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1 Introduction

Nothing in Nature is isolated.1 Closed quantum systems are an idealization that, while
teaching us a great deal about the principles of quantum mechanics, must eventually give way
to open quantum systems that encode the interaction between quantum systems of interest
and the environments that they find themselves embedded in [1–5]. Unfortunately, since such
systems are no longer unitary, conventional Hamiltonian methods to study their dynamics
fail or need to be modified at the very least. In particular, the von Neumann equation,

ρ̇ = − i

ℏ
[H, ρ] ,

that describes the evolution of the density matrix of a closed quantum system is replaced
by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) (or, more commonly, the Lindblad)
master equation [6, 7],

ρ̇ = − i

ℏ
[H, ρ] +

∑
i

γi

(
Li ρL

†
i −

1
2

{
L†

iLi, ρ
})

,

in which the system-environment interactions are encoded in the set of jump operators, Li

and the non-negative coefficients γi are the damping rates that control the strength of the
environmental interaction. Open quantum systems generically thermalize by leaking infor-
mation/energy into the ambient bath [8], and thermal systems, in turn, exhibit properties
of a random matrix ensemble; unitary, orthogonal or symplectic, depending on the starting
Hamiltonian [9]. The properties of such ensembles are captured by random matrix theory
(RMT) [9].

1Not even the Universe itself if Multiverse proponents are to be believed.
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Since its introduction to physics by Wigner [10–12], RMT has proven to be a powerful
tool in the study of statistical properties, such as energy spectra and level spacing distribu-
tions, of complex quantum systems [13, 14]. It has also been successfully applied across
various subdisciplines, including nuclear and condensed matter physics, quantum chaos,
and quantum information [15–20]. However, most RMT models assume that the matrix
elements are independent and identically distributed random variables with a Gaussian
distribution [9, 21]. This assumption may only be valid for some realistic quantum systems,
especially those that are open to the environment and subject to noise and dissipation.

In this article, we investigate two classes of modified RMT models that can potentially
capture some aspects of open quantum systems: non-Gaussian RMT [9, 22] and RMT with
noise [23]. The non-Gaussian RMT models considered here are defined by perturbing the
standard quartic potential in the matrix model with a sextic term.2 It has richer phase
structure than the Gaussian one [9, 22]. On the other hand, random matrix models with
noise are defined by adding a random perturbation to a Gaussian RMT model, which can
mimic the effect of environmental noise on the system. In particular, motivated by the
studies done in [23] we will be focusing a particular model where the noise in the energy
spectrum can be generated by the fluctuations of the system’s Hamiltonian in time. These
kind of energy diffusion processes characterized by energy dephasing arise in plethora of
interesting physical scenario e.g. in random quantum measurements, through the errors
of the clock used for timing the evolution of a quantum system. Interested readers are
referred to [23–29] for more details. We compare and contrast these two classes of models
and analyze their spectral properties to extend our understanding of the interplay between
dissipation and chaos in quantum systems.

Two of the main tools that we will use in our analysis are quantum complexity [30]
and the spectral form factor [31] associated with the system’s Hamiltonian. Quantum
complexity — a notion borrowed from computer science — measures the difficulty of
preparing or simulating a quantum state using a quantum computer. There are, by now,
several complementary notions of quantum complexity, depending on the choice of the
computational model and the resources considered. One notion of complexity that has
recently been developed is the Nielsen complexity [32–34], defined as the minimum number
of elementary gates needed to approximate a given unitary transformation with a certain
accuracy.3 Another notion of quantum complexity, and one of the foci of this article, is
Krylov complexity [30, 79], associated with the growth of an operator, or spread of a state
under time-evolution in a certain (sub)space spanned by orthonormal basis vectors known
as ‘Krylov space’. A recent surge of work in this area has demonstrated that these notions
of quantum complexity capture some essential features of quantum chaos and quantum

2In fact, in the Random Matrix Theory (RMT) literature, two distinct aspects are referred to as
“Gaussianity”. The first pertains to the ensemble from which we select the matrices, while the second relates
to the measure. In this context, we have chosen matrices from the conventional Gaussian ensemble. However,
the measure (or potential) we employ, which includes quartic or sextic terms, is also termed “non-Gaussian”.

3Interested readers are referred to some of the works done in the context of Nielsen complexity for
quantum field theory and quantum many-body systems [35–76]. This list is by no means exhaustive.
Interested readers are referred to these reviews [77, 78], and references therein for more details.
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ergodicity. Interested readers are referred to some of these references, which are by no
means exhaustive [30, 79–132]. We will show here that Krylov complexity for non-Gaussian
RMT and RMT with noise is different from that of Gaussian RMT, and we provide a
physical interpretation of this difference. To the best of our knowledge, this is the first time
that Krylov complexity is computed for such RMT models with noise.4

One of the defining characteristics of random matrices is their spectral rigidity, the
tendency of the eigenvalues of a random matrix to spread out, resulting in a particular
statistical distribution of eigenvalues [9, 133]. However, the degree of this rigidity is not
universal, but depends on the symmetry and the distribution of the matrix entries. For
example, Gaussian random matrices, such as the Gaussian orthogonal ensemble (GOE),
Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE), have a high
degree of spectral rigidity, meaning that their eigenvalue spacing distribution deviates
significantly from the Poisson distribution. On the other hand, some other random matrix
ensembles, such as the Ginibre ensemble, have a low degree of spectral rigidity, meaning
that their eigenvalue spacing distribution is close to the Poisson distribution. This is
due essentially to the fact that matrices from these ensembles lack symmetry constraints
and their entries are independent and identically distributed. One well-known measure of
spectral rigidity is the Dyson-Mehta ∆3 statistic, defined as the minimum mean-square
deviation of the integrated eigenvalue density from a linear function over an interval of
length L of the unfolded spectrum [134]. For example, for a regular system with Poisson
statistics, and no correlation between levels, the ensemble-averaged Dyson-Mehta statistic
grows linearly with L as ∆3 = L/15, whereas Gaussian ensembles are more rigid and the
growth is logarithmic, ∆3 = 1

π2

[
log(2πL) + γ − 5

4

]
− 1

8 +O(L−1) , for large L and for a GOE.
The second goal of this paper is to compute and analyze spectral features of non-Gaussian

random matrices and noisy random matrix models. Toward this end, we compute the spectral
form factor [31] — defined as (the Fourier transform of) the two-point correlation function
of eigenvalues of the Hamiltonian — that encodes the long-range spectral fluctuations of
the quantum system. It is closely related to the level spacing distribution and the level
number variance [133, 135, 136]. It is essentially a measure of the correlation between energy
eigenvalues of a Hamiltonian system and can be used to characterize the quantum chaos of
the system by comparing it with the Random Matrix Theory (RMT) predictions [133, 136–
140]. The spectral form factor usually shows a dip at a certain time scale, followed by a
ramp and a plateau. The dip is caused by the disconnected pair correlations between density
of states, while the ramp and plateau are caused by the connected pair correlations between
density of states. We will show that the spectral form factors for non-Gaussian RMT [22]
and RMT with noise [23] exhibit behaviour different from that of Gaussian RMT, and we
will explain how these behaviours reflect the non-Gaussianity and noise in the models.

The paper is organized as follows: in section 2, we introduce the definitions and
properties of the perturbed Gaussian random matrix models that are the focus of this article.
In section 3, we compute and analyze the spectral form factors for these models using a
combination of analytical and numerical methods. Section 4 is taken up with the computation

4Please refer to [120, 121] for recent studies of Krylov complexity for certain RMT without any noise.

– 3 –



J
H
E
P
1
0
(
2
0
2
3
)
1
5
7

of the Lanczos coefficients and the associated Krylov complexity for these models. In
section 5, we summarize our main results and discuss their implications and limitations.

2 Our models

In this section, we provide a brief overview of the models employed in the subsequent sections
of the paper. As previously mentioned, one of the canonical methods for characterizing
quantum chaos involves comparing the spacing between nearest-neighbour energy eigenvalues
with that of an ensemble of random matrices (RMT). Consequently, determining the
spectral properties of various random matrix models is of great importance for a broader
understanding of quantum chaos. A key such property of these models is that they
possess a characteristic time scale above which universal correlations between energy levels
emerge [141–144]. This realization led to the development of probes for characterizing
late-time chaos, such as spectral form factors. The spectral form factor displays universal
behaviour for Gaussian RMT and has been extended to non-Gaussian Models in [22].

One of the primary objectives of this article is to investigate the universality of this
chaotic behaviour and compare it with the features of Krylov complexity. We will initially
examine and compare the behaviour of the spectral form factor and Krylov complexity for
both non-Gaussian RMT and RMT models with noise. Below, we provide a brief description
of both systems.

Non-Gaussian random matrix models. We will start with the simplest non-Gaussian
models following [22]. The model is characterised by a quartic and sextic potential,

V (M) = 1
2M

2 + g

N
M4 + h

N2M
6 (2.1)

Here we will take the matrices M from a Gaussian Unitary ensemble (GUE).5 Following [145,
146], it can be shown that this model possesses a line of critical points in the (g, h) plane,
given parametrically by

g = 3 − 2b2

12b4 and h = b2 − 2
60b6 ,

where the parameter b satisfies the sixth order polynomial 60h b6 + 12 g b4 + b2 − 1 = 0.
After writing g = g(h) on this critical line one can show that, for a fixed value of h, when
g > gc(h), there are one, two and three cut solutions. However, for g < gc(h) and a fixed
value of h, there are only two and three-cut solutions. When b2 = 3, there is tri-critical
point where g = − 1

36 , h = 1
1620 . For the rest of this paper, we will consider values of g and

h above this tri-critical value.

Random matrix models with noise. Next, we turn our attention to another random
matrix model in the context of an open quantum system. While the addition of the sextic
term to the matrix model probes its chaoticity away from Gaussianity, we would to extend

5As the matrices are drawn from the Gaussian Unitary Ensemble (GUE), we can apply the
standard tools to generate this ensemble. Specifically, in our calculations, we have utilized the
GaussianUnitaryMatrixDistribution function from Mathematica.
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this and test the robustness of the quantum chaotic nature of the underlying theory in the
presence of decoherence [23, 147, 148]. In particular, we would like to test the reported
observation that, under certain circumstances, the presence of decoherence in a system
enhances the underlying quantum chaotic behaviour [149]. Specifically, we ask whether the
dip-ramp-plateau behaviour of the spectral form factor that characterises chaotic behaviour
is modified at all in the presence of decoherence. As discussed briefly in the introduction,
for this case, time evolution is non-Hermitian and governed by the Lindbladian through the
evolution equation, [6, 7],

ρ̇ = −i [H0, ρ] +
∑

i

γi

(
Li ρL

†
i −

1
2{L

†
iLi, ρ}

)
, (2.2)

where ρ denotes the density matrix of the open system, and the overdot denotes its time
derivative. For the purposes of our study, the system Hamiltonian H0 will be identified
with the matrix model potential V (M). The γi ≥ 0 are decay rates for the system and the
L′

is are so-called jump operators. At this point, these can be arbitrary functions of H0. Up
to a normalization, we can write them as Li = L†

i ∝ w(H0) where w(H0) is an arbitrary
complex function of H0. Motivated by studies carried out in [23], we will mainly focus on
the scenario where the underlying physical process is dictated by energy dephasing [23–29],
and compare the behaviour of the spread complexity with that of the spectral form factor.
The latter is known to remain a useful probe of quantum chaos even for open systems in
the presence of energy dephasing [23]. For this case study, we will choose w(H0) = Hδ

0
where δ can be an integer or a half-integer [23]. This choice introduces Gaussian noise in
the spectral form factor [23]. For most subsequent studies, we will choose δ = 1, resulting
in a sub-Gaussian filter function in the spectral form factor.

3 Spectral form factor

To analyze the spectral properties of our models discussed in the previous section, we begin
by computing the spectral form factor (SFF). Originally introduced as a probe for analyzing
the spectrum of quantum systems, it has developed into an indispensable probe of quantum
chaotic systems [136]. It is defined in terms of the analytically continued partition function as,∣∣∣∣Z(β + i t)

Z(β)

∣∣∣∣2 =
∑
m,n

e−β(Em+En)e−it(Em−En)

Z2(β) (3.1)

As such, the SFF interpolates between early-time probes such as the out-of-time order
correlator (OTOC) and more standard RMT measures such as the r-statistics of the spec-
trum. This makes it particularly well-suited for the study of systems transitioning between
integrable and chaotic behaviour [136]. However, except for some special cases such as
single-particle bosonic quantum mechanics where it can be shown that the two-point SFF is
obtained by averaging the four-point OTOC over the Heisenberg group [150], computing the
SFF is a difficult task, compounded by various subtleties inherent to the spectral analysis
of the chaotic Hamiltonian. Unfortunately, neither of our models fall allow for an analytic
computation of the SFF and so must be treated numerically.

– 5 –
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Figure 1. SFF for quartic potential for various values of the coupling.

3.1 SFF for non-Gaussian models

In this section, we will study the SFF for non-Gaussian random matrix systems mentioned
in (2.1). This computation starts with the diagonalization of the Hamiltonian for the energy
eigenvalues. These are then substituted into (3.1) and the SFF computed over an ensemble
of realizations of the Hamiltonian since the SFF is not particularly well-behaved for a single
realization. For example, and to benchmark our numerical methods, the SFF computed for
just the quartic term turned on in (2.1) is shown in figure 1. This plot is generated for a
matrix model with N ×N matrices with N = 1000 and averaged over n = 100 realizations.
To understand the role of two non-Gaussian parameters (g, h) in (2.1), we first turn off the
sextic parameter h and compute the SFF over a range of the quartic coupling g. Observe
that adding quartic couplings does not change the early-time behaviour, the saturation
magnitude at a late time, nor the saturation time scale of the Gaussian model. However, as
we increase the coupling g, the dip time increases relative to the Gaussian model, as evident
from figure 1. There is a value of the coupling gc ≈ 6 at which the dip and the subsequent
ramp disappear. Note also that including the quartic non-Gaussian term does not change
the slope of the ramp but does change its length.

Next, we turn off the quartic coupling and turn on the sextic term with coupling h.
As in the quartic case, the coupling h does not change the Gaussian model’s saturation
magnitude or time. It does, however, change the early-time behaviour. Another notable
difference from the quartic case is that even though the dip time does not change appreciably
with h, the slope of the ramp and the magnitude of SFF at the dip change considerably
with increasing h. However, similar to the quartic case, there is a value of hc at which the
dip and subsequent ramp disappear. This is demonstrated in the figure 2.

Finally, turning on both couplings (g, h) we compute the SFF for the entire model for
different values of g and h and plot the result in figure 3. Interestingly for this extended
model, the magnitude of the SFF at the dip may be tuned with relative ease up to its
saturation level by appropriate choice of the parameters g and h.

– 6 –
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Figure 2. SFF for Sextic potential for various values of the coupling.
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Figure 3. SFF for Non-Gaussian RMT with both quartic and sextic potential for different values
of parameters.

3.2 Random matrix model with noise

How does the behaviour of the SFF change if, instead, we introduce noise into a quantum
system such as the random matrix model with Gaussian noise, introduced in section 2?
To be concrete, we will focus mainly on the physical process dictated by energy dephas-
ing and choose the jump operators to be proportional to H0. Then making use of a
Hubbard-Stratonovich transformation, the SFF in the presence of the noise has the integral
representation [151],

Ft = 1
2
√
πγt

∫ +∞

−∞
dτe

−
(

τ−2t
2
√

γt

)2

gβ(τ), (3.2)

where gβ is the usual SFF for the model without the noise,

gβ(τ) =
∣∣∣∣Z(β + iτ)

Z(β)

∣∣∣∣2 ,

– 7 –
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Figure 4. SFF for Gaussian random matrix model with Gaussian noise.

and γ is the strength of the noise as defined in (2.2). It is also related to the decay rate.
The effect of noise on the SFF for the Gaussian model is exhibited in figure 4 and can be
summarised as follows: the presence of noise alters the early-time behaviour, but does not
affect the saturation magnitude, saturation time, or slope of the ramp. It is important
to note that while some aspects of the impact of the introduction of noise align with the
non-Gaussian terms, not all of its effects can be replicated by these non-Gaussian terms
alone. Consequently, noise alone cannot generate an equivalent effect to non-Gaussianity
(quartic and sextic) on its own, as one can see by comparing figure 4 and figure 3.

Before concluding this section, let’s briefly compare the effect of non-Gaussianity on the
SFF in the presence of noise. Here again, we numerically compute the spectral form factor
and plot its time-evolution in figure 5. For these systems, we observe that noise effectively
reduces the length of the ramp. This is true for both the Gaussian and non-Gaussian
random matrix models. To understand these observations, it is worth keeping in mind that
physically, the dip in the SFF means that the system has less correlation than expected by
RMT; conversely, the ramp and plateau mean that the system has more correlation than
expected by RMT [152]. Consequently, the absence of a dip in the SFF could either mean
that the system is too chaotic — if, for example, the system has a very large level spacing —
or not chaotic enough — if, for example, the system has some symmetry or is integrable —
to match the RMT predictions. Evidently, then in both classes of systems (non-Gaussian
and noisy) increasing the couplings brings with it an increase in the chaoticity of the system.
To test this hypothesis, we require some independent measure which, in our case is provided
by quantum complexity.

4 Krylov complexity

Having explored the spectral properties of these two types of random matrix models using the
SFF, we now turn our attention to another probe, a quantum information-theoretic quantity,
called Krylov Complexity [30]. Like its more familiar counterpart, Neilsen complexity, there
are two notions of Krylov complexity. The first essentially measures operator growth in

– 8 –
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Figure 5. SFF for Non-Gaussian RMT with Gaussina noise.

Hilbert space through the development of nested commutators with the system Hamiltonian.
In this article, we focus the more recently developed notion of the complexity associated
with the spread of a state in the Krylov basis under time evolution and called, appropriately
enough, spread complexity [79]. Let’s briefly recall the essential ingredients behind the
computation of the spread complexity. A quantum mechanical state of any closed system
evolves according to the Schrodinger equation,

i
d

dt
|ψ(t)⟩ = H0|ψ(t)⟩ ,

so that the state of the at the time t is given by the series,

|ψ(t)⟩ =
∞∑

n=0

(−it)n

n! |ψn⟩ ,

where the
|ψn⟩ ≡ Hn

0 |ψ(0)⟩ .

In this sense, the |ψn⟩ may be considered as a basis spanning the space of states. However,
this set is neither orthogonal nor normalized in general. To remedy this, we can apply the
usual Gram-Schmidt orthogonalization procedure.6 The result is an ordered, orthonormal
basis,

K = {|Kn⟩ : n = 0, 1, 2, · · · }

that spans the subspace of the Hilbert space explored by time development of

|ψ(0)⟩ ≡ |K0⟩ .

6For more details about this Lanczos algorithm [153] to the |ψn⟩, used to generate such an orthonormal
basis, we refer the interested reader to [154].

– 9 –
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The basis K is conventionally known as the Krylov basis. Expressed in the Krylov basis
any Hermitian matrix H0 takes a tri-diagonal form,

Ht =



a0 b1
b1 a1 b2

b2 a2 b3
. . . . . . . . .

bN−2 aN−2 bN−1
bN−1 aN−1


At this point, it is interesting to note that, as our initial state |ψ(0)⟩ belongs to the
Krylov basis, then the orthogonalization procedure can be solved if we can find a similarity
transformation O such that it brings H0 to its tridiagonal form Ht i.e.,

OH0O
T = Ht , (4.1)

with O|ψ(0)⟩ = |ψ(0)⟩. As long as H0 is Hermitian, this similarity transformation always
brings it to a tri-diagonal form [155]. We will make use of this fact for our subsequent compu-
tations and can be implemented this via Mathematica’s inbuilt HessenbergDecomposition
module [156].

Now, if we express H0 in the Krylov basis and consider the initial state |ψ(0)⟩ as
one of the basis states i.e. |K0⟩ = |ψ(0)⟩, then the action of the time-evolution operator
exp(−iH0t) on the initial state is simply,

e−iH0t|K0⟩ =
∞∑

n=0
ψn(t) |Kn⟩ = |ψ(t)⟩ .

Finally then, the spread complexity is defined through,

C(t) =
∑

n

n |ψn(t)|2 = ⟨ψ(t)|K̂|ψ(t)⟩, K̂ =
∑

n

n |Kn⟩⟨Kn| (4.2)

It has been shown in [79] that this quantity is minimized when the |ψ(t)⟩ is expanded
in terms of the Krylov basis relative to over any other possible basis. In the following
sections, we will tri-diagonalize the random matrix Hamiltonians discussed in section 2 and,
using (4.2) compute the spread complexity as a function of time each of the two classes of
matrix models.

4.1 Krylov complexity for non-Gaussian RMT

As with the SFF computation, we take as the system Hamiltonian

H0 = 1
2M

2 + g

N
M4 + h

N2M
6 . (4.3)

– 10 –
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Figure 6. Evolution of Spread Complexity for quartic RMT. While the left panel shows the entire
time evolution of the complexity, the right panel only shows the early-time behaviour.

Following the procedure outlined above, the Krylov (spread) complexity is computed by

• putting this Hamiltonian into its tri-diagonal form, Ht

• constructing the associated operator U(t) = exp(−iHtt) and applying it to an initial
state |ψ(0)⟩= |K0⟩ to get the time-evolved state |ψ(t)⟩ in the Krylov basis,

• computing the complexity as the expectation value of the operator K̂ = ∑
n n |Kn⟩⟨Kn|

with respect to |ψ(t)⟩, and

• averaging over an ensemble of different realizations of the system (characterized by
fixed couplings and matrices M drawn from an appropriate ensemble) to account for
statistical variations.

Let’s first consider the effect of quartic coupling g (setting h = 0) on the complexity.
The evolution of complexity for different values of the coupling g is displayed in figure 6. A
few observations are worth pointing out.

• First; the saturation times and saturation magnitude of the complexities are approxi-
mately the same for different values of g, as evident from figure 6.

• Second; we note that the Gaussian model (g = 0) reaches a maximum before it
decreases and saturates. This is consistent with the observation made in [79, 120, 121]
that (i) Krylov complexity exhibits a characteristic (and universal) peak and saturation
structure in chaotic systems and (ii) the Gaussian RMT is chaotic. More curiously,
this peak-saturation structure persists for g = 2 but then dies out with increasing g as
evident from figure 6. We cross-check this observation by computing the Lanczos an

and bn coefficients numerically. The results for the ensemble-averaged bn coefficients
are displayed in figure 7. Recalling that the statistics of the Lanczos bn coefficients,
which are the off-diagonal elements of the tridiagonalized Hamiltonian, reveals some
properties of the original operator. For example, if the original Hamiltonian is drawn
from an invariant ensemble, then the bn coefficients are correlated and will follow a
particular distribution depending on the ensemble as is the case above for g = 0 where
the ensemble-averaged bn ∼

√
1 − n

N . As the quartic coupling g is increased, the

– 11 –
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Figure 7. bn vs n for different values of g.
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Figure 8. Spread Complexity for different values of sextic coupling h.

distribution retains this basic profile until gc ≈ 3 when the profile changes qualitatively,
developing a kink, that gets more pronounced as g is increased beyond gc. This agrees
qualitatively with the critical value of the coupling in the spread complexity.

• Third; the linear slope that characterises the early-time behaviour of the Krylov
complexity changes with the coupling. Specifically, the slope appears to decrease with
increasing coupling until a minimum around gc ≈ 3 and then increases again. We
verify this by plotting the slope of the complexity (dC/dt) as a function of the quartic
coupling in figure 9. Here it is clear that around gc,

dC
dt

∼ (g − gc)2 . (4.4)

This behaviour of the Krylov complexity for a quartic perturbation should be contrasted
with the sextic perturbation. To this end we isolate the effects of the latter by turning off the
quartic coupling g and consider only the sextic coupling h. Figure 8 displays the complexity
for different values of h. In this case, although the peak height decreases and saturation height
increases with increasing h, the peak-saturation profile persists over a wide range of coupling
strengths (up to approximately h = 1000). We note also that, unlike the quartic case, the
slope of the Krylov complexity is monotonic in the sextic coupling as shown in figure 9.
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Figure 9. Rate of change of spread complexity at early time for quartic (left) and sextic (right) RMT.

4.2 Krylov complexity for RMT with noise

Now we extend our analysis of spread complexity for the RMT with Gaussian noise.7 Note
that since this is an open quantum system, its time evolution is governed by the Lindblad
equation (2.2). To set up the computation of the spread complexity, we first use the
state-operator mapping to associate the density operator with a state in a doubled Hilbert
space [157–159]. The time-evolution of the associated effective state is then generated by
the operator e−itLo , where Lo is the Lindbladian operator. In the doubled Hilbert space
this takes the form [122, 160, 161]

Lo =
(
I ⊗H0 −HT

0 ⊗ I
)

+ i γ

2
∑

i

(
I ⊗ L†

iLi + LT
i L

∗
i ⊗ I − 2LT

k ⊗ L†
i

)
, (4.5)

where H0 is the Hamiltonian for the associated closed system Hamiltonian (which may
also contain non-Gaussian terms) and all other components are as defined in section 2.
As mentioned there, we will primarily on those processes dictated by energy dephasing as
in [23] so that the Lindbladian operator (4.5) takes the form,

Lo =
(
I ⊗H −HT ⊗ I

)
+ iγ

2N2

(
I ⊗ L†L+ LTL∗ ⊗ I − 2LT ⊗ L†

)
, (4.6)

where, L = L† = w(H) and we choose the power-law dependence w(H0) = Hδ
0 where δ can

be either an integer or a half-integer [23].
Now we can compute the spread complexity following the procedure outlined in section 4

with one important caveat; unlike the Hamiltonian of the closed system, the Lindbladian
L0 is not Hermitian. Consequently, the orthogonalization procedure does not bring it into
a tri-diagonal form; instead, the best we can do is to find a similarity transformation that

7We refer the reader to references [94, 122–124] for studies of the Lancoz algorithm as well as its
modifications and associated spread complexity for certain open quantum systems.
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Figure 10. Spread Complexity for Gaussian RMT with noise.

puts it into the upper-Hessenberg form,

Lh =



a0 b1 c1 d1 . . .

b1 a1 b2 c2 d2 . . .

0 b2 a2 b3 c3 . . .
. . . . . . . . . . . . . . .
. . . 0 bN2−2 aN2−3 bN2−2 cN2−2
. . . 0 0 bN2−2 aN2−2 bN2−1
. . . 0 0 0 bN2−1 aN2−1


, (4.7)

in the orthonormal Krylov basis.8 Then proceeding as before, we time-evolve the initial
state, |K0⟩ = |ψ(0)⟩ in the doubled Hilbert space by the Lindbladian operator projected to
the Krylov space Lh and, using (4.2), we can compute the spread complexity by computing
the expectation value of K̂. Another consequence of the non-Hermicity of the Lindbladian
is that we have to normalize the time-evolved state at each step of the time evolution.
This computation has been done with N2 ×N2 square matrices with N = 25, and with
an ensemble averaging over n = 50 realizations. Note that N is the size of the matrices
acting on the original Hilbert space. This becomes N2 in the doubled Hilbert space. In
figure 10, we have demonstrated the time evolution of the spread complexity for the open
system described by an RMT with Gaussian noise.

As in the non-Gaussian case above, the complexity of the open system exhibits a
characteristic pattern of initial sharp linear growth followed by saturation, as can be seen
from figure 10. There are, however, a number of notable differences in the behaviour of the
Krylov complexity relative to the non-Gaussian random matrix models. Chief among these
is the robustness of its early-time linear growth against changes in the noise parameter γ.
We have tested this over a range of γ ∈ [0, 103], finding significant deviation in the slope

8Remember that the size of the Lindbladian in the doubled Hilbert space is N2.
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Figure 11. The mean bn and the variance σbn
of bn for Gaussian RMT with noise. We have set

γ = 1. N2 denotes the size of the Lindbladian.

only for γ ≈ 100. A second key point to note is the nontrivial dependence of the peak and
saturation values of the complexity on the amount of noise in the system, as parameterized
by γ. Since the underlying Gaussian random matrix model is chaotic, we expect, primed
by the results in [112], a high saturation plateau. For small but non-zero values of γ the
height of this plateau increases indicating that the system becomes more chaotic. However,
there is a turnaround around at γ = γc ≈ 10−2 when the plateau height starts to decrease.

One way to understand this complexity suppression is that turning on noise γ ̸= 0
expands the operator space, allowing the system to explore a simpler set of operators.
Consequently, the presence of the environment (represented by the noise) can also alter
the magnitude of complexity and hence the chaos properties and induce decoherence in
the system. This should be viewed in the light of previous studies [69], in which it was
shown that Nielsen’s circuit complexity saturates when the open system undergoes maximal
decoherence.

As a final point, we investigate the distribution of elements of the Lindbladian Lh

in upper-Hessenberg form for the Gaussian random matrix model with noise. We find
that both the mean and variance vanish for the diagonal elements an but are non-zero
for bn. coefficients that fill in the first off-diagonal set. This is shown in figure 11. It
is also interesting to note that, the variance of bn is typically non-zero in the presence
of noise and vanishes in the n → N2 limit9 We have checked this also for non-Gaussian
RMT with noise as well as for various values of quartic and sextic couplings obtaining
the same behaviour for the mean and the variance of bn. Organizing our observations by
three characteristic time-domains: the early-time behaviour, mid-time behaviour, and the
saturation regime, we summarize the behaviours of the spectral form factor and spread
complexity in table 1 above.

9This should be contrasted carefully with that of [120] keeping in mind that we work in a doubled Hilbert
space unlike [120].
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Spectral Form Factor Krylov Complexity

Quartic
Non-Gaussian
RMT

• Unaffected at early times.

• Increase in the size and onset of the dip
with increasing coupling.

• Late-time plateau is unaffected by cou-
plings.

• Early-time growth varies with coupling.

• Peak complexity decreases wit increasing
coupling.

• Late-time saturation is unaffected by
changing couplings.

Sextic
Non-Gaussian
RMT

• Early-time plateau decreases with in-
creased coupling.

• Decrease in the depth of the dip with
increasing coupling.

• Late-time plateau is unaffected by cou-
plings.

• Early-time slope increases with increas-
ing coupling.

• Peak complexity decreases with increas-
ing coupling.

• Late-time saturation increases with in-
creasing coupling.

Gaussian
RMT with
Noise

• Early-time behaviour is strongly depen-
dent on noise.

• Dip height and time increases with in-
creasing noise.

• Late-time plateau is unaffected by noise.

• Early-time growth weakly dependent
noise.

• Peak complexity depends non-trivially
on noise.

• Late-time saturation values first increase
then decrease with increasing noise.

Table 1. Contrasting the SFF and Spread Complexity for the various random matrix models.

5 Discussion

Building on work initiated in [120, 121], in this article we present a comprehensive compara-
tive analysis of the spectral form factor (SFF) and spread complexity across various random
matrix models. The SFF reflects the statistical properties of the energy spectrum and the
level correlations, while the complexity measures the minimal spread of the wave function
over all choices of basis. Our study serves to illustrate that the SFF and the complexity of
spread of states (spread complexity) are indeed complementary measures of quantum chaos
that capture different aspects of the quantum dynamics.

Both quantities exhibit characteristic features, such as the slope-dip-ramp-plateau
structure of the SFF and the linear-ramp-peak-saturation structure of the complexity, that
depend on the non-Gaussianity and noise in the random matrix models in non-trivial
ways. Since these features reveal the onset and saturation of quantum chaos, as well as the
sensitivity to spectral rigidity and survival amplitude, our study emphasizes the significance
of considering both the SFF and complexity in analyzing quantum chaotic systems, as
they provide complementary information about the quantum dynamics and its relation to
classical chaos.
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A key motivating question for our study was to clarify the effect of noise on quantum
chaos. As is well-known, noise can affect quantum chaos in various ways, depending on
the type and strength of the noise, the nature and size of the quantum system, and the
observable of interest. For example, it was shown in [162] that in certain chaotic systems
such as quantum kicked rotors, noise can induce decoherence and dissipation, which can
destroy dynamical localization and restore classical diffusion. In other words, the presence
of noise can make the quantum system behave more like its classical counterpart, which, in
a sense can be interpreted as a decrease of quantum chaos. However, this does not mean
that noise always has a negative effect on quantum chaos. In fact, there are also cases where
noise can enhance or even induce quantum chaos, such as in noise-induced synchronization
or noise-induced transitions between different types of synchronization. Therefore, the
answer to this question may depend on the specific system, the type and strength of the
noise, and the measure of quantum chaos one uses to probe the system.

Our results here serve to further support this statement. Even in as simple a system as
a Gaussian single random matrix model, depending on the strength of the noise and the
measure used, the chaos properties of the quantum system are notably different (see table 1).
Chief among these is the fact that the SFF, and by extension, the spectral properties of the
Hamiltonian, appears to be blind to a possible transition in the chaoticity of the random
matrix model from increasing to decreasing as the amount of noise is increased, as reflected
in the saturation levels of the spread complexity (see figure 10). Beyond theoretical studies,
noise plays a pivotal role in near future technologies such as quantum computing. For
example, recent work by Wang et al. [163] demonstrated how noise can be used to identify
the most robust quantum circuit for a particular computing task, and to generate a mapping
pattern tailored to the qubits of a targeted quantum device in a process they called Quantum
Noise-Adaptive Search (QuantumNAS) with the potential to dramatically improve the
accuracy of machine learning and quantum chemistry tasks on noisy quantum devices. As
such, it is of immediate interested to sharpen our understanding of the interaction of such
fundamental quantum systems such as random matrix models with noisy environments.

There are a number of future directions worth pursuing. We will elaborate on a few of
these below:

• The focus of our study has been on just one random matrix ensemble; the GUE. It
should be straightforward to extend our analysis to other ensembles. In particular,
it will be very interesting to extend this study to non-Hermitian (Ginibre) random
matrices. Such ensembles are complex-valued and related to the transfer matrices of
patially-extended many-body quantum chaotic systems. This behavior is a consequence
of the strongly interacting and spatially extended nature of the system, and is markedly
different from the traditional emergence of Hermitian random matrix ensembles [160,
164]. More generally, such many-body systems exhibit complex and universal behaviors
that challenge the fundamentals of our understanding of quantum dynamics and
thermodynamics.

• Random matrix models are important because they serve as simple and tractable
models of complex and realistic systems that are otherwise very difficult to analyze or
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even simulate. As simple as they are, these models are still rich enough to capture the
essential features and behaviors of these systems, features such as spectral statistics,
eigenvalue repulsion, phase transitions, and universality classes. As such, another
direction would be to investigate the physical implications of our findings, such as
the relation between non-Gaussianity, noise, and quantum information scrambling
or entanglement generation in quantum chaotic systems. Given the recent surge of
interest in quantum information in the context of black holes and quantum gravity,
we anticipate that this would likely be appreciated by a broad audience.

• Finally, our investigations in this paper are primarily numerical. Following [120, 121],
it will be of value to derive analytical results for the case of random matrix models
with noise. In particular, it was shown in [121] that spread complexity satisfies an
Ehrenfest Theorem, with the SFF driving its growth in a closed system. Do similar
statements hold when noise is present in the system? It will be interesting to generalize
the analytical arguments presented in [121] to the Lindbladian system studied above.

This article reflects our attempt to understand the subtle interplay between the spectral
properties of random matrix models and quantum complexity, and what it teaches us about
the underlying physical systems, particularly in the presence of noise. We believe that
further exploration of this interplay between the SFF and complexity in diverse quantum
systems will deepen our understanding of the underlying quantum dynamics and open up
new avenues for the study of complex quantum phenomena.
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