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1 Introduction

Even though technically string theory is a well understood and applied mathematical frame-
work of quantum gravity, the recently developed swampland program has revealed that,
despite all its technical beauty, it conceals some of its underlying physical principles. It is
the aim of the swampland program (see [1–4] for reviews) to bring them to the front and, in
particular, to uncover its consequences for our low-energy effective field theory framework,
which we are used to employ very successfully, for instance, in the description of particle
physics in the form of the Standard Model.

One of the first formulated swampland conjectures is the Swampland Distance Conjec-
ture [5] (see [6, 7] for a refined version), which was studied in the context of here relevant
N = 2 supersymmetry in 4D in [8–17]. It has been generalized to more specialized set-
ups, like the AdS Distance Conjecture [18] and the Gravitino Distance Conjecture [19, 20].
The Swampland Distance Conjecture says that in asymptotic limits in field space towers
of exponentially light particle species appear. These are threatening the reliability of a
Wilsonian low-energy effective field theory (EFT) that is keeping only the degrees of free-
dom below a certain cut-off. In some sense this is an awkward situation, as the stringy
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corrections to such a low-energy description are usually believed to be only under control
in such asymptotic, i.e. weak coupling limits. And now another effect of quantum gravity
is about to threaten its validity in precisely such regions or at least to restrict strongly its
regime of validity? By moving over trans-Planckian distances in field space, new modes
need to be integrated into the EFT which in principle could change certain couplings in
the old EFT by inducing large corrections.

The so-called Emergence Proposal [8, 11, 21, 22] provides a new aspect to this situation.
It is based on a field theoretical analysis of the one-loop effects the light towers of states
have on certain quantities in the low-energy effective action. Initially, mostly the kinetic
terms for scalars, fermions and gauge couplings in four dimensions had been considered,
but more recently a more thorough analysis of emergence was carried out in [23, 24], which
also considered arbitrary dimensions and also e.g. scalar potentials. In [25, 26] it was shown
that the concept of emergence can also be applied to the effective field theory living in a
strongly warped throat. This appears close to a conifold point in complex structure space
and is at finite distance.

The important aspect of such a one-loop computation is that one integrates out those
states whose masses are below the cut-off of quantum gravity, which naively is the four-
dimensional Planck scale that, however, in the presence of many light species is known to
be lowered to the species scale [27, 28]. Interestingly, there are two classes of arguments
regarding the definition of the latter. In what we will call the QFT picture, it can be
defined as the energy scale where the one-loop corrections to graviton scattering processes
are of the same order as the tree-level ones. As such, it is defined by a one-loop effect
leading to the intriguing result that the so-defined sum over loop amplitudes turns out to
be independent of ℏ and looks like a classical contribution. Alternatively, the species scale
may be defined as the inverse radius of the smallest Black Hole that the EFT can describe.
We will refer to this as the BH picture. The compatibility of those two definitions is a
tricky issue and will be of relevance in the course of this work. Moreover, the species scale
is moduli dependent which was analyzed more recently in [29–33].

Furthermore, it turned out that in simple examples the moduli dependent induced field
metrics were of the same functional form as the usual tree-level ones. This gave rise to the
idea of two possible meanings of emergence in quantum gravity. Following the formulation
of [24], the Strong Emergence Proposal [1] states

Strong Emergence: in a theory of Quantum Gravity all light particles in a
perturbative regime have no kinetic terms in the UV. The required kinetic terms
appear as an IR effect due to loop corrections involving the sum over a tower
of massless states.

This is a very far-reaching and general proposal which would mean that quantum gravity
in the UV is maybe a very simple theory, e.g. of purely topological nature, which only
gives rise to geometric low-energy effective theories by integrating out the light towers of
states up to the species scale. See [34] for an application of this principle to the Yukawa
coupling in the Standard Model. Since the Strong Emergence Proposal is so general, it can
in principle easily be falsified by finding a controllable model that violates its claim.
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A much milder version is the Weak Emergence Proposal which does not assume van-
ishing kinetic terms in the UV and makes a statement about quantum corrections to the
metrics that match the “tree level” behavior. To describe the objective and the results of
this paper, it turns out to be useful to distinguish between two variants of Weak Emergence,
called Variant A and Variant B. The more restrictive Variant A may be formulated as

Weak Emergence (Variant A): in a consistent theory of Quantum Gravity, for
any singularity at infinite distance in the moduli space of the EFT, there are
associated infinite towers of states becoming massless. These towers induce
quantum corrections to the singular kinetic terms matching their tree-level be-
havior.

Implicitly this also means that no new singular dependence is generated at one-loop. This
formulation restricts to the dependence of the kinetic terms on the single modulus taken
to infinity. This is what was mostly studied so far in the literature. However, the full
moduli metric will also depend on the many directions orthogonal to the asymptotic one
and we would like to check whether also this dependence is (at least partially) recovered.
We therefore add a second variant of Weak Emergence, which reads

Weak Emergence (Variant B): at infinite distance in the EFT moduli space,
infinite towers of light states appear which induce quantum corrections match-
ing, beyond the singular ones from Variant A, some or even all the orthogonal
kinetic terms.

Since the second variant talks also about the non-singular terms, it is clearly stronger than
the first and closer in spirit to the strong version of the Emergence Proposal. An even more
restrictive assumption would be that there exists a notion of exact emergence in asymptotic
limits, so that the full moduli dependence is emerging from integrating out the towers of
light states.

In this paper, we will shed some new light on these proposals by generalizing the mostly
single modulus computations to a model featuring multiple moduli fields. Of course, the
main obstacle in performing a concrete computation is the precise knowledge of the light
towers in the asymptotic region one is interested in. For this reason, we consider the simple,
supersymmetric compactification of the type IIA superstring on the untwisted sector of a
Z2×Z′

2 orbifold of the 6-torus and keep track of 7 saxionic and 7 axionic moduli fields, i.e.
the complex structure moduli, the complexified Kähler and the complexified 4D dilaton
moduli. These are all moduli arising in the NS-NS sector of the type IIA superstring and
for simplicity we will set all the R-R moduli to zero in our analysis. The advantage of this
model is that in the weak string coupling limit, we know the precise moduli dependent
spectrum so that we can carry out the full loop computation of the kinetic terms keeping
the full moduli dependence. Building upon some of the computational techniques described
in [24], we can eventually check which components of the full tree-level 14 dimensional field
metric emerge in this asymptotic limit.

This paper is organized as follows: in section 2 we define our model of interest and
make a first approach to compute the one-loop corrections by integrating out only the
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Kaluza-Klein (KK) towers of light states. We find that components of the field metric
emerge whose classical counterparts are vanishing. Some of the basic notions and relations
of the Emergence Proposal are relegated to appendix A.

In section 3 we first observe that in the asymptotic weak string coupling limit, a
consistent computation requires to include not only the KK towers but also the winding
modes and the fundamental string excitations. As we will discuss, the handling of the latter
is not straightforward, as there is an issue already with the definition of the species scale. It
turns out that a naive QFT approach does not give exactly the same result as an approach
based on Black Holes. They differ by certain logarithmic factors of type log(Mpl/Ms). Such
factors will accompany our computations in the remainder of the paper.

In the second part of this section, we also consider two other limits of type IIA on
a 6-torus, namely where one Kähler modulus goes to infinity and where one complex
structure modulus becomes asymptotically large. Consistent with the Emergent String
Conjecture [16, 35, 36] (see also [17, 37]), we will show that in these limits there are the
same number of light towers of 4D particles and one low-tension string as were present in
the weak coupling limit. However, now these states are mostly given by wrapped D-branes
and NS-branes. In fact, for the large Kähler modulus regime, the relevant light 4D string is
given by a wrapped NS5-brane, whereas in the large complex structure limit it becomes a
wrapped KK-monopole. Despite the difficulty of knowing all bound states of these branes
and their masses, in appendix C we provide some admittedly speculative arguments how
such a mass formula could look like and unscrupulously use it in the body of the paper.

In section 4, we carry out a full emergence computation including all 13 towers of light
states. As we will emphasize, only in the QFT approach there are techniques available
for such computations. As a consequence, ubiquitous log-suppressions will appear, whose
potential interpretation will be discussed at the end of this section. However, it will turn out
that we recover almost the full tree-level metric and gauge couplings. To be more precise,
no terms are generated that were absent at tree-level even though a few singular classical
couplings are just not generated. This would disfavor both Variant A and Variant B
of the Weak Emergence Proposal. However, the non-vanishing ones do have the same
moduli dependence as their classical counterparts. Hence, ignoring for the moment the
vanishing singular ones, we could say that our results go beyond Variant A of the Weak
Emergence Proposal and be more in favor of Variant B. Moreover, we encounter a non-
trivial numerical relation that combines contributions from the KK and winding towers as
well as contributions related to the string tower. All this makes us confident that despite
the unsettled question about the QFT versus the Black Hole picture, our computation
captures already a large portion of the story.

2 Preliminaries

In this section, we perform a non-trivial test of the emergence proposal by confronting
it with a field space metric of 14 moduli. First we define more concretely the toroidal
orbifold background that we consider and attempt to compute the one-loop corrections to
the field space metric taking only the KK-modes into account. This is meant for pedagogical
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Figure 1. Conventions for the components of the factorized 6-torus. For instance, (T 2)1 has
a complex structure modulus with saxion u1 = R2/R1 and the respective Kähler modulus t1 =
R1R2/α

′ is measured in string units.

purposes and for sharpening our computational tools. For completeness, we have collected
the basic notions and a number of useful relations about the Emergence Conjecture in
appendix A.

2.1 The orbifold background

We consider the type IIA superstring compactified on the usual Z2 × Z′
2 orbifold of a

6-dimensional torus. To allow for this action, the torus takes the factorized form T 6 =
T 2 × T 2 × T 2 so that after introducing a complex coordinate ZI on each T 2 the action
takes the form

Θ :


Z1 → −Z1

Z2 → −Z2

Z3 → Z3 ,

Θ′ :


Z1 → Z1

Z2 → −Z2

Z3 → −Z3 .

(2.1)

As we will see below, for our purpose we can restrict ourselves to the untwisted sector
of this N = 2 supersymmetric background. As shown in figure 1, each T 2 comes with a
complex structure modulus UI = vI + iuI and a complexified Kähler modulus TI = bI + itI ,
where bI is the Kalb-Ramond two-form field B2 integrated over the 2-torus. Moreover,
tI is the string frame volume of the I-th T 2-factor measured in units of α′. The complex
structure moduli are part of three N = 2 hypermultiplets and the complexified Kähler
moduli reside in three N = 2 vector multiplets.

In order to apply the formulas reviewed in appendix A, we need to know the spectrum
of particles in 4D whose mass is below the UV cut-off scale, i.e. the species scale. To
identify all of these states is in general a non-trivial question, but in certain asymptotic
limits one might get better control. In fact, so far the emergence proposal has only been
tested in such infinite field distance limits. The best understood limit is, of course, the
perturbative string limit, i.e. where the string coupling is very small gs = eϕ ≪ 1. It is
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appropriate to merge the 4D dilaton and its axionic partner into a complex field

S = ρ+ ie−ϕ
√
t1t2t3 = ρ+ iσ . (2.2)

Here the axion ρ is defined as the 4D magnetic dual of the Kalb-Ramond field B2 with both
legs along the 4D flat space-time. It can be thought of as the 10D magnetic dual 6-form
B6 with all legs along the T 6. The field S is the NS-NS part of an N = 2 hypermultiplet.

In the weak coupling limit, the usual CFT string partition function provides the light-
est states, which are the KK, winding and string oscillator modes. The mass dependence
of these states is known explicitly for arbitrary values of the complex structure, the com-
plexified Kähler moduli and the 4D dilaton as [38, 39]

M2 =
M2

pl
σ2


3∑

I=1


mI

1 − vIm
I
2 + bIn

I
1 + bIvIn

I
2

u
1
2
I t

1
2
I

2

+

(mI
2 − bIn

I
2)u

1
2
I

t
1
2
I

2

+

(nI
1 + vIn

I
2) t

1
2
I

u
1
2
I

2

+
(
nI
2u

1
2
I t

1
2
I

)2
+ κ2N

 . (2.3)

Here, the mI
1,2 denote the KK modes and the nI

1,2 the winding modes1 of the fundamental
string and can be more compactly denoted as m⃗I = (mI

1,m
I
2) and n⃗I = (nI

1, n
I
2).2 Moreover,

N is the level of the tower of string oscillator modes, which comes with a degeneracy of
states scaling at large level N as

degN = γ

N
ν
2
eβ

√
N , (2.4)

where for later purposes we left open the values of the parameters β, γ and ν. For the 10D
type IIA superstring one has e.g. β = 4π

√
2 and ν = 11.

In addition, the Z2 × Z′
2 orbifold has 3 twisted sectors, each of them comprised of

16 fixed points of codimension 4. Depending on whether one turns on discrete torsion or
not, the twisted sector gives rise to 48 complex structure or Kähler moduli, respectively.
Moreover, in each of them there are 2 KK and 2 winding modes and the excitation number
of the corresponding twisted string. We will see in section 4.1 that these additive towers
of light states give subdominant contributions to the number of light species.

Observe that the axion ρ does not appear in the mass formula (2.3). In the following,
we will sometimes collectively denote all 14 real moduli as MA or if we restrict to the set
of 12 complex structure and complexified Kähler moduli as Ma.

1Let us note that the presence of these KK and winding modes are special for this orbifold limit of a
Calabi-Yau manifold, as they correspond to torsional one-cycles which are e.g. absent for a Calabi-Yau X

with vanishing fundamental group π1(X) = 0. Strictly speaking, only KK and winding modes are present
which are invariant under the orbifold action. However, we have convinced ourselves that this issue only
induces a change in some numerical factors.

2N̄ has been eliminated by imposing the level matching condition N − N̄ +
∑

I
m⃗I · n⃗I = 0, which would

at most change our final results by a numerical factor.
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The 4D dilaton relates the string to the 4D Planck scale

Ms ≃
Mpl
σ

, (2.5)

where we left open a numerical factor. The classical field space metric on this 14-dimensional
moduli space is known to be of the form [40] (see also [17, 41, 42])

ds2 = g
(0)
AB dMA dMB

= 1
σ2
dσ2 + 1

4σ4dρ
2 +

3∑
I=1

1
4u2I

(
du2I + dv2I

)
+

3∑
I=1

1
4t2I

(
dt2I + db2I

)
,

(2.6)

so that G(0)
AB = M2

pl g
(0)
AB. Note that both this metric and the mass formula enjoy a (discrete)

shift symmetry for vI , bI and ρ so that these moduli are (quasi)-axions.
In the type IIA case, the three complexified Kähler moduli are part of a full N = 2

vector multiplet, where the three gauge fields come from the dimensional reduction of
the R-R three-form C3 along the three 2-cycles. There is one more vector field, which
is the graviphoton residing in the N = 2 gravity multiplet. This is just the R-R one-
form C1. These four 4D gauge fields are denoted as AΛ (for Λ = 0, 1, 2, 3) with field
strength FΛ = dAΛ.

The kinetic terms of the Kähler moduli and these vector fields are governed by special
geometry, which we here only very briefly summarize. First, one defines homogeneous
coordinates XΛ which eventually are related to the inhomogeneous coordinates of the
Kähler moduli space as X0 = 1 and TI = XI/X0. Moreover, one introduces a prepotential
F which is a homogeneous function of degree two of the coordinates XΛ. Defining FΛ =
∂ΛF , the metric on the moduli space is given in terms of the Kähler potential

K = − log
(
i
(
XΛFΛ −X

Λ
FΛ
))
. (2.7)

The gauge kinetic terms are then expressed as [43]

Sgauge = −1
2

∫
d4x

(
fΛΣFΛ ∧ ⋆FΣ + ΘΛΣFΛ ∧ FΣ

)
, (2.8)

where at the classical level the gauge kinetic function fΛΣ and the Theta-angles ΘΛΣ are
given in terms of the imaginary and real parts of the period matrix of the underlying
Calabi-Yau threefold. The latter can be expressed in terms of the prepotential as

NΛΣ = FΛΣ + 2i Im(FΛΓ)Im(FΣ∆)XΓX∆

Im(FΓ∆)XΓX∆ (2.9)

where FΛΣ = ∂2F/∂XΛ∂XΣ. In our toroidal orbifold case, we have the prepotential

F = X1X2X3

X0
(2.10)
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leading to the gauge couplings (see e.g. [44])

f = Im(N ) =


t1t2t3q −t2t3 b1

t1
−t1t3 b2

t2
−t1t2 b3

t3

. . . t2t3
t1

0 0
. . . . . . t1t3

t2
0

. . . . . . . . . t1t2
t3

 (2.11)

with

q = 1 +
(
b1
t1

)2
+
(
b2
t2

)2
+
(
b3
t3

)2
. (2.12)

Similarly, for the Θ-angles one gets

Θ = Re(N ) =


2b1b2b3 −b2b3 −b1b3 −b1b2
. . . 0 b3 b2
. . . . . . 0 b1
. . . . . . . . . 0

 . (2.13)

To discriminate among the various versions of the Emergence Proposal, the question
is which parts of the tree-level moduli metric and gauge kinetic terms can be recovered via
integrating out (a subset of) the light perturbative string states at the one-loop level in the
asymptotic field regimes.

2.2 Emergence for KK modes

One basic ingredient is the quantum gravity cut-off, which in the case of a large number of
light species is not the Planck-scale but the species scale Λ̃ [27, 28]. In the QFT picture, one
considers the quantum corrections to the graviton propagator due to the coupling of Nsp
light species to gravity. Starting from the Einstein-Hilbert term of the action, the species
scale is defined as the mass scale where the one-loop contributions become of the same
order as the tree level ones. In particular, in 4D, which we will focus on in the following
sections, one finds a propagator

π−1(p2) = p2

1 − Nsp p
2

120πM2
pl

log
(
− p

2

µ2

)
+ γ

Nsp∑
n=1

p2

M2
pl

mn√
−p2

 , (2.14)

where we also included the form of the mass dependent terms [45] with γ denoting an order
one parameter.

In this way, we get the scaling3

Λ̃ ∼ Mpl√
Nsp

. (2.15)

3We have checked that for KK-towers and string towers, the mass dependent term in (2.14) really gives
NspΛ̃2/M2

pl so that for the natural choice µ ∼ Λ̃ one indeed arrives at the relation (2.15) without any
log-correction. We thank Niccolò Cribiori for bringing this to our attention.
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In practice one has two coupled relations, namely (2.15) and the definition of the number
of light species

Nsp = #(m ≤ Λ̃) , (2.16)

which can be solved for Nsp and Λ̃.
In the Black Hole picture, the species scale is defined via the radius r0 = 1/Λ̃ of the

minimal-sized Black Hole that can be described within the EFT. The mass and Bekenstein-
Hawking entropy of such a Black Hole are

MBH =
M2

pl

Λ̃
, SBH =

M2
pl

Λ̃2
. (2.17)

The number of species is defined via the statistical entropy as

SBH = log Ω(MBH) =: Nsp , (2.18)

where Ω(MBH) is the number of ways the macroscopic Black Hole of mass MBH can be
realized by the microstates. Note that this definition of the number of species also satisfies
the relation (2.15). In practice, a second relation between Nsp and Λ̃ follows from the
microcanonical relation (2.18) so that again both are determined.

Species scale for KK-modes. In appendix B, we apply these two definitions to a
one-dimensional KK tower of states with spacing

∆m = Ms
r

= Mpl
σr

. (2.19)

Here r denotes the radius of the circle in units of the string length. In this case, the QFT
approach is very simple whereas the BH approach turns out to be a bit more involved.4

However, at the end of the day both approaches give the same result

Λ̃ ∼ Mpl

(σr)
1
3
, Nsp ∼ (σr)

2
3 . (2.20)

Note that the species scale is nothing else than the 5D Planck-scale.
Next, we generalize the computation in the QFT picture to the full toroidal orbifold

model, where we consider the weak string coupling limit σ → ∞ while keeping all the
other moduli in a moderate regime. Since σ only appears as an overall factor in the mass
formula, in the regime tI > 1 the KK modes are the lightest modes. For this truncated
mass spectrum, the number of light species reads

Nsp =
∑
m⃗I︸︷︷︸

MKK≤Λ̃(KK)

≈
∫ 3∏

I=1
dmI

1 dm
I
2 , (2.21)

4We acknowledge the support of Niccolò Cribiori for carrying out this computation.

– 9 –



J
H
E
P
1
0
(
2
0
2
3
)
1
4
5

where we are summing over modes with non-zero excitations such that the total mass lies
below the threshold Λ̃(KK). In what follows, sums over excitation numbers will always be
approximated by integrals, requiring a sufficiently dense spectrum to be accurate. Since
the mass (2.3) has an overall suppression by σ, the weak coupling limit indeed justifies
taking the continuum limit in all directions. To implement the bound MKK ≤ Λ̃(KK), we
introduce the 6 variables xI , yI via

M2
KK =

M2
pl

σ2

3∑
I=1

( mI
1 − vIm

I
2

u
1
2
I t

1
2
I︸ ︷︷ ︸

xI

)2

+

mI
2 u

1
2
I

t
1
2
I︸ ︷︷ ︸

yI

2 . (2.22)

The determinant of the Jacobian of this change is det(J) = t1t2t3 ≡ V6. In these coordi-
nates we are integrating over a ball in 6 dimensions with radius R = Λ̃(KK)

Mpl
σ. Hence, it is

convenient to introduce the 6D spherical coordinates

x1 = r cosφ1

y1 = r sinφ1 cosφ2

x2 = r sinφ1 sinφ2 cosφ3

y2 = r sinφ1 sinφ2 sinφ3 cosφ4

x3 = r sinφ1 sinφ2 sinφ3 sinφ4 cosφ5

y3 = r sinφ1 sinφ2 sinφ3 sinφ4 sinφ5

(2.23)

with r ≥ 0, φ1, . . . , φ4 ∈ [0, π] and φ5 ∈ [0, 2π]. The integration measure becomes

µ = dr r5 dφ1 . . . dφ5 sin4 φ1 sin3 φ2 sin2 φ3 sinφ4 . (2.24)

Now, we can compute Nsp in the new coordinates and invoke (2.15) (eliminating the
log(Nsp) correction by setting Λ̃ = µ in (2.14)) to determine the species scale

Λ̃(KK) = Mpl
σ3/4

( 6
V6 vol(S5)

) 1
8
∼ σ1/4

V1/8
6

Ms ∼Mpl,10 . (2.25)

The quantum gravity cut-off turns out to be the ten-dimensional Planck scale, as expected
given that only the KK modes have been taken under consideration in this calculation.

One-loop corrections to the moduli space metric. Next, let us determine the one-
loop moduli metric from integrating out the light KK modes. In appendix A we recall
that these emergent one-loop diagrams mimic a classical behavior in the sense that ℏ drops
out. However, in the following we nevertheless just call them one-loop diagrams. When we
really mean the standard stringy loop diagrams, i.e. the higher genus diagrams coming with
extra factors of the string coupling constant gs, we call them “stringy one-loop corrections”.

According to (A.15), up to numerical prefactors the one-loop metric is given by

G
(1)
MAMB

≃
∑
m⃗I︸︷︷︸

MKK≤Λ̃(KK)

(∂MA
MKK) (∂MB

MKK) log
(

Λ̃(KK)

MKK

)
.

(2.26)
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To proceed, we need the derivatives of the mass formula, which can be expressed in the
compact form

∂uIMKK ≃ Mpl
σ

1
2 r uI

(
− x2I + y2I

)
= Mpl

σ

r

2uI
muI (φ)

∂vIMKK ≃ Mpl
σ

1
2 r uI

(
− 2xI yI

)
= Mpl

σ

r

2uI
mvI (φ)

∂tIMKK ≃ −Mpl
σ

1
2 r uI

(
x2I + y2I

)
= Mpl

σ

r

2 tI
mtI (φ)

∂σMKK ≃ −Mpl
σ2

r , ∂ρMKK = 0 ,

(2.27)

where inserting the definition of the spherical coordinates (2.23) allows us to determine
the functions muI (φ), . . . ,mtI (φ) which only depend on the angular variables φ1, . . . , φ5.
From the last line in (2.27), we can also formally introduce mσ(φ) = 1. In the evaluation
of (2.26) the following “angular metric” appears

g̃MAMB
:=
∫
dΩ5mMA

(φ) mMB
(φ) . (2.28)

The corresponding integrals over the 5 angular variables can be carried out explicitly,
yielding

g̃uIuI = g̃vIvI = g̃tI tJ ̸=I
= π3

12 , g̃tI tI = π3

6 , g̃σtI = π3

3 , g̃σσ = π3 . (2.29)

The final radial integral can be evaluated explicitly using∫ r0

0
r7 log

(
r0
r

)
= r80

64 .
(2.30)

Collecting the remaining prefactors affecting the relative normalizations of the metric com-
ponents and taking into account an overall not yet determined coefficient λ, we find

G(1)
uIuJ

= G(1)
vIvJ

= 1
128λG

(0)
uIuJ

, G
(1)
tI tI

= 1
64λG

(0)
tI tI

, G(1)
σσ = 3

32λG
(0)
σσ ,

G
(1)
tIσ =

M2
pl

64 tIσ
, G

(1)
tI tJ ̸=I

=
M2

pl
512 tItJ

, G
(1)
ρMA

= 0 .
(2.31)

A comparison of this one-loop field metric with equation (2.6) reveals that the components
involving the complex structure moduli uI , vI have the right relative normalization but
that all other components are at odds. Since the mass formula does not contain the axion ρ,
it is immediately clear that it completely decouples. Moreover, there are non-vanishing off-
diagonal components in the second line of (2.31) whose tree-level counterparts are zero. In
addition, the relative normalization of various diagonal components is not consistent with
the tree-level one. Therefore, the one-loop induced metric misses some of the structure
of the tree-level one and due to the singular off-diagonal components G(1)

tIσ it is not even
consistent with the most conservative version of Weak Emergence, namely Variant A.

– 11 –
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Figure 2. Tower mass scales on the energy axis. Compared to the string scale Ms, KK masses
are suppressed by Kähler moduli, while winding modes are enhanced by them. The exponentially
degenerate string excitations begin at Ms.

3 String towers

The result from the previous section might not be too surprising in view of a serious short-
coming of our computation, namely that in the large σ limit with all tI moderately large
one has the hierarchy

Λ̃(KK) ≫Mwind > Ms > MKK . (3.1)

As shown in figure 2, for sufficiently large σ, both the winding modes and the string
excitations turn out to be lighter than the species scale and, therefore, should have been
included from the very beginning. In this case, the mass formula treats the complex
structure and Kähler moduli symmetrically and we would have a chance to recover the
classical Kähler moduli metric.

3.1 The species scale for string towers

Being forced to include the highly degenerate tower of string excitations into our consid-
erations, the first question is how to generalize the emergence computation to this case.
Unfortunately, this is not as straightforward as one might think, as an issue already arises
for the determination of the species scale and the number of light species.

To explain this, we have to recall the two ways to determine them, namely the QFT
picture and the BH picture. Again let us discuss this for a simplified model where one only
has a string tower with mass levels M = Ms

√
N and degeneracy degN . For sufficiently

large mass levels N , one can use the asymptotic expansion (2.4), which we recall here

degN = γ

N
ν
2
eβ

√
N . (3.2)

Let us look at the BH picture first [46]. Then, the excitation level required for the BH
mass is √

NBH ∼ MBH
Ms

∼
M2

pl

MsΛ̃BH
(3.3)

which for large σ is expected to be a very large number. Then, up to a β factor, the BH
entropy is

SBH ∼ log
(

degNBH

)
∼
√
NBH − ν

β
log

(√
NBH

)
. (3.4)
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QFT picture BH picture

Λ̃QFT ∼ Mpl
σ log(σ) Λ̃BH ∼ Mpl

σ

Nsp = σ2

log2 σ
Nsp = σ2

Table 1. Species scale and Nsp in QFT and BH approach.

Setting this equal to the Bekenstein-Hawking entropy (2.17) and using (3.3) gives an im-
plicit equation for Λ̃ which can be solved approximately by

Λ̃BH ∼Ms + ν

β
Ms

log σ
σ2

+ . . . . (3.5)

Hence, for σ → ∞ the species scale approaches the string scale Ms from above. At leading
order the number of species is then given by the entropy, i.e.

Nsp,BH ∼
M2

pl
M2

s
∼ σ2 . (3.6)

Note that, as mentioned in [4, 31], this result is consistent with the proposal [29] that for
the vector multiplet moduli space, the number of light species is given by the topological
one-loop free-energy.5

That something is at odds with the corresponding QFT computation can already be
expected from the observation that the number of species can still be big for large σ with
at the same time the species scale being close to Ms. Indeed, following the same strategy
as [24, 47] and computing the number of species by integrating over all string states with
energy smaller than the species scale and then solving the resulting implicit equation (2.15),
one gets

Λ̃QFT ∼Ms log
(
Mpl
Ms

)
∼Ms log(σ) . (3.7)

In this case, the species scale comes out exponentially larger than Ms so that indeed a large
number of string modes

Nsp,QFT ∼ σ2

log2 σ
(3.8)

can be lighter, which is self-consistent with having used the asymptotic expression (2.4).
Let us summarize the results in table 1.

Thus, even though the two computations seem to be self-consistent, they are not
mutually consistent, at least as long as one is not willing to be agnostic about log-factors.

Unfortunately, this tension has not been resolved yet. However, as the authors of [4, 31],
we tend to eventually rather trust the Black Hole picture. In the QFT approach we
extrapolate the quantum field theory loop diagrams to energies that are much higher than

5We thank Max Wiesner for helpful discussions on this point.
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the string scale Ms. However, this high energy regime Ms < E < Mpl is strongly believed to
be very different from the sub-stringy one. There are indications that the string scattering
amplitudes simplify in the high energy regime [48], and there is of course the issue with
the Hagedorn temperature TH ∼Ms, where the canonical partition functions ceases to be
well defined and a phase transition supposedly occurs [49].

However, the idea and the formalism of the Emergence Proposal are intimately linked
to the QFT approach and so far there is no way to carry out any emergence computation
using, for instance, the species scale and Nsp derived from the BH picture. Therefore, in
section 4 we will take a pragmatic approach and explore what results we get by applying
the QFT approach for the KK, winding and string states. Since the results for Λ̃ and Nsp
differ just by some log-factors, we might still see a large portion of the emerging structure.

3.2 Asymptotic regime t1 ≫ 1

Before we move on to this computation, let us consider other asymptotic regions in the
moduli space. We will see that here one gets the same number of light particle species, as
well as an asymptotically tensionless string. First consider the t1 ≫ 1 regime.

Towers of light states. First, we determine the spectrum of light states below the
quantum gravity cut-off Λ̃, where for simplicity, we set all axions to zero and consider only
the dependence on the saxionic moduli (please see [14] for a related analysis). As we will
see, the mass scale of the lightest modes is Mpl/

√
t1.

Perturbative string states. From the KK and string winding modes, the KK-modes
on the first torus are the lightest ones with masses

M
(1)
KK ∼ Mpl√

t1

1
σ
√
u1
, M

(2)
KK ∼ Mpl√

t1

√
u1
σ

. (3.9)

All the other 4 KK- and 6 string winding modes are much heavier.

Wrapped D-brane states. As already pointed out in [8], in this limit one needs to take
into account wrapped D-brane states, as well. As long as these D-branes do not wrap any
cycle on the first T 2 factor, their masses also scale like Mpl/

√
t1. The resulting light modes

are listed in table 2. Note that all D-brane masses do not contain any factor of σ.

Wrapped NS5-brane states. It turns out that the wrapped NS5-brane contributes
two more light modes, which are listed in table 3. Hence, in total we have found 12 light
modes which is precisely the same number as found in the perturbative string limit in
section 2. Moreover, upon exchanging σ ↔

√
t1 and u2 ↔ t3 their masses follow the same

pattern. This analogy suggests that there might also be a low-tension string in 4D, which
in the former perturbative limit was just the fundamental string.

Light 4D string. First, we observe that e.g. a wrapped D2-brane yields a string tension
that scales like

TD2 ∼
M2

pl√
t1
, (3.10)
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D-branes wrapping mass scale

D0 (−−,−−,−−) M
(3)
D0 ∼ Mpl√

t1
1√
t2t3

D2 (−−,++,−−) M
(4)
D2 ∼ Mpl√

t1

√
t2
t3

(−−,−−,++) M
(5)
D2 ∼ Mpl√

t1

√
t3
t2

(−−,+−,+−) M
(6)
D2 ∼ Mpl√

t1
1√

u2u3

(−−,−+,−+) M
(7)
D2 ∼ Mpl√

t1

√
u2u3

(−−,+−,−+) M
(8)
D2 ∼ Mpl√

t1

√
u3
u2

(−−,−+,+−) M
(9)
D2 ∼ Mpl√

t1

√
u2
u3

D4 (−−,++,++) M
(10)
D4 ∼ Mpl√

t1

√
t2t3

Table 2. Light wrapped D-brane states. In the second column we indicate by a + which cycles on
the internal T 2 × T 2 × T 2 are wrapped by the branes.

Brane wrapping mass scale

NS5 (+−,++,++) M
(11)
NS5 ∼

Mpl√
t1

σ√
u1

(−+,++,++) M
(12)
NS5 ∼

Mpl√
t1
σ
√
u1

Table 3. Light wrapped NS5-brane states.

whose excitations provide 4D particles of mass m ∼
√
TD2 ∼Mpl/t

1/4
1 . Thus, these modes

are parametrically heavier than the light modes listed so far. However, we can also wrap
the NS5-brane on the last two T 2 factors yielding a string with tension and corresponding
excitations

TNS5 =
M2

pl
t1

⇒ M
(13)
NS5 = Mpl√

t1
. (3.11)

We think it is compelling that also in the asymptotic regime t1 → ∞, one finds the same
pattern of 12 light particles and one low-tension string in 4D as we have seen in the much
better understood perturbative limit σ → ∞. Additionally, the appearance of an emergent
string due to an NS5 brane in this limit is also in agreement with [16, 24, 47].

One might wonder whether, if there is an asymptotically tensionless string in 4D,
maybe there also exists an asymptotically tensionless membrane. However, in accordance
with the Emergent String Conjecture [16, 35, 36], wrapping D-branes and NS5-branes such
that one gets a membrane M2 in 4D, leads to its excitations of mass M ∼ T

1/3
M2

always
being heavier than Mpl/

√
t1.

3.3 Asymptotic regime u1 ≫ 1

For completeness, let us now consider the type IIA superstring compactified on T 6 = (T 2)3

in the limit u1 → ∞. Again, we set all axions to zero.
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D-branes wrapping mass scale

D2 (+−,+−,−−) M
(3)
D2 ∼ Mpl√

u1
1√

u2t3

(+−,−+,−−) M
(4)
D2 ∼ Mpl√

u1

√
u2
t3

(+−,−−,+−) M
(5)
D2 ∼ Mpl√

u1
1√

t2u3

(+−,−−,−+) M
(6)
D2 ∼ Mpl√

u1

√
u3
t2

D4 (+−,−+,++) M
(7)
D4 ∼ Mpl√

u1

√
u2t3

(+−,+−,++) M
(8)
D4 ∼ Mpl√

u1

√
t3
u2

(+−,++,−+) M
(9)
D4 ∼ Mpl√

u1

√
t2u3

(+−,++,+−) M
(10)
D4 ∼ Mpl√

u1

√
t2
u3

Table 4. Light wrapped D-brane states.

Brane wrapping mass scale

NS5 (+−,++,++) M
(11)
NS5 ∼

Mpl√
u1

σ√
t1

KK-monopole (−+,++,++) M
(12)
KK−monop. ∼

Mpl√
u1
σ
√
t1

Table 5. Light wrapped NS-brane states.

Perturbative string states. One KK and one winding mode on the first torus will be
lighter than the others

M
(1)
KK ∼ Mpl√

u1

1
σ
√
t1
, M

(2)
wind ∼ Mpl√

u1

√
t1
σ

. (3.12)

Wrapped D-brane states. The light D-branes are the ones that wrap the x-cycle on
the first T 2 and some other directions on the second and third T 2. As a consequence,
only the D2 and D4 branes do lead to light modes scaling as Mpl/

√
u1. They are listed in

table 4.
A closer look reveals that, so far, the spectrum of light states is related to the one in

the t1 → ∞ limit by a T-duality in two directions, e.g. exchanging u1 ↔ t1 and u3 ↔ t3.

Wrapped NS5-brane states. It turns out that there is only one light state coming
from a wrapped NS5-brane, namely the 5-brane wrapping the x-direction on the first T 2

and both directions in the remaining T 2’s. This provides the eleventh light mode so that
relative to the former asymptotic regimes, one state seems to be missing. However, by
applying the just mentioned T-duality transformation, we realize that the former NS5-
brane is mapped to a KK-monopole (see e.g. [50–52]). Hence, we find the two additional
NS-branes listed in table 5.
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We notice that when expressed in string units, the contribution from the wrapped
KK-monopole is

M = Mpl√
u1
σ
√
t1 = Ms

g2s
r21 r2 r3 r4 r5 r6 . (3.13)

The, at first sight strange, factor r21 comes from the energy f2 of the non-trivial U(1) field
strength f = da supported on the KK-monopole.

Light 4D string. Now it is clear that the lightest 4D string also arises from the KK-
monopole wrapped on the last two T 2 factors. This yields a tension and the corresponding
masses are

TKK-monop. = M2
s

g2s
r21 r3 r4 r5 r6 =

M2
pl
u1

⇒ M
(13)
KK-monop. = Mpl√

u1
. (3.14)

Hence, again, in this asymptotic region of a large complex structure we have identified
precisely 12 light particles and one low-tension string.

4 Emergence in asymptotic regions

Being aware of the potential limitations, in this section we carry out a complete emergence
computation in the only currently accessible QFT approach. Beyond the KK modes, we
will include the winding and string modes. First, we do this for the perturbative string
limit (σ → ∞) and afterwards also consider the generalization to the limits of a single
large Kähler modulus and a single large complex structure modulus. Finally, we discuss
the implications of our concrete computation for the Emergence Proposal.

4.1 Emergence in the weak string coupling limit

Employing similar computational methods as for the already presented KK example, let
us now integrate out all light towers of states with a mass smaller than the species scale.

The species scale. For the latter, we first need to compute Nsp as given by (A.1)

Nsp =
∑

m⃗I ,n⃗I ,N︸ ︷︷ ︸
M≤Λ̃

degN ≈
∫ 3∏

I=1
dmI

1 dm
I
2 dn

I
1 dn

I
2 dN degN ,

(4.1)

where in the σ ≫ 1 regime we can again safely approximate the sum by an integral. This
time, we need to define 13 new variables wI , xI , yI , zI and q via

M2 =
M2

pl
σ2


3∑

I=1

(
wI︷ ︸︸ ︷

mI
1 − vIm

I
2 + bIn

I
1 + bIvIn

I
2

u
1
2
I t

1
2
I

)2

+
( xI︷ ︸︸ ︷

(mI
2 − bIn

I
2)u

1
2
I

t
1
2
I

)2

+

 (nI
1 + vIn

I
2) t

1
2
I

u
1
2
I︸ ︷︷ ︸

yI


2

+
(
nI
2u

1
2
I t

1
2
I︸ ︷︷ ︸

zI

)2
+ κ2N︸ ︷︷ ︸

q2

 . (4.2)
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The determinant of the Jacobian for this change of variables is det(J) = 2q/κ2. In these
variables, we now integrate over a ball in 13 dimensions with radius R = Λ̃

Mpl
σ, which

makes it convenient to introduce 13D spherical coordinates

q = r cosφ0

w1 = r sinφ0 cosφ1

x1 = r sinφ0 sinφ1 cosφ2

y1 = r sinφ0 sinφ1 sinφ2 cosφ3

...
y3 = r sinφ0 sinφ1 . . . sinφ10 cosφ11

z3 = r sinφ0 sinφ1 . . . sinφ10 sinφ11

(4.3)

with r ≥ 0, φ0, . . . , φ10 ∈ [0, π] and φ11 ∈ [0, 2π]. The measure then becomes

µ = dr r12dφ0 sin11 φ0 dφ1 . . . dφ11 sin10 φ1 sin9 φ2 . . . sinφ10 . (4.4)

Putting everything together, we arrive at the following integral for Nsp

Nsp ≃ 2γκν−2 vol(S11)
∫ Λ̃/Ms

0
dr r13−ν

∫ π/2

0
dφ0

sin11 φ0
cosν−1 φ0

exp
(
β

κ
r cosφ0

)
, (4.5)

where we have carried out already the integral over the angular variables φ1, . . . , φ11, which
gives the volume vol(S11) = π6/60 of the unit sphere S11. The large Λ̃/Ms behavior of the
r and φ0 integral can be determined analytically and reads

∫ r0

0
dr rk

∫ arccos(κ/r)

0
dφ0

sin2n+1 φ0
cosm φ0

eαr cosφ0 = δn

αn+2 r
k−n−1
0 eαr0 + . . . , (4.6)

with the values of the coefficients δn listed in table 6 for the first values of n. For the
convergence of the integral it was important that we imposed the physical constraint N ≥ 1,
which modifies the upper bound of the φ0 integration accordingly. It is easy to see that
the integral (4.6) is independent of the exponent m of the cosφ-factor in the denominator.
Applying this relation for n = 5, k = 13− ν, r0 = Λ̃/Ms and α = β/κ leads to the number
of light species

Nsp ≃ 7680γκ
ν+5

β7
vol(S11)

(
Ms

Λ̃

)ν−7
e

β
κ

Λ̃
Ms . (4.7)

Using (2.15), one gets a transcendental equation for the species scale Λ̃

M2
pl

M2
s

= 7680γκ
ν+5

β7
vol(S11)︸ ︷︷ ︸

A

(
Λ̃
Ms

)9−ν

e
β
κ

Λ̃
Ms . (4.8)
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n 0 1 2 3 4 5 6 7
δn 1 2 8 48 384 3840 46080 645120

Table 6. Values of δn coefficients.

This is solved by the Lambert function W (y).6 For ν ≤ 9 one chooses the branch W0 and
for ν > 9 the branch W−1

Λ̃
Ms

= (9 − ν)κ
β
W

(
1

(9 − ν)
β

κA
1

9−ν

(
Mpl
Ms

) 2
9−ν

)
. (4.9)

In any case, in the asymptotic regime σ = Mpl/Ms ≫ 1 one gets7

Λ̃
Ms

∼ 2κ
β

log
(
Mpl
Ms

)
, (4.10)

which is also independent of ν. Hence, as already mentioned in section 3.1, namely in equa-
tion (3.7), after including all the light modes in the perturbative string regime the actual
UV cut-off is essentially the string scale however amplified by a logarithmic correction.

Let us comment on the contribution to Nsp from the 48 twisted sectors of the orbifold.
As mentioned, these provide additive towers of light states with in each case ∆t = 4 KK
and winding modes and the fundamental twisted string. Going through the same steps as
in the untwisted case, one realizes that their number of light states is suppressed relative
to the contribution from the untwisted sector with its ∆u = 12 KK and winding modes

Nsp,u
Nsp,t

∼
(

Λ̃
Ms

) (∆u−∆t)
2

≫ 1 . (4.11)

Thus, they can be safely neglected in the asymptotic limit.

One-loop corrections to the moduli space metric. First, we compute the one-
loop correction to G

(0)
σσ . Again, we only keep the numerical factors affecting the relative

normalization of the metric components. Since σ appears in the mass formula (4.2) only
as a prefactor, the relation (A.16) becomes

G(1)
σσ ≃

∑
m⃗I ,n⃗I ,N︸ ︷︷ ︸

M≤Λ̃

degN

(
Mpl r

σ2

)2
.

(4.12)

6The Lambert function W (y) is defined as the solution to the equation xex = y, for y ≥ −e−1 and
is a multivalued function when −e−1 < y < 0. The branch satisfying −1 ≤ W (y) is called the principle
branch and is denoted as W0(x), while the one satisfying W (y) ≤ −1 is denoted by W−1(x). If y ≥ 0, then
W (y) = W0(y).

7For us, the following expansions are relevant [53]:

W0(x → ∞) = log(x) − log(log(x)) + . . .

W−1(x → 0) = log(−x) − log(− log(−x)) + . . .
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We can proceed in the same manner as for the computation of Nsp and arrive at8

G(1)
σσ ≃

M2
pl

σ4
7680γκ

ν+5

β7
vol(S11)︸ ︷︷ ︸

A

(
Λ̃
Ms

)9−ν

e
β
κ

Λ̃
Ms . (4.13)

Using the relation (4.8), we bring this to the simple form

G(1)
σσ ≃

M2
pl

σ2
. (4.14)

This is precisely the tree-level metric G(0)
σσ from (2.6). In particular, we realize that the still

left open coefficients β, γ, κ, ν completely drop out in the final result. Before getting too
excited, we have to keep in mind that this result is only true up to some overall numerical
prefactor.

Next, we determine the one-loop corrections to all the other metric components, again
using (A.16)

G
(1)
MaMb

≃
∑

m⃗I ,n⃗I ,N︸ ︷︷ ︸
M≤Λ̃

degN (∂MaM) (∂Mb
M) .

(4.15)

Proceeding analogously to our previous calculation for the KK spectrum, the derivatives
now take the more symmetric form

∂uIM ≃ Mpl
σ

1
2 r uI

(
− w2

I + x2I − y2I + z2I

)
= Mpl

σ

r sinφ0
2uI

muI (φ)

∂vIM ≃ Mpl
σ

1
2 r uI

(
− 2wI xI + 2 yI zI

)
= Mpl

σ

r sinφ0
2uI

mvI (φ)

∂tIM ≃ Mpl
σ

1
2 r uI

(
− w2

I − x2I + y2I + z2I

)
= Mpl

σ

r sinφ0
2 tI

mtI (φ)

∂bI
M ≃ Mpl

σ

1
2 r uI

(
2wI yI − 2xI zI

)
= Mpl

σ

r sinφ0
2 tI

mbI
(φ)

∂σM ≃ −Mpl
σ2

r ,

(4.16)

where inserting the definition of the spherical coordinates (4.3) allows us to determine
the functions muI (φ), . . . ,mbI

(φ) which only depend on the angular variables φ1, . . . , φ11.
Again, we can also formally introduce mσ(φ) = 1 and in the evaluation of (4.15) an angular
metric appears

g̃MAMB
:=
∫
dΩ11mMA

(φ) mMB
(φ) . (4.17)

The corresponding integrals over the 11 angular variables can be carried out explicitly
which yields the only non-vanishing components

g̃uIuI = g̃vIvI = π6

1260 , g̃tI tI = g̃bIbI
= π6

1260 ,
(4.18)

8We have checked that using the exact form of the integral (A.13) gives the same result in the asymptotic
limit Λ̃/Ms ≫ 1.
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so that

g̃MaMb
= π6

1260δMaMb
. (4.19)

All off-diagonal components including g̃uIσ, . . . , g̃bIσ vanish. Hence, from these integrals
we already get a large portion of the structure of the tree-level metric G(0)

AB. It remains to
carry out the full integrals, i.e. also the ones over r and φ0

G
(1)
MaMa

≃M2
pl

2γκν−2

4M2
aσ

2 g̃MaMa

×
∫ Λ̃/Ms

0
dr r15−ν

∫ arccos(κ/r)

0
dφ0

sin15 φ0
cosν−1 φ0

exp
(
β

κ
r cosφ0

)
.

(4.20)

Next, employing (4.6) for n = 7, k = 15 − ν, r0 = Λ̃/Ms and α = β/κ and using the
relation (4.8) one arrives at

G
(1)
MaMa

≃M2
pl
κ2

β2
168 g̃MaMa

vol(S11)
1

4M2
a

(
Ms

Λ̃

)2
, (4.21)

where we used δ7/δ5 = 168. First, we observe the intriguing numerical relation

168
8 vol(S11) g̃MaMa = 168 · 60

8π6
π6

1260 = 1 , (4.22)

where the factors vol(S11) and g̃MaMa were coming from integration over KK and winding
modes and the factor 168 from the integration over the string oscillators, namely the
integral (4.6). Hence, it seems that something highly non-trivial between extra dimensions
and strings is happening here, in fact on a quantitative level.

Then, invoking in addition the species scale (4.10), we finally get the one-loop moduli
metric

G
(1)
MaMb

≃
M2

pl
2M2

a

1
log2

(
Mpl
Ms

) δMaMb
. (4.23)

At this point it is tempting to speculate that working with the species scale found in the
BH picture, namely Λ̃ ∼ Ms, the log2-factor would be absent. However, the previous
relation (4.21) was of course derived in the QFT picture.

Taking into account an overall not yet determined coefficient λ and that the axion ρ

completely decoupled, we can summarize the results for the one-loop field metric as

G(1)
σσ = λG(0)

σσ , G(1)
ρρ = 0 , G(1)

ρσ = 0 ,

G
(1)
σMa

= 0 , G
(1)
ρMa

= 0 ,

G
(1)
MaMb

= 2λ
log2(σ)

G
(0)
MaMb

.

(4.24)

Thus, a large portion of the structure of the tree-level metric is there, in particular all off-
diagonal components of the metric are vanishing. However, the classical singular behavior
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of Gρρ is not reproduced, which if taken seriously threatens both Variant A and Variant B
of the Weak Emergence Proposal. On the positive side, up to the log(σ) factor, the
dependence on all orthogonal moduli is reproduced correctly, in agreement with Variant B
of the Weak Emergence Proposal. However, the log-factors that we have seen already in
the result of the species scale also make their appearance for the one-loop field metric.

One-loop corrections to the gauge kinetic terms. We can also compute the one-
loop corrections to the gauge kinetic terms. However, since all perturbative string states
are neutral with respect to the R-R gauge fields, it is immediately clear that integrating
them out does not lead to any contribution so that

f
(1)
IJ = 0 . (4.25)

The charged states are given by D0 and wrapped D2 branes, which in the asymptotic
region σ ≫ 1 are heavier than the species scale. Hence, the gauge kinetic terms cannot
emerge in this limit. Note that the tree-level ones are singular in the Kähler moduli and
not in σ, which is taken to infinity here. Therefore, we can state that although due to
Variant B of the Weak Emergence Proposal one would hope to get a non-trivial correction,
we are still meeting the requirements of Variant A and no direct contradiction to either of
them is observed.

4.2 Emergence in the asymptotic regime t1 ≫ 1

Before we discuss potential consequences of our result, we consider other asymptotic regions
in the moduli space. In this section we focus on the t1 → ∞ limit.

One loop corrections to the moduli space metric. It is a difficult question to
decide what kinds of bound states exist for these wrapped branes and how the final mass
formula for them reads. In appendix C, essentially by analogy we propose an analogous
mass formula as for the perturbative string states (2.3). There, we also include the axions
and realize the appearance of the axion ρ in the mass formula. Using the relations from
appendix C, the computation for the species scale and the one-loop kinetic terms proceeds
as before and we arrive at the analogous result

G
(1)
t1t1 = λG

(0)
t1t1 , G

(1)
b1b1

= 0 , G
(1)
t1b1

= 0 ,

G
(1)
t1Ma

= 0 , G
(1)
b1Ma

= 0 ,

G
(1)
MaMb

= 2λ
log2

(
Mpl
Ms

) G(0)
MaMb

,

(4.26)

with Mpl/Ms =
√
t1 and a, b labelling all modes except t1 and b1.9

9Note that the KK-modes, the NS5-branes and the last four D2-branes wrap torsion cycles of the orbifold,
which would be absent for a CY with π1(X) = 0. As a consequence, one would not get any non-trivial
one-loop metric for the hypermultiplets in the latter case.
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One loop corrections to the gauge kinetic terms. In contrast to the weak string
coupling limit, now some of the light states are wrapped D-branes and we can get a non-
trivial one-loop contribution to the gauge kinetic terms. As in the previous paragraph,
we assume that the suggestive mass formulas from appendix C are correct so that the
computation can proceed similarly to the one from section 4.1. Let us only mention some
of the main points here.

To evaluate the one-loop correction (A.20), we first need to identify those light states
that are charged under the four gauge symmetries. Looking at table 2 we realize that
the D0-brane is electrically charged under A0 and the first two wrapped D2-branes from
that table are electrically charged under A2 and A3, respectively. There is no wrapped
D2-brane that is electrically charged under A1, but there is the wrapped D4-brane, which
is magnetically charged under A1. This means that this brane is electrically charged
under the magnetic dual gauge field Ã1. For the following, we have to keep in mind that
the perturbative one-loop correction (A.20) to the gauge coupling has been derived for
electrically charged particles running in the loop and we will only apply it to such cases.

The relevant piece from the mass formula for these four types of branes is precisely (C.1)
which we repeat here for convenience

M2 =
M2

pl
t1

(
w1︷ ︸︸ ︷

n1 + b3n2 + b2n3 + b2b3n4

t
1
2
2 t

1
2
3

)2
+


x1︷ ︸︸ ︷

(n2 + b2n4) t
1
2
3

t
1
2
2

2

+

 (n3 + b3n4) t
1
2
2

t
1
2
3︸ ︷︷ ︸

y1

2

+
(
n4t

1
2
2 t

1
2
3︸ ︷︷ ︸

z1

)2
+ . . .

 .
(4.27)

Say one wants to compute f (1)00 . As already observed in [24], in the presence of a non-trivial
Kalb-Ramond field one has to recall (see e.g. [41]) that the 4D gauge fields AΛ are defined
via the exact pieces in F̂2 = dC1 and F̂4 = dC3 − H3 ∧ C1. For the latter one expands
C3 =

∑3
I=1AI ∧ ωI so that the charges do not change and are still integer valued. Hence,

we have q0 = n1 and the starting point of the computation is (A.20)

f
(1)
00 ≃

∑
m⃗I , n⃗I , p⃗I , N︸ ︷︷ ︸

M≤Λ̃

degN (n1)2 ,
(4.28)

where the sum is over all states. As explained, we have set all one-loop beta-coefficients to
one. Let us stress that the independence of the one-loop corrections from the coefficients
β, γ and ν implies that even if higher spin fields were inducing an extra polynomial or even
exponential exp(β′

√
N) factor, they would remain unchanged.

To avoid couplings to the wrapped D4-branes, we set b2b3 = 0 but allow either of them
to be non-zero. After approximating the sum by an integral and expressing the A0 charge
n1 as

n1 = t
1
2
2 t

1
2
3

(
w1 −

b3
t3
x1 −

b2
t2
y1

)
, (4.29)
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one can proceed as in section 4.1. Then one realizes that via the integral over the 11
angular directions φ1, . . . , φ11 , all off-diagonal contributions from n21 vanish so that only
the diagonal ones survive. Following the same steps as in the previous metric calculation,
we finally arrive at

f
(1)
00 ≃ t1t2t3

(
1 +

(
b2
t2

)2
+
(
b3
t3

)2) 1
2 log

(Mpl
Ms

) . (4.30)

This is proportional to the classical gauge coupling from (2.11), with only the term involving
b1 missing. But that is expected, as b1 does not appear in the mass formula for the light
states.

We can proceed similarly for the other electric components of the gauge coupling, i.e.
Λ,Σ = 0, 2, 3. For Λ = Σ = 1 one can only determine the magnetically dual coupling
f̃
(1)
11 in terms of f̃ (0)11 = (f (0)11 )−1. Now, the wrapped D4 branes (for b2 = b3 = 0) are

electrically charged and we can still apply the formalism. In this manner, the final result
for the non-vanishing one-loop corrections to the gauge kinetic functions can be compactly
written as

f
(1)
ΛΣ = ξ

2 log
(

Mpl
Ms

)f (0)ΛΣ

∣∣∣
b1=0

(Λ,Σ = 0, 2, 3) ,

f̃
(1)
11 = ξ

2 log
(

Mpl
Ms

) f̃ (0)11 ,

(4.31)

where ξ is a common numerical prefactor.
By electric-magnetic duality one might also extract some information on the one-loop

corrections to the theta-angles, but we stop here and state that in the large Kähler modulus
limit t1 → ∞, the loop corrections to the gauge couplings are essentially consistent with
Variant B of the Weak Emergence Proposal, but again miss some dependence (on b1) and
receive a suppression by log(Mpl/Ms) ∼ log(t1).

4.3 Emergence in the asymptotic regime u1 ≫ 1

For completeness, let us now discuss emergence in the limit u1 → ∞. If we again assume
that we get an analogous mass formula as for the perturbative string states (2.3), then the
computation for the species scale and the one-loop kinetic terms will proceed as before and
we will arrive at the analogous result10

G(1)
u1u1 = λG(0)

u1u1 , G(1)
v1v1 = 0 , G(1)

u1v1 = 0 ,

G
(1)
u1Ma

= 0 , G
(1)
v1Ma

= 0 ,

G
(1)
MaMb

= 2λ
log2

(
Mpl
Ms

) G(0)
MaMa

,

(4.32)

10Note that the two perturbative as well as all the wrapped D2, D4 and NS-branes wrap torsion cycles
of the orbifold, which would be absent for a CY with π1(X) = 0. According to [13], in this case the
classical infinite distance point in the complex structure moduli space could be obstructed by moving it
to finite distance by the presence of Euclidean D2-brane instantons. As described below table 4, for this
toroidal setting the large complex structure limit is related to the unobstructed large Kähler modulus limit
by two T-dualities. This suggests that the D2-brane instantons do not carry the right fermionic zero mode
structure to contribute to the hypermultiplet metric.
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with Mpl/Ms = √
u1 and a, b labelling all modes except u1 and v1. Since all states in the

light towers are neutral with respect to the graviphoton and the other three U(1) gauge
symmetries, the one-loop corrections to their gauge couplings do vanish.

4.4 Consequences for emergence

In view of the discrepancy of the BH and the QFT approach in determining the species
scale for string towers, let us now discuss what the consequences of these results for the
emergence proposal could be. All the one-loop corrections have been derived in the QFT
picture and as such in particular the log-factors are under scrutiny. There is the possibility
that the extrapolation of the QFT techniques to the stringy regime with energies larger
than Ms is at least questionable.

However, in the course of the computation, we have seen a certain universality in the
final results for the emerging field metric and gauge couplings, which first of all show the
expected classical moduli dependence in some of the orthogonal components. The latter
arose from the inclusion of both the KK and the winding modes, which in the regime of
interest are already heavier than the string scale. In addition, we observed this highly
non-trivial conspiracy of coefficients in the relation (4.22), which we think is not just
coincidental.

Thus, in the remainder of this section we approach our results with a positive attitude
and discuss two possibilities to interpret the appearing log-factors:

(A) The log-factors are unphysical. Motivated by the BH picture we just ignore the
log-suppressions. Going through the computation, one realizes that they really en-
tered the expression for the one-loop field metric and gauge coupling by inserting
Λ̃/Ms ∼ log(σ) in the final step (see e.g. the discussion around equation (4.23)).

In the weak string coupling limit, we would say that the field metric is almost
fully emerging with only the Gρρ term missing. This is due to the non-appearance
of the axion ρ in the mass formula for the light towers of states and seems to be at
odds with supersymmetry. For the non-vanishing metric components, the relative
normalizations are also fine, except for a factor of 2 between Gσσ and the other
components.

Since the one-loop gauge couplings were all trivially vanishing, clearly these do
not emerge. As mentioned, on a genuine CY with vanishing fundamental group, also
the 1-loop metric components for the Kähler moduli would be vanishing. Essentially,
this is just a reflection of the non-mixing of hyper and vector multiplets in 4D N = 2
supergravity.

Consistent with N = 2 supersymmetry, in the limit of a single large Kähler
modulus, also some components of the gauge couplings emerged with the expected
moduli dependence.

(B) The log-factors are physical. The second possibility is that the log-factors are
physical and should be taken seriously. For concreteness, let us only consider the
example of the weak string coupling case. As in the weak version of the Emergence
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Figure 3. Dependence of energy scales on σ. The Swampland Distance Conjecture predicts a
breakdown of the EFT at large (Planck scale) field distances when many states fall below its cut-
off µ.

Proposal, including the classical contributions, we have up to the one-loop level

Lkin = M2
pl

( 1
σ2

+ λ

σ2
+ . . .

)
(∂σ)2 +

M2
pl

4σ4 (∂ρ)2

+M2
pl
∑

I

(
1

4t2I
+ λ

2t2I log2(σ)
+ . . .

)(
(∂tI)2 + (∂bI)2

) (4.33)

and a similar term for the complex structure moduli UI = vI + iuI . The dots indi-
cate that there will be higher order corrections, as in our computation we were just
extracting the asymptotic form of the loop corrections.

We first notice that (4.33) indicates that the induced corrections due to the light
towers of states appearing in asymptotic limits in field space are much milder than
initially advocated. Against the intuition from the Swampland Distance Conjecture
that the EFT becomes worse and worse with more and more states dropping below
the UV cut-off (see also figure 3), in the infinite field distance limit the one-loop
corrections are either proportional to the classical values or are subleading. However,
this does not happen polynomially in σ−1 = exp(−ϕ4) like in perturbation theory,
but logarithmically with a suppression log−2(σ). Thus, in this sense the (kinetic)
couplings of the classical EFT, in which one is only keeping the generically lightest
states, are still valid and under control.

However, the correction is moduli dependent and one might wonder about the
initial N = 2 supersymmetry. As we have already mentioned, in a 4D EFT with
N = 2 supersymmetry, the moduli spaces of the vector- and the hyper multiplets
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are not allowed to mix. But since the σ-field resides in the type IIA hyper multiplet
and σ-dependent corrections appear in the one-loop metric of the Kähler moduli
(belonging to the vector multiplet), it seems that the two sectors do not decouple in
our case.

A natural way to resolve this issue is to interpret the problematic log-factor in
G

(1)
tI tI

= M2
pl g

(1)
tI tI

not as a correction to the field metric, but as a one-loop correction
to M2

pl. Recall that the latter is nothing else than the kinetic term for the graviton,
which should/could also emerge. Indeed, the stringy one-loop correction for the type
II string on 4D orbifold models with N = 2 supersymmetry was found to be non-
vanishing in [54, 55] and in fact proportional to the string scale, i.e. δ(M2

pl) ∼ M2
s .

With this modification, the expansions of the relevant quantities read

M2
pl = M

2 (0)
pl +M

2 (1)
pl + . . .

gAB = g
(0)
AB + g

(1)
AB + . . . ,

(4.34)

where gAB = GAB/M
2
pl. The previously computed one-loop coefficients therefore

consist of two different components, namely

G
(1)
AB = M

2 (0)
pl g

(1)
AB +M

2 (1)
pl g

(0)
AB . (4.35)

Let us now apply (4.35) to the log-corrected metric components of the Kähler moduli
in (4.24). Here, the σ-dependent factor corrects the Planck mass according to

M
2 (1)
pl =

2λM2 (0)
pl

log2(σ)
≃ NspM

2
s , (4.36)

which for a small number of light species is consistent with [54, 55]. Now the one-loop
corrections to the field metrics of the orthogonal directions are all vanishing

g
(1)
ab = 0 , with a, b = tI , bI , uI , vI . (4.37)

As a consequence, the found emergence-like relation G
(1)
ab ∼ G

(0)
ab / log2(σ) is just a

trivial consequence of (4.35). Next, determining the corrections to the remaining
metric components we find

g(1)σσ = λ

σ2
− 2λ

log2(σ)σ2
, g(1)ρρ = − λ

2 log2(σ)σ4
, (4.38)

so that only the hyper multiplet metric receives logarithmic hyper multiplet depend-
ing corrections. However, the aforementioned asymmetry with respect to the saxion
σ and its axionic partner ρ persists.

5 Conclusions

In this paper we were exploring the Emergence Proposal with a concrete N = 2 super-
symmetric toroidal orbifold model where, in particular in the weak string coupling limit,

– 27 –



J
H
E
P
1
0
(
2
0
2
3
)
1
4
5

we had full control over the light particle and string towers of states and their detailed
mass formula. We were able to carry out the computation keeping track of all 14 moduli
fields from the NS sector. We also considered two other asymptotic regimes, namely the
large Kähler and large complex structure limits, where the same number and mass pattern
appeared once one included all light modes. Indeed, we identified 12 light particles mostly
arising from wrapped D-branes and wrapped NS-branes and one low-tension 4D string
arising from a wrapped NS-brane.

Concerning the string tower, we pointed out an issue with the definition of the species
scale, namely the QFT and the BH picture were giving mutually non-consistent results.
From the QFT point of view, this might be rooted in the fact that with an emergent
string present in the asymptotic field limit, one inevitably probes the string at energies
larger than Ms. The most important question clearly is to completely resolve this issue
and in the course develop a well-founded approach to treat the Emergence Proposal in the
presence of asymptotically tensionless strings.

As the only available approach, carrying out the self-consistent computation in the
QFT picture, we found that the one-loop corrections to the moduli field metric and the
gauge couplings follow a very similar pattern as their classical results. However, the details
turned out to be more intricate and we discussed essentially two different ways to interpret
the results differing in how we treated the ubiquitously appearing log-suppressions. Just
ignoring them, a large portion of the classical field metric and gauge couplings emerged, i.e.
they in particular had the expected moduli dependence. No components were generated
at one-loop that were absent classically.

The other option was to consider the log-factors as being physical. Avoiding any
conflict with the decoupling of hyper- and vector multiplets in the N = 2 supersymmetric
EFT led us to the inclusion of a moduli dependent one-loop correction to the 4D Planck
mass. However, taken at face value, we have seen that neither of the two variants of the
Weak Emergence Proposal is really fully satisfied.

As another new aspect of emergence, this interpretation suggested that the potentially
induced corrections due to the light towers of states appearing in asymptotic limits in field
space are much milder than initially advocated.

To get further confirmation, it would be interesting to further generalize our multiple
moduli computation. Of course, one could consider many other infinite distance limits
in the saxionic moduli space, like e.g. the overall large volume limit, where one scales all
Kähler moduli like tI = λt̂I with the 4D dilaton kept constant. This is nothing else than the
decompactification limit of the dual M-theory on CY × S1 compactification. Such a large
volume limit has been one of the prime examples of emergence discussed in [8, 24], where
the lightest states were the D0-branes with the species scale being the 5D Planck-scale
Λ̃ ∼Mpl/λ

1
2 . In addition, one could consider backgrounds in other space-time dimensions

or with less supersymmetry.
To resolve this issue about the correct value of the species scale one might wonder

whether one could carry out the full emergence computation directly in string theory, i.e.
without employing the field theory diagrams. For instance, in an asymptotic direction in
the N = 2 vector multiplet moduli space one starts with the proposal [29] that the species
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scale is related to the topological one-loop free energy as Λ̃ ∼Mpl/
√
F1 and then involves

also the one-loop gauge thresholds corrections.
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A Generalities on emergence

To be self-contained, we collect here the basics of the Emergence Proposal, providing in
particular the background material and formulas that are needed in the body of the paper.

As already mentioned, in the weaker version of the Emergence Proposal it is claimed
that any infinite field distance singularity can be associated to a tower of light states
becoming massless in that limit. The tree level singular behavior of the metric can then
be matched by integrating out these states up to the quantum gravity cut-off, namely the
species scale Λ̃. In general, we have multiple towers of states with moduli dependent mass
scales and a further degeneracy in the mass spectrum. Therefore, the number of states Nsp
is given by

Nsp =
∑

n⃗

degn⃗ , (A.1)

where we are summing over all quantum numbers ni, collectively denoted as n⃗, such that
the corresponding states have masses below the species scale. Note that (A.1) is valid in the
case of multiplicative towers, which we focus on, where states of mixed quantum numbers
are allowed to appear. If that is not the case, then we have what is called additive towers,
where Nsp =

∑
iNsp,i [24]. If the species scale is much bigger than the mass scales of all

towers, one can employ an integral approximation and can often carry out these higher
dimensional integrals either analytically or at least extract their asymptotic form.

For emergence, we are for instance interested in the kinetic terms for the moduli fields,
whose classical action takes the form

Skin = −1
2

∫
d4x

√
−g G(0)

ab ∂µϕ
a ∂µϕb︸ ︷︷ ︸

Lkin

. (A.2)

The above conventions correspond to dimensionless fields with c = ℏ = 1 and in 4D
Minkowski space we have of course gµν = ηµν . Note that in our conventions the classi-
cal field metric G(0)

ab contains a factor of M2
pl. Qualitatively speaking, emergence means

that the one-loop contribution G(1)
ab to this moduli field metric arising from integrating out

the aforementioned light species is proportional to the tree-level metric. Closely follow-
ing [8, 24], consider a tower of massive real scalars φn⃗ or Dirac fermions ψn⃗, whose mass is
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Figure 4. Feynman diagrams for the processes leading to the one-loop corrections to the field
metric, with massive scalars φn⃗ (left) or massive fermions ψn⃗ (right) running in the loop.

parametrized by the moduli fields ϕa and some quantum numbers ni. This is captured by
the mass term of the Lagrangian

LB
mass = M2

pl
∑

n⃗

1
2m

2
n⃗(ϕa)φ2

n⃗ or LF
mass = M3

pl
∑

n⃗

mn⃗(ϕa)ψn⃗ ψn⃗ . (A.3)

The expansion of each mass term to linear order in the perturbations around the
vacuum expectation values of the fields ϕa results in a trilinear interaction vertex with
coupling strengths

λa,n⃗ = 2mn⃗∂amn⃗ (scalars) or µa,n⃗ = ∂amn⃗ (fermions) (A.4)

with ∂a = ∂/∂ϕa. These vertices lead to the Feynman diagrams shown in figure 4.
Upon integrating out the states from the tower, the propagator matrix Dab(p2) of the

moduli receives a one-loop correction given by

Dab(p2) = 1
p2 − Πab(p2)

, Πab(p2) =
∑

n⃗

Πab,n⃗(p2) . (A.5)

Here, Πab,n⃗(p2) is the contribution of a single amputated one-loop Feynman diagram con-
taining the boson or fermion of the tower characterized by n⃗ and the index structure is due
to (A.4). The resulting wave-function renormalization of the moduli is equivalent to the
one-loop metric we are looking for. Since it is given by the part of Πab(p2) proportional to
p2, we simply need to take the derivative of each Πab,n⃗(p2) with respect to p2, evaluate at
p = 0 and sum over the whole spectrum. The one-loop metric comes out as

G
(1)
ab =

∑
n⃗

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

. (A.6)

With the conventions of figure 4, the contribution from a scalar loop reads

Πab,n⃗(p2) =
λa,n⃗ λb,n⃗

2

∫
d4q

(2π)4
1

q2 +m2
n⃗

1
(p+ q)2 +m2

n⃗

, (A.7)

– 30 –



J
H
E
P
1
0
(
2
0
2
3
)
1
4
5

where the factor of 1/2 accounts for the symmetry of the bosonic diagram. For the contri-
bution to the one-loop metric one obtains

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

= −
λa,n⃗ λb,n⃗

2

∫
d4q

(2π)4
1

(q2 +m2
n⃗)3

= −
λa,n⃗ λb,n⃗

16 (2π)2
Λ̃4

m2
n⃗(Λ̃2 +m2

n⃗)2
.

(A.8)

The momentum integral was performed up to the species scale Λ̃, since only those light
modes will be included in the emergence calculation. Now, one can distinguish two asymp-
totic limits: either Λ̃ ≫ mn⃗, which is typically fulfilled by KK towers, or Λ̃ ≃ mn⃗, which
holds for most states in a tower of string excitations. Apparently, both limits give the same
functional behavior, namely

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

≃
λa,n⃗ λb,n⃗

m2
n⃗

(A.9)

and only the overall numerical coefficient is different. As mentioned, our computation is
indifferent to such overall factors so that the form (A.9) is sufficient for our purposes.

Fermionic loop integrals can be computed in a similar way. The Feynman diagram on
the right hand side of figure 4 gives

Πab,n⃗(p2) = −µa,n⃗ µb,n⃗

∫
d4q

(2π)4 tr
(

(−i/q +mn⃗)(−i(/p+ /q) +mn⃗)
(q2 +m2

n⃗)((p+ q)2 +m2
n⃗)

)
. (A.10)

With the trace in the above integral explicitly performed, the part linear in p2 splits into
the two pieces

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

= − 4µa,n⃗ µb,n⃗

∫
d4q

(2π)4
1

(q2 +m2
n⃗)2︸ ︷︷ ︸

≡ (I)

(A.11)

+ 2 · 4µa,n⃗ µb,n⃗

∫
d4q

(2π)4
m2

n⃗

(q2 +m2
n⃗)3︸ ︷︷ ︸

≡ (II)

, (A.12)

where the factor 4 comes from the trace of gamma matrices and counts the number of
fermionic degrees of freedom. For (II), one finds the exact same behavior of the loop-
integral as in the bosonic case, only with opposite sign. We focus on supersymmetric
setups, where the number of on-shell bosonic and fermionic degrees of freedom match,
so these terms precisely cancel out. Carrying out the q-integration, for the remaining
contribution (I) in (A.11) one obtains

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

= −
µa,n⃗ µb,n⃗

(2π)2

(
log

(
Λ̃2 +m2

n⃗

m2
n⃗

)
− Λ̃2

Λ̃2 +m2
n⃗

)
. (A.13)
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In the KK-like limit Λ̃ ≫ mn⃗, this becomes

∂Πab,n⃗(p2)
∂p2

∣∣∣∣∣
p2=0

≃ −µa,n⃗ µb,n⃗ log
(

Λ̃2

m2
n⃗

)
. (A.14)

The one-loop metric is given by the sum of these contributions. Inserting (A.4) and (A.14)
in (A.6) and taking into account possible mass degeneracies, we arrive at

G
(1)
ab ≃

∑
n⃗

degn⃗ ∂amn⃗ ∂bmn⃗ log
(

Λ̃
mn⃗

)
. (A.15)

For the string-like limit Λ̃ ≃ mn⃗, the contribution (A.13) reduces to the already familiar
expression (A.9) and leads us to the one-loop metric

G
(1)
ab ≃

∑
n⃗

degn⃗ ∂amn⃗ ∂bmn⃗ . (A.16)

Strictly speaking, these relations are derived for scalars (spin-0) and spin-1/2 fermions.
Since we can also include towers of string excitations, there can be contributions from
higher spin bosons and fermions, as well. We assume that their contribution per degree of
freedom will not essentially deviate from the lowest spin cases discussed. Hence, we apply
the one-loop metrics (A.15) and (A.16) also to these higher spin states.11

Gauge kinetic terms at one-loop. The emergence idea can be similarly utilized to
study the behavior of gauge couplings in the infrared. Let us briefly sketch the logic for a
set of U(1) gauge fields Aa

µ with field strengths F a
µν = 2∂[µAa

ν] in 4D, allowing for classical
gauge-kinetic mixings according to

Skin =
∫
d4x

√
−g

−1
4
∑
a,b

f
(0)
ab Fµν,aF b

µν

 (A.17)

with the gauge kinetic function given in terms of the gauge couplings as f (0)ab = g−2
ab . Once

again, we incorporate towers of scalars φn⃗ and fermions ψn⃗ with mass mn⃗. They are
minimally coupled to the gauge fields via the covariant derivative

Dµφn⃗ = (∂µ − iqa,n⃗A
a
µ)φn⃗ , Dµψn⃗ = (∂µ − iqa,n⃗A

a
µ)ψn⃗ (A.18)

where qa,n⃗ are the electric charges. The propagator of the U(1) fields receives corrections
from analogous loop diagrams depicted in figure 5, so the corrected expression reads

Dµν
ab (p2) =

(
p2

g2ab

δµν
ab − Πµν

ab (p2)
)−1

, Πµν
ab (p2) = Πab(p2)δµν , (A.19)

where we are assuming Lorentz gauge for all vector fields, ∂µAa
µ = 0, and a flat back-

ground with Euclidean metric ḡµν = δµν . As before, the kinetic terms are given by
11After all, the contribution from the string excitations was very robust and independent of a couple of

parameters. Therefore, one can probably even weaken this assumption.
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Figure 5. Feynman diagrams for the processes leading to the one-loop corrections to the gauge
kinetic terms, with massive scalars φn⃗ (left) or massive fermions ψn⃗ (right) running in the loop.

wave-function renormalizations, so one has to sum over all contributions from amputated
one-loop diagrams.

Similar to the kinetic terms for the moduli, one part from the fermionic loop integrals
always cancels the scalar contribution if supersymmetry is unbroken. Likewise, both two
interesting limits Λ̃ ≫ mn⃗ and Λ̃ ≃ mn⃗ lead to the same asymptotic behavior as before.
In view of our application, we only focus on the latter case, for which the total one-loop
gauge couplings are given by

f
(1)
ab ≃

∑
n⃗

degn⃗ qa,n⃗ qb,n⃗ . (A.20)

Analogous to the moduli metric, we will assume that the contribution per degree of freedom
from higher spin bosons and fermions will not essentially deviate. Hence, we set all the
usually appearing one-loop beta-function coefficients to one.

Cancellation of h̄-factors. Following [24], let us comment on an important conceptual
point. Although our starting point was accounting for quantum corrections, our results do
remain classical. This subtlety is partially concealed because in natural units M2

pl = κ−2
4 ,

where κ4 is Einstein’s gravitational coupling constant. Restoring ℏ in the graviton self
energy expression (2.14) we have12

π−1(p) = p2
(

1 − Nsp p
2κ24

120πℏ log
(
− p

2

µ2

)
+ . . .

)
, (A.21)

where for convenience we left out the mass dependent corrections. Noticing that the classi-
cal factor κ24 comes from the graviton vertex, we realize that this one-loop diagram comes
with an extra factor ℏ−1. Now to illustrate our point and take advantage of (A.1), let us
consider the example of a tower of states with mass n∆m with polynomial degeneracy nK ,
corresponding to Nsp = nK+1

max , where Λ̃ = nmax∆m. Using (A.16), we get

G
(1)
ab ≃ 1

ℏ
nK+3
max (∂a∆m) (∂b∆m) . (A.22)

12We will still set c = 1. Recall that we can express the d-dimensional Planck mass as Md−2
pl,d =

ℏd−3c5−d/8πGN , where GN is Newton’s gravitational constant and GN = κ2
dc4/8π.
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As for the one-loop amplitude (A.21), we have introduced an extra loop-factor of ℏ−1.
Then the correction to the metric can be expressed as

G
(1)
ab ≃ 1

ℏ
Nsp Λ̃2∂a∆m∂b∆m

∆m2 ≃
M2

pl
ℏ

∂a∆m∂b∆m
∆m2 , (A.23)

which due to the relation M2
pl/ℏ = κ−2

4 gives a classical result, where ℏ has canceled out.
This is possible, as the cut-off is also defined via a one-loop diagram.

B Species scale for KK modes

Assume for simplicity that we have a circle compactification leading to a non-degenerate
one-dimensional KK tower with a mass spacing

∆m = Ms
r

= Mpl
σr

, (B.1)

where r is the radius of the circle in string length units and σ the inverse of the 4D string
coupling. The mass of each KK mode will be given by

mn = n∆m (B.2)

so that the heaviest KK mode in our theory will be for k = Λ̃/∆m. In the QFT approach,
the total number of states up to level k will be equal to Nsp = k so that invoking also the
definition of the species scale we get

Λ̃ = Mpl

(σr)
1
3
, Nsp = (σr)

2
3 . (B.3)

Note that the species scale is nothing else than the 5D Planck-scale.
Now let us consider the same model using the BH approach,13 where the calculation

is more involved. In particular, while k = Λ̃/∆m still holds, we now need to count the
number of multiparticle states whose total mass is equal to the one of the BH. This will
be described by a (large) number N , given by

N = MBH
∆m = SBH k = Nsp k . (B.4)

where we have used the formula for the Bekenstein-Hawking entropy. Hence, their total
number will be given by the number of possible partitions of N into numbers smaller than
k. Since k ≪ N , we can approximate this number by

ΩN,k ∼ Nk−1

(k − 1)! k! . (B.5)

One realizes that for Nsp ∼ k this takes the asymptotic form

ΩN,k ∼
(
kk

k!

)2

∼ e2k (B.6)

13We are indebted to Niccolò Cribiori for contributing in an essential way to this computation.
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where we have used the leading exponential term in Stirling’s formula k! ∼ (k/e)k. Taking
now the logarithm of this expression we find

S = log ΩN,k ∼ k . (B.7)

In the BH picture this is supposed to be equal to Nsp, which is indeed consistent with our
assumption. In conclusion, for KK modes both the QFT and the BH picture give the same
values for the species scale and the number of light species.

C Axions in the large Kähler modulus limit

Relating to the discussion in section 4.2, in this appendix we speculate about the full mass
formula in the t1 → ∞ limit. So far, we were not explicitly including the axions in the
discussion. To do so, let us first consider the wrapped D-brane states from table 2. Up
to the overall factor Mpl/

√
t1, these states involve only the Kähler moduli t2, t3 and the

complex structure moduli u2, u3 on the second and the third T 2. Starting with the D4-
brane, turning on b2 (or b3) via the Born-Infeld action one generates also a contribution to
the tension that scales precisely like the first D2-branes from that table. Turning on both
b2 and b3 one gets a contribution like the D0-brane. Hence, these four branes are related
via turning on non-trivial axion values b2 and b3.

Note that such chains of four states were also present in the original perturbative mass
formula (2.3). It is a yet not resolved issue which bound states of all these (relatively non-
supersymmetric) wrapped branes can form and what their mass is, so we just speculate
that the final form will be very similar to the one for the perturbative states. The shift
symmetry of the axions provides some constraints. Hence, it is suggestive that the mass
for the bound states of these four types of wrapped D-branes takes the form

M2
1 =

M2
pl
t1


n1 + b3n2 + b2n3 + b2b3n4

t
1
2
2 t

1
2
3

2

+

(n2 + b2n4) t
1
2
3

t
1
2
2

2

+

(n3 + b3n4) t
1
2
2

t
1
2
3

2

+
(
n4t

1
2
2 t

1
2
3

)2
 .

(C.1)

The ni denote the four wrapping numbers of the wrapped D0, D2 and D4 branes.
Similarly, the other four wrapped D2-branes from table 2 are also related via turning

on the (quasi-)axions v2 and v3 so that we propose

M2
2 =

M2
pl
t1


p1 + v3p2 + v2p3 + v2v3p4

u
1
2
2 u

1
2
3

2

+

(p2 + v2p4)u
1
2
3

u
1
2
2

2

+

(p3 + v3p4)u
1
2
2

u
1
2
3

2

+
(
p4u

1
2
2 u

1
2
3

)2
 .

(C.2)
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So far, the arguments behind the mass formulas (C.1) and (C.2) were still fairly standard.
Next, we are dealing with the two KK-modes (3.9) along the two one-cycles of the first T 2

factor and the corresponding two wrapped NS5-brane states listed in table 3. For these
final four states we apply just the analogy to the fundamental string. For the fundamental
string, a wrapped string along the x(y)-cycle in the presence of a Kalb-Ramond field B2
changes the definition of the canonical momentum and provides a correction to the mass
of the KK-mode along the y(x)-direction. Analogously, we now propose that a wrapped
NS5-brane along the x(y)-cycle in the presence of the magnetic dual B6 field (with all legs
along T 6) changes the definition of the canonical momentum and provides a correction to
the mass of the KK-mode along the y(x)-direction. Applying this logic we obtain the mass
formula

M2
3 =

M2
pl
t1


m1 + v1m2 + ρm3 + v1ρm4

σ u
1
2
1

2

+

(m2 + ρm4)u
1
2
1

σ

2

+

(m3 + v1m4)σ

u
1
2
1

2

+
(
m4u

1
2
1 σ

)2
 .

(C.3)

Recall that ρ is the magnetic dual of the Kalb-Ramond field B2 with both legs along the
4D space-time. Therefore, it is B6 with all legs along the 6 toroidal directions. Finally, we
put all these the contributions together and also add the contribution from the oscillators
of the low-tension 4D string arising from the wrapped NS5-brane

M2 = M2
1 +M2

2 +M2
3 +

M2
pl
t1

κ2N . (C.4)

Thus, we claim that all two KK-modes and the many wrapped brane states can form bound
states whose mass will be given by this relation. This is certainly a strong claim, but the
analogy to the weak coupling limit is striking.

Analogous to the mass expression (4.2), introducing now continuous variables, for the
derivative with respect to the axion ρ we obtain

∂ρM ≃ Mpl√
t1

1
2 r σ2

(
2w3 y3 + 2x3 z3

)
. (C.5)

Hence, compared to the results in the perturbative limit (4.16), we notice the factor σ2 (in-
stead of σ). This will correctly reproduce the term dρ2/(4σ4) in the tree-level metric (2.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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