magnitude larger than the other contributions, as is
displayed in figure 7.

On the basis of these observations, we disregard both the first two pieces of Jgii) and the

first piece of ag(iii)ﬂwm. For the computation of the Fourier coefficients, we are left with

2 2 (e+p)? 2 2
sub __ ﬁ s i 1) a2 . (k +p) Ry (k —l—p) A
<0'2>P,T - N { 3 (k'2 + 2 e Ei 74@2 Ei 74@2

4 _ (ktp)?
sy G R
P

Glancing at the preceding expression, it is straightforward to see that it will produce

(4.2)

a non-vanishing outcome when tackling both v2 and v3. The plots in figure 8 show a
numerical evaluation of these second and third harmonics under the same conditions as
in figure 6, but now corresponding to the evaluation of eq. (4.2). Taking into account the
suppression factors Ny and Ny, we see that both v3 values are comparable, with the one
coming from (o2) pr actually slightly bigger than the one coming from (o4)p 7.

Moving now to v3, we see that it has a similar magnitude than the v3 coming from
(02)pr, but with the opposite sign. This observation is in qualitative agreement with
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Figure 8. The second (left) and third (right) flow harmonic coefficients resulting from the last

elements of o8 and o{{*D " The 12 harmonic is multiplied by the factor Ny = N, 2 S, .

Note that here the remainder of the quotient between the quantities encapsulating the projectile
and target characteristics has to be corrected with respect to the one resulting from the previous
evaluated contribution.

recent data from the PHENIX collaboration, in which they obtained novel vZ results for
dilute-dense systems such as p + Au and d + Au collisions [69]. This was done using a
different kinematic range as compared with their precedent analysis [8] at mid-rapidity: a
forward rapidity particle was used and, in that case, the data clearly shows evidence of
non-flow behaviour, such as ngu > v§4% and v2 < 0. We leave it for future work to try

and reproduce these measurements.

5 Conclusions

This work is devised to extend existing studies on two-particle correlations in proton-nucleus
collisions within the CGC approach. It find its roots in the following observation: the
standard dilute-dense CGC formula used for two-particle correlations in proton-nucleus
collisions is the dilute projectile limit of the leading-order dense-dense formula. This dilute
projectile limit, obtained by expanding the full result in powers of the projectile’s color
charge density p, is made up of the zeroth-order term, denoted by o4 in this work, that
is parametrically of order g%p* — on the target side the (g2p7)P resummation remains
untouched —, see eq. (2.10) with the adjoint Wilson lines and the WW field given in eq. (2.2).
The complete dilute-dense formulation contains however additional contributions at the
same order in the strong coupling constant gs, denoted here o3 and o9, see eqgs. (2.11)—(2.12),
which are the focus of this work.

These pieces are obtained from the two-gluon production amplitude (2.8), and must
then be projectile and target averaged at the cross-section level (2.9). These additional
contributions are parametrically of order g#p*~" (with n = 1,2), but they are not the same
as the projectile saturation corrections, parametrically of order (g2p)"**/g?, previously
investigated in the literature. If anything, they are the complete opposite. Indeed, in the
dense-dense power counting (p ~ 1/g?), the saturation corrections contribute to leading
1/g% order, and the low projectile density terms are sub-dominant, ~ (g2)%"/g%. By contrast,
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in the dilute-dense power counting (p ~ 1), it is the low projectile density terms which
contribute to leading g% order, while the saturation corrections constitute higher orders,
~ g%(g2)?". The present study finds its place in the context of the latter situation, relevant
when the particles are produced at forward rapidities.

In order to evaluate further the expressions, we first perform the averaging over the color
charge configurations of the projectile via using the MV model, eq. (3.2). This can certainly
be improved, as using the MV model for a dilute proton is not satisfactory. A better

234\ p correlators using the light-front wave-function

approach would be to compute the (p
approach of [70-73]; in particular, this would not lead to a vanishing (o3)p. We then
invoke the area-enhancement model (3.7) to express all the target averages in terms of the
dipole scattering amplitude, giving rise to egs. (3.10)—(3.11) and (3.14)—(3.15)—(3.16)—(3.17).
Again, this simplification is not without limitations, but it allows to work with tractable
expressions. Finally, we employ the GBW model to arrive at the final expressions given in
section 3.3.

Our numerical results for the azimuthal anisotropy harmonics show that, within our
assumptions, (o2) pr contributes at least as much as (o4) p7 to the second Fourier coefficient
v%, while a non-zero negative 1132, is obtained from (o2) p. While at this stage we do not
expect our results to describe experimental data in a quantitative manner, the orders of
magnitude match those recenlty measured in p + Au and d + Au collisions by the PHENIX
collaboration from a forward rapidity sub-detector.

As a final comment, while the study of the jet-like peak contributions that show up
in (o2) pr does not fall within the scope of this work, it would be worthwhile to go a bit
further in this direction so as to examine the magnitude of the jet correlation present
on top of the ridge structure. More specifically, it is known that, at forward rapidities,
the dilute-dense away-side peak is suppressed with respect to the dilute-dilute case due
to saturation effects [74-82], and one should consider this effect properly in order to not

over-subtract the jet-peak in proton-nucleus collisions.
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A Integrations concerning the target averaging procedure

A.1 Integrals in (o4)pr

Starting to deal with J( )

oM / ) 7€ik-(272)+ip-(ufﬁ)/ fE-2) f(z—2) fla—1)- f(u—2)

X (Nc2 — 1);14{D(5, 2)D(u, ﬂ)[l + D(Z,ﬂ)D(z,u)[Q] — D(z, Z)D(u,i)m
(z,u) W) — D(Z,u)D(2, )] + D(2, 2) D(7,%)7)
+ D(2,2)D(2,2)15) — D(Z, 2) D(u, u)j9) — D(:i,a)D(z,u)[lo} + D(z,u)ny)
(z,u) z,2)1a) — D(Z,2) D(u, @)15)
)D(x,u)pg) + D(Z,4) g
T)j90) + D(%, ) D(u, u)[21) + D(T,u) D(z,u)99) — D (%, u) 23

the first term reads

oA = [ i) [ pz 3 fz - 0) fa-0)- fu-a)
x (N2 = 1)u*D(%,2)D(u, ).

An elaborate handling of the integration pathway is addressed for this contribution,
this way setting the standard for the derivations corresponding to the remaining terms not
explicitly presented in this manuscript, which prove to show similar or even less difficulty.

At a first step, by Fourier transforming both the WW fields and the GBW dipoles, this
term reads

7. 1 ik-(z—2)+ip-(u—u
oD = -k [ gt [

d2Q1 (— )ezth (z—z) 41 ql d a2 2 )ezqg (z2—z) 42 q2 > 43 — B )61'(13-('&7:?) %
27 q% 27 q% 271' qg
2 2 t
M(_i)ez‘q4~<u—x>%ﬂe—itr(z—z) L 5z Ptz otz (w—) L =337
27 Q@ 2w Q? 21 Q?

Then, integrating over the coordinates by using that
all reduces to

) ) 2
4 1 d2t1 (tl + k‘)z (tl + k‘)z 6—2;—12
Q1) 2r (1 R2 (6 + )2

t

" d*ty (t2 — p)? (ta —p) 'e*ﬁ o illt+R) ~(t2—p)]-(z—3)
. ) .
21 (t2 —p)? (t2 — p)? X

oM = g4 (N2 1)
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Under a change of variables,

. 1 _E4p® rg2g, T2 g2 s5+2p-s2 1 . _
UZ(IL[H) :gﬁ(Nf . 1),“4@6 2q2 / 81 202 826 2Q2 = ei(s1—s2)-(z—7)

9 k2+p 9 25 +2(p k)-s 9
=g N2 —1)pt —;€ 203 /d se 203 84/d

2
51 85 Jx,z

so that one is only left with the following Gaussian integral [66],

_ 2¢%42(k+p)q 1

Toa = /d2qe < =
q

(k+p)> 24 1 22@2
) (

44
~ Qe 298 20,
(k +p)* k + p)?

(k+p)*

1 Q"
+Q§O<<k+p>w> ’

where a large-momentum expansion in which the first three terms were kept was performed.

9
1

Finally,

i 2
oi )~ gl (NZ = DS  —5e 297

Q° (k —p)*

(k+p)2 24 1 N 23Qg 9
) (k—p)? 4(k-p)*

20Q4 ]
with S the transverse area of the projectile,

S| = / d’x .
proton

The development of the remaining terms is analogous to what is required for the
previous integration procedure. In particular, the large-momentum expansion is employed
when needed, and the symbol =~ is used when that is the case. Next is listed the set of
integrals to be used along the way [66]:

. 5
I12—/dqe Qs ——wQSkz 1—e®s |,

_2¢%42(k4p)a | (kp)? 92 1 1 2202 1 2404
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(k4p)? 92 1(k i(k i§ 9202 92()2
~ Qe 2 i 1(k+p)'( erp) i Qs2 . Qs2 _
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(4)

The various o, contributions are:
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Grouping together identical contributions and summing them all up, one achieves two
compact terms that take the form
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Combining Qs-powered like terms, both expressions turn out to be
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which leads to the most compact form
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Now dealing with Uffi)(k,p) =oa(k)a(p),
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All together,
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Finally, given the symmetry between afl) and az(lm)7
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A.2 Integrals in (o2)pr

Likewise,
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Grouping alike terms jointly provides a compact formula,
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In the same way, continuing with the computation of O'éii),
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Together,
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Finally, tackling o5 " and géiv),
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Unsurprisingly, given the involved diagrams, there is a formal correspondence between
(ii3) (iv)

each term of o5’ and oy ’, so that the two contributions can be grouped as follows,
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