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1 Introduction

The discovery of holography [1–3] which states that gravitational dynamics in d+1 dimensions
can be described by a d-dimensional non-gravitational theory, is an extremely important
development in quantum gravity. To explore the mechanism behind holography, it is useful
to ask how information localizes in a theory of quantum gravity [4–15]. The answer clarifies
the physical origin of holography for gravitational theories as we now explain.

In a canonical quantization of gravity the theory is described using wavefunctionals of
the metric and matter fields on a given spatial slice. We restrict our discussion to spacetimes
that are asymptotically AdS. In gravity, diffeomorphism invariance is a fundamental
principle. It implies that not every wavefunctional is a physical state: a physical state
must take the same value for configurations that can be related by a diffeomorphism that
vanishes asymptotically. This requirement can be expressed in terms of a set of momentum
and Hamiltonian constraints. It is clear that diffeomorphism invariance implies that the
gravitational theory is highly redundant: many different wave functionals correspond to the
same physical state. Perturbatively, the constraints expressing diffeomorphism invariance are
enough to imply that two wave functionals that coincide at the boundary for an infinitesimal
interval of time must coincide everywhere in the bulk [14]. In this way diffeomorphism
invariance reproduces the hallmark feature of holography: the state in the bulk is completely
determined by boundary data [14]. Said differently, once the constraints associated to
diffeomorphism invariance are solved, the only degrees of freedom of the wavefunctional
on a slice are its boundary values: once these boundary values are specified, the value of
the wavefunctional in the bulk is determined uniquely by diffeomorphism invariance. To
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avoid any confusion we should remark that diffeomorphism invariance on its own is not
enough to ensure that the theory is holographic and indeed, this result does not go through
for the classical theory which is diffeomorphism invariant. As the arguments of [14] make
clear, one also needs to use the fact that the energy is positive as well as the fact that
energy eigenstates are not localized as a consequence of the uncertainty principle. Other
discussions of the relationship between the bulk constraints arising from diffeomorphism
invariance and holography, arrive at consonant conclusions [4, 5, 10].

A non-perturbative argument, reaching the same conclusion [11–13, 15] is also possible.
In classical gravity, the Hamiltonian takes the form [16]

H =
∫

Σ
NµCµ + H∂ (1.1)

where Nµ are the lapse and shift functions and Cµ are the first class constraints that
generate diffeomorphisms. The term H∂ is a boundary term. When acting on a gauge
invariant observable/state, the Hamiltonian is equal to a boundary term. Assume that
the diffeomorphism invariance of classical general relativity extends to quantum gravity.
Since the quantum wave function is invariant under bulk diffeomorphisms, it is reasonable
to assume the Hamiltonian in the UV completed theory is still given by a boundary term.
Boundary observables are gauge invariant and self-adjoint observables built from fields in
the intersection of any neighbourhood of a bulk Cauchy slice with any neighbourhood of
the boundary. The algebra generated by these operators is the boundary algebra associated
with the given Cauchy slice. Since we are assuming that the Hamiltonian is given by a
boundary term, the projector onto the vacuum state of the AdS gravity is an element of
the boundary algebra and, with the assumption of the Reeh-Schleider property for the
boundary algebra we learn that the boundary algebra is the full algebra of operators. This
conclusion, that in a theory of quantum gravity, a copy of all the information available on a
Cauchy slice is also available near the boundary of the Cauchy slice, is the principle of the
holography of information [11–13, 15]. Diffeopmorphism invariance — which is responsible
for the enormous redundancy in the gravitational dynamics — is a crucial input in reaching
this conclusion. Again this is not a property of the classical theory since the Reeh-Schleider
property was used and this relies on quantum entanglement. The idea just outlined is a
concrete and explicit realization of complementarity: the idea that in quantum gravity
degrees of freedom in one region can sometimes be equated to a combination of degrees of
freedom in another region [6–8, 17–22]. The holography of information tells us that every
bulk degree of freedom is equal to some combination of boundary degrees of freedom.

The AdS/CFT correspondence [3, 23, 24], which provides a concrete example of
holography, claims that quantum gravity on AdS can be described using a conformal field
theory (CFT) defined on the boundary of AdS. A systematic procedure which starts from
the CFT and constructs the dual gravitational dynamics would provide a constructive
understanding of the correspondence. Starting from a lower dimensional non-gravitational
CFT we should construct a higher dimensional theory that is holographic. Concretely we
should construct a higher dimensional theory whose degrees of freedom are highly redundant
in such a way that all information available on a given Cauchy slice is also available near
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the boundary of the slice. Here we will argue that a systematic procedure to accomplish
this already exists in the form of collective field theory developed in [25, 26] and we will
suggest how the redundancy needed for gravity is built into the collective formalism.

The basic idea is simple to state. Collective field theory performs a reorganization of
the degrees of freedom of the field theory so that the loop expansion parameter is 1/N , as
expected from AdS/CFT for the gravity dual. This reorganization of degrees of freedom is
achieved in a very interesting way. The idea is to introduce a collective field, which is given
by gauge invariants of the field variables. The collective field theory is then a systematic
procedure to construct the dynamics of this collective field. An important feature of the
collective field, central to this paper, is that it is over complete and therefore the collective
field theory is a redundant description. The collective field is in general a multi-local
field so it has a natural interpretation as a field in a higher dimensional spacetime. The
collective formalism builds the theory as if there is an independent degree of freedom at
each point in this higher dimensional spacetime, so that there is an enormous redundancy
in the theory. This implies relations between degrees of freedom at different points in the
higher dimensional space-time, very reminiscent of complementarity in gravity. We will
give evidence that the redundancy of the collective field theory construction is exactly what
is required to produce a holographic theory and so, which is required to produce a theory
of gravity. Our evidence for this identification is obtained by using the operator product
expansion of CFT to characterise the redundancy in the collective field. The collective field
theory description of vector models is simple enough that we can carry this exercise out
explicitly. In this example we argue that it is possible to reduce the theory to boundary
degrees of freedom so that the collective field theory description of vector models is a
holographic theory. Making the reasonable assumption that gravity is the only theory that
is holographic1 we conclude that collective field theory is a theory of gravity.

In section 2 we review those aspects of collective field theory that are most relevant
for our discussion. In particular, we emphasize that the collective field provides an over
complete description and we argue that all degrees of freedom in this over complete set are
being treated as independent. After this general discussion we turn to a detailed discussion
of vector models in section 3. In this case the collective fields are given by bilocal field
variables and the dual gravity is given by Vassilliev’s higher spin gravity [27, 28]. There
is a concrete holographic mapping between the CFT and the dual gravity, and using this
mapping we are able to demonstrate our basic claim that the collective field theory is
holographic. In section 4 we briefly discuss non-Abelian gauge theories and give some
evidence that the same mechanism for holography is relevant. We give some discussion of
our results, conclusions and suggestions for future work in section 5.

2 Collective field theory

In this section we review the collective field theory formalism which was developed in [25, 26].
Collective field theory performs a highly non-trivial reorganization of the degrees of freedom

1This is not proved but it is consistent with what we know about nature.
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of a gauge theory, by changing from the original field variables to a new set of collective
fields. In the collective description 1

N is the loop expansion parameter.
The collective fields are given by a set of over complete, commuting and gauge invariant

variables. This over completeness of the collective fields, which is directly responsible for
a redundancy in the collective dynamics, is a generic feature and it plays a central role
in establishing the holographic nature of collective field theory. To make the discussion
transparent, it is helpful to discuss concrete examples. Consider first the case of vector
models. The field theory is defined using a field ϕa(t, x⃗) with a = 1, 2, · · · , N , which is an
O(N) vector. We consider a model defined in d + 1-dimensional Minkowski spacetime. The
Hamiltonian of the vector model is given by

H =
∫ (

−1
2

δ

δϕa(t, x⃗)
δ

δϕa(t, x⃗)+
1
2∇⃗ϕa(t, x⃗)·∇⃗ϕa(t, x⃗)+v(ϕ(t, x⃗)·ϕ(t, x⃗))

)
ddx (2.1)

where v(ϕ · ϕ) is any O(N) invariant interaction. We quantize the field by imposing the
usual equal time commutation relations[

πa(t, x⃗), ϕb(t, y⃗)
]
= −iδ(x⃗ − y⃗)δab (2.2)

This implies that the conjugate momentum can be written as

πa(t, x⃗) = 1
i

δ

δϕa(t, x⃗) (2.3)

Declaring the O(N) symmetry to be a gauge symmetry, the physical sector of the theory
corresponds to the O(N) singlet sector. In a Hamiltonian approach, the collective field
theory provides a description of this sector by employing the equal time bilocal fields

σ(t, x⃗1, x⃗2) =
N∑

a=1
ϕa(t, x⃗1)ϕa(t, x⃗2) (2.4)

The physical degrees of freedom of the original vector model are given by the singlet sector
of N scalar fields in d + 1 dimensions. The above bilocal field is a single field defined in a
2d + 1 dimensional spacetime and it obeys a single constraint

σ(t, x⃗1, x⃗2) = σ(t, x⃗2, x⃗1) (2.5)

Clearly we have many more degrees of freedom in σ(t, x⃗1, x⃗2) than we have in ϕa(t, x⃗)
so we necessarily obtain a highly redundant description. Not all degrees of freedom in
σ(t, x⃗1, x⃗2) can possibly be independent. The collective field formalism [25, 26] ignores the
over completeness of the collective fields, quantizing each degree of freedom independently.
In particular, quantization is achieved by imposing the commutator2

[
Π(t, x⃗1, x⃗2),σ(t, y⃗1, y⃗2)

]
=−iδ(x⃗1−y⃗1)δ(x⃗2−y⃗2)−iδ(x⃗1−y⃗2)δ(x⃗2−y⃗1) (2.6)

2The two terms on the right hand side are needed to respect (2.5).
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to quantize the theory. Clearly we are quantizing many more degrees of freedom than are
present in the original vector model. The commutator (2.6) implies the conjugate momentum

Π(t, x⃗1, x⃗2) =
1
i

δ

δσ(t, x⃗1, x⃗2)
(2.7)

To derive the dynamics of the collective fields,3 perform an operator change of variables [25]
from ϕa(t, x⃗) to the bilocal field σ(t, x⃗, y⃗) using the chain rule

δ

δϕa(t, x⃗) =
∫

ddy

∫
ddz

δσ(t, y⃗, z⃗)
δϕa(t, x⃗)

δ

δσ(t, y⃗, z⃗) (2.8)

There is a non-trivial Jacobian associated with this change of variables which is determined
by the requirement that the collective Hamiltonian is manifestly Hermittian. For more
details the reader should consult [25]. Starting from the Hamiltonian (2.1) the following
equivalent representation in terms collective variables is obtained

H = 2Tr(ΠσΠ) + N2

8 Trσ−1 +
∫

ddx v(σ(t, x⃗, y⃗)|x⃗=y⃗)

+ 1
2

∫
ddx ∇⃗y⃗ · ∇⃗x⃗σ(t, x⃗, y⃗)

∣∣∣
x⃗=y⃗

+∆V (2.9)

∆V summarizes ordering terms which are lower order in 1/N

∆V = −N

2

(∫
dxδ(0)

)
Trσ−1 + 1

2

(∫
dxδ(0)

)2
Trσ−1 (2.10)

In equations (2.9) and (2.10) the product of two bi-local fields is defined by

AB(t, x⃗, z⃗) ≡
∫

ddy A(t, x⃗, y⃗)B(t, y⃗, z⃗) (2.11)

and the trace of a bi-local field is defined by

Tr(A) =
∫

ddx A(t, x⃗, x⃗) (2.12)

Given the over completeness of the description, one might question its validity. A proof
that this description for vector models is correct, is the fact that it correctly generates
the Schwinger-Dyson equations [25, 29] which determine the correlation functions of the
invariant fields. Further, direct computation shows that the minimum of the collective
potential

Veff = N2

8 Trσ−1 +
∫

ddx v(σ(t, x⃗, y⃗)|x⃗=y⃗) +
1
2

∫
ddx ∇⃗y⃗ · ∇⃗x⃗ σ(t, x⃗, y⃗)

∣∣∣
x⃗=y⃗

(2.13)

generates the correct large N gap equation, which is a non-perturbative (in ℏ of the original
field theory) result.

3We have not been precise about the detailed choice of gauge invariant variables that defines the collective
field. A significant guiding principle is that this set must be chosen large enough that the application of the
chain rule to the kinetic term in the Hamiltonian generates terms that again belong to the set.
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There is a second possible description of O(N) vector models using collective field
theory, which employs unequal time collective fields

σ(xµ
1 , xµ

2 ) =
N∑

a=1
ϕa(xµ

1 )ϕa(xµ
2 ) (2.14)

which obey the single constraint

σ(xµ
1 , xµ

2 ) = σ(xµ
2 , xµ

1 ) (2.15)

This is again manifestly an over complete description. The collective field theory in this
case is determined [26] by performing a change of variables in the path integral description∫

Dϕa(xµ)eiS =
∫

Dσ(xµ, yµ) J [σ] eiS[σ] ≡
∫

Dσ(xµ, yµ) eiSeff (2.16)

The effective action is determined by the Jacobian of the change of variables. A straight
forward way to determine this Jacobian [30] is by requiring that the Schwinger-Dyson
equations derived in the original ϕa(xµ) variables agree with those derived using the
σ(xµ

1 , xµ
2 ) variables.4 The result is [31]

lnJ =(N−Ld+1δd+1(0))Tr lnσ Ld+1 =
∫

dd+1x δd+1(0)=
∫

dd+1p

(2π)d+1 (2.17)

where the integral over dd+1p is an integral over momentum space. The equality of the
resulting collective field theory dynamics with the original field theory dynamics can again
be proved at the level of the Schwinger-Dyson equations. Explicit tests of the collective field
theory include the demonstration that the saddle point of Seff reproduces the usual large N

gap equation. Further, by working perturbatively it is easy to see that the collective field
theory correctly reproduces the usual Feynman diagram expansion description of the 1

N

expansion and subleading corrections in 1
N come out correctly [31].

We again want to stress the over completeness of this collective field description. One
way to make sense of the path integral

∫
Dϕa(xµ)eiS is by putting the theory on a lattice in

which case the continuous coordinate xµ is replaced by a discrete lattice label î. The path
integral becomes an integral over the value of the field at each lattice site ϕ(̂i). In this same
approximation, the path integral over the collective field

∫
Dσ(xµ, yµ) eiSeff would be an

integral over the values of the collective field labelled by a pair of lattice sites σ(̂i, ĵ), with
the constraint that σ(̂i, ĵ) = σ(ĵ, î). The path integral involves many more integrals when
expressed in terms of the collective field, than it did in the original variables. It is in this
sense that collective field theory treats the degrees of freedom contained in the description
using σ(xµ

1 , xµ
2 ) as independent. The over completeness of this description implies that the

collective dynamics are necessarily redundant.
For matrix models it is more challenging to write down the relevant collective fields.

This is a consequence of the fact that the set of gauge invariants in matrix models are much
4The set of gauge invariant variables that defines the collective field must be chosen large enough that

the invariants appearing in the Schwinger-Dyson equations all belong to the set.
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richer than the corresponding set for vector models. For matrix models, we can construct
adjoint valued local operators at different spacetime locations and sew them together using
open Wilson lines to produce a gauge invariant observable. Thus we will have multi-local
collective fields, and not just bilocal collective fields. Even matrix quantum mechanics is
challenging since for a multi-matrix model the set of gauge invariants is given by the trace
of all words constructed using an alphabet with each different matrix giving a letter. A
notable exception is the quantum mechanics of a single matrix Mab(t) for which the space
of invariants is given by the trace of different powers of the matrix5 Tr (Mn(t)). In this
example the collective field theory, using a Hamiltonian description, entails a change of
variables from the original matrix elements to the collective field given by

ϕ(x, t) =
∫ ∞

−∞

dk

2π
eikxTr (eikM ) (2.18)

ϕ(x, t) is a scalar field in two dimensions, equal to the density of eigenvalues. The resulting
collective field theory [51] gives an interacting theory with a cubic interaction. Detailed
precision tests of this collective description show that it is the string field theory description
of the c = 1 string [52–54]. Notice that this description is again over complete: the single
scalar field ϕ(x, t) has many more degrees of freedom than the original matrix Mab(t) has.

For the case of multi-matrix models it is possible to study the collective field theory
numerically [55–58]. These numerical results convincingly demonstrate that collective field
theory gives a correct description of the dynamics of these models and that it has 1/N

as loop expansion parameter. For this case too, the collective field theory description is
over complete.

3 Bilocal holography for vector models

In the previous section we have explained that collective field theory gives a redundant
description of the dynamics of a gauge theory, as a consequence of the fact that the collective
field variables are over complete. This section aims to explore the details of this redundancy
and for this purpose we return to the simple setting of vector models. We consider the free
O(N) vector model in 2+1 dimensions which is dual [32, 33] to higher spin gravity [27, 28]
in AdS4. Collective field theory was first used to explore this duality in [34]. It was then
further developed in a series of articles [35–44] to achieve a detailed holographic mapping
from the 2 + 1 dimensional vector model CFT to the higher spin gravity in AdS4. This
mapping is constructed at large N so that we obtain a free theory in the bulk of AdS4. The
key features of this mapping include

1. A detailed mapping between the independent degrees of freedom of the CFT and the
physical and independent degrees of freedom of the higher spin gravity.

2. The bulk fields obey the correct equations of motion, with the correct boundary condi-
tions so that we have a complete bulk reconstruction for all fields in the gravity theory.

5In this case we can also use the eigenvalues to obtain a gauge invariant description.
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3. The mapping gives a detailed account of what bulk fields can be reconstructed from
a subregion of the CFT. This result reproduces expectations from entanglement
wedge reconstruction.

4. Using this bilocal holography mapping, the statement of the holography of information
for the gravitational degrees of freedom becomes the statement of the OPE for the
CFT fields from which the bilocal is constructed.

The form of this dictionary is determined [35] by the requirement that the reconstructed
bulk fields obey the correct AdS4 field transformations [59, 60]. Thus, the only input used to
construct this mapping is conformal symmetry and the fact that it provides a demonstrably
correct description of the dual gravity dynamics is significant. Using this map we can locate
degrees of freedom in spacetime. This will be helpful when we explore the nature of the
over completeness of the collective field and describe the redundancies in the collective field
description. We will use capital letters to denote coordinates of the AdS4 spacetime and
little letters to denote the coordinates of the spacetime of the CFT3. For a recent review of
this material see [44].

For recent discussions of holography using the unequal time bilocal see [45–47] and for
the holography of the IR fixed point see [48, 49].

3.1 Lightfront bilocal holography mapping

The higher spin gravity has a single scalar field, as well as a single gauge field for every
even integer spin 2s. The gravity dual to the large N limit of the CFT corresponds to
free bulk fields. In this case we can use the Fronsdal description [50] rather than the full
Vasiliev theory [27, 28]. The spin-2s Fronsdal field Aµ1µ2···µ2s is symmetric and obeys a
double tracelessness condition Aν

ν
ρ

ρµ5···µs = 0. The AdS vierbein eA
µ converts frame indices

to spacetime indices. In the Poincaré patch of AdS we have

eA
µ = 1

z
δA

µ . (3.1)

Denote Fronsdal fields with frame indices by ΦA1···A2s . Lightfront bilocal holography is
obtained by completely gauge fixing and then reducing to independent field variables in
gravity, and reducing to independent field variables in the conformal field theory. In the
gravity theory we choose light cone gauge and solve the resulting constraints. In the
end, only two components of the higher spin gauge field, at each spin, are physical and
independent degrees of freedom. We choose these two components to be ΦXX···XX and
ΦXX···XZ and collect the complete set of physical and independent fields into a single field,
with the help of an additional variable θ as follows

Φ(X+, X−, X, Z, θ) =
∞∑

s=0

(
cos(2sθ)Φ

XX···XX

Z
+ sin(2sθ)Φ

XX···XZ

Z

)
(3.2)

For what follows it is convenient to perform a Fourier transform to obtain

Φ(X+, P +, X, Z, θ) =
∫

dX− eiP +X−Φ(X+, X−, X, θ) (3.3)
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The conformal field theory dynamics is expressed as the collective field theory of an equal
x+ bilocal field

σ(x+, x−
1 , x1, x−

2 , x2) =
N∑

a=1
ϕa(x+, x−

1 , x1)ϕa(x+, x−
2 , x2) (3.4)

In formulating the map to the dual gravity theory, it is convenient to Fourier transform
from x− to p+ and work with the bilocal field

σ(x+, p+
1 , x1, p+

2 , x2) =
∫

dx−
1

∫
dx−

2 eip+
1 x−

1 +ip+
2 x−

2 σ(x+, x−
1 , x1, x−

2 , x2) (3.5)

The holographic mapping between the CFT and higher spin gravity is now given by the
following identification between the coordinates

x1 = X + Z tan
(

θ

2

)
x2 = X − Z cot

(
θ

2

)
x+ = X+

p+
1 = P + cos2

(
θ

2

)
p+

2 = P + sin2
(

θ

2

)
(3.6)

and the fields
Φ = 2πP + sin θ η (3.7)

The inverse of (3.6) is

X = p+
1 x1 + p+

2 x2

p+
1 + p+

2
Z =

√
p+

1 p+
2 (x1 − x2)

p+
1 + p+

2

P + = p+
1 + p+

2 θ = 2 tan−1


√√√√p+

2
p+

1

 (3.8)

3.2 Covariant bilocal holography mapping

The choice of lightcone gauge necessarily breaks the boundary Poincare invariance. By
covariant bilocal holography we mean a mapping that preserves the boundary Poincare
invariance. Covariant bilocal holography was developed in [44], relying heavily on results
obtained in [60]. The higher spin gravity theory is formulated in the modified de Donder
gauge [61] that leads to decoupled equations of motion. In this case we again collect the
complete set of bulk higher spin gravity fields into a single field6 that depends on an
extra coordinate

ϕ(x, Z, φ) =
∞∑

s=0

ei(2s− 1
2)φ

√
Z

ϕ
(2s)
− (x, Z) + e−i(2s− 1

2)φ

√
Z

ϕ
(2s)
+ (x, Z)

 (3.9)

Here ϕ
(2s)
− and ϕ

(2s)
+ are the two physical polarizations of the higher spin gauge field of spin

2s. The mapping between the coordinates is

X = p0
1x1 + p0

2x2
p0

1 + p0
2

Y = p0
1y1 + p0

2y2
p0

1 + p0
2

(3.10)

6We have suppressed indices on the ϕ
(2s)
± fields. These fields have 2s frame indices as in the discussion of

the previous subsection.
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Z1 =

√
p0

1p0
2

p0
1 + p0

2
(x1 − x2) Z2 =

√
p0

1p0
2

p0
1 + p0

2
(y1 − y2) (3.11)

where Z1 and Z2 are related to Z and φ as follows

Z1 = Z cosφ Z2 = Z sinφ (3.12)

When writing these formulas we have in mind bilocal fields composed of excitations that are
described by wave packets tightly peaked about the energies p0

1 and p0
2. The above mapping

is easily inverted

x1 = X +
√

p0
2

p0
1
Z1 x2 = X −

√
p0

1
p0

2
Z1 (3.13)

y1 = Y +
√

p0
2

p0
1
Z2 y2 = Y −

√
p0

1
p0

2
Z2 (3.14)

The map between the fields is

η(t, X +
√

p0
2

p0
1
Z1, Y +

√
p0

2
p0

1
Z2, X −

√
p0

1
p0

2
Z1, Y −

√
p0

1
p0

2
Z2) = ϕ(t, X, Y, Z1, Z2) (3.15)

3.3 Collective field theory is holographic

The collective field is over complete. The collective field theory formalism quantizes treating
all degrees of freedom in the collective field as independent. Consequently collective field
theory necessarily provides a redundant description. A natural consequence of this over
completeness is that degrees of freedom in the collective field in one region can sometimes
be equated to a combination of degrees of freedom of the collective field in another region.
This is highly reminscent of the phenomenon of complementarity which arises in quantum
gravity [17–22]. Making use of the mappings reviewed in sections 3.1 and 3.2 in this
section we will characterize the redundancy further, arguing that collective field theory
is holographic.

To start we will sketch our strategy in a simple example. Our basic tool to explore
this redundancy is the operator product expansion (OPE). In conformal field theory the
OPE expresses the product of two fields at different spacetime events as a sum of a (usually
infinite) number of fields at a single event. The OPE is typically used within a correlator.
The radius of convergence of the OPE inside a correlator is not predetermined but depends
on the next-closest operator insertion. Consider a correlator of the form

⟨0| · · · η(t, x⃗1, x⃗2)|0⟩ (3.16)

where · · · stands for the remaining operators in the correlator and the separation between
|x⃗1 − x⃗2| is small compared to the distance to any other operator. See figure 1 for an
illustration. In this case the OPE can be applied to the bilocal field which itself is given
by a product of two scalar fields. This implies a relation between a bilocal with separated
fields and a bilocal with coincident fields. Since the OPE replaces the bilocal collective field
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x⃗1 x⃗2 x⃗4 x⃗5 · · · x⃗n

X (parallel to the boundary)
Z

Figure 1. The horizontal direction, parametrized by X, is parallel to the boundary. The vertical
direction, perpendicular to the boundary is parametrized by the emergent holographic coordinate Z.
The fields within the bilocal η(t, x⃗1, x⃗2) are at x⃗1 and x⃗2. The distance between these fields is much
smaller than the distance to any other fields appearing in the correlator so that we can safely apply
the OPE to η(t, x⃗1, x⃗2) without worrying about convergence.

with a sum of single trace primaries of the CFT, knowing where in the bulk the original
bilocal maps to as well as where in the bulk the single trace primaries map to, we find an
equality between fields that are defined at different locations. With the basic idea stated,
we will now fill in the details.

We need the OPE of two free scalar fields which is given by (see for example [43])

N∑
a=1

: ϕa(xµ + yµ)ϕa(xµ − yµ) :=
∞∑

s=0

∞∑
d=0

csd

(
yµ ∂

∂xµ

)2d

J2s(y, x) (3.17)

The sum on the right hand side goes over the complete set of single trace primary operators,
which includes a scalar J0 and a conserved current of every even integer spin J2s(y, x). The
number csd tells us about the contribution of the level 2d descendant of the primary current
with spin 2s. The explicit expressions for these coefficients are

c0d = 1
22d(d!)2 and csd = (2s)!(4s − 1)!!

d!22d+4s−1(d + 2s)! s > 0 (3.18)

The explicit formula for the conserved currents is

Js(y, x) = Jµ1µ2···µs(x)yµ1yµ2 · · · yµs

=
s∑

k=0

(−1)k : (y · ∂)s−kϕa(x) (y · ∂)kϕa(x) :
k!(s − k)!Γ

(
k + 1

2

)
Γ
(
s − k + 1

2

) (3.19)

Since the result of evaluating the OPE is expressed in terms of a sum over single trace
primaries, it is interesting to ask where these single trace primaries map to in the AdS4
bulk. Using the covariant description, the scalar primary is given by

ϕa(t, x⃗)ϕa(t, x⃗) = η(t, x⃗, x⃗) (3.20)

Although this field contains many different p0 contributions, by (3.11) it is clear that these
all map to Z = 0. Exactly the same conclusion follows if we use the lightfront bilocal
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holography map. To express the conserved currents (3.19) in terms of the bilocal field, we
need to separate the locations of the fields slightly so that we can act with derivatives on
either field separately. For example, in the covariant description we have

Js(xµ
1 , y) =

s∑
k=0

(−1)k : (y · ∂1)s−k (y · ∂2)k :
k!(s − k)!Γ

(
k + 1

2

)
Γ
(
s − k + 1

2

)η(t, x⃗1, x⃗2)
∣∣∣
x⃗2=x⃗1

≡ D(s)η(t, x⃗1, x⃗1) (3.21)

It is enough to separate x⃗1 and x⃗2 by an arbitrarily small amount ϵ = |x⃗1 − x⃗2|, evaluate
the relevant derivatives and then set x⃗2 = x⃗1 = x⃗. Thus, we can construct the current at x⃗

from the bilocal field η(t, x⃗1, x⃗2) with |x⃗1 − x⃗2| < ϵ where ϵ is arbitrarily small. From (3.19)
we have

Z =

√
p0

1p0
2

p0
1 + p0

2
|x⃗1 − x⃗2| (3.22)

Since the energy p0 > 0, we know that 0 <

√
p0

1p0
2

p0
1+p0

2
< 1. Consequently, the conserved

currents all map to an arbitrarily small neighbourhood of the boundary Z < ϵ. Precisely
the same conclusion is easily demonstrated using the lightcone bilocal map. We conclude
that the complete set of single trace primary operators, after mapping to the dual gravity,
are supported in an arbitrarily small neighbourhood of the boundary. Returning to (3.16)
we can write

⟨0| · · · η(t, x⃗1, x⃗2)|0⟩=
∞∑

s=0

∞∑
d=0

csd

(
(x1−x2)µ ∂

∂xµ
1

)2d

⟨0| · · · D(2s)η(t, x⃗1, x⃗1)|0⟩ (3.23)

By taking |x⃗1 − x⃗2| to be arbitrarily well separated η(t, x⃗1, x⃗2) on the l.h.s. maps to a higher
spin gravity field located arbitrarily deep in the bulk while D(2s)η(t, x⃗1, x⃗1) is located in an
arbitrarily small neighbourhood of the boundary. Thus, under the conditions stated above,
the redundancy in the collective field description implies that any bulk field can be written
as a linear combination of fields located at the boundary.

Although this is highly suggestive, it is not yet enough to conclude that collective field
theory is holographic. The point is that there are many different channels for the OPE
i.e. many different choices about the order in which pairs of fields are collapsed to a local
field using the OPE. This is not determined by the way color indices a are contracted, but
rather it is determined by the location of the fields in spacetime. As an example, we might
have the correlator

⟨0| · · · η(t, x⃗1, x⃗2)η(t, x⃗3, x⃗4)|0⟩ (3.24)

Here · · · again stands for additional operators in the correlators and the distances lij =
|x⃗i − x⃗j | for i, j ∈ {1, 2, 3, 4} are small compared to the distance to any operator in · · · .
In the case that l13 and l24 are small compared to the other distances lij , the convergent
OPE channel is obtained by collapsing the pair of scalar fields at x⃗1 and x⃗3 producing a
sum over operators at x⃗1, and the pair at x⃗2 and x⃗4 producing a sum over operators at
x⃗2. Since the pairs of fields to which the OPE was applied do not correspond to a single
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x⃗1 x⃗3 x⃗2 x⃗4 x⃗4 x⃗5 · · · x⃗n

X (parallel to the boundary)
Z

Figure 2. The fields within the bilocal η(t, x⃗1, x⃗2) are at x⃗1 and x⃗2 and the fields within the bilocal
η(t, x⃗3, x⃗4) are at x⃗3 and x⃗4. The convergent OPE channel is when we first collapse the fields at x⃗1
and x⃗3 to obtain a sum over operators at x⃗1+x⃗3

2 and we collapse the fields at x⃗2 and x⃗4 to obtain a
sum over operators at x⃗2+x⃗4

2 . Finally we use the OPE to collapse operators at x⃗1+x⃗3
2 and operators

at x⃗2+x⃗4
2 .

bilocal, the result of these two applications of the OPE does not produce an O(N) singlet.
An O(N) singlet is however obtained if we now use the OPE again to collapse the fields at
x⃗1 with those at x⃗2. We will now make the plausible assumption that the algebra of the
single trace primaries generates the complete set of gauge invariant operators. Under this
assumption, since the local single trace primaries map to operators defined in an arbitrarily
small neighbourhood of the boundary, the complete set of local gauge invariant operators
will again map to operators that belong to the same neighbourhood. Consequently, in the
above example, the product of collective fields η(t, x⃗1, x⃗2)η(t, x⃗3, x⃗4) which corresponds to
a product of two fields in the bulk, can again be replaced by a linear combination of fields
located at the boundary.

It is clear how this argument generalizes to the product of an arbitrary number of η

fields, so that we can conclude that the redundancy present in the collective field theory is
such that an arbitrary product of bulk operators can be replaced by a linear combination
of fields located at the boundary. We therefore conclude that collective field theory is
holographic and so it is a theory of gravity.

3.4 Collective redundancy and diffeomorphism invariance

Diffeomorphism invariance is a fundamental principle of gravity. It ensures that the theory
doesn’t depend on the specific coordinates used to describe spacetime and consequently
that it is a geometric theory. Diffeomorphism invariance is realized in the theory as a
gauge symmetry, so that it signals a huge redundancy in the description of gravity: two
states related by a diffeomorphism correspond to the same physical state. Reducing to the
non-redundant degrees of freedom we find that the theory is holographic [14]. This is a
rather beautiful conclusion: endowing a theory with diffeomorphism invariance is a way in
which we can ensure that it is holographic.

A central feature of collective field theory is that it uses an over complete set of
collective fields to describe the CFT. Each degree of freedom in the collective field is treated
as independent so that the collective field theory has more degrees of freedom that the
original CFT had. Collective field theory is therefore necessarily a redundant description.
In the previous section we have studied this redundancy, arguing that collective field theory
is holographic.
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These results suggest that perhaps the redundancy present in collective field theory is
the origin of diffeomorphism invariance of the gravitational theory that is the AdS/CFT
dual of the CFT. Indeed, if this is not the case it means that collective field theory is a
completely different way in which holographic theories can be constructed, which seems
far less plausible. Recall that the constraints of diffeomorphism invariance are summarized
in the Hamiltonian and momentum constraints. The integrated Hamiltonian constraint,
which played a central role in the analysis of [14], leads to the gravitational Gauss law. It
basically states an equality of a bulk energy and the boundary ADM Hamiltonian. A very
similar statement can be derived in collective field theory by the following logic: consider a
collective field which maps to a gravity field in the bulk of AdS. We can evolve it through
an infinitesimal time interval by computing it’s commutator with the Hamiltonian, and
then use the OPE to map the result to the boundary. Alternatively, we could first use
the OPE to map this to a combination of boundary degrees of freedom and then evolve it
through an infinitesimal time interval using the Hamiltonian. The equality of these two
procedures is the statement that the dynamics respects the redundancy of the collective
field and it is assured by the consistency of collective field theory. In this way we relate the
action of the Hamiltonian on bulk degrees of freedom to the action of the Hamiltonian on
boundary degrees of freedom. It would be interesting to see if the gravitational Gauss law
can be reproduced in this way.

The gravitational Gauss law is obtained by integrating the Hamiltonian constraint.
The Hamiltonian and momentum constraints are an infinite number of constraints, holding
at each point of the Cauchy slice. The solution to the integrated Hamiltonian constraint
does not itself give a solution to these constraints at each point. However, [14] have argued
that each solution of the gravitational Gauss law can be uniquely uplifted to a solution of
the pointwise constraints. To be more explicit, the fluctuation of the metric about the AdS
background can be decomposed into a transverse-traceless (TT), a longitudinal (L) and a T
component (see [14] for details)

hij = hTT
ij + hL

ij + hT
ij (3.25)

The solution to the gravitational Gauss law fixes the dependence of the wavefunctional
on hTT

ij and the matter fields. Uplifting the solution determines the dependence of the
wavefunctional on hL

ij and hT
ij . This analysis suggests that there is a consistent truncation

of the dynamics to hTT
ij and the matter fields. It is natural to expect that this truncation

of the gravity corresponds to the collective field theory description obtained using the
equal time bilocals,7 while the description before truncation corresponds to the description
obtained using unequal time bilocals. Of course, the gravity dual to the bilocals has to
be supplemented with higher spin gauge fields, representing a non-trivial extension of the
analysis of [14].

3.5 Additional redundancies at finite N

The redundancies we have exhibited above arise because the collective field is a composite of
fundamental fields. Since the fundamental fields themselves obey a non-trivial algebra, there

7The wavefunctionals of hTT and the matter obtained in [14] employ an ordinary free-field Fock space.
The large N equal time bilocals are also described using an ordinary free-field Fock space.
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are non-trivial relations between the bilocal field. We have explored these redundancies using
the OPE. The structure and properties of the OPE are largely determined by conformal
symmetry and are not dependent on the value of N . In particular, these redundancies are
present in the large N limit and we expect them to be present in perturbative gravity. It
is then possible that these match the redundancies that are exhibited in a perturbative
analysis of the Wheeler-De Witt equation.

There are additional redundancies that appear for finite N . Since 1/N sets the strength
of the gravitational interaction, these effects correspond to the physics of strong gravity
fields. The simplest way to exhibit these redundancies is at N = 1 where the bilocal is just
the product of two fields

σ(t, x⃗, y⃗) = ϕ(t, x⃗)ϕ(t, y⃗) (3.26)

We obviously have the identities

σ(t, x⃗1, x⃗2)σ(t, x⃗3, x⃗4) = σ(t, x⃗1, x⃗3)σ(t, x⃗2, x⃗4) = σ(t, x⃗1, x⃗4)σ(t, x⃗2, x⃗3) (3.27)

These are again because the field is a composite, but they are of course, not related to
conformal symmetry. For the OPE we had to carefully consider the conditions under which
the OPE converges. That is not the case for the identities above. To see the redundancies
present for a general but finite value of N , choose a point x⃗ and a collection of N +1 points
y⃗i, i = 1, 2, · · ·N + 1. It is then straightforward to verify that

ϵi1i2···iN+1σ(t, y⃗, x⃗i1)σ(t, y⃗, x⃗i2) · · ·σ(t, y⃗, x⃗iN+1) = 0 (3.28)

The product of operators given above creates a state of dimension N + 1 and hence this
redundancy is a new redundancy that is present between heavy operators in the dual
gravity theory. These redundancies were studied in vector models at finite temperature
in [62]. There is a large N transition at a very high temperature of order

√
N driven by

the decrease in the number of degrees of freedom from that of the simple higher spin gas,
due to these relations.

4 Non-Abelian gauge theories

Our discussion has focused on vector models. Vector models are simple enough that we
can explicitly construct the holographic mapping between the CFT and the dual AdS
gravity. This simplicity follows because the complete set of single trace gauge invariant
operators can conveniently be packaged in a single bilocal field, making the bilocal a natural
candidate for the collective field. For matrix models involving more than one matrix, the
space of gauge invariant observables is much richer. Although one can write down candidate
collective fields, working with these fields is considerably more difficult and constructing the
holographic mapping in this case remains an important outstanding problem. However, as
we discuss below, even without the detailed holographic map there is evidence suggesting
that the argument given above for vector models will generalize to matrix models.

The collective field is constructed, as usual, from the set of gauge invariant fields. To
construct gauge invariant operators we can use Wilson lines to sew together local adjoint
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valued local operators that are located at different spacetime locations. Our arguments in
section 3 above used the detailed mapping between gauge invariant operators in the CFT
and operators in the bulk of the dual gravity. Although we can’t be precise about these
details, we do have some general expectations based on our experience with AdS/CFT.
The basic observation we use is the scale radius duality [63], which tells us that point like
operators are located at the boundary of AdS, whereas extended operators are located deep
in the bulk. Thus, scale/radius duality suggests that the holographic mapping will place
local operators at the boundary of AdS and extended operators deeper in the bulk. The
larger the “size” of the operator, the deeper it sits in the bulk. This is very obviously a
property of the vector model mapping given in sections 3.1 and 3.2, where the distance
between the two fields in the bilocal does indeed determine the value of the Z coordinate.
Appealing to scale/radius duality, we will assume that this will also be a property of the
holographic mapping for multi-matrix CFTs like N = 4 super Yang-Mills theory.

In this case we can again use the OPE to collapse a product of operators at different
locations into a local operator. With our assumption about the holographic mapping for
multi-matrix CFTs, the OPE again relates bulk degrees of freedom to a linear combination
of boundary degrees of freedom. This shows that the collective field theory description of
multi-matrix CFTs is a redundant description and that the theory is again holographic i.e.
that the collective field theory of multi-matrix CFTs is a theory of gravity.

Just as is the case for vector models, in matrix models we also expect additional
redundancies to arise at finite N . These relations are between composite operators and
they first appear when the composite operators contain more than N fields. Thus this
redundancy is again a statement about the equality of heavy operators in the dual gravity
theory. Bases for these operators can be given by operators labelled by Young diagrams [64–
66], in which case these finite N relations are solved by restricting to operators labelled by
Young diagrams with no more than N rows. These finite N redundancies are again very
different to redundancies that are exhibited by using the OPE.

5 Conclusions

This article has discussed the collective field theory description of vector models and multi-
matrix models, which are both ordinary (non-gravitational) field theories. For the case of a
single matrix, it’s well known that the collective field theory of a single Hermittian matrix
leads to the Das-Jevicki Hamiltonian [51] which reproduces the string field theory of the
c = 1 string. For the vector model the collective description leads to bilocal holography,
which gives an explicit and detailed map between the CFT and the dual higher spin
gravity. In both of these cases, collective field theory leads to a description in terms of
gravitational dynamics. In this article we have put forward an explanation of the origin of
that gravitational dynamics. The hallmark of gravity is diffeomorphism invariance, which
signals an enormous redundancy in the dynamics of the system. Solving the constraints
implied by diffeomorphism invariance and thereby reducing to the non-redundant degrees
of freedom shows that these theories are holographic: the number of physical degrees of
freedom grows like the area of the boundary of the system. The collective field theory
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also has an enormous redundancy in its dynamics. This redundancy appears because the
collective field is in fact an over complete description, and the collective field formalism
treats each degree of freedom in the collective field as independent. We have argued that
the redundancy introduced by the over complete collective field is precisely what is needed
to produce a holographic theory i.e. a theory of gravity. Our evidence for this was arrived
at by carefully studying this redundancy in the case of bilocal holography and concluding
that any bulk field can be expressed as a combination of boundary degrees of freedom. For
the case of the collective field description of multi-matrix models CFTs, we have given some
plausibility arguments that the same conclusion holds.

We have speculated that there may be a direct relation between the redundancy in
the collective field theory description and diffeomorphism invariance in the dual gravity
theory. As we have argued above, applying the OPE to the collective field exhibits an
equality between naively independent degree of freedom. The dynamics of collective field
theory, which respects conformal invariance, will respect identifications deduced using the
OPE. We can rewrite a field using the OPE and then evolve it dynamically, or we could
evolve it dynamically and then rewrite it using the OPE. These two procedures must
give the same result. This suggests that one way in which the dynamical content of the
collective redundancy could be approached is to ask how the dynamics is constrained by
the requirement that it commutes with the OPE, as just described.

It is worth noting that the collective field theory formalism is equally applicable
to ordinary quantum field theories as well as the more special case of conformal field
theories. For the collective field theory of the Hermitian matrix model [51] the theory is not
conformally invariant. In this case the collective field theory reproduces the c = 1 string so
it represents an example of gauge theory/gravity duality which is not obviously implied by
the AdS/CFT correspondence. For vector models, the redundancy is present regardless of
whether the theory is conformal. The conformal symmetry does however make it simple
(through the use of the OPE) to analyse the redundancies present in the collective field. It
would be interesting to further explore the gauge/gravity duality for these non-conformal
quantum field theories, as well as for multi-matrix theories. For the case of multi-matrix
theories, deriving the holographic mapping for the simpler case of a conformal field theory
would be significant progress.

As a final remark, our results point out an interesting interplay between the gauge
symmetry of the original CFT and gravity dynamics: the original gauge symmetry determines
the form of the gauge invariant fields and hence of the collective field. The collective field is
redundant and this redundancy is highly dependent on details of this gauge symmetry. The
holographic nature of the theory then arises from the redundancy in this description.

Acknowledgments

This research is supported by a start up research fund of Huzhou University, a Zhejiang
Province talent award and by a Changjiang Scholar award. The author would like to thank
the Isaac Newton Institute for Mathematical Schiences for support and hospitality during
the programme “Black holes: bridges between number theory and holographic quantum

– 17 –



J
H
E
P
1
0
(
2
0
2
3
)
1
5
1

information” when work on this paper was completed. This work was supported by EPSRC
Grant Number EP/R014604/1. We thank Suvrat Raju for helpful correspondence on [14].
We thank Cameron Beetar, Garry Kemp, Jaco Van Zyl and especially Antal Jevicki for
very useful discussions on the subject of this paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284
[gr-qc/9310026] [INSPIRE].

[2] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089]
[INSPIRE].

[3] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[4] D. Marolf, Unitarity and Holography in Gravitational Physics, Phys. Rev. D 79 (2009) 044010
[arXiv:0808.2842] [INSPIRE].

[5] T. Jacobson, Boundary unitarity and the black hole information paradox, Int. J. Mod. Phys. D
22 (2013) 1342002 [arXiv:1212.6944] [INSPIRE].

[6] K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212
[arXiv:1211.6767] [INSPIRE].

[7] S. Banerjee, J.-W. Bryan, K. Papadodimas and S. Raju, A toy model of black hole
complementarity, JHEP 05 (2016) 004 [arXiv:1603.02812] [INSPIRE].

[8] S. Raju, A Toy Model of the Information Paradox in Empty Space, SciPost Phys. 6 (2019) 073
[arXiv:1809.10154] [INSPIRE].

[9] S. Raju, Is Holography Implicit in Canonical Gravity?, Int. J. Mod. Phys. D 28 (2019)
1944011 [arXiv:1903.11073] [INSPIRE].

[10] T. Jacobson and P. Nguyen, Diffeomorphism invariance and the black hole information
paradox, Phys. Rev. D 100 (2019) 046002 [arXiv:1904.04434] [INSPIRE].

[11] A. Laddha, S.G. Prabhu, S. Raju and P. Shrivastava, The Holographic Nature of Null Infinity,
SciPost Phys. 10 (2021) 041 [arXiv:2002.02448] [INSPIRE].

[12] C. Chowdhury, O. Papadoulaki and S. Raju, A physical protocol for observers near the
boundary to obtain bulk information in quantum gravity, SciPost Phys. 10 (2021) 106
[arXiv:2008.01740] [INSPIRE].

[13] S. Raju, Lessons from the information paradox, Phys. Rept. 943 (2022) 1 [arXiv:2012.05770]
[INSPIRE].

[14] C. Chowdhury, V. Godet, O. Papadoulaki and S. Raju, Holography from the Wheeler-DeWitt
equation, JHEP 03 (2022) 019 [arXiv:2107.14802] [INSPIRE].

[15] S. Raju, Failure of the split property in gravity and the information paradox, Class. Quant.
Grav. 39 (2022) 064002 [arXiv:2110.05470] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/gr-qc/9310026
https://inspirehep.net/literature/36137
https://doi.org/10.1063/1.531249
https://arxiv.org/abs/hep-th/9409089
https://inspirehep.net/literature/376940
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1103/PhysRevD.79.044010
https://arxiv.org/abs/0808.2842
https://inspirehep.net/literature/793537
https://doi.org/10.1142/S0218271813420029
https://doi.org/10.1142/S0218271813420029
https://arxiv.org/abs/1212.6944
https://inspirehep.net/literature/1208819
https://doi.org/10.1007/JHEP10(2013)212
https://arxiv.org/abs/1211.6767
https://inspirehep.net/literature/1204765
https://doi.org/10.1007/JHEP05(2016)004
https://arxiv.org/abs/1603.02812
https://inspirehep.net/literature/1426819
https://doi.org/10.21468/SciPostPhys.6.6.073
https://arxiv.org/abs/1809.10154
https://inspirehep.net/literature/1695901
https://doi.org/10.1142/S0218271819440115
https://doi.org/10.1142/S0218271819440115
https://arxiv.org/abs/1903.11073
https://inspirehep.net/literature/1726889
https://doi.org/10.1103/PhysRevD.100.046002
https://arxiv.org/abs/1904.04434
https://inspirehep.net/literature/1728976
https://doi.org/10.21468/SciPostPhys.10.2.041
https://arxiv.org/abs/2002.02448
https://inspirehep.net/literature/1778932
https://doi.org/10.21468/SciPostPhys.10.5.106
https://arxiv.org/abs/2008.01740
https://inspirehep.net/literature/1810220
https://doi.org/10.1016/j.physrep.2021.10.001
https://arxiv.org/abs/2012.05770
https://inspirehep.net/literature/1835780
https://doi.org/10.1007/JHEP03(2022)019
https://arxiv.org/abs/2107.14802
https://inspirehep.net/literature/1896593
https://doi.org/10.1088/1361-6382/ac482b
https://doi.org/10.1088/1361-6382/ac482b
https://arxiv.org/abs/2110.05470
https://inspirehep.net/literature/1941368


J
H
E
P
1
0
(
2
0
2
3
)
1
5
1

[16] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of
General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

[17] G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256 (1985) 727
[INSPIRE].

[18] L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole
complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[19] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole
Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

[20] K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the
Information Paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].

[21] K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence
in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

[22] K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115
(2015) 211601 [arXiv:1502.06692] [INSPIRE].

[23] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[24] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[25] A. Jevicki and B. Sakita, The Quantum Collective Field Method and Its Application to the
Planar Limit, Nucl. Phys. B 165 (1980) 511 [INSPIRE].

[26] A. Jevicki and B. Sakita, Collective Field Approach to the Large N Limit: Euclidean Field
Theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].

[27] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in
(3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

[28] M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dSd, Phys.
Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

[29] A. Jevicki and J.P. Rodrigues, Master Variables and Spectrum Equations in Large N Theories,
Nucl. Phys. B 230 (1984) 317 [INSPIRE].

[30] A. Jevicki and J.P. Rodrigues, Loop space Hamiltonians and field theory of noncritical strings,
Nucl. Phys. B 421 (1994) 278 [hep-th/9312118] [INSPIRE].

[31] R. de Mello Koch and J.P. Rodrigues, Systematic 1/N corrections for bosonic and fermionic
vector models without auxiliary fields, Phys. Rev. D 54 (1996) 7794 [hep-th/9605079]
[INSPIRE].

[32] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B
550 (2002) 213 [hep-th/0210114] [INSPIRE].

[33] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303
[hep-th/0205131] [INSPIRE].

[34] S.R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev. D 68 (2003)
044011 [hep-th/0304093] [INSPIRE].

[35] R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS4/CFT3 Construction from
Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

– 19 –

https://doi.org/10.1016/0003-4916(74)90404-7
https://inspirehep.net/literature/89501
https://doi.org/10.1016/0550-3213(85)90418-3
https://inspirehep.net/literature/205470
https://doi.org/10.1103/PhysRevD.48.3743
https://arxiv.org/abs/hep-th/9306069
https://inspirehep.net/literature/355341
https://doi.org/10.1103/PhysRevD.89.086010
https://arxiv.org/abs/1310.6335
https://inspirehep.net/literature/1261878
https://doi.org/10.1103/PhysRevLett.112.051301
https://arxiv.org/abs/1310.6334
https://inspirehep.net/literature/1261877
https://doi.org/10.1103/PhysRevD.93.084049
https://arxiv.org/abs/1503.08825
https://inspirehep.net/literature/1357183
https://doi.org/10.1103/PhysRevLett.115.211601
https://doi.org/10.1103/PhysRevLett.115.211601
https://arxiv.org/abs/1502.06692
https://inspirehep.net/literature/1346251
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/literature/467202
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://doi.org/10.1016/0550-3213(80)90046-2
https://inspirehep.net/literature/8331
https://doi.org/10.1016/0550-3213(81)90365-5
https://inspirehep.net/literature/155979
https://doi.org/10.1016/0370-2693(90)91400-6
https://inspirehep.net/literature/28286
https://doi.org/10.1016/S0370-2693(03)00872-4
https://doi.org/10.1016/S0370-2693(03)00872-4
https://arxiv.org/abs/hep-th/0304049
https://inspirehep.net/literature/616552
https://doi.org/10.1016/0550-3213(84)90216-5
https://inspirehep.net/literature/13991
https://doi.org/10.1016/0550-3213(94)90329-8
https://arxiv.org/abs/hep-th/9312118
https://inspirehep.net/literature/361089
https://doi.org/10.1103/PhysRevD.54.7794
https://arxiv.org/abs/hep-th/9605079
https://inspirehep.net/literature/418479
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
https://inspirehep.net/literature/599484
https://doi.org/10.1016/S0550-3213(02)00739-3
https://arxiv.org/abs/hep-th/0205131
https://inspirehep.net/literature/586795
https://doi.org/10.1103/PhysRevD.68.044011
https://doi.org/10.1103/PhysRevD.68.044011
https://arxiv.org/abs/hep-th/0304093
https://inspirehep.net/literature/616775
https://doi.org/10.1103/PhysRevD.83.025006
https://arxiv.org/abs/1008.0633
https://inspirehep.net/literature/864202


J
H
E
P
1
0
(
2
0
2
3
)
1
5
1

[36] A. Jevicki, K. Jin and Q. Ye, Collective Dipole Model of AdS/CFT and Higher Spin Gravity, J.
Phys. A 44 (2011) 465402 [arXiv:1106.3983] [INSPIRE].

[37] A. Jevicki, K. Jin and Q. Ye, Bi-local Model of AdS/CFT and Higher Spin Gravity, in the
proceedings of the 11th Workshop on Non-Perturbative Quantum Chromodynamics, Paris
France, June 6–10 (2011) [arXiv:1112.2656] [INSPIRE].

[38] R. de Mello Koch et al., S = 1 in O(N)/HS duality, Class. Quant. Grav. 30 (2013) 104005
[arXiv:1205.4117] [INSPIRE].

[39] R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Holography as a Gauge
Phenomenon in Higher Spin Duality, JHEP 01 (2015) 055 [arXiv:1408.1255] [INSPIRE].

[40] R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical Formulation of O(N)
Vector/Higher Spin Correspondence, J. Phys. A 48 (2015) 105403 [arXiv:1408.4800]
[INSPIRE].

[41] R. de Mello Koch, A. Jevicki, K. Suzuki and J. Yoon, AdS Maps and Diagrams of Bi-local
Holography, JHEP 03 (2019) 133 [arXiv:1810.02332] [INSPIRE].

[42] R. de Mello Koch, E. Gandote, N.H. Tahiridimbisoa and H.J.R. Van Zyl, Quantum error
correction and holographic information from bilocal holography, JHEP 11 (2021) 192
[arXiv:2106.00349] [INSPIRE].

[43] R. de Mello Koch and G. Kemp, Holography of information in AdS/CFT, JHEP 12 (2022) 095
[arXiv:2210.11066] [INSPIRE].

[44] R. de Mello Koch, Microscopic entanglement wedges, JHEP 08 (2023) 056
[arXiv:2307.05032] [INSPIRE].

[45] O. Aharony, S.M. Chester and E.Y. Urbach, A Derivation of AdS/CFT for Vector Models,
JHEP 03 (2021) 208 [arXiv:2011.06328] [INSPIRE].

[46] O. Aharony, S.M. Chester and E.Y. Urbach, AdS from CFT for scalar QED, Phys. Rev. D
104 (2021) 126011 [arXiv:2109.05512] [INSPIRE].

[47] O. Aharony, S.M. Chester, T. Sheaffer and E.Y. Urbach, Explicit holography for vector models
at finite N, volume and temperature, JHEP 03 (2023) 016 [arXiv:2208.13607] [INSPIRE].

[48] M. Mulokwe and J.P. Rodrigues, Large N bilocals at the infrared fixed point of the three
dimensional O(N) invariant vector theory with a quartic interaction, JHEP 11 (2018) 047
[arXiv:1808.00042] [INSPIRE].

[49] C. Johnson, M. Mulokwe and J.P. Rodrigues, Constructing the bulk at the critical point of
three-dimensional large N vector theories, Phys. Lett. B 829 (2022) 137056
[arXiv:2201.10214] [INSPIRE].

[50] C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

[51] S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D = 1 Strings,
Mod. Phys. Lett. A 5 (1990) 1639 [INSPIRE].

[52] K. Demeterfi, A. Jevicki and J.P. Rodrigues, Scattering amplitudes and loop corrections in
collective string field theory, Nucl. Phys. B 362 (1991) 173 [INSPIRE].

[53] K. Demeterfi, A. Jevicki and J.P. Rodrigues, Scattering amplitudes and loop corrections in
collective string field theory. II, Nucl. Phys. B 365 (1991) 499 [INSPIRE].

[54] A. Jevicki, Nonperturbative collective field theory, Nucl. Phys. B 376 (1992) 75 [INSPIRE].

– 20 –

https://doi.org/10.1088/1751-8113/44/46/465402
https://doi.org/10.1088/1751-8113/44/46/465402
https://arxiv.org/abs/1106.3983
https://inspirehep.net/literature/914244
https://arxiv.org/abs/1112.2656
https://inspirehep.net/literature/1080943
https://doi.org/10.1088/0264-9381/30/10/104005
https://arxiv.org/abs/1205.4117
https://inspirehep.net/literature/1115313
https://doi.org/10.1007/JHEP01(2015)055
https://arxiv.org/abs/1408.1255
https://inspirehep.net/literature/1310022
https://doi.org/10.1088/1751-8113/48/10/105403
https://arxiv.org/abs/1408.4800
https://inspirehep.net/literature/1311856
https://doi.org/10.1007/JHEP03(2019)133
https://arxiv.org/abs/1810.02332
https://inspirehep.net/literature/1696984
https://doi.org/10.1007/JHEP11(2021)192
https://arxiv.org/abs/2106.00349
https://inspirehep.net/literature/1866387
https://doi.org/10.1007/JHEP12(2022)095
https://arxiv.org/abs/2210.11066
https://inspirehep.net/literature/2168020
https://doi.org/10.1007/JHEP08(2023)056
https://arxiv.org/abs/2307.05032
https://inspirehep.net/literature/2676015
https://doi.org/10.1007/JHEP03(2021)208
https://arxiv.org/abs/2011.06328
https://inspirehep.net/literature/1829802
https://doi.org/10.1103/PhysRevD.104.126011
https://doi.org/10.1103/PhysRevD.104.126011
https://arxiv.org/abs/2109.05512
https://inspirehep.net/literature/1921018
https://doi.org/10.1007/JHEP03(2023)016
https://arxiv.org/abs/2208.13607
https://inspirehep.net/literature/2142674
https://doi.org/10.1007/JHEP11(2018)047
https://arxiv.org/abs/1808.00042
https://inspirehep.net/literature/1684670
https://doi.org/10.1016/j.physletb.2022.137056
https://arxiv.org/abs/2201.10214
https://inspirehep.net/literature/2017393
https://doi.org/10.1103/PhysRevD.18.3624
https://inspirehep.net/literature/130533
https://doi.org/10.1142/S0217732390001888
https://inspirehep.net/literature/296017
https://doi.org/10.1016/0550-3213(91)90561-B
https://inspirehep.net/literature/314264
https://doi.org/10.1016/S0550-3213(05)80030-6
https://inspirehep.net/literature/315415
https://doi.org/10.1016/0550-3213(92)90068-M
https://inspirehep.net/literature/316815


J
H
E
P
1
0
(
2
0
2
3
)
1
5
1

[55] A. Jevicki, O. Karim, J.P. Rodrigues and H. Levine, Loop Space Hamiltonians and Numerical
Methods for Large N Gauge Theories, Nucl. Phys. B 213 (1983) 169 [INSPIRE].

[56] A. Jevicki, O. Karim, J.P. Rodrigues and H. Levine, Loop Space Hamiltonians and Numerical
Methods for Large N Gauge Theories. II, Nucl. Phys. B 230 (1984) 299 [INSPIRE].

[57] R.M. Koch et al., Large N optimization for multi-matrix systems, JHEP 01 (2022) 168
[arXiv:2108.08803] [INSPIRE].

[58] K. Mathaba, M. Mulokwe and J.P. Rodrigues, Large N Master Field Optimization: the
Quantum Mechanics of two Yang-Mills coupled Matrices, arXiv:2306.00935 [INSPIRE].

[59] R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT
correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].

[60] R.R. Metsaev, Shadows, currents and AdS, Phys. Rev. D 78 (2008) 106010
[arXiv:0805.3472] [INSPIRE].

[61] R.R. Metsaev, CFT adapted gauge invariant formulation of arbitrary spin fields in AdS and
modified de Donder gauge, Phys. Lett. B 671 (2009) 128 [arXiv:0808.3945] [INSPIRE].

[62] S.H. Shenker and X. Yin, Vector Models in the Singlet Sector at Finite Temperature,
arXiv:1109.3519 [INSPIRE].

[63] L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114
[INSPIRE].

[64] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4
SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

[65] T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS
operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].

[66] R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03
(2008) 044 [arXiv:0801.2061] [INSPIRE].

– 21 –

https://doi.org/10.1016/0550-3213(83)90180-3
https://inspirehep.net/literature/178753
https://doi.org/10.1016/0550-3213(84)90215-3
https://inspirehep.net/literature/13781
https://doi.org/10.1007/JHEP01(2022)168
https://arxiv.org/abs/2108.08803
https://inspirehep.net/literature/1907956
https://arxiv.org/abs/2306.00935
https://inspirehep.net/literature/2664624
https://doi.org/10.1016/S0550-3213(99)00554-4
https://arxiv.org/abs/hep-th/9906217
https://inspirehep.net/literature/502581
https://doi.org/10.1103/PhysRevD.78.106010
https://arxiv.org/abs/0805.3472
https://inspirehep.net/literature/786433
https://doi.org/10.1016/j.physletb.2008.12.002
https://arxiv.org/abs/0808.3945
https://inspirehep.net/literature/793987
https://arxiv.org/abs/1109.3519
https://inspirehep.net/literature/927702
https://arxiv.org/abs/hep-th/9805114
https://inspirehep.net/literature/470706
https://doi.org/10.4310/ATMP.2001.v5.n4.a6
https://arxiv.org/abs/hep-th/0111222
https://inspirehep.net/literature/567216
https://doi.org/10.1088/1126-6708/2008/02/030
https://arxiv.org/abs/0711.0176
https://inspirehep.net/literature/767145
https://doi.org/10.1088/1126-6708/2008/03/044
https://doi.org/10.1088/1126-6708/2008/03/044
https://arxiv.org/abs/0801.2061
https://inspirehep.net/literature/777367

	Introduction
	Collective field theory
	Bilocal holography for vector models
	Lightfront bilocal holography mapping
	Covariant bilocal holography mapping
	Collective field theory is holographic
	Collective redundancy and diffeomorphism invariance
	Additional redundancies at finite N

	Non-Abelian gauge theories
	Conclusions

