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1 Introduction

Four-dimensional N = 2 supersymmetric quantum field theories (SQFTs) have proven,
over the years, to be an excellent laboratory for studying connections between QFT and
mathematics and for enhancing our insight into more realistic QFTs. The work of Witten [1]
showed how to interpret Donaldson invariants of four-manifolds [2] in terms of observables
in a topological subsector of the full N = 2 SQFT counting instantons. Later, the derivation
of the Seiberg-Witten exact prepotential of an SU(2) N = 2 gauge theory in the IR [3]
greatly improved our understanding of strongly coupled QFTs. This result relied on a
version of electric-magnetic duality and on the holomorphicity of the moduli space of vacua.
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It was later reinterpreted by Nekrasov [4], as the non-equivariant limit of the equivariant
volume of the instanton moduli space in the Ω-background. This computation employed
supersymmetric localisation (see [5] for a comprehensive review) to reduce the integral over
the entire instanton moduli space to a discrete set of fixed points under a T 2-isometry.
The Nekrasov partition function is the building block of Pestun’s result [6] for the exact
partition function of the N = 2∗ theory on S4: on this background, the field strength
localises to point-like instantons at the north pole and point-like anti-instantons at the south
pole. The partition function is obtained by gluing two copies of the Nekrasov partition
function, one for instantons and one for anti-instantons. Subsequently, a plethora of exact
results for SQFTs have been obtained. Among these, related to our work are studies of
N = 2 topologically twisted theories on compact toric manifolds [7–11]. See also [12, 13] for
topologically twisted theories on M4 × S1, where M4 is a compact 4d toric Kähler manifold.

More recently, in [14–16] a framework was developed to generalise Pestun’s result
to any compact simply-connected four-manifold with a T 2-isometry with isolated fixed
points and an arbitrary distribution of (anti-)instantons at those points. The partition
function is conjecturally obtained by gluing (anti-)instanton Nekrasov partition functions.
However, this is not the full story, as four-manifolds B with non-trivial H2(B;Z) also admit
gauge configurations where the field strength has flux on non-contractible cycles. It was
conjectured in [14, 17] that the flux contributions enter as a shift of the Coulomb branch
parameter in each copy of the Nekrasov partition function. The full partition function is
then obtained as a sum over these flux sectors. In the literature [7, 9–12, 14, 15, 17–21],
the sum is over equivariant fluxes which are then constrained by stability equations.

The main objective of this work is to compute the one-loop partition function around
fluxes, for the 4d N = 2 vector multiplet on compact simply-connected quasi-toric manifolds.
In particular, we allow the theories to localise to different distributions of (anti-)instantons
at the torus fixed points (also known as Pestunization). We explicitly compute the one-loop
partition function of these theories around each flux sector, whose factorised form1 agrees
with the form conjectured in [14, 17]. From this form we can read out the shifts of the
Coulomb branch parameter at each torus fixed point by the fluxes and write down the
Coulomb branch partition function,2 including instanton and classical parts.

The main difficulty is obtaining flux solutions from the 4d localisation equations. We
circumvent this issue by taking a detour via the 5d N = 1 vector multiplet on closed
toric Sasakian manifolds. This setup is well-studied [24–33], in particular for S5 and Y p,q

spaces (see also [34] for a review). In order to, ultimately, return to 4d, we assume the
five-dimensional manifold M to be a (non-trivial) principal S1-bundle

S1 M B
p (1.1)

over B. We can usually have multiple different such bundles over B, which lead to different
(anti-)instanton distributions (depending on the relative orientation of the free S1-direction

1By “factorised” we mean an expression for the partition function in terms of a product over its
contributions from individual torus fixed points on the manifold. This notion was introduced in [22, 23].

2This is the holomorphic “integrand” of the full partition function and we make this distinction since we
will not concern ourselves with the remaining integral over the Coulomb branch parameter in this work.
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with respect to the Reeb vector). For simply-connected M , the perturbative partition
function was computed in [31] and is given by

ZM =
∏
α∈∆

∏
n⃗∈C∩Z3

(n⃗ · r⃗ + iα(a))
∏

n⃗∈C◦∩Z3

(n⃗ · r⃗ − iα(a)),

with r⃗ the Reeb vector and C the three-dimensional (dual) moment map cone of the
T 3-action on M . We first rewrite this result as a product over two-dimensional slices Bt
of the cone along the free S1-direction (as displayed in figure 2), labelled by their integral
charge t under the S1:

ZM =
∏
α∈∆

∏
t

∏
(n1,n2)∈Bt

(n1ϵ1 + n2ϵ2 + tr3
l3

+ iα(a))
∏

(n1,n2)∈B◦
t

(n1ϵ1 + n2ϵ2 + tr3
l3

− iα(a)).

Here, ϵ1, ϵ2 are the equivariance parameters corresponding to the remaining T 2-action and
l3 some constant.

As a first step towards B, we introduce a quotient of the simply-connected M along the
free S1 by a finite subgroup, X =M/Zh. The quotient has π1(X) = Zh and the localisation
locus must be extended to include topologically non-trivial flat connections, valued in the
Cartan of the gauge algebra. The effect of the quotient on the partition function is to
discard most slices and only keep the ones for which t = c1 modh, controlled by the first
Chern class c1 of the corresponding U(1)-bundles.3 The partition function on X is then
given by a sum over these topological sectors. We suspect that this procedure can be
interpreted as gauging a Zh 0-form symmetry on M .

Finally, we return to B by taking the limit of large h. The non-trivial connections in
the 5d locus on X, upon reduction, become connections in the 4d locus on B with flux on a
two-cycle. In terms of the partition function, instead of a product over different slices, for
large h only a single slice of the cone survives, labelled by the aforementioned flux m:

ZB =
∏
α∈∆

∏
(n1,n2)∈Bm

(n1ϵ1+n2ϵ2+α(m)r3
l3
+iα(a))

∏
(n1,n2)∈B◦

m

(n1ϵ1+n2ϵ2+α(m)r3
l3
− iα(a)).

Note that one can think of ZM as counting holomorphic functions4 on the metric cone
C(M). Then ZB counts precisely the holomorphic functions on C(M) that have charge c1
under rotations along the S1-fibre. For the full partition function, the topological sectors
are summed over as before:

ZB =
∑
m

∫
h
da e−Scl · ZB · Z inst

B .

The one-loop partition function ZB for flux m can then be factorised using 5d techniques.
Note that, depending on which fibration (1.1) we choose, the remaining slice Bm can be
either compact or non-compact. The theory on B corresponding to the former is commonly

3Here and below, when we write c1 mod h we are implicitly using the isomorphism H2(X) ≃ Zh ⊕ Zb2(X)

under which c1 takes values in Zh (see appendix A).
4Since C(M) is a toric manifold, the integral lattice of the toric cone C is in 1:1 correspondence to

holomorphic functions on C(M). See [34] for precise relations to the one-loop calculation.
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known as the topologically twisted theory, localising to instantons on all torus fixed points
(resulting in an elliptic complex; e.g. Donaldson-Witten theory). The latter case appears for
more general distributions of (anti-)instantons (resulting in a transversally elliptic complex;
e.g. Pestun’s theory on S4).

The 5d detour described above makes the inclusion of fluxes into the 4d locus a simple
consequence of the non-trivial nature of the fibration (1.1). Given that we obtain flux
contributions on B as the base of an S1-fibration, one might wonder whether a similar
technique could be applied to analyse non-Abelian features of the locus from non-Abelian
fibrations over the four-manifold.

Finally, as a disclaimer, whenever H2(M ;Z) ̸= 0, our procedure might only produce
part of the sum over all possible fluxes in the full partition function on B. This is because
our starting point in 5d is a localisation result [31], whose locus does not include any flux.
As a consequence, our result for the 4d partition function might miss out on these fluxes.
In order to include them, it would be necessary to allow for a more general 5d localisation
locus (possibly by relaxing reality conditons or including singular configurations, cf. [35, 36]
in 3d and 2d).

The outline is as follows. In section 2 we introduce some basic facts about toric Sasakian
geometry and the condition under which these manifolds admit a free S1-action. As an
example, we consider Y p,q. Then, in section 3, we explain the supersymmetric setup on
these manifolds and on their quotients. We also discuss how flat connections in X lead to
flux on B. In section 4 we perform in detail the steps of slicing and reducing outlined above
and compute the one-loop partition function around flat connections on the quotient X and
around fluxes on the four-dimensional base B. In particular, we show how each flux sector
arises as a single slice of the three-dimensional cone. The construction is illustrated by
explicit examples in section 5, considering S5, Y p,q and Ap,q. The factorisation properties
of the partition functions are studied in section 6 where, employing the shifts derived from
the one-loop part around fluxes, we can finally write the full partition function, including
instanton and classical contributions. We summarise our results in section 7 and comment
on possible future directions.

This work is a generalisation of earlier work [37] on CP2 by two of the authors.

2 Toric Sasaki-manifolds

In this section, we briefly review some facts about toric Sasaki-manifolds on which we later
place our theory. A detailed account of contact structures and Sasakian geometry can be
found in [38], for toric geometry see [39]. Throughout the article, we assume all manifolds
as being smooth and connected.

2.1 Toric Sasakian geometry

Contact structures. The basic underlying structure of Sasakian manifolds is a contact
structure. It can be viewed as the odd-dimensional cousin of a symplectic structure on
even-dimensional manifolds. More precisely, on a (2n−1)-dimensional manifold M , consider
a field ξ ⊂ TM of hyperplanes on M . This field can be expressed as ξ = kerκ, where κ is a

– 4 –



J
H
E
P
1
0
(
2
0
2
3
)
1
5
5

one-form5 on M . If κ∧ (dκ)n−1 ̸= 0 everywhere6 on M , then ξ is called a contact structure,
κ a contact form and (M, ξ) a contact manifold. Note that in this case κ ∧ (dκ)n−1 defines
a volume form of M (i.e., in particular, M must be orientable).

To a contact form κ we can associate a vector field r defined by the equations

ιrκ = 1, ιrdκ = 0. (2.1)

This is called the Reeb vector field. Since we consider M to be Riemannian, we demand
some compatibility conditions between the metric and contact structure: the metric g

should be preserved, i.e. Lrg = 0 and there should exist an almost complex structure J on
kerκ which can be extended to TM via J(r) = 0 such that for vector fields X,Y on M ,
g(X,Y ) = 1

2dκ(X, J(Y )) + κ(X)κ(Y ) (note that (kerκ, J |kerκ) provides M with an almost
CR-structure). If these conditions are satisfied, (M, g, κ, J) is called a K-contact manifold.
Note that a consequence of the second condition and (2.1) is κ = g(r, ).

The Reeb vector field generates a flow on M and its orbits (which are geodesics) can be
viewed as the leaves of a one-dimensional foliation, the so-called Reeb foliation Fr. Note that
the tangent bundle TM can be orthogonally decomposed as TM ≃ kerκ⊕ Lr with respect
to g, where Lr is the (trivial) line bundle consisting of vectors tangent to the leaves of Fr.

One way to characterise M is by the regularity property of the Reeb foliation. Fr
is called quasi-regular if there is an integer k such that for every point x ∈ M there is a
foliated chart through which each leaf passes at most k-times. Fr is called regular if k = 1
and irregular if it is not quasi-regular.7 Note that if M is compact and Fr quasi-regular,
the orbits are circles and we get a locally free S1-action on M (which is isometric since r
is Killing). If Fr is regular, the S1-action is free. Hence, in this case, we have a principal
S1-bundle π :M → B over the space of leaves B =M/Fr which is a compact, symplectic
manifold with symplectic form ω such that π∗ω = dκ. In the locally free case instead, B is
a symplectic orbifold. In contrast, in the irregular case, r generates a group action with
orbits whose closure is isomorphic to a torus.

Sasakian manifolds. As mentioned above, a Sasakian manifold is a special case of a
K-contact manifold and can be viewed as the odd-dimensional cousin of a Kähler manifold
in even dimensions. More precisely, a K-contact manifold (M, g) is Sasakian if its metric
cone (C(M), ḡ) with C(M) = R>0 ×M and ḡ = dr2 + r2g is Kähler. The corresponding
Kähler form and complex structure are

ω̄ = 1
2d(r

2κ), J̄ = J + 1
r
ζ ⊗ dr − r∂r ⊗ κ. (2.2)

5In fact, κ is globally defined only if ξ is co-orientable, i.e. the line bundle T M/ξ is trivial. Equivalently,
one can always find a global κ with ξ = ker κ if both M and ξ are orientable.

6An equivalent formulation of this condition is (dκ)n−1|ξ ̸= 0. Hence, we anticipate that dκ provides a
symplectic structure for a suitable codimension-one submanifold.

7Note that in the case of a regular (quasi-regular, irregular) foliation we also talk about a regular
(quasi-regular, irregular) Reeb vector field or contact form. However, different contact forms in a contact
structure can produce drastically different foliations, so it does not make sense to talk about a regular
(quasi-regular, irregular) contact structure.
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Here, J and κ are trivially extended to C(M) and ζ = J̄(r∂r) is the characteristic vector
field. The Kähler condition is equivalent to J̄ being covariantly constant, ∇̄J̄ = 0, with
respect to the Levi-Civita connection (see e.g. [40], lemma 4.2.5). It follows that ∥ζ∥ = r2,
Lζ ḡ = 0 and ζ is tangent to hypersurfaces of constant r. Hence, M can be naturally
embedded into C(M) as the hypersurface with r = 1 and ζ can be identified with the Reeb
vector field of M .

As described above, we can characterise a Sasakian manifold as regular, quasi-regular,
or irregular, depending on its Reeb foliation. For a compact regular (quasi-regular) Sasakian
manifold, the space of leaves B is a compact Kähler manifold (orbifold) (see [38], theorem
7.1.3). In turn, Fr is a transverse Kähler foliation. Note that regular Sasakian manifolds
are rare (e.g. S5 with B = CP2) and most Sasakian manifolds are either quasi-regular or
irregular (e.g. Y p,q which we discuss in more detail below). Since the aim of this work is
to start from a five-dimensional Sasakian manifold and reduce, along a free direction, to
four dimensions, it is clear that this direction, in general, has to be different from the Reeb
vector field.

Toric Sasakian geometry. A (2n− 1)-dimensional Sasakian manifold M is called toric
if, on its cone (C(M), ḡ, ω̄, J̄), there exists an effective, holomorphic Tn-action that is
Hamiltonian and such that ζ ∈ tn is an element8 of the Lie algebra of Tn. The Hamiltonian
property implies existence of a Tn-equivariant moment map

µ : C(M) −→ t∨n ≃ Rn, (2.3)

where t∨n denotes the dual, such that

∀v ∈ tn : d⟨µ, v⟩ = ιvω̄. (2.4)

From (2.2) it follows that (up to an additive constant) the moment map is determined by

⟨µ, v⟩ = 1
2r

2κ(v). (2.5)

Moreover, the image µ(C(M)) ∪ {0} is a strictly convex, rational, polyhedral cone C∨ in
t∨n ≃ Rn (see [41], theorem 4.2), i.e. C∨ can be presented as

C∨ = {u ∈ t∨n |∀i = 1, . . . ,m : ⟨u, vi⟩ ≥ 0}. (2.6)

Here, vi ∈ tn, i = 1, . . . ,m are the “inward-pointing normals” of the facets (codimension-one
faces) of the cone and m the number of facets. The rationality means that the vi are elements
of the lattice of circle subgroups of Tn, i.e. upon tn ≃ Rn we have vi ∈ Zn. Furthermore, we
can assume {vi}i=1,...,m to be minimal and primitive. Since the cone C∨ is strictly convex,
its base is a compact convex (n− 1)-dimensional polytope; hence, m ≥ n. An intuitive way
of thinking about the moment map (2.3) is as a Tn-fibration over C∨ where at the ith facet
of the cone the circle subgroup specified by vi degenerates. We can also define the dual
cone C ⊂ tn as

C = {v ∈ tn|∀u ∈ C∨ : ⟨u, v⟩ ≥ 0} = {v ∈ tn|∀i : v · vi ≥ 0}, (2.7)
8Note the abuse of notation by identifying an element in tn with its induced vector field.
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C∨

µ(M) T 3

T 2

S1

Figure 1. On the left, the image µ(M) of M is depicted for n = 3 and m = 4 as the section of C∨

with the characteristic plane. On the right, we show µ(M) with the inward-pointing normals and
the T 3-fibration degenerating to T 2 at the edges and S1 at the vertices.

which is again a convex, rational, polyhedral cone [42]. Note that, for the characteristic
vector field, ζ ∈ C◦ since ⟨µ, ζ⟩ = 1

2r
2 > 0 (here and in the following, C◦ denotes the

interior of C). Note that, once we pick a basis {ei} ⊂ Tn, we are free to perform SL(n,Z)-
transformations which in turn generate SL(n,Z)-transformations of imµ. Hence, the cones
and polytopes are unique only up to such transformations.

Recall that the toric Sasakian manifold M is naturally embedded into C(M) as {1}×M .
Hence, we can define a moment map on M by restriction µ|{1}×M (which we again denote
by µ) and, using (2.5), the image of M under the moment map is given by

µ(M) = {u ∈ C∨|⟨u,r⟩ = 1
2}, (2.8)

i.e. the intersection of C∨ with the characteristic plane {u ∈ t∨n |⟨u,r⟩ = 1
2}. This image is

an (n− 1)-dimensional compact convex polytope [43]. Similarly to C(M), we can view M

as a Tn-fibration where the base is now µ(M), i.e. (n− 1)-dimensional. This is illustrated in
figure 1 for the five-dimensional case (n = 3) which is the relevant one for us. In particular,
at the vertices of the polytope, only an S1 survives whose orbit is a closed Reeb orbit (r ̸= 0
everywhere on M). Hence, locally around the vertices, M looks like C2 × S1.

The cone structure encodes some topology of the toric Sasakian manifold M , namely,
we have π1(M) ≃ Zn/ spanZ{vi} and π2(M) ≃ Zm−n. Hence, if {vi} with Z-coefficients
span all of Zn then M is simply-connected. Moreover, if n = 3 and π1(M) = 0, then M is
diffeomorphic to (S2 × S3)#k, where k = m− n (see [42], prop. 5.3 and cor. 5.4).

Finally, note that the metric cone C(M) with its symplectic structure and Kähler
metric can be completely recovered from the moment map cone C∨ via Kähler reduction [41]:
if {vi}i=1,...,m ⊂ Zn denotes the set of normals for C∨ and Λ ⊂ Zn the lattice they span,
then there is a map of tori

Tm ≃ Rm/2πZm −→ Rn/2πΛ (2.9)

induced by the linear map Rm → Rn, Ei 7→ vi taking the ith canonical basis vector Ei ∈ Rm

to the normal vi. The kernel K of (2.9) is isomorphic to Tm−n × Γ (Γ some finite Abelian
group) and we get

C(M) = Cm//K. (2.10)
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The group Tm/K ≃ Tn acts symplectically on C(M) and the image of the moment map is
precisely C∨ (see [41], theorem 2.18). This way, we can express the coefficients {ri} of the
Reeb vector field r =

∑n
a=1 raea, {ea} ⊂ C in terms of the charges {ω(j)

i }j=1,...,m−n
i=1,...,m with

which the jth S1 ⊂ K acts on Cm. Moreover, note that, for a fixed toric Sasakian manifold
M , the smooth Sasakian metrics are parametrised by the Reeb r ∈ C◦ [44]. Hence, given a
cone C, deforming r in a way that leaves it inside the cone gives again a Sasakian structure
on M , with a squashed metric. This deformation of the Reeb will be necessary for regular
Sasakian manifolds (cf. S5 in section 5.1) in order to obtain an equivariant theory after
dimensional reduction to the 4d topologically twisted theory. The deformation enables us
to tune the equivariance parameters in the 4d theory.

Free S1-action. Henceforward, we focus on the five-dimensional case, i.e. n = 3 and the
cones C∨, C are three-dimensional. It was mentioned above already that r is, in general, not
generating a free action on M . Therefore, in order to be able to quotient or reduce along a
free S1, we have to find some element x⃗ =

∑3
i=1 xiei in tn whose orbits are of some period

L and form a regular foliation Fx⃗ of M . Its components xi are obtained as the solution to
the following set of equations (where vm+1 = v1):

∀i = 1, . . . ,m : x⃗ · (v⃗i × v⃗i+1) = ±2π
L
, (2.11)

whereby the period L has to be chosen such that the coefficients of x⃗ are integral and have
greatest common divisor equal to one. This ensures that the x⃗-orbits close and pass through
each foliated chart of Fx⃗ only once (i.e. the stabiliser is trivial everywhere on M). It is not
obvious whether (2.11) always has a solution and, in fact, there are well known examples
for which no regular foliation exists [45]. However, since we are ultimately interested in
4d theories obtained as the quotient of M by a free S1, we limit our considerations to
manifolds for which (2.11) has solutions.

Note that, since r⃗ lies within the dual cone, we can write r⃗ =
∑m
i=1 λiv⃗i with λi > 0

(cf. (2.7)). Hence, r⃗ · (v⃗i × v⃗i+1) > 0 for all i and therefore (2.11) determines whether x⃗
and r⃗ are parallel or anti-parallel at the vertices of the polytope µ(M).

2.2 An example: Y p,q

Let us now consider the concrete example Y p,q. These are an infinite family of closed, five-
dimensional toric Sasakian9 manifolds with p, q ∈ Z such that p > 1, p > q for which explicit
metrics are known [46, 47]. For p, q coprime, i.e. gcd(p, q) = 1, Y p,q is simply-connected
and topologically S2 × S3. Geometrically, it is a principal S1-bundle Y p,q → B over the
product of an axially squashed and a round sphere B = S2 × S2, such that the first Chern
number on the standard two-cycles are p and q.

Locally, we can choose coordinates θ ∈ [0, π], ϕ ∈ [0, 2π) and y ∈ [y1, y2], ψ ∈ [0, 2π) as
polar, azimuthal angles on the two spheres and γ ∈ [0, 2π) parametrising the S1-fibre. In

9In fact, the Y p,q are toric Sasaki-Einstein manifolds. These can be viewed as odd-dimensional cousins of
Calabi-Yau manifolds, i.e. C(Y p,q) is CY. This additional property places some restrictions on the cone C∨

which we will mention en passant.

– 8 –



J
H
E
P
1
0
(
2
0
2
3
)
1
5
5

these coordinates, a metric can be given explicitly and the Reeb vector field is

r = 3∂ψ − 1
2ℓ∂γ (2.12)

with ℓ = q(3q2 − 2p2 + p(4p2 − 3q2)1/2)−1. Y p,q has effectively acting isometry group
SO(3)×U(1)2 for p, q odd and U(2)×U(1) else [47]. In both cases, we have an effective
Hamiltonian T 3-action on Y p,q for the following choice of basis:

e1 = −∂ϕ − ∂ψ,

e2 = ∂ϕ − l
2∂γ ,

e3 = ∂γ .

(2.13)

Note that the choice (2.13) is different from the standard Killing vectors ∂ϕ, ∂ψ, ∂γ which,
in general, do not generate an effective action with closed orbits. This is due to the
submanifolds y = y1, y2 being lens spaces S3/Zk, S3/Zl (k = p+ q, l = p− q) on which the
standard basis ∂ϕ, ∂γ does not generate an effective action with closed orbits.10

In the basis above, we obtain the following moment map for C(Y p,q) [47]:

µ =
(
− r2

6 (1− y)(cos θ − 1), r2

6 (1− y) cos θ − r2

2 lℓy, ℓr
2y
)
; (2.14)

here, r is the cone direction. At the edges of the cone, T 3 collapses into an S1; on Y p,q this
is the case at the poles of the two spheres (θ = 0, π and y = y1, y2), i.e. the image of (2.14)
is spanned by four edges. By fixing, for example, r = 1 in the cone direction and evaluating
µ at the poles above, we obtain the edge vectors

u⃗1 = [0, 0, 1], u⃗2 = [0, p,−1], u⃗3 = [p+ q,−q,−1], u⃗4 = [p− q, q − p, 1] (2.15)

and inward-pointing primitive normals11

v⃗1 = [1, 0, 0], v⃗2 = [1, 1, p], v⃗3 = [1, 2, p− q], v⃗4 = [1, 1, 0]. (2.16)

The cone spanned by (2.15) is depicted in figure 5 for p = 2, q = 1.
The Kähler cone of Y p,q can also be obtained by symplectic reduction of C4 under a

U(1) [29, 48]. If we denote by {Ej}j=1,...,4 the generators of the U(1)4 acting canonically on
C4, then the reduction is performed along the U(1) with charge [−p, p− q,−p, p+ q]. The
Reeb vector field r =

∑3
i=1 riei can also be written as r =

∑4
j=1 ωjEj and the ri related

to the general equivariance parameters ωj :

r1 = −ω1 − ω2 − ω3 − ω4, r2 = −ω2 − 2ω3 − ω4, r3 = −pω2 + (q − p)ω3. (2.17)

For the Reeb vector field (2.12) we find

ω1 = ω3 =
(3
2 + 1

2ℓ(p− q)

)
, ω2 = 0, ω4 = − 1

ℓ(p− q) . (2.18)

10See [47], section 4 for a discussion on the subtleties related to effective torus actions on lens spaces.
11We point out that there is a vector ξ⃗ = [1, 0, 0] such that ξ⃗ · v⃗i = 1 for all i. Cones satisfying this

condition for some ξ⃗ are called Gorenstein, which is the case for all Sasaki-Einstein manifolds (see e.g. [33]
for a discussion).
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The Reeb vector field here is quasi-regular if ℓ is rational and irregular else [47]. In
contrast, solving (2.11) we find that free actions are generated by

x⃗top =

[1, 1, p2 ], p even
[2, 2, p], p odd

, x⃗ex = [0, 0, 1]. (2.19)

Here, x⃗top is parallel to r at all four vertices of the polytope while x⃗ex is parallel to r only
at the first two vertices and anti-parallel at the last two (“top”, “ex” for topological, exotic;
see discussion at the end of section 3.3 or [15]).

3 Super Yang-Mills on Sasakian 5-manifolds

In this section, we discuss N = 1 super Yang-Mills (SYM) theory on the five-dimensional
toric Sasakian manifold M . Furthermore, we always assume that M has a free direction
(i.e. (2.11) has solutions). We start by introducing the N = 1 field content and supersym-
metric actions for compact simply-connected M in a suitably twisted way. Then we discuss
the theory on finite quotients M/Zh along a free direction and finally take h→ ∞ to reduce
to four-dimensional N = 2 SYM.

Let us stress right from the beginning that all results in this work are computed for
the cohomologically twisted theories both in 5d and 4d. If we start on a spin manifold
with the physical theory, spinors solving the rigid SUGRA background [49] can be used
to twist the theory. This has been done in 5d N = 1 for Sasaki-Einstein manifolds [25]
(for which existence of Killing spinors is guaranteed, see e.g. [42]) and in 4d N = 2 for any
compact spin manifold [14]. The twisting can be viewed as a “change of variables” and the
partition functions of physical and twisted theory are expected to agree. However, not all
manifolds we consider in this work are spin so there might be global obstructions to writing
the physical theory. On the other hand, the twisted field content are just differential forms
and therefore the twisted theory still makes sense globally on all manifolds considered.

3.1 Simply-connected case

Cohomological complex. The 5d N = 1 vector multiplet contains as bosonic fields
a gauge field A, a real scalar σ, and a two-form H; the gauginos are given in terms of a
one-form Ψ and a two-form χ; all fields (except A) are valued in the adjoint of the gauge
group12 G. The two-forms χ,H satisfy the following projection condition:

P+χ = χ, P+H = H. (3.1)

The projector P± = 1
2(1± ιr⋆) maps two-forms in Ω2(M) to their horizontal,13 (anti-)self-

dual component in Ω2±
H (M). This is the five-dimensional analogue of the 4d projector onto

12For simplicity, we assume G to be simply-connected.
13We can decompose a form ω ∈ Ω•(M) as ω = r ∧ ιrω + ω̃, with ιrω̃ = 0. The component ω̃ is called

horizontal and the corresponding subspace is denoted Ω•
H(M).
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(anti-)self-dual two-forms. The cohomological complex reads

QA = iΨ, QΨ = −ιrF +Dσ,
Qχ = H, QH = −iLArχ− [σ, χ],
Qσ = −iιrΨ

(3.2)

and the supercharge squares to
Q2 = −iLAr +Gσ. (3.3)

Here, Dσ and F denote the covariant derivative and field strength with respect to A (locally,
Dσ = dσ − i[A, σ] and F = dA− iA2), LAr = Lr − i[ιrA, ] is the covariant Lie derivative
along the Reeb and Gσ is a gauge transformation with parameter σ:

GσA = Dσ, GσΦ = i[σ,Φ] (3.4)

with Φ any field in the adjoint of the gauge group.
Finally, we want to remark that a deformation of r in the cohomological formalism can

be implemented easily; one simply replaces r in the complex (3.2) with its deformed version.
This is another advantage compared to the ordinary formulation, where more background
fields would have to be introduced in the (rigid) supergravity multiplet in order to preserve
supersymmetry.

Action and BPS locus. In terms of the twisted fields introduced above, the SYM action
can be written as

SYM = −
(
CS3,2(A+ σκ) + i tr

∫ 1
g2

YM
(κ ∧ dκ ∧Ψ ∧Ψ)

)
+QWvec, (3.5)

where

CS3,2(A) = tr
∫ 1
g2

YM
κ ∧ F ∧ F, (3.6)

Wvec = tr
∫ 1
g2

YM

(
Ψ ∧ ⋆(−ιrF −Dσ)− 1

2χ ∧ ⋆H + 2χ ∧ ⋆F + σκ ∧ dκ ∧ χ
)
. (3.7)

Here, g2
YM denotes the 5d YM coupling constant. Note that the terms in (3.5) written in

parentheses are Q-closed but not Q-exact and can be viewed as a supersymmetric observable.
The partition function for this theory can be computed using localisation techniques.14

The localisation term t ·QV which we add to (3.5) reads

V = tr
∫

Ψ ∧ ⋆(−ιrF −Dσ)− 1
2χ ∧ ⋆H + 2χ ∧ ⋆F. (3.8)

In order to obtain positive kinetic terms for σ,H we Wick-rotate them, after which one
finds the simpler localisation locus:

F+
H = 0, ιrF = 0, Dσ = 0. (3.9)

14A comprehensive review of such techniques can be found in [5].
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The first two equations can equivalently be written as the single equation15 ⋆F = −κ ∧ F
and its solutions are called contact instantons. Since we are only concerned with the trivial
instanton sector in this work, we restrict to zero contact instanton-number for which the
localisation locus reads [34]

A = 0, σ = a ∈ ig, (3.10)

i.e. A is the trivial connection and σ a constant valued in the Lie algebra g of G, up to
gauge transformations. The classical piece in the localised partition function is obtained by
evaluating (3.5) at the locus above and only receives a contribution from CS3,2(A+ σκ):

Scl = − tr
∫ 1
g2

YM
a2κ ∧ dκ ∧ dκ = − 8π3

g2
YM

ϱ tr(a2), (3.11)

where ϱ ≡ VolM/VolS5 and volume form of M is 1
8κ ∧ (dκ)2 (note that σ is imaginary

after Wick-rotation). Optionally, we could multiply the right-hand side by a parameter
controlling the size of M .

3.2 Taking finite quotients

The main player in this work are finite quotients of the simply-connected toric Sasakian
manifolds M discussed above. More specifically, we always assume16 that there is a free
S1 ⊂ T 3 and take a quotient by a finite Abelian subgroup Zh (h ∈ N>1 fixed) along this S1.
So we have a principal Zh-bundle

Zh M Xπ (3.12)

with X = M/Zh the finite quotient. Note that X is no longer simply-connected but
π1(X) ≃ Zh (see appendix A) and we can view M as the h-sheeted connected (universal)
cover of X. This means, intuitively, that X and M are “the same” locally and differences
are only noticeable on a global level. In particular, since the vector field x generating
the free S1 is Killing, the metric on M induces a metric on X such that the covering is
Riemannian. Moreover, since S1/Zh ≃ S1 (via s 7→ sh) we still have a T 3-action on X.

In order for the theory in section 3.1 to descend to X we first restrict to bundles over
M that are equivariant under deck transformations17 γ ∈ Aut(π) ≃ π1(X) of the covering π;
these bundles descend to X. We mainly take the view of equivariant bundles on M instead
of bundles on X given that we have good control over the theory on M . All fields (except
the connection) in the cohomological formulation are (endomorphism-valued) differential
forms18 ω ∈ Ωr(M ; gP ) and they descend to X if they are Aut(π)-invariant. Namely, let ω
be such a form. Then ω descends to a differential form on X if

∀γ ∈ Aut(π) : γ∗ω = ω. (3.13)
15In analogy to 4d, solutions to this equation automatically satisfy the YM equation.
16Note that there always is a locally free S1 ⊂ T 3; precisely the one that agrees with the remaining,

non-degenerate S1 at the vertices of the polygon, cf. figure 1.
17Note that γ ∈ Aut(π) is an isometry since the covering π is Riemannian.
18Here, gP denotes the associated bundle gP = P ×ad g of the gauge bundle P .
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If we restrict our theory on M to fields satisfying (3.13) then also the cohomological
complex (3.2) is invariant under deck transformations19 and descends to X. Similarly,
one can show that SYM in (3.5) descends to the action on X, i.e. the complex is again a
symmetry of the action. Hence, as we expect, local expressions can be “pushed down” and
we obtain the supersymmetric theory on X.

However, since X is not simply-connected, we should also account for field configurations
arising from this non-trivial topology. In particular, there are h topologically inequivalent
U(1)-bundles over X, labelled by their first Chern class c1 valued in H2(X;Z) = H2(X)
(henceforth, if no coefficients are specified, we always assume Z), each admitting a flat
connection. Thus, for functions on M , condition (3.13) is too strong and we should relax it
such that functions on M are pushed down to sections over aforementioned line bundles
on X. Specifically, given a function f : M → C on M , by virtue of the periodicity in
x-direction, we can expand

f(x, α) =
∑
t∈Z

ft(x)e2πitα/L, (3.14)

where α ∼ α+ L parametrises the S1 and x the other four dimensions. Since x is a linear
combination of the three S1-directions such that (2.11) is satisfied, L can be different from
2π. Clearly, γ∗f = f implies t = 0modh. Instead of restricting to such functions only, we
impose the more general condition

t = c1 modh, (3.15)

where we use H2(X;Z) ≃ Zb2(X) ⊕ Zh (b2 the second Betti number of X) and the fact that
c1 takes values in the Zh-part (see appendix A). In this way, we can view f as a section
of a flat line bundle over X that acquires a phase exp(2πit/h) around a loop γ ∈ π1(X),
which is simply the holonomy around γ for the flat connection of the bundle. Hence, the
theory still descends from M to X for an S1-action with weights satisfying (3.15). In terms
of the moment map cone C introduced in (2.7) this means restricting to slices

Ct = {v⃗ ∈ C | v⃗ · x⃗ = t} (3.16)

of C, as depicted in figure 2. The orientation of Ct inside C is determined by the free direction
x⃗. Notice that this is a generalisation of the slice (2.8) along the Reeb. In particular, when
x⃗ /∈ C◦ ∪ (−C◦), the resulting polytope is no longer compact (see, e.g., figure 3 or figure 5).

Another consequence of X not being simply-connected is the existence of non-trivial flat
connections A for the gauge bundle G ↪→ P → X which now contribute to the locus (3.10).
It is well known that (up to gauge transformations) flat connections are in one-to-one
correspondence with representations of π1(X) in G (up to conjugation) via their holonomy
hA : π1(X) → G around loops [γ] ∈ π1(X) (see e.g. [50]). For example, G = U(N) yields

Hom(π1(X),U(N)) ≃ {diag(e2πim1/h, . . . , e2πimN/h)|mi ∈ N≤h} (3.17)

19This follows from various properties of the pullback, γ∗dω = dγ∗ω, γ∗(ω ∧ η) = γ∗ω ∧ γ∗η, γ∗ιrω =
ι(γ−1)∗rγ∗ω as well as the fact that γ∗r = r since r and x commute (remember r ∈ t3).
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C

Cc1+5h

C

Cc1+2h′

Figure 2. Different slices Ct of the cone C for (left) t = c1+n·h (n = 0, . . . , 5) and (right) t = c1+n·h′

(n = 0, 1, 2), where h′ = 2h. Hence, as h becomes larger, the slices space out. Note that here we
have chosen x inside C, hence the slices are compact (cf. figure 3 and 5 with non-compact slices).

and conjugation acts simply by permuting the exponents. Hence, flat connections for
G = U(N) are labelled by an array of integers

m ≡ diag(m1, . . . ,mN ) ∈ NN×N
≤h , mi ≤ mi+1. (3.18)

Note that, since π1(X) is Abelian, all representations in G will be contained in its maximal
Abelian (i.e. Cartan) subgroup. We henceforth use the symbol m to denote the elements in
(the Cartan subalgebra of) g labelling flat connections also for generic G.

Next, we revisit the BPS locus (3.10). On X, in addition to the trivial connection, the
contact instanton equation in the zero-instanton sector is solved by any flat connection. In
particular, the topologically non-trivial flat connections Am discussed above are part of the
BPS locus now. Then, for fixed m, the solution to Dσ = 0 is again given by a constant,

σ = a ∈ ig, [m, a] = 0, (3.19)

up to gauge transformations. Therefore, in general, G is broken to its Cartan subgroup
U(1)rkG and the path integral over gauge bundles P reduces to principal U(1)rkG-bundles20

which are classified precisely by m. Therefore, the free S1 acts on fluctuations of the
adjoint-valued fields around the BPS locus with infinitesimal weight

t = α(m)modh (3.20)

according to (3.15) and the discussion thereafter. Note that the complex (3.2) does not
mix topological sectors and hence, the form of the one-loop partition function obtained on
M is unchanged in each topological sector,21 of course, up to imposing the descendance
conditions on the fields and S1-action discussed above. However, on X we now have a sum

20These can effectively be seen as a product of rk G U(1)-bundles via the pullback along the diagonal map
X → X × · · · × X, on sections of which the free S1 acts with infinitesimal weight (3.15).

21Since fluctuations around the locus do not jump between sectors and the connections are flat, in
particular, the index computation (cf. [15, 31]) that yields the one-loop determinant is unchanged.
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of these one-loop pieces over all topological sectors, labelled by m. This will be further
discussed in section 4.2.

Similar to the simply-connected case, the classical piece only receives a contribution
from the Chern-Simons action CS3,2(Am + aκ) on X:

Scl(a,m) = − 8π3

g2
YM

ϱ

h
tr(a2), (3.21)

where we have used (3.19) and CS3,2(Am) = 0 since Am is flat. The quotient introduces
a factor of 1

h . The independence of Scl from m suggests that all topological sectors are
weighted equally in the partition function.

3.3 Reduction to four dimensions

While the theory on finite quotients of M is interesting in its own right, in this work we
ultimately want to reduce to the 4d N = 2 theory in order to see how fluxes feature in the
partition function. We achieve this by taking the order of the finite group Zh we quotient
by to be very large. This makes the free S1 in M shrink more and more until, in the limit
where h → ∞, the S1 shrinks to a point and we are left with the base manifold M/S1

which we denote by B in the following (a more formal treatment of the limit can be found
in appendix A). Note that, in general, B is not toric Kähler if x is not aligned with the
Reeb r.

Flux. The bundles on M that descend to B are the ones equipped with connections
whose holonomy around the free S1 is trivial22 and fields in our theory on M that descend
to B are the forms ω on M that are invariant along x, i.e. Lxω = 0 (the infinitesimal
version of invariance under deck transformations discussed in section 3.2). The reduction
of the cohomological complex (3.2) and the action (3.5) is straightforward; it has been
performed in [15, 33] and matches the four-dimensional cohomological complex and Yang-
Mills action in [14], except for the peculiarity that the four-dimensional Yang-Mills coupling
is now position-dependent23 (see [33] for more on this). Moreover, we can rewrite the locus
equations (3.9) in terms of fields pulled back from 4d via S1 X B

p using

A = p∗A4 + φ b (3.22)
F = p∗F4 +Dφ ∧ b+ φ db, (3.23)

where b = g(x/∥x∥2, ) and the covariant derivative Dφ is with respect to p∗A4 (cf. [15],
section 4). In particular, ιrF = 0 produces two equations:

ιvF4 −D(ιrb φ) = 0, ιvDφ = 0, (3.24)

where v = p∗r is Killing with respect to the 4d metric and represents the remaining torus
action. The two 4d scalars σ, φ are simultaneously diagonalisable, breaking the gauge group

22See [33], appendix A for a detailed discussion.
23Hence, the resulting 4d theory can be viewed as a slight generalisation of the one discussed in [14].
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to its Cartan subgroup U(1)rkG as usual. The first equation in (3.24) then has solutions
corresponding to line bundles24 on B characterised by their first Chern class c1.

Explicitly, the flat connections in the 5d locus on X have non-trivial holonomy along
the generator [γ] ∈ π1(X), being the loop along the x-direction. Using (3.22), we have
constant φ ∝ m on the locus. But since A is flat, using (3.23) yields

p∗F4 + φdb = 0. (3.25)

Note that, while db is basic with respect to x, it is not an exact form on B and hence, the
field strength F4 satisfying (3.25) carries flux, determined by φ. In this way, flat connections
in the locus on X yield F4 with flux in the locus of the 4d theory on B.

More geometrically, remember that the flat connections on X are characterised by c1
with im c1 ≃ Zh ⊂ H2(X). Note that H2(X) is generated by the (Poincaré duals of the)
faces of the moment map polytope25 µ(M), modulo some relations and the Zh-subgroup is
generated by a particular linear combination. Consequently, quotienting along the free S1

by taking h→ ∞ yields the generating set for H2(B); the generator for the Zh-subgroup
yields a generator [c] for a Z-subgroup in H2(B).

In terms of the projection condition (3.20), for h→ ∞ only a single mode

t = α(m) ∈ Z (3.26)

is allowed along the free S1, i.e. a single slice Ct of the moment map cone C (cf. figure 2);
for larger values of h the additional slices move further up and hide at infinity in the limit.
Therefore, the sum over flat connections labelled by m in (3.18) for the 5d partition function
on X, in the limit, becomes a sum over fluxes on the two-cycle c,

1
2π

∫
c
F4 = m = diag(m1, . . . ,mrkG) ∈ ZrkG×rkG, (3.27)

for the 4d partition function on B.

Instantons. Another interesting feature of the 4d theory concerns instanton contributions.
It was shown in [15] that the space of horizontal (with respect to r), self-dual two-forms
Ω2+
H (M ; gP ) is isomorphic to another three-dimensional subbundle of Ω2

H(M ; g) which is
transverse to x and given by the image of the following projector:

P = 1
1 + g(x̂,r)2 (1 + g(x̂,r) ⋆4 −g4(v, ) ∧ ιv), (3.28)

where g and g4 are the metrics on M and B and x̂ = x/∥x∥. Note that, at the vertices of
the polytope µ(M), we must have g(x̂,r) = ±1 (cf. discussion succeeding (2.11)) and v = 0
(since the vertices are precisely the fixed points with respect to the remaining torus action).
Then P coincides with P±; hence, on B this happens precisely at the torus fixed points.

24They are equivariant under the remaining torus action on B represented by v. F provides a symplectic
form and ιrb φ a moment map for the action by v.

25To be precise, the generators are the torus fibration given by the moment map, restricted such that its
image is an edge of the polytope.
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Therefore, depending on our choice of free direction x, the 4d theory localises to self-dual
(SD) or anti-self-dual (ASD) connections at the fixed points and gives either instanton or
anti-instanton contributions. This is a generalisation of Pestun’s theory on S4 and is known
as Pestunization [14]. For the examples in section 5 different choices of x are allowed and,
consequently, we obtain different SD/ASD contributions at the 4d torus fixed points. The
choice for which we have SD (or ASD) contributions at all fixed points is usually called the
(anti)-topological theory, while we call theories with mixed distributions exotic.

It should be mentioned at this point that, in general, we cannot reach 4d theories with
arbitrary SD/ASD distributions from 5d because there might not always be enough toric
Sasakian S1-fibrations over B to start with (e.g., there is no such fibration for Pestun’s
theory on S4). For such cases, the intrinsically 4d formalism in [14] has to be used.

4d geometries. Given the reduction procedure described above for a large class of
five-dimensional manifolds M , it is natural to ask about a classification of the possible 4d
base manifolds B. Indeed, such a classification was provided in [33] for the special case
of toric Sasaki-Einstein manifolds whose spin structure can be pushed down to B. Here,
it was possible to write the normals of the moment map cone C∨ and the free direction
x in a standard form and, by computing the intersection forms of elements in H2(B), it
was proved that B is homeomorphic to connected sums (S2 × S2)#k, k = m/2− 1 (m the
number of vertices of the polytope, which in this case is always even and m ≥ 4).

Since we do not have to impose a spin structure on B (by virtue of the cohomological
formulation) and the moment map cone is not required to be Gorenstein, we should be able
to reach all quasi-toric 4d manifolds

(S2 × S2)#a#(CP2)#b#(CP2)#c, a, b, c ∈ Z≥0. (3.29)

However, we are not currently able to provide a proof of this statement.

4 Partition functions

In this section, we derive our main result: the one-loop partition function around fluxes
of an N = 2 vector multiplet on a large class of four-dimensional manifolds and for all
distributions of SD/ASD complexes at the fixed points that can be obtained from 5d. As
a starting point, we take the partition function for the 5d N = 1 vector multiplet on the
simply-connected manifold M . A detailed exposition of this result can be found in [34].
Our focus will be on the perturbative partition function ZM which involves a product
over charges n⃗ = (n1, n2, n3) of the various fields under the T 3-action. These charges are
determined by the integer-valued vectors inside the three-dimensional dual cone C of M
(cf. (2.7)). We can build up C ∩ Z3 as a collection of 2d slices (cf. figure 2) labelled by the
charge t under the free S1 instead and replace the product over n⃗ by (n1, n2, t). Then, at
fixed t, the perturbative partition function receives contributions from the two-dimensional
slice Ct ⊂ C. The orientation of Ct inside C depends on the choice of free S1.

When moving to the quotient X =M/Zh the rewriting of ZM in terms of a product
over (n1, n2, t) makes it easy to implement the projection condition (3.20). In particular,
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only slices . . . , Cα(m)−h, Cα(m), Cα(m)+h, . . . contribute to a single topological sector m. The
partition function on X then involves a sum over all these sectors.

In the limit where h→ ∞, we reduce to the four-dimensional base B =M/S1 and the
flat connections on X give rise to configurations with flux on B. Correspondingly, we arrive
at the zero-instanton one-loop partition function on B which, at a given flux sector, is a
product over charges (n1, n2) under the remaining T 2-action. These charges belong to the
projection of Cα(m) to its first two components.

We point out that all expressions for Z below are unfactorised and we leave for section 6
a discussion of their factorisation properties.

4.1 Simply-connected case

The cohomological complex for an N = 1 vector multiplet on a simply-connected toric
Sasakian manifold M with gauge group G has been introduced in (3.2) and the action
in (3.5). The partition function is given by [34]

ZM =
∫
h
da e−Scl · ZM · Z inst

M

=
∫
h
da e

− (2π)3

g2
YM

ϱ tr(a2)
· det′adjS

C
3 (ia|r) ·

m∏
i=1

ZNek
C2

ϵi
1,ϵi

2
×S1(a|ϵi1, ϵi2, β−1

i ).
(4.1)

The integral with respect to the Coulomb branch parameter a is over the Cartan subalgebra
h ⊆ g of the gauge group. Contact instantons contribute to the non-perturbative part of
the partition function and it is conjectured in [34] that Z inst

M is obtained by gluing Nekrasov
partition functions at each of the m fixed fibres. In the expression above, ϵi1, ϵi2, β−1

i are the
local equivariance parameters for the T 3-action on each neighbourhood C2

ϵi1,ϵ
i
2
× S1 around

the fixed fibres; in particular, βi is the radius of the fixed fibre.
We focus on the perturbative partition function,26 written in terms of the triple sine

function SC
3 (iα(a)|r) (see, e.g., [51, 52]) which explicitly reads

ZM =
∏
α∈∆

∏
n⃗∈C∩Z3

(n⃗ · r⃗ + iα(a))
∏

n⃗∈C◦∩Z3

(n⃗ · r⃗ − iα(a)). (4.2)

Here, (n1, n2, n3) are the charges of the modes under rotations along the T 3-action and r the
Reeb, as usual. The dual moment map cone C of M and its interior C◦ have been introduced
in (2.7). Finally, ∆ denotes the root set of the gauge algebra g. Instead of using the
det′adj-notation from (4.2) we henceforth write the one-loop part of the partition function
explicitly as a product over the roots, omitting possible factors arising from fermionic
zero-modes that would cancel a Vandermonde determinant in the integral over a. This way,
shifts of a via flat connections will be more apparent in the notation.

Before we proceed to non-simply-connected spaces, we have to point out that the
partition function (4.2) is not the full story yet. Indeed, whenever H2(M) ̸= 0 there might

26Most results on the perturbative partition function in the literature assume that M is Einstein or,
equivalently, that the cone C(M) is Calabi-Yau. However, even without this condition, ZM is still given by
the triple sine function [34].
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be an additional sum over flux configurations in the path integral. The fact that these
configurations are not part of the localisation locus (3.9) points to the fact that more
general loci should be allowed in this case. These are possibly complex or singular field
configurations (see, e.g. [35, 36] in 2 and 3d). Such an analysis is outside the scope of this
work, where we consider (4.2) as our starting point. However, we expect our analysis to go
through in the exact same way in the presence of these additional fluxes.

4.2 Finite quotients and reduction

As stated above, we consider toric Sasakian manifolds M admitting a free S1-action. In
terms of a basis {ei}i=1,2,3 ⊂ t3 for an effective T 3-action, the vector field generating
rotations along the free S1 is

x⃗ = l1e1 + l2e2 + l3e3, (4.3)

where the Z-valued coefficients l1, l2, l3 are obtained by solving (2.11); they depend on the
geometry of C and will be discussed for concrete examples in section 5.

Slicing the cone. The first step towards deriving the one-loop partition function around
fluxes on B = M/S1 consists in rewriting (4.2) as a product over the slices Ct in (3.16).
Here, t is the integer-valued charge under the free S1 and can be written in terms of the
charges {ni} corresponding to the initial choice of basis {ei} as follows:

t = l1n1 + l2n2 + l3n3. (4.4)

Thus, substituting27 n3 = l−1
3 (t− l1n1 − l2n2) in (4.2) and defining

ϵ1 ≡ r1 −
l1
l3

r3, ϵ2 ≡ r2 −
l2
l3

r3, (4.5)

we find

ZM =
∏
α∈∆

∏
t

∏
(n1,n2)∈Bt

(n1ϵ1+n2ϵ2+tr3
l3
+iα(a))

∏
(n1,n2)∈B◦

t

(n1ϵ1+n2ϵ2+tr3
l3
−iα(a)). (4.6)

Here, the region Bt is defined as

Bt = (proj12 Ct) ∩ Z2 = proj12{v⃗ ∈ C | v⃗ · x⃗ = t} ∩ Z2, (4.7)

where proj12[v1, v2, v3] = [v1, v2] projects onto the first two components and B◦
t denotes the

interior of Bt. In order to write (4.6) more compactly, we define a slight generalisation of
Υ-functions (see, e.g., [6, 14, 53]):

ΥBt(z|ϵ1, ϵ2) =
∏

(n1,n2)∈Bt

(ϵ1n1 + ϵ2n2 + z)
∏

(n1,n2)∈B◦
t

(ϵ1n1 + ϵ2n2 + z̄). (4.8)

Using this definition, we can rewrite (4.6) as

ZM =
∏
α∈∆

∏
t

ΥBt(iα(a) + r3
l3
t|ϵ1, ϵ2). (4.9)

27We assume l3 ̸= 0 here. Substituting for any of n1, n2, n3 leads to the same result.
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As discussed above, we can also deform the Reeb by introducing a squashing of M .
Let us recall that M is obtained via symplectic reduction (2.10) of Cm, and that the ri
(i = 1, 2, 3) can be expressed in terms of equivariance parameters ωj , (j = 1, . . . ,m). These,
in turn, can be squashed without spoiling the supersymmetric theory (cf. discussion in
section 3.1, Cohomological Complex). Hence, we impose that the squashing along the fibre
vanishes so that the fibre employed for dimensional reduction is invariant under deformations
of the ri. This gives a constraint on the sum:

l1r1 + l2r2 + l3r3 ≡ C, (4.10)

so C is a function of the squashing parameters which depends on the manifold M and on
the choice of free S1-action. We will use this constraint in the examples below to express
r3 in terms of the equivariance parameters ϵ1, ϵ2.

Taking the quotient. The next step in the construction is to pass to the quotient
X =M/Zh introduced in section 3.2. The action of the free S1 on M descends to X if the
projection condition

t = α(m)modh (4.11)

is satisfied, which is the restriction we need to impose on the modes considered in the
superdeterminant. Thanks to our rewriting of ZM as (4.9) this is achieved easily for fixed m:

ZX =
∏
α∈∆

∏
t=α(m) modh

ΥBt(iα(a) + r3
l3
t|ϵ1, ϵ2). (4.12)

This contribution is the one-loop superdeterminant around flat connections. The full
partition function on X is then a sum over the topological sectors:

ZX =
∑
m

∫
h
da e−Scl · ZX · Z inst

X . (4.13)

The classical piece of the partition function is given in (3.21). We see that the slices Bt
contributing to ZM now distribute over different topological sectors28 according to their
value of t.

Reduction to base. In order to compute the one-loop partition function around fluxes on
the four-dimensional base manifold B, we take the limit of h→ ∞ as discussed in section 3.3.
For fixed m, only a single mode (3.26) survives and the one-loop contributions become

ZB =
∏
α∈∆

ΥBm(iα(a) + r3
l3
α(m)|ϵ1, ϵ2), (4.14)

where, using the fact that t only takes the single value t = α(m), we write Bm ≡ Bt here.
Clearly, the infinite products in the Υ-functions need to be regulated appropriately, for
instance, using zeta function regularisation. The full partition function on B is a sum over
flux sectors:

ZB =
∑
m

∫
h
da e−Scl · ZB · Z inst

B . (4.15)

The classical and instanton parts are determined in section 6.
28We expect a similar treatment to be possible for the contributions from contact instantons.
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Let us stress again that the sum over fluxes in (4.15) might be incomplete, since our
starting point was (4.2). If H2(M) ̸= 0, there might be additional flux configurations that
should already be included at the level of ZM .

5 Examples

In this section, we present concrete examples of the reduction procedure explained above.
First, we consider the simplest toric Sasakian manifold, S5, which is also Einstein and
regular. Here, one of the two free directions we find is the Reeb itself, which yields the
topologically twisted theory on CP2. The other direction results in an exotic theory. The
second example, Y p,q, is Einstein but not regular and reduces to B homeomorphic to
S2 × S2. We find again two free directions (one “top” and one “ex”), but none of the two
coincides with the Reeb. Finally, we present the manifolds Ap,q, which are neither Einstein
nor regular and reduce to (CP2)#2. Here, we only find an “exotic” direction.

5.1 S5

This example has been discussed in detail in [37] and we include it here for completeness.
The metric cone is C(S5) = C3. Moreover, as stated above, S5 is a regular Sasaki-Einstein
manifold and thus, the Reeb vector generates a free S1-action which can be used to
dimensionally reduce to S5/S1 = CP2. In general, reducing along the Reeb results in a
topologically twisted theory. This can be understood from the discussion following (2.11).
Additionally, we find a second fibre which yields an exotic theory.

Choosing the standard basis for an effectively acting T 3 ⊂ C3, the edge vectors of the
three-faceted dual cone C are:

u⃗1 = [0, 1, 0], u⃗2 = [0, 0, 1], u⃗3 = [1, 0, 0] (5.1)

and the inward-pointing normals are given by:

v⃗1 = [1, 0, 0], v⃗2 = [0, 1, 0], v⃗3 = [0, 0, 1]. (5.2)

Hence, C is simply the first octant, see figure 3. The Reeb vector field can be written as
follows:

r = ω1v⃗1 + ω2v⃗2 + ω3v⃗3, (5.3)

where, for S5, ri = ωi ≡ 1 + ai ∈ R are the equivariance parameters deformed by some
parameters ai. The integer-valued vectors n⃗ in the dual cone C (see (2.7)) are found solving
n⃗ · v⃗i ≥ 0. They are given by:

n⃗ ∈ C ∩ Z3 = Z3
≥0. (5.4)

Solving (2.11), we find two inequivalent free S1-directions:

top: x⃗top = v⃗1 + v⃗2 + v⃗3 = [1, 1, 1] ∼ r,
ex: x⃗ex = v⃗1 + v⃗2 − v⃗3 = [1, 1,−1].

(5.5)
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These choices result in +++ and -++ distributions of SD/ASD complexes. Correspondingly,
the charges of the modes under the S1-rotation along the fibre are:

top: ttop = n1 + n2 + n3,

ex: tex = n1 + n2 − n3,
(5.6)

where ttop ≥ 0 while tex ranges from −∞ to +∞. Notice that, since the supercharge (3.3)
squares to a translation along r, reducing along the Reeb, in the undeformed case, only
gives ordinary Donaldson-Witten theory with Q2 = 0. The deformation of the Reeb used for
dimensional reduction, which makes it tilt away from the fibre, is introduced here in order
to obtain an equivariant four-dimensional theory also in the case of reducing along x⃗top.

It is crucial to set the ωi so that the deformation acts only on the base manifold while
the fibre is invariant:

top: +a1 + a2 + a3 = 0,
ex: +a1 + a2 − a3 = 0,

(5.7)

Then, we redefine:29

top: ϵtop
1 = ω1 − ω3, ϵtop

2 = ω2 − ω3,

ex: ϵex
1 = ω1 + ω3, ϵex

2 = ω2 + ω3.
(5.8)

Imposing (5.7), we find:

top: ωtop
3 = +1− ϵtop

1 + ϵtop
2

3 ,

ex: ωex
3 = −1

3 + ϵex
1 + ϵex

2
3 .

(5.9)

When confusion cannot arise, we henceforth drop the superscripts “ex” and “top”. Finally,
we substitute n3 = ±(t− n1 − n1) in (4.6) and obtain:

Ztop
S5 =

∏
α∈∆

∏
t≥0

∏
(n1,n2)∈Bt

(
ϵ1n1+ϵ2n2+iα(a)+ω3t

) ∏
(n1,n2)∈B◦

t

(
ϵ1n1+ϵ2n2+iα(a)+ω3t

)
,

(5.10)

Zex
S5 =

∏
α∈∆

∏
t∈Z

∏
(n1,n2)∈B̃t

(
ϵ1n1+ϵ2n2+iα(a)−ω3t

) ∏
(n1,n2)∈B̃◦

t

(
ϵ1n1+ϵ2n2+iα(a)−ω3t

)
.

(5.11)

The slices (4.7) of the dual cone C are given by:

top: Bt = proj12{v⃗ ∈ C | v⃗ · x⃗top = ttop} ∩ Z2,

ex: B̃t = proj12{v⃗ ∈ C | v⃗ · x⃗ex = tex} ∩ Z2.
(5.12)

29Notice that the equivariance parameters ϵtop
1,2 vanish in the undeformed limit while this is not the case for

ϵex
1,2. This again shows that reducing along the Reeb results in the non-equivariant limit of Donaldson-Witten

theory.
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u⃗3

u⃗1

u⃗2

x⃗top

u⃗3

u⃗1

u⃗2

x⃗ex

Figure 3. Dual cone C of S5. Left side: sliced along x⃗top for t = 2 (blue) and t = 4 (red). At t = 0
the slice only contains the origin. Right side: sliced along x⃗ex for t = 2 (blue), t = 0 (green) and
t = −2 (red). The slices are compact for x⃗top and non-compact for x⃗ex.

Using the definition of ΥBt-functions in (4.8) we can express (5.10)–(5.11) as:

Ztop
S5 =

∏
α∈∆

∏
t≥0

ΥBt(iα(a) + (1− ϵ1+ϵ2
3 )t|ϵ1, ϵ2), (5.13)

Zex
S5 =

∏
α∈∆

∏
t∈Z

ΥB̃t(iα(a) + (1
3 − ϵ1+ϵ2

3 )t|ϵ1, ϵ2). (5.14)

The two possible slicings Bt, B̃t of C are depicted in figure 3.
Up to this point, (5.13) and (5.14) are just rewritings of the perturbative partition

function on S5. The difference between the two cases arises when we introduce a quotient
acting along either of the two fibres. The resulting manifold is a higher-dimensional
generalisation of lens spaces X = S5/Zh and the charge of the modes under rotations along
the fibre is constrained by the projection condition (3.20):

t = α(m)modh. (5.15)

Thus, the one-loop partition function around flat connections is a sum over inequivalent
topological sectors and, at each of them, only slices Bt, B̃t satisfying the projection condition
contribute.

When reducing to the base manifold CP2 by taking the large h limit, we set t = α(m)
and find, for each flux sector:

Ztop
CP2 =

∏
α∈∆

ΥBm(iα(a) + (1− ϵ1+ϵ2
3 )α(m)|ϵ1, ϵ2). (5.16)

Zex
CP2 =

∏
α∈∆

ΥB̃m(iα(a) + (1
3 − ϵ1+ϵ2

3 )α(m)|ϵ1, ϵ2). (5.17)

The first expression corresponds to a +++ distribution of complexes at all three fixed
points of CP2, and thus to an equivariant topological twisting, while, for the exotic theory,
one fixed point flips to ASD and the distribution of complexes is -++ instead.
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n1

n2

n1

n2

Figure 4. Slices for S5. Left side: Bm of the topologically twisted theory for α(m) = 2. For
α(m) = 0 only the origin contributes. Right side: B̃ of the exotic theory for α(m) = 2 (blue). For
α(m) ≤ 0 the entire quadrant contributes.

At each flux sector on CP2, the charges of the modes contributing Bm, B̃m can be
represented by projecting the slices in figure 3 to the (n1, n2)-plane. Explicitly, the integer
valued vectors in the dual cone n⃗ ∈ C are determined solving v⃗i · n⃗ ≥ 0. Substituting
n3 = ttop − n1 − n2, the slice Bm is determined by:

n1 ≥ 0, n2 ≥ 0, n1 + n2 ≤ ttop. (5.18)

Similarly, substituting n3 = −tex + n1 + n2, the slice B̃m is determined by:

n1 ≥ 0, n2 ≥ 0, n1 + n2 ≥ tex. (5.19)

The slices we obtain are depicted in figure 4. For the topologically twisted theory the slices
are compact while those for the exotic theory are non-compact. This property is due to the
complexes of the two theories being, respectively, elliptic and transversally elliptic. In the
trivial flux sector, the results agree with those computed using [54].

Lastly, we point out that the one-loop partition function around fluxes for the topological
theory on CP2 has already been computed in [9]. The result was expressed as a sum over
equivariant fluxes, compared to our partition function summing over “physical” fluxes. This
makes a direct comparison rather difficult and it would be desirable to gain an understanding
of the relation between the two results in the future.

5.2 Y p,q

As a second example, we consider the infinite class of Sasaki-Einstein manifolds Y p,q,
which are either quasi-regular or irregular. They are homeomorphic to S2 × S3 and have
been introduced in [46, 47] (see also section 2.2). The perturbative partition function
of the N = 1 vector multiplet on Y p,q has been computed in [29, 30, 55] and the full
partition function (4.1), including contact instanton contributions, is conjecturally obtained
by gluing Nekrasov partition functions at each fixed fibre. Using our reduction procedure
we will obtain the one-loop partition function around fluxes at the zero instanton sector on
B = Y p,q/S1 (which is homeomophic to S2 × S2). As this is a new result, we give a more
detailed presentation.
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A basis for an effective T 3-action has been introduced in (2.13). The edge vectors
u⃗i and inward-pointing normals of the four-faceted cone have been computed in (2.15)
and (2.16). We also recall that the vector fields generating free S1-actions are obtained by
solving (2.11), resulting in the choices of fibre (2.19):

top: x⃗top =

[1, 1, p2 ], p even
[2, 2, p], p odd

,

ex: x⃗ex = [0, 0, 1],

(5.20)

and, respectively, in ++++ and ++--distributions of SD/ASD complexes on the base
manifold. Correspondingly, the charges (4.4) under rotations along the fibres are:

top: ttop =

n1 + n2 + p
2n3, p even

2n1 + 2n2 + pn3, p odd
,

ex: tex = n3.

(5.21)

Effectively acting T 3. When introducing a quotient along the free S1, and thus consid-
ering X = Y p,q/Zh = Y hp,hq, the four fixed points of the base manifold B do not change.
However, the quotient affects the submanifolds found at y = y1, y2:

y = y1 : S3/Zlcm(h,k), y = y2 : S3/Zlcm(h,l) (5.22)

(remember k = p + q, l = p − q). Hence, we modify the basis for the effectively acting
T 3 (2.13) accordingly:

e1 = −∂ϕ − ∂ψ,

ẽ2 = ∂ϕ − lcm(h,l)
2 ∂γ ,

e3 = ∂γ .

(5.23)

It is useful to study the matrix which relates the previous basis (2.13) to (5.23):

A =

 1 0 0
0 1 l−lcm(h,l)

2
0 0 1

 , A ·

 e1
e2
e3

 =

 e1
ẽ2
e3

 , detA = 1. (5.24)

For l even, or for both l and h odd, A ∈ SL(3,Z). In this case, we can keep the previous
basis (2.13) as we always have the freedom to rotate by an SL(3,Z)-transformation. For l
odd and h even, we can have A /∈ SL(3,Z) and need to use (5.23) instead. However, we are
mainly interested in the dimensional reduction to B = Y p,q/S1. Hence, in the following, to
avoid the need of introducing (5.23), if l is odd we simply choose h to be odd.

Example: Y 2,1. In the following, we show explicitly how the one-loop partition function
around fluxes on B = Y 2,1/S1 arises as different slicings of the cone for the two choices of
fibre above. For p = 2, q = 1 they become:

top: x⃗top = [1, 1, 1],
ex: x⃗ex = [0, 0, 1]

(5.25)
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and correspond, respectively, to a ++++ and a ++-- distribution of SD/ASD complexes
on the base manifold. Accordingly, the charges of the modes under a rotation along the
fibre are:

top: ttop = n1 + n2 + n3,

ex: tex = n3.
(5.26)

Notice that, similar to S5, ttop can only be positive while tex can also be negative.
From the symplectic reduction in section 2.2, we can express the coefficients ri of the

Reeb in terms of the general equivariance parameters:

ω1 =
(3
2 + 1

2ℓ

)
+ a1, ω2 = a2, ω3 =

(3
2 + 1

2ℓ

)
+ a3, ω4 = −1

ℓ
+ a4, (5.27)

where we have included deformations ai that will control the equivariance parameters of
the dimensionally reduced 4d theory. Let us now repeat the procedure done earlier for S5

by redefining

top: ϵtop
1 = r1 − r3, ϵtop

2 = r2 − r3,

ex: ϵex
1 = r1, ϵex

2 = r2,
(5.28)

and setting the deformation to act only on the base:

top: −a1 − 4a2 − 4a3 − 2a4 = 0,
ex: −2a2 − a3 = 0.

(5.29)

This leads to:

top: r1 + r2 + r3 = −1
2

(
15 + 1

ℓ

)
≡ C2,1,

ex: rex
3 = −1

2

(
3 + 1

ℓ

)
,

(5.30)

and thus,
rtop

3 = −1
3(ϵ

top
1 + ϵtop

2 − C2,1). (5.31)

We are now ready to substitute into the perturbative partition function (4.6). In terms of
ΥBt-functions (4.8), we find:

Ztop
Y 2,1 =

∏
α∈∆

∏
t≥0

ΥBt(iα(a) + r3t|ϵ1, ϵ2), (5.32)

Zex
Y 2,1 =

∏
α∈∆

∏
t∈Z

ΥB̃t(iα(a) + r3t|ϵ1, ϵ2). (5.33)

Here, Bt, B̃t are defined as in (4.7) using, respectively, x⃗top and x⃗ex. We show the slices Bt
and B̃t of the dual cone C in figure 5.

Let us stress that, up until this point, the two expressions (5.32) and (5.33) are just
rewritings of the perturbative partition function on Y 2,1 for the two different slicings and
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u⃗1

u⃗2

u⃗3

u⃗4

x⃗top u⃗1

u⃗2

u⃗3

u⃗4

x⃗ex

Figure 5. Dual cone C of Y 2,1. Left side: sliced along x⃗top for t = 1 (blue) and t = 2 (red). At
t = 0 the slice only contains the origin. Right side: sliced along x⃗ex for t = 2 (green), t = 0 (blue)
and t = −1 (red). The slices are compact for x⃗top and non-compact for x⃗ex.

hence equal to each other. The difference between the two cases arises when we consider the
quotients X along the fibres x⃗top and x⃗ex. As explained previously, the one-loop partition
function around flat connections is given by a sum over topological sectors (see (4.12)).
Only those slices Bt, B̃t satisfying the projection condition (3.20) contribute to a given
topological sector.

Upon reducing to the base manifold B ≃ S2 × S2 by taking the large h limit, we set
t = α(m) and obtain, for each flux sector,

Ztop
B =

∏
α∈∆

ΥBm(iα(a) + r3α(m)|ϵ1, ϵ2), (5.34)

Zex
B =

∏
α∈∆

ΥB̃m(iα(a) + r3α(m)|ϵ1, ϵ2). (5.35)

The first expression corresponds to a distribution ++++ (i.e. all SD complexes) at the
fixed points of B and the second one to ++--, where two fixed points flip to ASD.

The contributions Bm, B̃m for each flux sector are obtained by projecting the slices in
figure 5 to the (n1, n2)-plane. Explicitly, the integer-valued vectors in the dual cone n⃗ ∈ C
are determined by solving v⃗i · n⃗ ≥ 0. Substituting n3 = ttop − n1 − n2, the slice ∈ Bm is
determined by

n1 ≥ 0, n1 + n2 ≤ 2ttop, n2 ≥ −ttop, n1 + n2 ≥ 0. (5.36)

Similarly, substituting n3 = tex, the slice B̃m is determined by

n1 ≥ 0, n1 + n2 ≥ −2tex, n1 + 2n2 ≥ −tex, n1 + n2 ≥ 0. (5.37)

The slices are shown in figure 6. As for S5, we obtain compact slices for the topologically
twisted theory while those for the exotic theory are non-compact. Again, this property
is due to the complexes of the two theories being, respectively, elliptic and transversally
elliptic. The results for the trivial flux sector agree with those computed in [14, 33, 54].
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n1

n2

n1

n2

Figure 6. Slices for Y 2,1. Left side: Bm of the topologically twisted theory for α(m) = 1 (blue) and
α(m) = 2 (red). For α(m) = 0 only the origin contributes. Right side: B̃m of the exotic theory for
α(m) = 0 (blue), α(m) = 2 (green) and α(m) = −1 (red).

General case. For arbitrary p, q the choices of fiber and the corresponding charges of the
modes have been introduced in (5.20)–(5.21). Then, the (squashed) equivariance parameters
read:

ω1 =
(3
2 + 1

2(p− q)ℓ

)
+a1, ω2 = a2, ω3 =

(3
2 + 1

2(p− q)ℓ

)
+a3, ω4 = 1

(q − p)ℓ+a4.

(5.38)
As in the previous examples, we define

top: ϵtop
1 = r1 −

2
p

r3, ϵtop
2 = r2 −

2
p

r3,

ex: ϵex
1 = r1, ϵex

2 = r2,

(5.39)

and set the deformation to act only on the base:

top: −a1 −
(
2 + p2

2

)
a2 −

(
3 + p

2(p− q)
)
a3 − 2a4 = 0,

ex: −pa2 + (q − p)a3 = 0,
(5.40)

which is equivalent to

top: r1 + r2 +
p

2r3 = −6− p

4

(1
ℓ
+ 3(p− q)

)
≡ C,

ex: rex
3 = −3

2(p− q)− 1
2ℓ .

(5.41)

After some lengthy but straightforward computations, one finds:

rtop
3 = − 2

p+ 8/p(ϵ
top
1 + ϵtop

2 − C). (5.42)
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Finally, substituting into (4.2) and using the definition of ΥBt-functions in (4.8):

Ztop
Y p,q =

∏
α∈∆

∏
t≥0

ΥBt(iα(a) + 2
pr3t|ϵ1, ϵ2), (5.43)

Zex
Y p,q =

∏
α∈∆

∏
t∈Z

ΥB̃t(iα(a) + r3t|ϵ1, ϵ2), (5.44)

where, as for Y 2,1, Bt, B̃t are defined in (4.7).
The one-loop partition function around flat connections on X for the topologically

twisted and exotic theories are obtained simply by imposing the projection condition (3.20)
and summing over flat connections. Finally, taking the limit of large h, we find the one-loop
partition function around fluxes on B = Y p,q/S1:

Ztop
B =

∏
α∈∆

ΥBm(iα(a) + 2
pr3α(m)|ϵ1, ϵ2). (5.45)

Zex
B =

∏
α∈∆

ΥB̃m(iα(a) + r3α(m)|ϵ1, ϵ2). (5.46)

Again, we obtain the slicings by studying the conditions on (n1, n2), looking for solutions
of v⃗i · n⃗ ≥ 0 at given t. We consider p even, however, as “formally” ttop for p odd is twice
ttop for p even (5.21), the case of odd p can be obtained from the expressions below simply
inserting a factor of 2. Thus, for Bm we find:

n1 ≥ 0, n1 + n2 ≤ 2 ttop, ( p
2(p−q) − 1)n1 + ( p

(p−q) − 1)n2 ≥ − ttop, n1 + n2 ≥ 0.
(5.47)

Similarly, substituting n3 = tex, we find for B̃m:

n1 ≥ 0, n1 + n2 ≥ −p tex, n1 + 2n2 ≥ −(p− q) tex, n1 + n2 ≥ 0. (5.48)

As a consistency check, one can see that these reduce to (5.34)–(5.35) for p = 2, q = 1.
The slices Bm, B̃m depend explicitly on p, q. Although we do not have a proof, we believe
that this dependence cannot be entirely removed. Notice that this is not in disagreement
with [14], where it is shown that infinitesimal deformations of the metric enter the Lagrangian
through δ-exact terms. But different values of p, q correspond to variations of the metric on
B ≃ S2 × S2 that are not connected to the identity.

5.3 Ap,q

In this last example we consider a class of manifolds which are not Einstein (in contrast
to S5, Y p,q). In particular, this means that the moment map cone C∨ is not Gorenstein
in this case. This property was exploited in [33] in view of retaining a spin structure on
the base B after reduction, which is needed for the ordinary formulation of the vector
multiplet supersymmetry and for both formulations of the hypermultiplet one. As discussed
in section 3.1, we can drop this condition without any consequence.

Apart from the Einstein property, the Sasakian manifolds Ap,q with p > q > 0 differ
from Y p,q by their base space Ap,q/S1 ≃ (CP2)#2. The edge vectors of the moment map
cone are given by

u⃗1 = [0, 0, 1], u⃗2 = [q, 0, 1], u⃗3 = [2p− q, p− q, 1], u⃗4 = [0, p,−1], (5.49)
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u⃗1 u⃗2 u⃗3

u⃗4

x⃗ex

n1

n2

Figure 7. C and B̃m of A2,1. Left side: dual cone C sliced along x⃗ex for t = 1 (green), t = 0 (blue)
and t = −1 (red). Note that the slices are non-compact. Right side: B̃m for α(m) = 1 (green),
α(m) = 0 (blue) and α(m) = −1 (red).

along with the inward-pointing normals:

v⃗1 = [1, 0, 0], v⃗2 = [0, 1, 0], v⃗3 = [−1, 2, q], v⃗4 = [−1, 1, p]. (5.50)

Furthermore, we identify the fibre that is rotated by a free S1-action by solving (2.11):

ex: x⃗ex = [0, 0, 1], (5.51)

corresponding to a +++- distribution of SD/ASD complexes on the base manifold. The
charge under rotations along the fibre is given by tex = n3. Compared to the previous
examples we only find a single solution to (2.11) and we are unable to access the topological
theory on B using the five-dimensional procedure.

For simplicity, in the following calculations we do not turn on a deformation of the
Reeb vector and thus we simply relabel ϵex

1 = r1, ϵ
ex
2 = r2. Substituting in (4.2) gives:

Zex
Ap,q =

∏
α∈∆

∏
t∈Z

ΥB̃t
(
iα(a) + r3t|ϵ1, ϵ2

)
. (5.52)

The slices B̃t are shown on the left in figure 7 for the case of p = 2, q = 1. As in the previous
examples, the slices are normal to the vector x⃗ex.

We now introduce a quotient by Zh acting on the fibre. This introduces a sum over flat
connections and demands that we impose the projection condition on tex. Taking the large
h limit we find the one-loop partition function around fluxes on the base manifold:

Zex
B =

∏
α∈∆

ΥB̃m
(
iα(a) + r3α(m)|ϵ1, ϵ2

)
. (5.53)

The form of the partition function is identical to (5.35), however, the slices B̃m are different.
They are found solving v⃗i · n⃗ ≥ 0:

n1 ≥ 0, n2 ≥ 0, −n1 + 2n2 ≥ −q tex, −n1 + n2 ≥ −p tex (5.54)

and we display them on the right hand side of figure 7, again for the case of p = 2, q = 1.
Notice that, in this example, we have not expressed r3 in terms of ϵ1, ϵ2. To achieve
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this we would need to study how the Kähler cone of Ap,q can be obtained by symplectic
reduction of C4. This would allow us to relate the components of the Reeb ri to general
equivariance parameters ωj , as in (2.17) for Y p,q. This, in turn, would enable us to introduce
a deformation of r acting on the base B only and, finally, to write r3 in terms of ϵ1, ϵ2.

6 Factorised partition functions

Given the equivariance in our setup, it is natural to ask whether the one-loop around fluxes
can be expressed as a product of local contributions on a neighbourhood C2

ϵi1,ϵ
i
2
× S1 around

the fixed fibres in 5d and, correspondingly, on a neighbourhood C2
ϵi1,ϵ

i
2

around the torus
fixed points in 4d. This factorisation property was confirmed for the perturbative partition
function in [31] and [15], respectively.

While, in the 5d case, the usual way of factorising ZM is by expressing the triple-sine
function in terms of q-Pochhammer symbols, in our case we need to factorise Υ-functions
instead, due to the slicing of the cone. Their factorisation has been discussed in [15]
and requires giving an imaginary part to the hitherto real vector field x and equivariance
parameters ϵ1, ϵ2. Then we have the following factorisation property:∏

t

ΥBt(iα(a) + r3
l3
t|ϵ1, ϵ2) =

m∏
i=1

∏
t∈Z

Υi(iα(a) + β−1
i t|ϵi1, ϵi2)si , (6.1)

where i labels the m fixed fibres and ϵi1, ϵ
i
2, β

−1
i are the local equivariance parameters for

the T 3-action on C2
ϵi1,ϵ

i
2
× S1, given by

β−1
i = (v⃗i × v⃗i+1) · r⃗, ϵi1 = (r⃗ × v⃗i+1) · x⃗

(v⃗i × v⃗i+1) · x⃗ , ϵi2 = (v⃗i × r⃗) · x⃗
(v⃗i × v⃗i+1) · x⃗ . (6.2)

The Υi-functions are defined as follows:

Υi(z|ϵ1, ϵ2) =
∏

(j,k)∈Di

(ϵ1j + ϵ2k + z)
∏

(j,k)∈D′
i

(ϵ1j + ϵ2k + z̄). (6.3)

Note that this is essentially a generalisation of (4.8) where the second product now is over
the region D′

i which does not necessarily coincide with the interior of Di. The regions Di,D′
i

depend on the imaginary parts of ϵi1, ϵi2 in the following way:

Im(ϵi1) > 0, Im(ϵi2) > 0 : D = {(j, k) ∈ Z2 | j ≥ 0 and k ≥ 0}, si = +1
2 ,

D′ = {(j, k) ∈ Z2 | j ≥ 1 and k ≥ 1},

Im(ϵi1) > 0, Im(ϵi2) < 0 : D = {(j, k) ∈ Z2 | j ≥ 0 and k ≤ −1}, si = −1
2 ,

D′ = {(j, k) ∈ Z2 | j ≥ 1 and k ≤ 0},

Im(ϵi1) < 0, Im(ϵi2) < 0 : D = {(j, k) ∈ Z2 | j ≤ −1 and k ≤ −1}, si = +1
2 ,

D′ = {(j, k) ∈ Z2 | j ≤ 0 and k ≤ 0}

Im(ϵi1) < 0, Im(ϵi2) > 0 : D = {(j, k) ∈ Z2 | j ≤ −1 and k ≥ 0}, si = −1
2 ,

D′ = {(j, k) ∈ Z2 | j ≤ 0 and k ≥ 1}.

(6.4)
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The different choices in (6.4) are known as different regularisations at the fixed fibres. Note,
in particular, that the sign of si can be negative at the fixed fibres, for which the respective
contributions of Υi appear in the denominator (hence, from the superdeterminant viewpoint,
they can be interpreted as bosonic modes remaining after cancellations, instead of fermionic
ones). We choose an arbitrary sign for the imaginary part of the equivariance parameters
at one fixed fibre, from which the signs at all other fixed fibres follow. It can be shown [15]
that the partition function is independent of this initial choice of sign.

Once we consider the quotient X =M/Zh, one can still glue contributions on C2
ϵi1,ϵ

i
2
×S1

from the fixed fibres as in (6.1), but has to impose the projection condition (3.20) for the
charge under rotations along the free S1. Hence, for each topological sector:

ZX =
∏
α∈∆

m∏
i=1

∏
t=α(m) modh

Υi(iα(a) + β−1
i t|ϵi1, ϵi2)si (6.5)

and, upon reduction, we can express the one-loop partition function around fluxes on B in
a factorised form as a product over the torus fixed points:

ZB =
∏
α∈∆

m∏
i=1

Υi(iα(a) + β−1
i α(m)|ϵi1, ϵi2)si . (6.6)

Now we can simply read out the shifts of the Coulomb branch parameter by the flux
contributions at each fixed point and write down the classical and instanton contributions
to ZB explicitly. Using equivariant localisation, the classical piece gives

e−Scl = exp
(
−

m∑
i=1

(2π)2

g2
YM,4d(xi)

tr a2

ϵi1 ϵ
i
2

)
, (6.7)

with gYM,4d(xi) the (position-dependent) 4d Yang-Mills coupling evaluated at the fixed
points xi (see [33] for a detailed derivation of (6.7) starting from (3.11), respectively30 (3.21)).
Note that (6.7) has no flux-dependence31 which we anticipate, since already Scl on X is
independent of the topological class of flat connections.

The instanton piece is obtained as the standard product of Nekrasov partition functions
on C2

ϵi1,ϵ
i
2

over the fixed points, applying the appropriate shifts to a [14, 17]. For x such that
the cohomologically twisted background on B localises to instantons at r of the m fixed
points and anti-instantons at the remaining ones, we obtain

Z inst
B =

r∏
i=1

ZNek
C2 (ia+ β−1

i m|ϵi1, ϵi2, q)
m∏

i=r+1
ZNek
C2 (ia+ β−1

i m|ϵi1, ϵi2, q̄), (6.8)

where q = exp(2πiτ) is the usual instanton counting parameter.

Example: Y p,q. Let us focus here on the case where p is even (the computation for odd
p proceeds, of course, in complete analogy). The local equivariance parameters for both
choices of free direction are considered in section 5.2 and are shown in table 1. We recall

30In the limit h → ∞ we keep the product g2
YM · h fixed, where gYM is the 5d YM coupling.

31However, matching for example our result for the topologically twisted theory on CP2 with the one
involving equivariant fluxes in [9] requires, in each flux sector, a shift of a by m. This would indeed introduce
the flux-dependence expected from a 4d perspective.

– 32 –



J
H
E
P
1
0
(
2
0
2
3
)
1
5
5

i 1 2 3 4

ϵtop,i
1 ϵ1 − ϵ2

2q
p (ϵ1 − ϵ2) + ϵ2 ϵ2 − ϵ1 −ϵ2

ϵtop,i
2 ϵ2 ϵ2 − ϵ1

2q
p (ϵ2 − ϵ1)− ϵ2 ϵ1 − ϵ2

β−1
i rtop

3 (p− q) (ϵ1 − ϵ2) + rtop
3 (p+ q)ϵ1 − qϵ2 + rtop

3 pϵ2 + rtop
3

ϵex,i
1 ϵ1 − ϵ2 2ϵ1 − ϵ2 ϵ2 − ϵ1 ϵ2

ϵex,i
2 ϵ2 ϵ2 − ϵ1 2ϵ1 − ϵ2 ϵ1 − ϵ2

β−1
i rex

3 (p− q) (ϵ1 − ϵ2) + rex
3 (p+ q) ϵ1 − qϵ2 − rex

3 pϵ2 − rex
3

Table 1. Local equivariance parameters for the topological (top half) and exotic theory (bottom half).

that the equivariance parameters ϵ1, ϵ2 have different definitions (5.39) for topological and
exotic theories, and rtop

3 ,rex
3 have been defined in (5.42)–(5.41). Assuming, without loss of

generality, Im(ϵ1) > Im(ϵ2) > 0, the perturbative partition functions (5.43), (5.44) become:

Ztop
Y p,q =

∏
α∈∆

∏
t∈Z

Υ1(iα(a) + β−1,top
1 t|ϵtop,1

1 , ϵtop,1
2 )1/2 ·Υ3(iα(a) + β−1,top

3 t|ϵtop,3
1 , ϵtop,3

2 )1/2

Υ2(iα(a) + β−1,top
2 t|ϵtop,2

1 , ϵtop,2
2 )1/2 ·Υ4(iα(a) + β−1,top

4 t|ϵtop,4
1 , ϵtop,4

2 )1/2
,

(6.9)

Zex
Y p,q =

∏
α∈∆

∏
t∈Z

Υ1(iα(a) + β−1,ex
1 t|ϵex,1

1 , ϵex,1
2 )1/2 ·Υ4(iα(a) + β−1,ex

3 t|ϵex,4
1 , ϵex,4

2 )1/2

Υ2(iα(a) + β−1,ex
2 t|ϵex,2

1 , ϵex,2
2 )1/2 ·Υ3(iα(a) + β−1,ex

4 t|ϵex,3
1 , ϵex,3

2 )1/2
.

(6.10)

It is now straightforward to obtain from this ZY p,q/Zh
and ZY p,q/S1 in the way described

above.

Index computation. An intrinsically four-dimensional treatment of the N = 2 theory
on B was proposed in [14]. The one-loop partition function can be obtained via an
index computation for the transversally elliptic complex that arises from localisation. This
computation is quite involved and has only been performed in the trivial flux sector so far [54].
With the result (6.6) at hand, at least for SD/ASD distributions reachable from 5d, one
can reconstruct the index of the complex, thereby generalising it to non-trivial flux sectors.

7 Discussion

In this work, we have computed the Coulomb branch partition function, including flux
contributions, for the 4d N = 2 vector multiplet on a large class of closed simply-connected
four-manifolds B. We started on a principal S1-bundle over B whose bundle space is a
simply-connected toric Sasakian five-manifold. Making use of existing results for this setup,
we have computed the one-loop partition function on finite quotients X =M/Zh. This was
done by restricting the modes contributing to the superdeterminant to ones that satisfy
the projection condition (3.20) for the charge t under the free S1. Most importantly, since
π1(X) ̸= 0 we had to include non-trivial flat connections into the localisation locus. Taking
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the limit of large h, we finally obtained the one-loop partition function on B with flux
contributions originating from the 5d flat connections. Depending on the relative orientation
of x and r, the theory on B can be either topologically twisted or exotic. Finally, we have
factorised the one-loop partition functions on M , X, and B and were able to read out
the shifts of the Coulomb branch parameter by the fluxes at each fixed fibre/point. This
enabled us to write down the Coulomb branch partition function, including instanton and
classical parts.

Finally, we point out once again that, whenever H2(M ;Z) ̸= 0, our procedure might
only produce part of the sum over all possible fluxes in the full partition function on B (e.g.
for Y p,q, H2(Y p,q;Z) ≃ Z and ZY p,q is expected to contain a sum over these fluxes). In
order to include the remaining flux contributions, it would be necessary to extend the 5d
localisation locus accordingly, which we leave for future work. Once this is done, using our
procedure, one obtains the full partition function on B (again, for Y p,q, H2(Y p,q/S1) ≃ Z2:
one sector is carried over from 5d, the other one is introduced by our procedure).

BPS strings. Let us suggest an interpretation for our procedure to compute the four-
dimensional one-loop partition function around fluxes in terms of the BPS objects of the 5d
theories. Restricting, for simplicity, the gauge group to be SU(2), it is known that all rank
one 5d SCFTs descend from 6d E-string theory upon circle compactification.32 The degrees
of freedom at a generic point in the tensor branch33 of these 6d N = (1, 0) SCFTs are
tensionful strings. These can descend, taking the radius of the sixth dimension to be small,
to either electrically charged BPS particles in 5d, if they wrap the S1-fibre, or magnetically
charged BPS strings coupling to FD = ⋆F , if they do not wrap the S1-fibre. If we further
take our five-dimensional space-time to be a toric Sasakian manifold M , we find a 5d SCFT
whose IR description is that of a weakly coupled SU(2) gauge theory on M .

As conjectured in [27], the partition function of an N = 1 vector multiplet on S5 only
has contributions from BPS particles while BPS strings do not contribute.34 However, with
our dimensional reduction along a non-trivial fibre S1 ↪→M → B, we can show explicitly
how BPS strings in 5d give rise to new flux sectors in 4d by wrapping the fibre which
is the orbit of the free S1-action generated by x⃗. After taking the limit in which the
fibre shrinks, these wrapped BPS strings result in magnetically charged particles in the 4d
N = 2 theories. Therefore, at the trivial sector of these new fluxes arising from dimensional
reduction, the partition function ZB receives contributions only from electrically charged
BPS particles. Instead, at a generic flux sector, the partition function receives contributions
from both electrically and magnetically charged BPS particles. At the intermediate step, on
X =M/Zh, the partition function at a generic, non-trivial, flat connection sector, receives

32It is conjectured [56] that all 5d N = 1 SCFTs can be obtained via an RG flow from 6d N = (1, 0)
SCFTs [57–59] on a circle.

33All known interacting N = (1, 0) SCFTs include a tensor multiplet, whose components are a tensor field
B, with anti-self-dual field strength, two fermions, and one scalar. At a generic point of the tensor branch
the scalar acquires a vev.

34Considering toric Sasakian manifolds with non-trivial H2(M ;Z), it is expected that magnetic strings
wrapping two-cycles in M will contribute to flux sectors already in 5d. We limit the discussion in this
paragraph to the new flux sectors which arise dimensionally reducing to 4d.
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contributions from magnetically charged BPS strings. Notice that a string wrapping h

times the fibre of X does not contribute since it behaves similarly to strings not wrapping
the fibre at all.

A similar discussion holds for the factorised expression presented in section 6. Thus,
one can place the 6d N = (1, 0) SCFT on C2

ϵi1,ϵ
i
2
× T 2 and, after dimensionally reducing

on the T 2, find the contributions of electric and magnetic BPS particles to the one-loop
partition function in 4d N = 2 at the trivial instanton sector. These contributions arise
from 6d effective strings wrapping, respectively, the sixth and the fifth direction.

7.1 Future directions

Complete partition function. In this work, we have determined the instanton part
by computing the shifts of the Coulomb branch parameter at each fixed point and writing
the partition function as a product of Nekrasov partition functions around the fixed points.
Although this is common practice in 4d, a rigorous proof, to the best of our knowledge, is
still missing.

Moreover, it would be nice to extend our approach to also include hypermultiplets.
However, even in the cohomological formulation this requires a spin structure on M and
the reduction to 4d has to be carried out more carefully in order for the spin bundle on
M to descend to a spin (or at least spinc) bundle on B. Such an analysis was performed
in [33] for M Sasaki-Einstein (using the ordinary formulation of supersymmetry) and it
would be interesting to extend it according to our procedure.

There are existing results for the partition function of the topologically twisted theory
including flux on some compact toric 4-manifolds [7–11] where the sum is over equivariant
fluxes. It would be desirable to compare these to our result in terms of physical fluxes,
possibly making use of a suitable notion of S-duality [60].

Finally, in order to explicitly compute the partition function, the contour integral of
the Coulomb branch partition function over a needs to be understood. Since in 5d SYM
there is only one scalar field σ and the fundamental group is finite, we expect there to be a
unique choice of integration contour. If this choice commutes with the h→ ∞ limit, then
we would have an easy recipe for the 4d contour whenever the 4d theory arises from 5d
using our procedure.

Locally free S1-actions. In this work, we assumed the S1-action generated by x⃗ to be
globally free such that B =M/S1 has no singularities. More generally, we could consider a
locally free S̃1-action.35 In this case, M will contain points with finite isotropy group that
descend to orbifold singularities on B̃ =M/S̃1. The intermediate step would be to consider
non-simply-connected orbifolds X̃ =M/Z̃h, where the quotient acts on the fibre which is
the orbit of the S̃1-action.

Let us briefly sketch how we think the procedure in section 4 can be adapted to these
cases. For simplicity, let us consider the toric Sasakian manifold S5 discussed in section 3.1.

35For Sasakian manifolds, such actions are discussed in [42].
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We recall that the vectors spanning the edges of the two-dimensional dual cone are:

u⃗1 = [0, 1, 0], u⃗2 = [0, 0, 1], u⃗3 = [1, 0, 0] (7.1)

and thus the inward-pointing normals are v⃗3 = u⃗2, v⃗2 = u⃗1, v⃗1 = u⃗3. The reduction of an
N = 1 vector multiplet is performed along the orbits of the free S1-actions, generated by:

x⃗top = [1, 1, 1] ∼ r, x⃗ex = [1, 1,−1]. (7.2)

However, locally free S̃1-actions are generated by:

⃗̃xtop = [l1, l2, l3], ⃗̃xex = [l1, l2,−l3], (7.3)

where, as long as l1, l2, l3 ∈ N and gcd(l1, l2, l3) = 1, the action is effective. Following our
procedure, the next step would be to introduce a quotient by Zh acting on the fibres (7.3),
sum over non-trivial flat connections and eventually take the large h limit. At finite h, the
resulting space is an orbifold with a conical singularity, representing a deficit angle. The
procedure can be generalized starting from a generic toric Sasakian manifold M and will
appear in future work.

The setup above is related to the study of two-dimensional weighted projective spaces,
also known as spindles [61]. In [37] the reduction of an N = 2 vector multiplet from S3

to S2 is considered. As a consistency check, taking an N = 1 vector multiplet S3 × S1 as
starting point and generalizing the reduction to locally free S1-actions, one should reproduce
the result of [62] for both topological and exotic theories. Moreover, notice that on S3, as
the double sine function has huge cancellations between numerator and denominator, we
expect the dependence on the choice of locally free S1-action to only affect the shift36 in
α(m). Instead, reducing from 5d to 4d, we expect the different slicings to depend on the
choice of locally free S1-action as the triple sine function does not have such cancellations.
These results would significantly enlarge the observables for SQFTs on orbifolds and, in
the large-N limit, they would allow an in-depth study of the gravitational block formulas
conjectured in [63, 64].

3-Sasakian reduction. Another possibility to extend our procedure is to consider the
dimensional reduction to 4d from a 7d N = 1 vector multiplet on a 3-Sasakian hypertoric
manifold [65–67]. Seven-dimensional 3-Sasakian manifolds are an S3-fibration over a four-
dimensional quaternion Kähler orbifold. However, when the S3-action is free, the fibration
is over a four-dimensional quaternion Kähler manifold. An example is the Hopf fibration
S3 ↪→ S7 → S4. For n = 2, the perturbative partition function is given by a quadruple
sine function and it is shown to factorise in contributions arising from the fixed point of
the T 2-action on the four-dimensional base [67]. In general, reducing on a sphere breaks
half of the supersymmetry and thus, shrinking the size of the S3, one ends up with an
N = 2 theory in 4d. For example, we would expect to find both an equivariant version
of Donaldson-Witten theory and Pestun’s theory on S4 from the same seven-dimensional
theory. In general, one could consider the reduction to N = 2 theories from a generic

36This is already what happens reducing on the two fibres x⃗top
, x⃗ex of S3 [37].
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quaternion Kähler manifold, thus enlarging the class of manifolds considered in our setup.
Finally, we have shown how fluxes, whose nature is purely Abelian, arise from dimensional
reductions along non-trivial S1-fibrations over B. It would be interesting to understand
what configurations arise when dimensionally reducing along SU(2)-fibrations.
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A Topology of finite quotients and the base

In this appendix, we collect some topological facts about the quotient manifolds on which we
place the N = 1 SYM theory in the main part of this work and the four-dimensional base.

A.1 Finite quotients

Let M be a closed, simply-connected manifold that has a free S1-action. We consider the
quotient of M by the discrete subgroup Zh ⊂ S1, h ∈ N≥2. This quotient X =M/Zh is again
a smooth manifold with a free (S1/Zh ≃ S1)-action. However, X is not simply-connected
but has π1(X) ≃ Zh. This follows from the fact that there is a fibration

Zh M

X

(A.1)

giving rise to a long exact sequence (LES) in homotopy:

. . . π1(M) π1(X) π0(Zh) π0(M) . . .

0 Zh 0
(A.2)

Moreover, by continuing the LES above, we find πi(M) ≃ πi(X) for i > 2.
In order to make sense of the projection condition (3.15) we first use the following37

Fact A.1. H2(X) ≃ Zh ⊕ Zb2(X), where b2(X) denotes the second Betti number of X.

Proof. We already know π1(X) ≃ Zh and thus, by the Hurewicz theorem, H1(X) ≃ Zh.
Now we apply the universal coefficient theorem (UCT) for integral coefficients:

0 Ext1
Z(H1(X),Z) H2(X) HomZ(H2(X),Z) 0 . (A.3)

37In the following, we always consider (co)homology with integral coefficients, unless specified otherwise.
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Since H•(X) is finitely generated, we can decompose H•(X) ≃ Zb•(X) ⊕ T• with b•(X) the
Betti number and T• the torsion part. But (see e.g. [68] p.195):

HomZ(H•(X),Z) ≃ HomZ(Zb•(X),Z)⊕HomZ(T•,Z) ≃ Zb•(X), (A.4)

Ext1
Z(H•(X),Z) ≃ Ext1

Z(Zb•(X),Z)⊕ Ext1
Z(T•,Z) ≃ T•, (A.5)

where we have used that Hom and Ext preserve limits. Since (A.3) splits (although not
naturally), we arrive at the result.

Example A.2. Consider the space Y p,q from section 2.2 with gcd(p, q) ≥ 1. Then
π1(Y p,q) ≃ Zgcd(p,q) (see [46], appendix A) and H2(Y p,q) ≃ Zgcd(p,q) ⊕ Z.

Fact A.1 shows that the torsion part of H2(X) originates from π1(X). Since flat
line bundles C× ↪→ L → X are characterised by the first Chern class c1(L), we need
c1(L) ∈ Zh ⊂ H2(X) for the projection condition (3.15) to make sense. This is guaranteed
by the following

Fact A.3. im c1 ≃ Ext1(π1(X),Z).

Proof. First, note that (isomorphism classes of) flat line bundles are precisely38 elements of
H1(X;C×). We have a SES of coefficient rings

0 Z C C× 0exp
, (A.6)

giving rise to a LES in cohomology:

. . . H1(X;C) H1(X;C×) H2(X;Z) . . .
f c1 (A.7)

with the connecting homomorphism being the first Chern class ([69], section 2.2). Since X
is connected, the universal coefficient theorem implies

H1(X;C) ≃ Hom(H1(X;Z),C), H1(X;C×) ≃ Hom(H1(X;Z),C×). (A.8)

Under the isomorphisms above, the map f in the LES corresponds to the map

f̃ : Hom(H1(X;Z),C) −→ Hom(H1(X;Z),C×), φ 7−→ exp ◦φ. (A.9)

The maps in the codomain that cannot be reached by f̃ are precisely those that map torsion
elements non-trivially, hence coker f̃ ≃ Hom(H1(X;Z)tor,C×). Using the first isomorphism
theorem and the fact that H1(X;Z)tor is a finite Abelian group, we obtain

im c1 ≃ Hom(H1(X;Z)tor,C×) ≃ Ext1(H1(X;Z),Z). (A.10)

Applying the Hurewicz theorem gives the result.

Hence, c1 takes values in π1(X) ≃ Zh and the projection condition (3.20) is justified.
38We have H1(X;C×) ≃ H1(X; S1) ≃ Hom(π1(X), S1), where X connected.
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A.2 The base

As for the topology of B, we have a fibration (in particular, a principal S1-bundle) over the
base space B =M/S1,

S1 M

B

(A.11)

from which we obtain the LES in homotopy:

. . . π2(S1) π2(M) π2(B) π1(S1) π1(M) π1(B) π0(S1) . . .

0 H3(M) Z 0 0

f

(A.12)
We conclude that B is again simply-connected and (using the Hurewicz theorem and
Poincaré duality) we have Z ⊂ H2(B) from the surjection f . This is the subgroup generated
by the two-cycle that is obtained from the three-cycle in X; the image of c1 upon reduction
takes values in this subgroup. However, the corresponding domain of c1 are no longer flat
connections (π1(B) = 0 and thus H1(B;C×) = 0) but the subspace of connections A with
curvature FA satisfying (3.25) and c1(FA) ∈ Z ⊂ H2(B).

Finally, we present a more formal argument for the dimensional reduction of M to
B = M/S1 via the quotient X = M/Zh. Let Xn := M/Zn and Zn := Z/hnZ. Then we
have the direct system

X1 X2 X3 X4 . . .
f1 f2 f3 f4 (A.13)

with fn the canonical projections. The colimit of (A.13) (in the category of compactly
generated weakly Hausdorff spaces, CGWH) is given by

X1 X2 X3 X4 . . .

lim−→Xn

f1

ι1

f2

ι2

f3

ι3

f4

ι4
(A.14)

such that the triangles commute. On the other hand, by virtue of the fibrations

S1 Xn B,
πn (A.15)

we have another co-cone for (A.13) given by

X1 X2 X3 X4 . . .

B

f1

π1

f2

π2

f3

π3

f4

π4
(A.16)

Then, by the universal property of lim−→Xn, there is a unique, continuous map ϕ : lim−→Xn → B

such that πn = ϕ ◦ ιn for all n ∈ N. We now want to find a map ψ such that the triangles
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in the following diagram commute:

. . . Xn Xn+1 . . .

B

lim−→Xn

fn

πn

ιn

πn+1

ιn+1

ψ

(A.17)

There is a unique such map ψ : B → lim−→Xn, b 7→ ι1(b̃) for some b̃ ∈ X1 such that π1(b̃) = b.
But then ψ must be the unique isomorphism. Moreover, since both spaces are compact
and Hausdorff,39 ψ is a homeomorphism. In fact, the smooth structure on lim−→Xn expected
from the quotienting procedure is precisely the one induced from B, which turns ψ into a
diffeomorphism.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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