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1 Introduction and summary

Causality/Positivity bounds. Relativistic causality is a foundational concept that un-
derpins the modern construction of the fundamental models of nature. It is conjectured
to imply analyticity and crossing symmetry of the S-matrix [1]. Unitarity of the quantum
theory, another foundational cornerstone, also plays a vital role in restricting the forms
the S-matrix can take. On the other hand, effective field theories (EFTs) are part and
parcel of model building in modern particle physics and cosmology. Using merely the low
energy field contents and symmetries, an EFT, arising from integrating out heavy degrees
of freedom, can parametrize generic effects of possible UV completions at low energies.
Interestingly, causality and unitarity, along with locality, can impose strong constraints on
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the theory space, i.e., the space of the Wilson coefficients, of effective field theories, often
known as causality or positivity bounds (see [2] for a concise review).

A simple and efficient way to derive these constraints on the Wilson coefficients is via
the dispersion relations or dispersive sum rules, which provide a portal to connect the acces-
sible EFT coefficients in the IR with the generic unknown physics in the UV [3]. They can
be derived from analyticity, crossing symmetry and locality of the scattering amplitudes,
and causality bounds are precisely the unitarity conditions on the UV amplitudes passed
down to the IR via the dispersive sum rules. In the forward-limit of identical particle
scattering, a simple positivity bound on the s2 (s, t, u being the Mandelstam) coefficient
can be easily seen using the textbook optical theorem [3]. The s2 bound is usually the
most accessible one phenomenologically. For 2-to-2 scattering between multiple species of
particles, there are a set of s2 coefficients since the amplitude can have different in and out
states. Positivity bounds tell us that these s2 coefficients form a convex cone, whose ex-
tremal rays (or kinks from the viewpoint of the cross section of the convex cone) correspond
to tree-level UV (irrep) states, which are endowed with the projected-down versions of the
UV symmetries [4, 5]. Particularly, this means that one can infer the existence of certain
UV states from the causality convex cone, which helps inverse engineer the UV model from
the EFT data. Furthermore, the dual cone of this amplitude cone is a spectrahedron, so
the optimal causality bounds on the s2 coefficients can also be effectively computed with
semi-definite programing (SDP), even for the case of many degrees of freedom with less
symmetries [6]. The Standard Model EFT (SMEFT) contains many degrees of freedom,
so its parameter space is vast, especially at higher orders. Positivity bounds have been
found to significantly restrict the viable space of dimension-8 operators [4, 6–19]. One may
also reverse the argument and use the positivity bounds to test the fundamental principles
of quantum field theory in some seemingly benign parameter regions [20–22], or inverse
bootstrap the UV from the IR [23, 24].

Highly nonlinear constraints on the coefficients of higher powers of s can also be gleaned
once realizing that the forward-limit dispersion relations readily define a Hausdorff moment
problem [25, 26]. Away from the forward limit, a series of easily-to-use analytic bounds on
both s and t derivatives of the amplitudes can be obtained using the Martin extension of
analyticity [27] and the positivity of the derivatives of the Legendre polynomials [28] (see
also [29–32] for related works). These bounds can be generalized to the case of massive par-
ticles with spin utilizing the transversity formalism (as opposed to the helicity formalism)
for the external polarizations [33].

However, since the dispersive sum rules used to derive the above bounds are only
su-symmetric, the full crossing symmetry of the S-matrix has not been used thoroughly,
and they usually only constrain the coefficients from one side. Indeed, two-sided bounds
can be derived for the coefficients once the full crossing symmetry is used [34, 35]. One
pathway to achieve the triple crossing symmetry is simply to impose st symmetry on the su-
symmetric sum rules. For the case of identical scalar scattering, the bounds on the explicitly
computed coefficients are consistent with the usual dimensional analysis expectations for
EFT coefficients. More importantly, this excludes the possibility that some delicate design
of the UV model can lead to arbitrary disparity among different orders of Wilson coefficients
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— “not everything goes for an EFT” [36]. This formalism can be easily extended to the
case of multi-field theories using the generalized optical theorem for partial waves [37].
Compared to linear programing for the case of a single scalar, the optimization scheme now
needs to be promoted to be a SDP problem with a continuous variable, which parametrizes
the scales of the UV states. Both of them can be efficiently solved by the SDPB package [38].
Alternative methods, also based on dispersive relations, have been developed for obtaining
the fully crossing symmetric causality bounds. These include directly using triple crossing
symmetric dispersive relations [39], and formulating the (non-forward) dispersion relations
as a double moment problem and slicing out the triple crossing bounds towards the end [40].
Triple crossing positivity bounds have also been used to constrain EFTs with spinning
particles [41–47], and extra causality constraints using the upper bounds on the spectral
functions can be found in [35, 45, 48]. Moreover, the powerful primal approach of S-matrix
bootstrap has also been developed to chart the space of EFTs; see, e.g., [49–52] and for a
review [53]. The primal approach directly parametrizes the crossing symmetric amplitudes
themselves and expands viable theory space by imposing unitarity conditions. In this
language, the above methods that rule out unphysical parameter regions is referred to as
the dual approach, which parallels the difference between the cone and dual cone of the s2

coefficients above.
In the presence of graviton exchanges in the scattering, a t-channel pole appears in

the left hand side of the sum rules, because a spin-2 particle t-channel exchange term,
different from the cases of lower spins, can survive the twice subtractions in deriving the
sum rules. While we can still Taylor expand in terms of s, the existence of the t-channel
pole prevents us from Taylor expanding in terms of t. Indeed, this t-channel pole must
be balanced by a divergence in the dispersive integral on the right hand side as t →
0. Apart from balancing the pole, the dispersive integral also gives rise to extra terms
which can be negative and violate the would-be strict positivity in theories without the
gravitons [24, 54, 55]. Nevertheless, each of the s-expanded sum rules can be viewed as a
one-parameter (t) family of IR-UV relations, and one can effectively use them by optimizing
over a set of continuous functions for the range that t can take within the EFT [56]. It turns
out that the strongest constraints come from when t is far away from the forward limit
and close to the cutoff. (A similar phenomenon was also seen in the earlier non-forward-
limit bounds without full crossing symmetry [57, 58].) Physically, this means that some
important constraints arise from when the impact parameter is small [56]. This approach
has been used to constrain the Wilson coefficients of Einstein gravitational EFTs [44, 46]
and Einstein-Maxwell EFTs [47].

Besides using the dispersion relations, causality bounds can also be derived from within
the EFT by requiring information not propagating faster the speed of light. Although less
algorithmic than the optimized dispersion relation approach, this approach is more intu-
itive and can sometimes produce very strong constraints with less efforts. In flat space,
subluminality can usually be directly imposed on the dynamical modes of theory in a
nontrivial background, which leads to conditions consistent with the positivity bounds ob-
tained above [3]. In a gravitational EFT, the situation is more subtle, as the definition
of speed is frame-dependent. So one resorts to observables such as the time delay in a
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classical scattering. An often used causality condition is that the Eisenbud-Wigner time
advance be not resolvable for the scattering wave, which is called asymptotic causality [59].
However, a more refined criterion for an EFT, called infrared causality, may be imposed
that the time advance with the GR part subtracted should be non-resolvable for the scat-
tering wave [60, 61]. Applications of the infrared causality can be found in [60, 62], and
those of the asymptotic causality can be found in [59, 63–66]. A few other interesting
applications of positivity bounds on gravitational and cosmological EFTs can be found in
for example [67–82].

Scalar-tensor theory. General relativity (GR), with only the Einstein-Hilbert term,
has been extensively tested in the solar system where it is relatively convenient for us to
carry out gravitational experiments and where gravity is weak and velocities are small
compared to the speed of light [83, 84]. The development of the Parameterized Post-
Newtonian formalism has put severe constraints on possible deviations from GR in the
weak gravity limit. The formalism is quite systematic, as it thoroughly parameterizes all
possible deviations directly at the level of the metric. The discovery of binary pulsars has
allowed us to confirm viability of GR in stronger gravity environments, with somewhat
less accuracy, but those environments are still well approximated by the linearized GR.
Therefore, the lesson is that, to be a viable alternative or extended gravity theory, it first
needs to very precisely reduce to GR in the weak field limit.

However, this does not necessarily mean that sizable beyond GR effects have been
completely ruled out in astrophysics, an intriguing possibility being that they are hidden
in the highly dynamical and strong-field regimes, such as near black holes and neutron
stars. Indeed, we are just starting to probe these regimes with the new observational tools
such as LIGO-Virgo-KAGRA gravitational wave detectors [85] and the Event Horizon Tele-
scope [86]. While GR can still pass the tests from these experiments to date, the accuracy
is still quite low. Since interpolating between the weak gravity GR regime and the strong
gravity regime with non-GR effects requires some degrees of “dynamical” nonlinearity, one
of the simplest ways is to introduce new field degrees of freedom. Scalar-tensor theory is a
simple extension of GR in this direction which only adds one extra field degree of freedom.
Brans-Dicke theory [87], which give rises to a “variable gravitational constant”, is one of
the earliest such models. It is currently tightly constrained by observations [83]. How-
ever, its extensions such as Horndeski theory/Generalized Galieon [88, 89] and Degenerate
Higher-Order Scalar-Tensor theories [90] are being intensively investigated to fit astronom-
ical and cosmological data [84]. Another motivation for scalar-tensor theory comes from
string/M theory, where a dilaton naturally arises as a low energy degree of freedom from
compactification [91]. The scalar degree of freedom is natural to consider also because
fermions, due to the Pauli exclusion principle, can not form classical configurations, which
need high occupation numbers at a range of momentum modes, while long-distance vec-
tor fields, endowed with a direction, are difficult to be compatible with the cosmological
principle.

There is a growing body of research dedicated to understanding scalar-tensor the-
ory in the strong regimes. The class of models involving the Gauss-Bonnet invariant
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G = RµνρσR
µνρσ − 4RµνRµν + R2 stand out, as they are low orders in the EFTs and

can give rise to hairy black holes [92–95] and the phenomenon of (spontaneous) scalar-
ization [96, 97]. These operators have been confronted with gravitational wave observa-
tions and beyond [98–107]. Wheeler famously coined the phrase that a black hole has no
hair [108]. More precisely, due to the uniqueness theorems in GR, a (non-charged) black
hole in GR can be solely described by its mass and angular momentum, and a bunch of
no-hair theorems generally prevent a black hole from having other parameters/pieces of
hair [108, 109]. A few exceptions include the presence of the scalar-Gauss-Bonnet couplings.
In fact, assuming shift symmetry for the scalar and the equations of motion being second
order, the linear scalar-Gauss-Bonnet coupling φG is necessary to sustain hairy solutions
in Horndeski theory [93, 94]. Furthermore, the φG term leads to the same parametrized
post-Newtonian parameters as in GR [110], and in particular it does not lead to nontriv-
ial scalar charges for neutron stars or other extended objects [95]. Therefore, the current
gravitational wave experiments are an ideal place to test this leading quadratic curvature
term.

On the other hand, the Damour-Esposito-Farese model [111] is the first model of
scalarization, which was proposed when the weak field gravity tests had reached an un-
precedented accuracy such that viable deviations from GR was seemingly impracticable. It
was also when binary pulsar observations became available, ushering in a new arena to test
GR with the compact stars. In the Damour-Esposito-Farese model, the scalar field obtains
a nontrivial profile once the density/curvature within the star exceeds a threshold, and
this can be the case for a neutron star, resulting in strong deviations from GR, but not for
the Sun. With the arrival of gravitational wave astronomy, another new window has been
opened up to test GR in stronger and more dynamical gravity environments. Recently,
a new class of scalarization models involving the Gauss-Bonnet invariant and black holes
have been proposed, in which the black hole becomes hairy if the curvature outside the
horizon exceeds a threshold [96, 97] (see [112] for a review). The underlying reason for the
scalarization to happen is because in these models the strong gravity environment induces
tachyonic instabilities for the unscalarized configuration. In the inspiral phase of a binary
black hole coalescence, a dynamical de-scalarization can occur, which can give rise to extra
scalar radiation and thus observational constraints [113].

With the arrival of the gravitational wave astronomy and advances of more traditional
observational means, it is becoming increasingly accessible to test gravity, along with pos-
sible accompanied extra degrees of freedom, in the strong and dynamical regimes [84]. As
we shall see, the causality bounds can strongly constrain the parameter spaces of gravita-
tional EFTs, which may help orient current and future experiments to more theoretically
favorable directions. On the flip side, one may also use the new observational data to test
the fundamental principles of quantum field theory or the S-matrix theory.

Summary. In this paper, we investigate how causality bounds constrain the parameter
space of scalar-tensor theory by means of dispersive sum rules of the scattering amplitudes.
To fully utilize the crossing symmetry of amplitudes, we start with dispersive sum rules
that are only su-symmetric and then impose the st symmetry on these sum rules. In
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a multi-field theory such as scalar-tensor theory here, only a few amplitudes are truly
symmetric in full permutations of s, t, u in the strict sense, some being not even strictly
symmetric in s and u, so the su or st crossing symmetry is used loosely in this context, with
the understanding that some crossings actually link distinct amplitudes. Nevertheless, the
working mechanism of improving the bounds with crossing symmetry is exactly the same as
in the single scalar case. In the presence of massless gravitons, the t-channel pole prevents
us from Taylor-expanding some sum rules in the forward limit, so the decision variables for
the optimization involve a set of weight functions of t, which numerically will be evaluated
with a finite dimensional truncation. In this setup, some important constraint space can
be effectively sampled using the impact parameter [56]. Various causality bounds without
full crossing symmetry and/or neglecting the t-channel pole have previously been used to
constrain scalar-tensor models [55, 72, 80, 82, 114–116].

While the Froissart-Martin bound [117, 118] for the high energy behaviors of ampli-
tudes is rigorously established for massive particles, which suggests that only two subtrac-
tions are needed to derive the dispersive sum rules, it is more subtle for massless particles
especially in the presence of gravitons. We will make the usual assumption that only two
subtractions are needed when t < 0 and three subtractions when t ≤ 0 [23, 44]. We will also
assume that the EFT is weakly coupled in the IR so that we can use tree-level amplitudes
at low energies, but we are agnostic about the attributes of the UV theory, as manifest in
our exclusive use of the dispersive sum rules in deriving the bounds. We will only make
use of positivity of partial wave unitarity, which leads to the semi-positive conditions on
the BPX ,`(µ) matrices (see eq. (5.10)). Nevertheless, with full crossing symmetry incorpo-
rated, we find that the Wilson coefficients projected to the gravitational coupling 1/M2

P

are already bounded to finite regions. This is of course except for the (∂φ)4 coefficient
(and consequently some correlated coefficients), for which the upper bound of partial wave
unitarity is needed to cap from the above.

We find that a simple method can be devised to estimate the sizes/scalings of the
Wilson coefficients via the dispersive sum rules, without the need for heavy numerical cal-
culations. This proceeds by first normalizing the Mandelstam variables in the dispersive
sum rules with the cutoff of the EFT. Then, from some simple sum rules that only con-
tain the gravitational coupling 1/M2

P , we can establish correspondences between the UV
spectral functions and the hierarchy between the cutoff and the Planck mass. A scaling
correspondence can not be uniquely assigned in this way to the UV spectral function c00→X

`,µ

(the partial amplitude from two scalars to a heavy state X, cf. eq. (3.2)), for which we
can either let it saturate the unitarity upper bound or assign a desired correspondence, the
latter of which will lead to an ad hoc class of theories with reduced scalings for the relevant
terms. These correspondences can then be used to infer the dimensions of the Wilson
coefficients by simple inspection of available sum rules. The scalings of the coefficients
extracted in this way are consistent with the sharp numerical bounds obtained by SDP.

The causality bounds on some Wilson coefficients are intimately correlated with each
other, while others are quite independent. This can be often inspected from the BPX ,`(µ)
matrices that are constructed from dispersive sum rules. If the relevant quantities are in
different diagonal blocks, then the corresponding coefficients are insensitive to each other.
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However, even if the relevant quantities overlap in the BPX ,`(µ) matrix, a strong correlation
between the corresponding coefficients is not guaranteed. At the practical level, the bounds
on certain coefficients can not be numerically optimized unless we specify the value of the
coefficient of the scalar self-interaction operator (∂φ)4. These are the coefficients that only
appear in the sum rules involving the UV spectral function c00→X

`,µ .
We also derive the causality bounds on some fine-tuned EFTs. The bounds on a set

of Wilson coefficients in the fine-tuned EFT can be considered as taking an appropriate
crossing section in the Wilson coefficient space, while the bounds on a given set of Wilson
coefficients in a generic EFT amounts to projecting the causality spectrahedron down to
an appropriate subspace. We show that some phenomenological models such as the f(φ)G
model should not be taken at its face value, because only adding exactly f(φ)G but no
other terms inevitably violates causality bounds. Indeed, in a model where the operators
essential for causality bounds to uphold are turned on but highly suppressed compared
to the usual EFT power counting, we can see that the Wilson coefficients of concern are
also highly constrained by causality bounds. We give a simple criterion to test whether a
given/fine-tuned scalar-tensor model will run into contradictions with causality bounds.

Particular attention has been given to the scalar Gauss-Bonnet couplings, which can
give rise to hairy black holes and scalarization and are currently undergoing intense scrutiny
in astrophysics by gravitational wave and other observations. We carve out the 2D bounds
on the leading order φG coefficient together with the coefficient of the Riemann cubed
operator, which is independent of the coefficient α of (∂φ)4. On the other hand, the
bounds on the coefficient of φ2G, which is essential for scalarization, strongly depend on α.
We also compare the causality bounds with the observational bounds for the coefficients of
φG and φ2G, which allows us to impose bounds on the cutoffs for these EFTs and reduce
the viable parameter space, thanks to the fact that for a capped α these fully crossing
symmetric bounds have restricted the viable parameters to an enclosed region.

If the scalar interacts with the heavy modes weakly in the UV theory, i.e., if the
UV spectral function c00→X

`,µ is suppressed by O(Λ/MP ), the scalar will interact with the
graviton with the usual gravitational strength in the low energy scalar-tensor EFT. This
will lead to the scaling of eq. (4.30). For the terms involving the Gauss-Bonnet invariant,
this gives rise to the usual scaling implicitly used in most literature: L ⊃M2

P

√
−g(O(1)

Λ2 ϕG+
O(1)
Λ2 ϕ

2G), where ϕ ≡ φ/MP . However, for a generic UV completion, as we see in eq. (4.29),
the couplings for terms like ϕ2G are allowed to be much larger, without running into the
trouble with causality bounds: L ⊃ M2

P

√
−g(O(1)

Λ2 ϕG + O(1)MP

Λ3 ϕ2G). This arises when
the low energy scalar interacts the heavy modes more strongly than the gravitational
force, a scenario aligned with the weak gravity conjecture. Incidentally, in this scenario,
the spontaneous scalarization models are natural where a vanishing ϕG term is usually
assumed and a sizable ϕ2G is required for tachyonic instabilities to take place. We have
confirmed the above scalings with the numerical causality bounds in section 6.

We have focused on the parity conserving sector in this paper. Once the parity violating
operators are involved, the complexity of numerics will increase significantly, as we have
to augment the dimension of the vector CPX ,`,µ and consequently the matrix BPX ,`(µ)
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(see eq. (5.10)). There has also been a growing interest in examining the observational
implications of parity-violating operators in scalar-tensor theories (see for example [84, 95]).
We defer the extraction of causality bounds on these terms to future work [119].

The paper is organized as follows. In section 2, we present the scalar-tensor EFT both
at the level of Lagrangian, with independent operators, and at the level of the amplitudes
that will be needed to derive the dispersive sum rules. The sum rules will be derived in
a couple of steps in section 3. In section 4, we propose a method to perform dimensional
analysis of the Wilson coefficients with the dispersive sum rules. In section 5, we outline
the optimization scheme to obtain the optimal bounds with positivity from unitarity, and
explain its numerical implementation in details. In section 6, we present the results of the
numerical causality bounds and discuss their implications. In appendix A, we show how to
construct generic 4-leg EFT amplitudes from scratch. In appendix B, we explicitly list all
the sum rules used to perform analyses and computations in this paper. In appendix C,
we show an explicit example exhibiting how the SDP optimization is performed.

Notation and conventions. The (reduced) Planck mass is MP = 1/
√

8πGN . Our
metric signature is gµν = {−,+,+,+}. We choose all momenta to be in-going, so the
Mandelstam variables are s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2. A
generic four-point helicity amplitude is denoted as M1234 = M

(
1h12h23h34h4

)
, where

hi is the helicity for particle i, while a specific four-point helicity amplitude is denoted
as, say, M++0− = M

(
1+22+2304−2). Our convention for he partial wave expansion of

the four-point amplitude isM1234(s, t, u) = 16π∑`(2`+ 1)d`h12,h43

(
1 + 2t

s

)
A1234
` (s), where

A1234
` (s) ≡ Ah1h2h3h4

` (s) is the partial wave amplitude, d`h12,h43
(z) is the Wigner (small) d-

matrices and hij ≡ hi−hj . The dimensionful scalar field φ is related to the dimensionless
one ϕ by φ = MPϕ.

2 Scalar-tensor EFT

Scalar-tensor theory is a popular extension of Einstein’s metric tensor theory. It augments
gravity by coupling the massless spin-2 field to a scalar, arguably the simplest kind of
fields that can form classical configurations which may affect local or large-scale gravi-
tational physics. The scalar can minimally couple to the metric with possible potential
self-interactions. However, from an EFT point of view, non-minimal and derivative in-
teractions are generically present in the theory. For example, these couplings are also
ubiquitous in EFTs from string/M theory which generally predicts existence of scalars due
to compactification from higher dimensions [91]. Indeed, the effects of these non-minimal
and derivative couplings have been extensively studied in astrophysics and cosmology [120].

We will be interested in 4D scalar-tensor theory where the mass of the scalar is neg-
ligible, and also assume that the theory is weakly coupled below the cutoff Λ so that we
can take the tree-level approximation in the IR. We are agnostic about the UV theory, in
particular, not assuming it to be weakly coupled. Up to six derivatives and including only
terms that can give rise to tree-level 2-to-2 amplitudes, the lowest order terms of such a
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theory are given by

S =
∫

d4x
√
−g
(
M2
P

2 R− 1
2∇µφ∇

µφ− λ3
3! φ

3 − λ4
4! φ

4 + α

2 (∇µφ∇µφ)2 + β1
2! φG + β2

4 φ
2G

+ γ0
3!R

(3) + γ1
3! φR

(3) + γ2
2 ∇µφ∇

µφR(2) − 4γ3
3 ∇µφ∇ρφ∇ν∇σφR

µνρσ

+ γ4
3 ∇µφ∇

µφ∇ρ∇σφ∇ρ∇σφ+ · · ·
)
, (2.1)

where MP = 1/
√

8πGN is the (reduced) Planck mass and we have defined R(2), R(3) and
the Gauss-Bonnet invariant G,

R(2) = RµνρσR
µνρσ, R(3) = Rµν

ρσRρσ
αβRαβ

µν , G = RµνρσR
µνρσ−4RµνRµν +R2. (2.2)

We have focused on a scalar-tensor theory that conserves parity, so Lagrangian terms with
odd numbers of the Levi-Civita tensor such as the Chern-Simons term Rµνρσε

µναβRαβ
ρσ

are absent from the Lagrangian. Naively, there are several other terms that can be written
down in the Lagrangian, but those terms can be reduced to the above terms by field
redefinitions and integration by parts [121, 122]. This can be partially checked by explicit
scattering amplitudes computed in the following, since amplitudes are free of ambiguities
of field redefinitions and integration by parts.

As mentioned in the introduction, the scalar coupled quadratic curvature terms are
being actively looked at phenomenologically, in search of/to rule out possible deviations
from Einstein’s gravity in strong and/or dynamical gravity environments near compact
stars. In principle, a couple of scalar self-interaction operators are of lower orders in terms
of the EFT cutoff, but they are only minimally coupled to gravity, which by themselves
would not give rise to significant modifications to the gravitational force. More practically,
for the positivity bounds that will be extracted later, since we make use of the generic
twice subtracted dispersion relations, the scalar potential terms are unconstrained, while,
say, the scalar four-derivative self-coupling can be bounded. In fact, the coefficient of the
dim-8 contact interaction being bounded to be positive in flat space has inspired the name
of these bounds.

Particular attention has been paid to the operators involving the Gauss-Bonnet in-
variant, as these operators can give rise to hairy black holes [92–95] and the interesting
phenomenon of spontaneous scalarization [96, 97], which is the reason why we have cho-
sen to parametrize the Lagrangian terms with the Gauss-Bonnet invariant, instead of the
Riemann tensor squared. The linear scalar-Gauss-Bonnet term φG [93–95] is special in the
sense that it is shift-symmetric φ→ φ+ const, as G is famously a total derivative. Signifi-
cant efforts have been put into constraining the Wilson coefficient of this operator with the
gravitational wave and X-ray data from binary compact stars [98–107]. These observations
capitalize on the fact that the scalar-Gauss-Bonnet coupling alters the star configurations
and as well as induces significant dipole radiation in binaries, thanks to the scalar degree
of freedom. In section 6, we shall use these data to infer observational bounds on the EFT
cutoff. Furthermore, the φ2G operator has also attracted a lot of interest lately, due to its
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ability to generate tachyonic instabilities to make the scalar field nontrivial for black holes
and neutron stars [96, 97].

Since we will be constraining the Wilson coefficients with the dispersion relations of
the scattering amplitudes, we may as well parametrize the EFT at the level of ampli-
tudes. General EFT amplitudes can be parametrize by considering little group scalings
and crossing symmetries. After factoring out the helicity structures, the amplitudes can
be written as scalar functions of Mandelstam variables s, t, u. Crossing symmetries dictate
the symmetries of these functions, and also allow us to focus on a few independent am-
plitudes to extract all available information. For the lowest orders of the amplitudes with
double 3-leg insertions, one can simply calculate them explicitly from the EFT Lagrangian.
Contributions from the 4-leg contact interactions can be constructed based on some simple
principles. For our purposes, we choose a representation for the helicity spinors to also con-
vert the helicity structures into expressions in terms of s, t, u. After these considerations
(see more details in appendix A), the independent amplitudes can thus be parametrized as
follows

M0000 = fS(s, t, u) = gS−1,1
x

y
+ gS0,0 + gS−1,2

x2

y
+ gS0,1x+ gS1,0y + gS0,2x

2 + · · · (2.3)

M++−− = ([12]〈34〉)4fT1(t, u) = gT1
3,−1

s3

tu
+ gT1

3,0s
3 + gT1

4,0s
4 + gT1

3,1s
3tu+ gT1

5,0s
5 + · · · (2.4)

M+++− = ([12][13]〈14〉)4fT2(s, t, u) = gT2
1,0y + gT2

2,0y
2 + gT2

2,1y
2x+ gT2

3,0y
3 + · · · (2.5)

M++++ = ([12][34])2

(〈12〉〈34〉)2 fT3(s, t, u) = gT3
1,0y + gT3

0,2x
2 + gT3

1,1yx+ gT3
2,0y

2 + gT3
0,3x

3 + · · · (2.6)

M+++0 = ([12][23][31])2fM1(s, t, u) = gM1
1,0 y + gM1

1,1 yx+ gM1
2,0 y

2 + · · · (2.7)
M++0− = [12]6(〈14〉〈24〉)2fM2(t, u) = gM2

2,0 s
2 + gM2

2,1 s
2tu+ gM2

3,1 s
3tu+ · · · (2.8)

M++00 = [12]4fM3(t, u) = gM3
1,0 s+ gM3

2,0 s
2 + gM3

1,1 stu+ gM3
3,0 s

3 + gM3
2,1 s

2tu+ · · · (2.9)

M+−00 = ([13]〈23〉[14]〈24〉)2 fM4(t, u) = gM4
−1,1

tu

s
+ gM4

1,1 stu+ gM4
0,2 (tu)2 + · · · (2.10)

M+000 = ([12]〈23〉[31])2fM5(s, t, u) = gM5
0,1 x+ gM5

1,0 y + gM5
1,1 yx+ gM5

2,0 y
2 + · · · (2.11)

where we have defined the shorthand for the amplitudes, say,M++0− =M(1+22+2304−2)
(particle 1 having helicity +2, etc.) and the basic symmetric polynomials of the Mandel-
stam variables

x = s2 + t2 + u2 , y = stu . (2.12)

The fi(t, u) functions are tu symmetric, while the fi(s, t, u) functions are stu symmetric.
Thus, in scalar-tensor theory, a whole amplitude is either symmetric under the full permuta-
tions of s, t, u or symmetric under the exchange of two of s, t, u, accompanied by exchanges
of the helicities accordingly. Explicitly, the ones with full stu permutation symmetries are
given by

M0000(s, t, u) =M0000(u, t, s) =M0000(t, s, u) , (2.13)
M+000(s, t, u) =M+000(u, t, s) =M+000(t, s, u) , (2.14)
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M+++0(s, t, u) =M+++0(u, t, s) =M+++0(t, s, u) , (2.15)
M+++−(s, t, u) =M+++−(u, t, s) =M+++−(t, s, u) , (2.16)
M++++(s, t, u) =M++++(u, t, s) =M++++(t, s, u) , (2.17)

and the ones with only one exchange symmetry are

M++00(s, t, u) =M++00(s, u, t) =M+00+(u, t, s) =M+00+(t, u, s)
=M+0+0(t, s, u) =M+0+0(u, s, t) , (2.18)

M+−00(s, t, u) =M+−00(s, u, t) =M+00−(u, t, s) =M+00−(t, u, s)
=M+0−0(t, s, u) =M+0−0(u, s, t) , (2.19)

M0−++(s, t, u) =M0−++(s, u, t) =M0++−(u, t, s) =M0++−(t, u, s)
=M0+−+(t, s, u) =M0+−+(u, s, t) , (2.20)

M++−−(s, t, u) =M++−−(s, u, t) =M+−−+(u, t, s) =M+−−+(t, u, s)
=M+−+−(t, s, u) =M+−+−(u, s, t) . (2.21)

Note that for particles with spin the crossing symmetry is generally highly non-trivial
except for the massless case we are considering. We see that some of the above equalities are
more appropriately called crossing relations rather than crossing symmetries, as they link
different amplitudes rather than reflect symmetries within an amplitude. We shall adapt
the standard terminology that crossing symmetry refers to the collection of all crossing
symmetries and relations. The amplitudes with the remaining helicities are not independent
and can be obtained by using the relationM1234(s, t, u) = (M1234(s∗, t∗, u∗))∗. So we will
only need to use the dispersion relations for the amplitudes above in eqs. (2.13)–(2.21) to
constrain the Wilson coefficients.

By an explicit computation of the amplitudes from Lagrangian (2.1) with Feynman
diagrams, we find that to the lowest orders the gia,b coefficients above are related to the
Lagrangian Wilson coefficients as follows

M0000 = λ2
3

(1
s

+ 1
t

+ 1
u

)
− λ4 + 1

M2
P

(
su

t
+ st

u
+ ut

s

)
+ α(s2 + t2 + u2) + γ4stu+ . . . (2.22)

M++−− = 1
M2
P

s3

tu
− β2

1
M4
P

s3 + γ2
0

M6
P

s3tu+ . . . (2.23)

M+++− = γ0
M4
P

stu+ . . . (2.24)

M++++ =
(

10γ0
M4
P

− 3β2
1

M4
P

)
stu+ γ2

0
M6
P

stu(s2 + t2 + u2) + . . . (2.25)

M+++0 = γ1
M3
P

stu+ . . . (2.26)

M++0− = β1
M3
P

s2 − γ0β1
M5
P

s2tu+ . . . (2.27)

M++00 = λ3β1
M2
P

s+ β2
M2
P

s2 + γ0
M4
P

stu+ β2
1 + γ2M

2
P

M4
P

s3 + . . . (2.28)
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M+−00 = 1
M2
P

tu

s
+ β2

1
M4
P

stu+ . . . (2.29)

M+000 = β1
2M3

P

(s2 + t2 + u2) + γ3
MP

stu+ . . . (2.30)

3 Dispersive sum rules

In constructing the EFT Lagrangian or parameterizing the EFT scattering amplitudes in
the last section, it would seem that the Wilson coefficients are allowed to take arbitrary val-
ues. The existence of causality/positivity bounds suggests that this would be an approach
that sometimes leads to erroneous results. In particular, the consistency of the UV physics
can actually impart many constraints on these EFT couplings. These UV consistency con-
ditions include fundamental principles of S-matrix theory such as causality and unitarity,
and can be utilized in the form of a series of dispersive sum rules or dispersion relations.
In this section, we shall derive these dispersion relations and discuss how to effectively use
them for scalar-tensor theory.

3.1 Dispersion relations

Before introducing the dispersion relations, let us first briefly recall partial wave unitarity
that will be used shortly. General 2-to-2 amplitudes for particles with spin in the helicity
basis can be decomposed into partial wave amplitudes in terms of the Wigner (small)
d-matrices

M1234(s, t, u) = 16π
∑
`

(2`+ 1)d`h12,h43

(
1 + 2t

s

)
A1234
` (s) , (3.1)

where A1234
` (s) ≡ Ah1h2h3h4

` (s) is the spin-` partial wave amplitude and d`h12,h43
(z) is the

Wigner (small) d-matrices with hij ≡ hi − hj (see,e.g., appendix F of [33] for properties of
the Wigner d-matrices). Note that A1234

` (s) is a function of s only, while M1234(s, t, u) ≡
M1234(s, t) is a function of s and t because of the constraint s+ t+ u = 0. The argument
of the Wigner d-matrix is cos θ = 1 + 2t/s, where scattering angle θ is the angle between
the physical momenta of particle 1 and 3. Since the angular momentum is conserved in
a scattering, the S-matrix is block-diagonal for different spin-`, so unitarity of the M1234

amplitudes implies that the partial wave amplitudes A1234
` are also unitary. This means

that we can split the absorptive part of A1234
` (s) into

AbsA1234
` (s) =

∑
X

c12→X`,s c∗3̄4̄→X`,s , (3.2)

where the sum over X is for a complete basis of the Hilbert space, c12→X`,s denotes the
partial wave amplitude from particle 1 and 2 to the intermediate state X with center of
mass energy s, and c∗3̄4̄→X`,s ≡ (c3̄4̄→X`,s )∗ with 3̄ and 4̄ denoting that particle 3 and 4 carry
helicity −h3 and −h4 respectively. The reason for the extra minus signs for the helicities
of particle 3 and 4 is that we are using the convention where all external particles are
in-going. The absorptive part of A1234

` is defined as

AbsA1234
` (s) ≡ 1

2i
(
A1234
` (s+ iε)− (A3̄4̄1̄2̄

` (s+ iε))∗
)

= DiscA1234
` (s) , (3.3)
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Figure 1. Analytic structure of M1234(µ, t)/(µ− s) in the complex µ (center-of-mass energy
squared) plane. The pole at µ = s and the low energy polesM1234(µ, t) are referred to as the “EFT
poles”, with Λ being the EFT cutoff. The small (closed) contour is valid within the EFT, while the
equivalent big (closed) contour encodes the UV information.

where the last equality is because the S-matrix is Hermitian analytic (A3̄4̄1̄2̄
` (s + iε))∗ =

A1234
` (s− iε). For a time reversal invariant theory, as we are focusing on in this paper, we

have A3̄4̄1̄2̄
` (s+ iε) = A1234

` (s+ iε), in which case the absorptive part is simply the imaginary
part: AbsA1234

` (s) = ImA1234
` (s).

Now, let us derive the dispersion relations we will use later. The most important
ingredient in deriving the dispersion relations is the analyticity of the amplitudes when s

is analytically continued to the complex plane. While analyticity has not been rigorously
proven, it is conjectured to be implied by causality of the UV theory (see [33] for a brief
account and [123] for a recent discussion), justifying the name of causality bounds, and
we shall take it as a fundamental assumption. More precisely, we will make use of the
analyticity condition that for fixed t the amplitudeM1234(s, t) is analytic in the complex s
plane except for singularities on the real s axis that can be readily inferred from unitarity.
Additionally, we shall assume that our EFT is weakly coupled in the IR and take the
leading tree level approximation below the EFT cutoff Λ. This means that we can take
the approximation that the amplitudes do not have branch cuts on the real s axis in the
low energy EFT region. That is, when −t − Λ2 < s < Λ2, the only singularities in the
low energy amplitudeM1234 are poles from exchange diagrams calculable within the EFT.
Beyond the cutoff, unknown UV poles and branch cuts can appear.

Then we can look at the quantity M1234(µ, t)/(µ − s) in the complex µ plane for
fixed s and t which are chosen to be in the EFT region |s| < Λ2, 0 ≤ −t < Λ2 . The
analytic structure of this quantity is shown in figure 1, which allows us to perform the
contour integration as depicted. Due to analyticity, the integration with the small (closed)
contour, which is valid in the EFT, is equivalent to the big (closed) contour that goes
around the UV branch cut and the infinity. We will refer to the pole at µ = s as well as
other low energy poles ofM1234(µ, t) as the “EFT poles”. For massless scalar-tensor theory
we are considering, the only low energy poles of M1234(µ, t) for fixed t are at µ = 0 and
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µ = −t. By the residue theorem, the big contour integral gives rise to
∑

EFT poles
ResM

1234(µ, t)
µ− s

=
∫ +∞

Λ2

dµ
π

AbsM1234(µ, t)
µ− s

+
∫ −t−Λ2

−∞

dµ
π

AbsM1234(µ, t)
µ− s

+
∫
C±∞

dµ
2πi
M1234(µ, t)
µ− s

, (3.4)

where we have made use of eq. (3.3) and C±∞ denotes the upper and lower semi-circles at
infinity. The second term on the right hand side can be written in a form similar to the
first term by the su crossing of the amplitude and a change of the integration variable, so
we get ∑

EFT poles
ResM

1234(µ, t)
µ− s

=
∫ +∞

Λ2

dµ
π

(AbsM1234(µ, t)
µ− s

+ AbsM1432(µ, t)
µ− u

)

+
∫
C±∞

dµ
2πi
M1234(µ, t)
µ− s

. (3.5)

The aforementioned equation in its current form is not particularly useful, as the two in-
tegrals on the right-hand side may not converge due to the UV behavior of the amplitude.
Typically, in order to respect locality, momentum space scattering amplitudes are polyno-
mially bounded in terms of the Mandelstam variables so that Fourier transforms to real
space amplitudes are well-defined. However, the case for a theory with the massless gravi-
ton can be more delicate, as will be discussed shortly. Nevertheless, we shall assume that
the UV theory is polynomially bounded such that for fixed t we have

lim
|s|→∞

M(s, t)/sN = 0 , (3.6)

where N is a positive integer that depends on the value of t, as will be explained shortly.
To render eq. (3.5) useful, the standard remedy is to make “subtractions”. For an N

subtraction, we can simply utilize the following algebraic identity

AbsM(µ, t)
µ− s

=
N∑
i=0

(
N

i

)
(s− µp)N−i(µ− s)i

(µ− µp)N
AbsM(µ, t)

µ− s
, (3.7)

where µp is the subtraction point that can be arbitrarily chosen and
(N
i

)
≡ N !/(i!(N − i)!).

Notice that, except for the i = 0 term, all the other terms in eq. (3.7) are just (N − 1)-th
degree polynomials of s. Since the left hand side of eq. (3.5) is finite except for t = 0, the
divergences on the right hand must cancel. So all the i 6= 0 terms on the right hand side
eq. (3.7) must group into an (N − 1)-th-degree polynomial of s whose coefficients are finite
functions of t, while the i = 0 term converges thanks to the high energy bound (3.6). Thus,
eq. (3.5) can be re-written as an N -th subtracted dispersion relation:

∑
EFT poles

ResM
1234(µ, t)
µ− s

=
N−1∑
m=0

b1234(N)m(t)sm (3.8)

+
∫ +∞

Λ2

dµ
π

( (s− µs)N
(µ− µs)N

AbsM1234(µ, t)
µ− s

+ (u− µu)N
(µ− µu)N

AbsM1432(µ, t)
µ− u

)
,
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where we have allowed the s and u channel subtraction points µs and µu to be different.
Then, by the partial wave expansion (3.1) and the generalized optical theorem for the
partial waves (3.2), we can get

∑
EFT poles

ResM
1234(µ, t)
µ− s

=
N−1∑
m=0

b1234(N)m(t)sm (3.9)

+
〈 (s− µs)N

(µ− µs)N
d`,µ,th12,h43

c12`,µc
∗3̄4̄
`,µ

µ− s
+ (u− µu)N

(µ− µu)N
d`,µ,th14,h23

c14`,µc
∗3̄2̄
`,µ

µ− u

〉
,

where we have defined the shorthands〈
· · ·
〉

:= 16π
∑
`,X

(2`+ 1)
∫ ∞

Λ2

dµ
π

(· · · ) , c12`,s := c12→X`,s , d`,µ,th12,h43
:= d`h12,h43

(
1 + 2t

µ

)
.

(3.10)
Note that each of the dispersion relations is actually a one-parameter family of relations
parametrized by the momentum transfer t.

To determine the number of subtractions N , we need to have a better understanding of
the Regge behavior of the amplitudes. Let us recall that for a non-gravitational massive field
theory, the rigorous results of Froissart [117] and Martin [118] suggest that two subtractions
are sufficient: lim|s|→∞M(s, t)/s2 = 0 for a range of physical t ≤ 0 and even for a range of
non-physical t > 0. For massless fields, especially when gravitons are included in the low
energy spectrum, it is more subtle, not the least for the presence of the spin-2 t channel
pole. Generically, one expects that for a gravitational theory the Regge behavior of the
amplitude may change for different fixed t (see, e.g., [23, 124])

lim
|s|→∞

M(s, t)/s2 = 0 , t < 0 ,

lim
|s|→∞

M(s, t)/s3 = 0 , 0 ≤ t ≤ ξ ,
(3.11)

where ξ is a small positive number. While string theory gives rise to this behavior, it is
believed to be generically valid for a theory with a spin-2 t-channel pole. Although the
original Froissart bound does not apply for massless particles, twice subtracted dispersion
relations in the physical region t < 0 is implied at least in the weak coupling limit by
causality considerations for impact parameter amplitudes [23]. In any case, we shall assume
that twice subtractions are sufficient for t < 0. Then, from twice-subtracted dispersion
relations, say,M++−−, in the t→ 0− limit

lim
t→0−

(∫ ∞
Λ2

dµ

π

DiscM++−−(s, t)
µ2(µ− s) + s↔ u

)
∼ −1

t
,

we can infer that the dispersive integral on the left hand side must diverge as t→ 0−, since
the integrand does not give rise to any negative power of t. However, a thrice subtraction
eliminates the spin-2 t-channel pole s2/t, and therefore, we have lim|s|→∞M(s, t)/s3 = 0
for 0 ≤ t ≤ ξ. In this paper, we shall simply assume the Regge bounds of eq. (3.11) to
hold. Since we will use the dispersion relations for the range of t ≤ 0, N is chosen to be 2
for t < 0 and 3 for t ≤ 0.
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Therefore, for t < 0, choosing µs = µu = 0, we can get twice subtracted dispersion
relations

∑
EFT poles

ResM
1234(µ, t)
µ− s

= b1234(2)0 (t) + b1234(2)1 (t)s+
〈s2d`,µ,th12,h43

c12`,µc
∗3̄4̄
`,µ

µ2(µ− s) +
u2d`,µ,th14,h23

c14`,µc
∗3̄2̄
`,µ

µ2(µ− u)

〉
.

(3.12)
For a su-symmetric amplitude, we additionally have b1234(2)1 (t) = 0. Later, we will also
use thrice subtracted dispersive relations at t = 0, which helps impose the st crossing
symmetry of the amplitudes to get more useful dispersion relations. The use of forward-
limit dispersive relations also helps harvest effective constraints numerically in the finite µ
and large ` region. A remarkable feature of the dispersion relations (3.12) is that they link
the EFT couplings in the IR (on the left hand side) to the unknown UV behaviors of the
amplitudes (on the right hand side) via dispersive integrals. To see this more clearly, let
us parametrize the residues of the EFT poles on the left hand side of eq. (3.12) as follows

∑
EFT poles

ResM
1234(µ, t)
µ− s

= a12342,−1
s2

t
+
∑
k,n≥0

a1234k,n s
ktn . (3.13)

The a1234k,n coefficients can be easily expressed in terms of the independent g coefficients intro-
duced in eqs. (2.3)–(2.11) or in terms of the Lagrangian Wilson coefficients via eqs. (2.22)–
(2.30). For a particular EFT amplitude, some of the a1234 coefficients can vanish. The term
s2/t comes from a t-channel exchange of the massless graviton. This prevents a Taylor ex-
pansion in terms of t in the forward limit t = 0 for the two sides of these dispersion relations.
For some of the twice-subtracted dispersion relations that do not contain t-channel pole,
this pathology also manifests as the fact that the expansions at t = 0 on the two sides can
not be matched without imposing unphysical restrictions on the Wilson coefficients. (For
the twice-subtracted dispersion relations listed in appendix B, those ofM0000,M+0−0 and
M++−− contain the s2/t pole, while expanding those ofM+000,M+++−,M+0+0,M+−00,
M0−++ and M0+−+ will impose unphysical constraints on the Wilson coefficients.) For
example, if we expand the right hand side of the M+000 dispersion relation around t = 0,
the series of t within 〈 〉 begins with t2 because of the structure of d`2,0, which implies that
the coefficient of the st term on the left hand side must be zero, i.e., β1 = 0. This clearly
is an unphysical constraint, meaning that it is invalid to expand around t = 0 even for
those dispersion relations. Even if the two sides of a twice-subtracted dispersion relation
could be matched for the expansion around t = 0, we might still not use its forward limit
simply because of the Regge behavior eq. (3.11) of the amplitude. Nevertheless, since
M1234(µ, t) only contains simple poles in the EFT region, the left hand side of eq. (3.12) is
analytic around s = 0, as shown explicitly in eq. (3.13). We can Taylor-expand both sides
of eq. (3.12) in the neighborhood of s = 0, and matching coefficients of sk gives

δk,2a
1234
k,−1

1
t

+
∑
n=0

a1234k,n t
n =

〈
∂ks
k!

[s2d`,µ,th12,h43
c12`,µc

∗3̄4̄
`,µ

µ2(µ− s) +
(−s− t)2d`,µ,th14,h23

c14`,µc
∗,3̄2̄
`,µ

µ2(µ+ s+ t)

]∣∣∣∣
s→0

〉
, (3.14)

which for fixed k and n is a one-parameter (t) family of sum rules. If M1234(s, t) is su-
symmetric, eq. (3.14) is valid for k ≥ 1, because in this case we have b1234(2)1 (t) = 0; if
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Figure 2. Crossing relations for the amplitudes with only one crossing symmetry. The su crossing
symmetry forM1234(s, t, u) is built-in in our dispersion relations.

M1234 is not su-symmetric, eq. (3.14) is valid for k ≥ 2, remembering that b1234(2)1 (t) is then
generically nonzero and unknown. That is, for su-symmetric amplitudes, we have some
extra sum rules. These extra low order sum rules are constraining in bounding the Wilson
coefficients, so it is important to make use of them effectively.

3.2 Imposing st crossing symmetry

In deriving the sum rules (3.14), we have already used the su crossing symmetry of the
amplitudes. However, that is not the full crossing symmetry that the amplitudes have.
We also have the st crossing symmetry, whose information is not contained in the sum
rules (3.14). It has been realized recently that imposing the st crossing symmetry on
the su dispersion relations is very potent in improving causality bounds on the Wilson
coefficients [34, 35].

As an aside, note that in the absence of gravitational interactions, dispersion relations
can be expanded in the forward limit as well as around s = 0, and one can express individual
amplitude coefficients in terms of UV dispersive integrals. In that case, the st crossing
symmetry directly links different amplitude coefficients, giving rise to vanishing dispersive
integrals, known as null constraints. For a theory with multiple degrees of freedom, the
coefficient sum rules and the null constraints can be combined to define a SDP with one
continuous decision variable [37], solvable by the powerful SDPB package. In the presence
of the massless graviton, the expansion in the forward limit is invalid, and we need to be
content with sum rules where the left hand sides generally contain the momentum transfer
t. This will also be usually true after imposing the st crossing symmetry, as shown in
appendix B.

The tu crossing symmetry is implied by the su plus st crossing symmetry, so we do not
need additionally impose the tu crossing. Let us see how to implement this concretely in our
case. In the massless scalar-tensor theory, there are two kinds of amplitudes: the ones that
are fully stu symmetric, whose crossing symmetries have been listed in eqs. (2.13)–(2.17),
and the ones with only one of the su, st and tu symmetries, whose crossing symmetries
and relations have been listed in eqs. (2.18)–(2.21). For the fully crossing symmetric cases,

– 17 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
5

after imposing the st crossing symmetry, we can easily see that the tu crossing symmetry is
redundant. For the amplitudes with only one crossing symmetry, there are three different
types: M1232,M1322 andM1223. Crossing then either maps one amplitude into itself or into
anther amplitude, see figure 2. Again, since we have used the su crossing symmetry, it is
sufficient to impose the st crossing symmetry,M1232(s, t, u) =M1322(t, s, u), to extract the
full crossing information. We would like to remind the reader that we use the terminology
that crossing symmetry refers to the collection of the crossing symmetries that map one
amplitude to itself and crossing relations that map one amplitude to another.

To impose the st crossing symmetry, we first note that the amplitudes with full stu
symmetry separate into 5 groups and the amplitudes with only su, st or ut crossing sym-
metry separate into 4 groups. The st crossing relations are imposed separately for each of
these groups, which can be done by equating the following EFT coefficients in the expan-
sion (3.13):

a1234k,n = a1324n,k , n ≥ 3 , (3.15)

where k ≥ 1 if M1234 is su-symmetric in the narrow sense and k ≥ 2 if M1234 is not
su-symmetric.

Later, for technical reasons, we shall try to access dispersion relations when t is close
to the cutoff −Λ2, for which eq. (3.14) is not suitable. This is simply because the left hand
side of eq. (3.14) contains an infinite number of powers of t, which all become important
when t approaches −Λ2. However, this can be overcome by combining different dispersion
relations. To this end, we shall also make use of thrice subtracted dispersion relations. In
eq. (3.9), we can choose the subtraction points to be µs = 0 and µu = −t, and get

∑
EFT poles

ResM
1324(µ, t)
µ− s

=
2∑

m=0
b1324(3)m(t)sm+

〈s3d`,µ,th13,h42
c13`,µc

∗2̄4̄
`,µ

µ3(µ− s) +
(−s)3d`,µ,th14,h32

c14`,µc
∗2̄3̄
`,µ

(µ+ t)3(µ− u)

〉
.

(3.16)
Since these are thrice subtracted dispersive sum rules, which are free of the t-channel pole
issue, we can then express both sides of eq. (3.16) as a Taylor series of t and match the
expansion coefficients. The choice of µs = 0 and µu = −t makes sure that the part within
〈. . .〉 only contains terms with s3 and higher orders. This leads to

∑
k=3

a1324k,n s
k =

〈
∂nt
n!

(s3d`,µ,th13,h42
c13`,µc

∗2̄4̄
`,µ

µ3(µ− s) +
(−s)3d`,µ,th14,h32

c14`,µc
∗2̄3̄
`,µ

(µ+ t)3(µ+ s+ t)

)∣∣∣∣
t→0

〉
, (3.17)

where n ≥ 0. Then, we can relabel s as t in eq. (3.17), and subtract eq. (3.14) with this
s and t swapped equation. This gives the final st crossing imposed sum rules that we will
use in a SDP problem to get the causality bounds

δk,2a
1234
2,−1

1
t

+ a1234k,0 + a1234k,1 t+ a1234k,2 t
2 =

〈
F 1234
k,` (µ, t)

〉
, (3.18)
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with F 1234
k,` (µ, t) defined as

F 1234
k,` (µ, t) = ∂ks

k!

(
s2

µ2(µ− s)d
`,µ,t
h12,h43

c12`,µc
∗3̄4̄
`,µ + (−s− t)2

µ2(µ+ s+ t)d
`,µ,t
h14,h23

c14`,µc
∗,3̄2̄
`,µ

)∣∣∣∣
s→0

(3.19)

− ∂kt
k!

(
s3

µ3(µ− s)d
`,µ,t
h13,h42

c13`,µc
∗2̄4̄
`,µ + (−s)3

(µ+ t)3(µ+ s+ t)d
`,µ,t
h14,h32

c14`,µc
∗2̄3̄
`,µ

)∣∣∣∣
t→0,s→t

,

where we have used the st crossing symmetry a1234k,n = a1324n,k to cancel all the tn terms with
n ≥ 3 and k ≥ 1 ifM1234 is su-symmetric and k ≥ 2 ifM1234 is not su-symmetric. These
sum rules are under control even if t is close to −Λ2. These explicit independent sum rules
are listed in appendix B.

A few comments are in order. In eq. (3.15), we have only imposed st crossing relations
a1234k,n = a1324n,k for n ≥ 3. In principle, we could also impose the condition a12342,1 = a13241,2 .
However, for an stu symmetric amplitude, this is redundant, because we have already
enforced a12222,1 = a12221,2 when deriving the dispersion relation with the su crossing symmetry
— the only su-symmetric terms at that order are stu and t3. For an amplitude with
only one crossing symmetry, the crossing relation a12321,2 = a13222,1 does provide some new
information. However, since we will for our convenience use both the sum rules involving
a12321,2 and a13222,1 , it is equivalent to imposing crossing relation a12321,2 = a13222,1 . Using two
different expressions for one Wilson coefficient is the same as using one expression for the
coefficient plus one st crossing relation.

Note that sometimes the requirement of a1234k,n = a1324n,k for an amplitude with stu symme-
try can be redundant, since the st symmetry is occasionally guaranteed by the su symmetry
already. To find redundant relations at the N -th order (N = k + n), we can first expand
an amplitude at the N -th order as MN = ∑bN/2c

m=0 qm(su)mtN−2m, where b c denotes tak-
ing the flooring integer. Further expanding u as −s − t, we get MN = ∑N

k=0 ck,ns
ktn,

which allows us to write ck,n in terms of qm. Then, requiring ck,n = cn,k gives a set of
linear equations in terms of qm, and the redundancy of the st symmetry can be obtained
by examining the linear dependence of these qm equations. Let us take the case of scalar
scattering for an example, whose amplitude is stu symmetric. When k + n = 3, the su
symmetry requires that the terms of the amplitude must be stu or t3, which means that,
without further imposing the st symmetry, we can already have a0000

2,1 = a0000
1,2 . So in this

case the st symmetry is redundant. In fact, since the st symmetry results in b(N + 1)/2c
equations and there are only bN/2c+ 1 distinct values of qm, redundancy always exists.

In principle, the sum rules in the form of eq. (3.18) are all one needs to extract the
strongest causality bounds in an ideal optimization scheme. However, to have a scheme
that is numerically more tractable, we find that it is beneficial to add some forward-limit
sum rules, as will be discussed in section 5.2. The forward-limit sum rules can be obtained
from eq. (3.18) by simply matching the coefficients in front of tn on both sides of the
equation for the cases of k ≥ 3:

a1234k,0 =
〈
F 1234
k,` (µ, 0)

〉
, a1234k,1 =

〈
∂tF

1234
k,` (µ, 0)

〉
, a1234k,2 = 1

2

〈
∂2
t F

1234
k,` (µ, 0)

〉
,

0 =
〈
∂nt F

1234
k,` (µ, 0)

〉
, for n ≥ 3 .

(3.20)
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4 Power counting via dispersion relations

The dispersive sum rules we have derived can be used to constrain Wilson coefficients of the
low energy EFT via an optimization procedure. Before doing that numerically in the next
sections, we will see here that these sum rules can be used to do a dimensional analysis on
the Wilson coefficients. That is, we will show how schematic estimates on the dimensions
of the coefficients can be inspected from the structure of the dispersion relations.

Recall that in the absence of gravity the dimensional analysis of a scalar EFT is usually
fairly simple. One just power-counts the mass dimension of an operator and suppresses it
with appropriate powers of the cutoff:

Ôφ ∼ Λ4
[
∂

Λ

]N∂ [φ
Λ

]Nφ
, (4.1)

where N∂ is the number of partial derivatives and Nφ is the number of φ fields in the
operator. A slightly more refined version of this analysis which takes care of loops and
factors of 4π, called naive dimensional analysis, can be extended to include spin-1 and spin-
1/2 fields [125]. In the presence of gravity, an extra mass scale comes in at the (reduced)
Planck mass MP = 1/

√
8πGN . Then, an important question is how many powers of MP

there are in each of the Wilson coefficients. In the literature, there are a few seemingly
plausible arguments supporting different scalings of the Wilson coefficients in terms of MP .
In the case of pure gravity that is weakly coupled in the IR, the numerical bounds from
causality imply [44] that the typical scalings for generic gravitational EFT operators are
given by

ÔR ∼M2
PΛ2

[∇
Λ

]N∇ [ R
Λ2

]NR
, (4.2)

where N∇ is the number of covariant derivatives, R stands for a curvature tensor and NR

is the number of curvature tensors. In the following, we shall argue that, in scalar-tensor
theory, if the scaling of eq. (4.1) is recovered in the decoupling limit, the typical scalings
of the EFT operators are given by

ÔφR ∼M2
PΛ2

[∇
Λ

]N∇ [ R
Λ2

]NR [ φ

MP

]Nφ [MP

Λ

]Ñφ
, (4.3)

where the power of the enhancement factor Ñφ can be determined by counting the number
of c00

`,µ in the most constraining sum rule available. For the lowest orders in eq. (4.29), it
happens that Ñφ = bNφ/2c, where b c denotes taking the flooring integer, but this has to
be modified for higher orders (see section 6.5). On the other hand, for the scenario where
the scalar interactions are of the gravitational strength, a typical scalar-tensor operator
then has the following scaling

Ôst
φR ∼M2

PΛ2
[∇

Λ

]N∇ [ R
Λ2

]NR [ φ

MP

]Nφ
. (4.4)

Of course, a caveat is that the above scalings have only been explicitly verified for EFT
operators of the lowest orders with four fields in a weakly coupled EFT; see eq. (4.29) and
eq. (4.30).
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To see how this schematic method works, we shall first use the sum rules without the
st crossing symmetry imposed, i.e., eq. (3.14), to infer the typical behaviors of the UV
spectral functions c12`,µ. Let us first look at the ++−− sum rule with k = 2, which happens
to be the same as sum rule (B.55). That is, the st crossing does not alter this sum rule.
Its explicit form is given by

− 1
M2
P t

=
∑
`,X

16π(2`+ 1)
∫ ∞

Λ2

dµ
π

[d`,µ,t0,0 |c
++
`,µ |2

µ3 +
d`,µ,t4,4 |c

+−
`,µ |2

(µ+ t)3

]
. (4.5)

The left hand side comes from a t-channel exchange, and this sum rule is valid for a range
of |t| below the cutoff. When |t| is small, the left hand side is large, which means that the
integral over µ red and/or the sum on the right hand side converges very slowly. A quicker
convergence can be achieved by choosing a large |t|, so for our estimates we shall choose
|t| ∼ Λ2. Also, this choice does not introduce any extra scale that is not already in the
problem. Introducing dimensionless variables t̂ and µ̂ and normalized ĉ12`,µ:

t̂ = t

Λ2 , µ̂ = µ

Λ2 , ĉ12
`,µ =

√
16(2`+ 1)c12

`,µ , (4.6)

we get

Λ2

M2
P

= −t̂
∑
`,X

∫ ∞
1

dµ̂
[d`,µ̂,t̂0,0 |ĉ

++
`,µ |2

µ̂3 +
d`,µ̂,t̂4,4 |ĉ

+−
`,µ |2

(µ̂+ t̂)3

]
. (4.7)

Since the quantities on the right hand side are mostly O(1) numerically except for ĉ++
`,µ and

ĉ+−
`,µ , this means that ĉ++

`,µ and ĉ+−
`,µ must behave appropriately to make the integral and

summation converge to the left hand side. That is, the spectral functions c++
`,µ and c+−

`,µ

have to conspire to reproduce the hierarchy between Λ and MP in the theory. Thus, we
can schematically assign the following correspondences

Λ
MP

⇔ ĉ++
`,µ , ĉ

+−
`,µ , ĉ

−+
`,µ , ĉ

−−
`,µ , (4.8)

which can be used to estimate the sizes of the Wilson coefficients momentarily. Note that
we have also added ĉ−+

`,µ and ĉ−−`,µ because they are related to ĉ+−
`,µ and ĉ++

`,µ by crossing or
parity, and thus they must have the same scaling. In establishing the correspondences such
as (4.8), the reason for not using the sum rules with the st crossing symmetry imposed is
obvious: the st crossing introduces quantities that are cancelable among themselves. For
example, the null sum rule (B.49) would not tell us any scaling in terms of Λ and MP ; it
only tells us that there are intricate cancellation among the terms with ĉ++

`,µ , ĉ
+−
`,µ , ĉ

−+
`,µ and

ĉ−−`,µ . Similarly, even though the sum rule (B.27) is not null on the left hand side, its right
hand side contains terms that cancel among themselves, so it would be inappropriate to
use it to estimate the behavior of c12`,µ.

With these established, we can estimate the sizes of the Wilson coefficients γ0 and β1
via the improved sum rules in appendix B. Specifically, we can expand eq. (B.56) around
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the forward limit and match the coefficients to get

− γ2
0

M6
P

= 1
Λ10

∑
`,X

∫ ∞
1

dµ̂
[∂2

t̂
d`,µ̂,00,0 |ĉ

++
`,µ |2

2µ̂4 −
∂2
t̂
d`,µ̂,04,4 |ĉ

+−
`,µ |2

2µ̂4 +
4∂t̂d

`,µ̂,0
4,4 |ĉ

+−
`,µ |2

µ̂5 −
10d`,µ̂,04,4 |ĉ

+−
`,µ |2

µ̂6

]
,

(4.9)

− β2
1

M4
P

= 1
Λ6

∑
`,X

∫ ∞
1

dµ̂

d`,µ̂,00,0 |ĉ
++
`,µ |2

µ̂4 −
d`,µ̂,04,4 |ĉ

+−
`,µ |2

µ̂4

 . (4.10)

Making use of the scaling correspondences (4.8), we can infer that the typical dimensional
scaling of these two Wilson coefficients must be 1

γ0 ∼
M2
P

Λ4 , β1 ∼
MP

Λ2 . (4.11)

As we will see in section 6, this is consistent with the rigorous numerical results, that is,
the upper limits of the causality bounds.

One caveat is in order. Since the sum rules in appendix B are with the st crossing
symmetry imposed, sometimes a coefficient’s dimensional scaling from one sum rule may
differ from another. In this case, one should survey all available sum rules and take the
smallest dimensional scaling as the bona fide one. The reason for the difference from
different sum rules is that these sum rules are with st crossing imposed so as to pick out a
finite number of Wilson coefficients on the left hand side, but this procedure also introduces
null constraints in the sum rules. That is, there are ĉ12`,µ terms that cancel among themselves
on the right hand side of the sum rule without affecting the Wilson coefficients, and these
terms may have an unusually larger scale, pessimistically overestimating the scaling of the
coefficient.

To estimate the sizes of other Wilson coefficients, we also want to establish scale
correspondences for the rest of the UV spectral functions ĉ+0

`,µ, ĉ
−0
`,µ and ĉ00

`,µ that involve the
scalar. For ĉ+0

`,µ, we can use the + 0−0 sum rule of eq. (3.14) with k = 1, which happens to
be eq. (B.36). Making use of the correspondences (4.8) and the scaling (4.11), we get

Λ2

M2
P

∼
∑
`,X

∫ ∞
1

dµ̂
t̂(2µ̂+ t̂)d`,µ̂,t̂2,2

µ̂2(µ̂+ t̂)2 |ĉ
+0
`,µ|

2 . (4.12)

Thus, we see that ĉ+0
`,µ (and hence ĉ−0

`,µ) leads to the same scale correspondence as those
only involving the graviton:

Λ
MP

⇔ ĉ+0
`,µ , ĉ

−0
`,µ , c

0+
`,µ , ĉ

0−
`,µ . (4.13)

For ĉ00
`,µ, eq. (3.14) does not give any readily usable dispersion relation to infer its size in

terms of the hierarchy between Λ andMP . This is of course not surprising, as we should be
able to define a scalar theory in the decoupling limit of the graviton where MP →∞ and
Λ is held fixed. So in principle c00

`,µ should be able to reach its partial wave unitarity limit
1By the typical scaling of, say, γ0, we mean that the upper bound of |γ0| is around |γ0| ∼M2

P /Λ4.
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c00
`,µ ∼ 1. With a mild assumption in the spirit of lower spin dominance c00

`,µ ∼ `−1/2, we can
then have the scaling correspondence 1⇔ ĉ00

`,µ. This correspondence is also consistent with
the pure scalar sum rules in the decoupling limit, which can be expanded in the forward
limit and schematically goes like

a0000
k,n Λ2k+2n =

∑
`,X

∫ ∞
1

dµ̂(· · · )|ĉ00
`,µ|2 , (4.14)

leading to the usual dimensional analysis in the pure scalar theory: a0000
k,n ∼ Λ−2k−2n. Away

from the decoupling limit, the 0000 sum rule schematically goes like

Λ2

M2
P t̂

+
∑
n

a0000
k,n Λ2k+2nt̂n =

∑
`,X

∫ ∞
1

dµ̂(· · · )|ĉ00
`,µ|2 , (4.15)

which contains an extra subdominant 1/M2
P term when Λ � MP , so it is also consistent

with the 1⇔ ĉ00
`,µ scaling. For the lowest order terms, from sum rule (B.2) or (B.3), we see

that the scalar self-couplings α and γ4 must scale as

α ∼ 1/Λ4 , γ4 ∼ 1/Λ6 . (4.16)

On the other hand, in scalar-tensor theory, an interesting parameter regime is when the
interactions involving the scalar are comparable with those of the pure gravity, in which
case one may view the scalar more as part of gravity rather than some non-minimally
coupled matter field. This occurs when the first term is comparable with the rest of the
terms on the left hand side of eq. (4.15), which implies a suppressed UV spectral function
and the correspondence Λ/MP ⇔ ĉ00

`,µ. In this case, we then have α ∼ 1/(M2
PΛ2) and

γ4 ∼ 1/(M2
PΛ4). Thus, for ĉ00

`,µ, we may consider the following two scenarios
1⇔ ĉ00

`,µ =⇒ α ∼ 1
Λ4 , γ4 ∼

1
Λ6 ,

Λ
MP

⇔ ĉ00
`,µ =⇒ α ∼ 1

M2
PΛ2 , γ4 ∼

1
M2
PΛ4 .

(4.17)

While the first scenario gives the boundary of the causality bounds, the second scenario
is more relevant when the scalar plays a significant role in the dynamics, which is phe-
nomenologically more interesting. In the following, we shall discuss the typical scales of
the other Wilson coefficients with both the two scenarios in mind.

Now, we are ready to deduce the dimensional scalings of the other Wilson coefficients
from the scalings of ĉ12`,µ from the sum rules in appendix B. Let us now look at the γ1
coefficient. From the F+++0

1,` sum rule (B.12) (using eq. (B.13) would be similar), we get

− Λ6γ1
M3
P

=
∑
`,X

∫ ∞
1

dµ̂
[(2µ̂− 3t̂)d`,µ̂,t̂2,0 ĉ+0

`,µĉ
∗,−−
`,µ

t̂µ̂4 −
t̂∂t̂d

`,µ̂,0
0,−2ĉ

++
`,µ ĉ

∗,−0
`,µ

µ̂3(µ̂− t̂)
+
t̂∂t̂d

`,µ̂,0
2,0 ĉ+0

`,µĉ
∗,−−
`,µ

µ̂3(µ̂+ t̂)

]
.

(4.18)
By the scale correspondences (4.8) and (4.13), we infer that the typical scale of γ1 is

γ1 ∼
MP

Λ4 . (4.19)
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Note that this is independent of the value of α, which is consistent with the numerical
result in section 6. Next, we look at γ2, for which we can use the F++00

3,` sum rule, whose
explicit form in the forward limit is given by

Λ6β2
1

M4
P

+ Λ6γ2
M2
P

=
∑
`,X

∫ ∞
1

dµ̂
[
d`,µ̂,00,0
µ̂4 ĉ++

`,µ̂ ĉ
∗,00
`,µ̂ −

d`,µ̂,02,2
µ̂4 c+0

`,µ̂c
∗,0−
`,µ̂

]
. (4.20)

By the scale correspondences (4.8), (4.13) and (4.17), we can infer that

γ2 ∼
MP

Λ5 when α ∼ 1
Λ4 , (4.21)

γ2 ∼
1

Λ4 when α ∼ 1
M2
PΛ2 . (4.22)

Again, this is consistent with the numerical results in the next sections, and the dependence
on α is also observed there. Then, we look at the γ3 coefficient, for which we can use the
F+000

1,` sum rule (B.8),

β1Λ4

M3
P

t̂− γ3Λ6

MP
t̂2 =

∑
`,X

∫ ∞
1

dµ̂
(
t̂(2µ̂− 3t̂)d`,µ̂,t̂2,0

µ̂4 ĉ+0
`,µĉ
∗,00
`,µ +

2t̂4∂t̂d
`,µ̂,0
2,0

µ̂3
(
t̂2 − µ̂2

) ĉ+0
`,µĉ
∗,00
`,µ

)
. (4.23)

We already know that β1 ∼MP /Λ2, so by the scale correspondences (4.13) and (4.17), we
can infer that

γ3 ∼
1

Λ5 when α ∼ 1
Λ4 , (4.24)

γ3 ∼
1

MPΛ4 when α ∼ 1
M2
PΛ2 . (4.25)

We also want to look at the typical size of the coefficient β2, which can be inferred from
the F++00

2,` sum rule (B.24)

β2Λ4

M2
P

− γ0Λ6

M4
P

t̂− gM3
2,1 Λ8t̂2 =

∑
`,X

∫ ∞
1

dµ̂
(d`,µ̂,t̂0,0 ĉ++

`,µ ĉ
∗,00
`,µ

µ̂3 +
d`,µ̂,t̂2,2 ĉ+0

`,µĉ
∗,0−
`,µ

(µ̂+ t̂)3 +
t̂4∂2

t̂
d`,µ̂,t̂2,−2ĉ

+0
`,µĉ
∗,−0
`,µ

2µ̂3
(
t̂2 − µ̂2

)
−
t̂3(4µ̂+ 3t̂)∂t̂d

`,µ̂,t̂
2,−2ĉ

+0
`,µĉ
∗,−0
`,µ

µ̂4
(
t̂+ µ̂

)2 +
t̂3(10µ̂2 + 15µ̂t̂+ 6t̂2)d`,µ̂,t̂2,−2ĉ

+0
`,µĉ
∗,−0
`,µ

µ̂5
(
t̂+ µ̂

)3

)
. (4.26)

By the scale correspondences (4.8), (4.13) and (4.17), this gives us

β2 ∼
MP

Λ3 when α ∼ 1
Λ4 , (4.27)

β2 ∼
1

Λ2 when α ∼ 1
M2
PΛ2 . (4.28)

As mentioned, all of these will be confirmed with the rigorous numerical results in section 6.
Nevertheless, the scaling exercises above guide us to perform the numerical optimizations
as they outline the rough boundaries of the causality bounds.
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In summary, by simply inspecting the dispersive sum rules, one can estimate the typical
sizes of the Wilson coefficients in the Lagrangian. Without imposing any a priori constraint
on the UV spectral function c00

`,µ, apart from partial wave unitarity, we find that the scalar-
tensor Lagrangian can be parametrized as follows

S=M2
P

∫
d4x
√
−g
(1

2R−
1
2∇µϕ∇

µϕ+ α̂M2
P

2Λ4 (∇µϕ∇µϕ)2+ β̂1
2Λ2ϕG+ β̂2MP

4Λ3 ϕ2G+ γ̂0
3!Λ4R

(3)

+ γ̂1
3!Λ4ϕR

(3)+ γ̂2MP

2Λ5 ∇µϕ∇
µϕR(2)− 4γ̂3MP

3Λ5 ∇µϕ∇ρϕ∇ν∇σϕR
µνρσ

+ γ̂4M
2
P

3Λ6 ∇µϕ∇
µϕ∇ρ∇σϕ∇ρ∇σϕ+· · ·

)
, (4.29)

where we have used the dimensionless field ϕ = φ/MP and α̂, β̂i, γ̂i are dimensionless
coefficients and are parametrically O(1). In this scenario, the scalar self-couplings such as
α go like ∼ 1/Λp, and these scalings remain the same in the decoupling limit of the graviton
where MP → ∞ and Λ is held fixed. The scalings of the Lagrangian terms in eq. (4.29)
have been summarized in eq. (4.3), which for the terms in eq. (4.29) has an intriguing
integer flooring operation for the power of the MP /Λ factor, Ñφ = bNφ/2c. Having gone
through the power counting with the sum rules, we can see that the flooring operation
originates from the fact that, in the scaling argument above, ĉ12`,µ with either no or one
scalar helicity corresponds to Λ/MP (see eq. (4.8) and eq. (4.13)) while ĉ12`,µ with two scalar
helicities corresponds to 1 (see eq. (4.17)). Also, given that each term on the right hand
side of a sum rule only contains two factors of ĉ12`,µ, there will be a ĉ00

`,µ in the sum rule
for the lowest orders as long as there are two 0 helicities in the 2-to-2 scattering (except
for the case of F+0−0

1,` , which however does not affect our argument). Thus, in these cases,
the power of MP /Λ in eq. (4.3) is determined by the number of 0 helicities in the most
constraining 2-to-2 scattering amplitude, upon taking the flooring operation bNφ/2c. We
emphasize that the Ñφ = bNφ/2c rule is an coincidence, valid only for the lowest orders
of the EFT operators. For higher orders, our method precisely predicts the breakdown of
this rule, which will be numerically verified in section 6.5. The correct way to get Ñφ for
any orders is to count the number of c00

`,µ in appropriate dispersion relations, as discussed
through this section.

On the other hand, if the scalar interactions are constrained to be comparable with the
gravitational interactions, that is, we assume the scalar UV spectral function is relatively
weak and has the correspondence ĉ00

`,µ ⇔ Λ/MP , then the scalar-tensor Lagrangian can be
parametrized as follows

S = M2
P

∫
d4x
√
−g
(1

2R−
1
2∇µϕ∇

µϕ+ α̂

2Λ2 (∇µϕ∇µϕ)2 + β̂1
2Λ2ϕG + β̂2

4Λ2ϕ
2G + γ̂0

3!Λ4R
(3)

+ γ̂1
3!Λ4ϕR

(3) + γ̂2
2Λ4∇µϕ∇

µϕR(2) − 4γ̂3
3Λ4∇µϕ∇ρϕ∇ν∇σϕR

µνρσ

+ γ̂4
3Λ4∇µϕ∇

µϕ∇ρ∇σϕ∇ρ∇σϕ+ · · ·
)
, (4.30)

where again α̂, β̂i, γ̂i are dimensionless coefficients and are parametrically O(1). In this
case, we have, for example, α ∼ 1/(M2

PΛ2). Note that the typical size of the coefficient of
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ϕG, a leading operator that gives rise to hairy black holes, is not affected by the constraints
on the scalar self-couplings. This surprising fact can be easily spotted in the dispersive
sum rules. Our goal in section 6 is to use all available sum rules to numerically compute
the bounds on the coefficients α̂, β̂i, γ̂i and so on, confirming the rough estimates in this
section.

5 Optimization scheme

In this section, we will set up a numerical optimization scheme that effectively utilizes
the dispersive sum rules to constrain the Wilson coefficients of scalar-tensor theory in
the following section. Recall that the dispersive sum rules establish a remarkable set of
relations between the IR coefficients of the EFT and the amplitudes of the unknown UV
completion. These relations can be fed into a semi-definite program (SDP) that can be
solved numerically. This will confirm the rough estimates in the previous section and,
more importantly, lead to “sharp” bounds on the coefficients in the next section. Readers
uninterested in the detailed numerical setup and methods can go through section 5.1 and
skip section 5.2.

5.1 General strategy

While estimating the scaling rules for the Wilson coefficients, the sum rules (3.14) are
sometimes sufficient and preferred. To numerically obtain the optimal bounds, we shall
always use the st-improved sum rules (3.18). Each of the sum rules (3.18) is actually a
one-parameter family of dispersive equalities, parametrized by the momentum transfer t,
connecting the Wilson coefficients and the integrals of the UV amplitudes. To effectively
use all of these dispersive equalities, following the approach of [56] and [44], we integrate
the dispersive sum rule against a weight function φ1234k (p) over the interval 0 ≤ p ≤ Λ and
as well as sum over several sum rules:∑

1234,k

∫ Λ

0
dp φ1234k (p)

[
δk,2a

1234
k,−1
−1
p2 + a1234k,0 + a1234k,1

(
−p2

)
+ a1234k,2 p

4
]

=
〈 ∑

1234,k

∫ Λ

0
dp φ1234k (p)F 1234

k,` (µ,−p2)
〉
, (5.1)

where we have, for later convenience, introduced a positive real number p such that

t := −p2 . (5.2)

The weight functions φ1234k (p) will be the decision variables we optimize over to get the
best causality bounds. (For the forward-limit sum rules that will also be used, it is suffice
to use normal weight parameters; see appendix C.) By the integration and summation in
eq. (5.1), we can make use of as much information as possible from the dispersive sum rules
in extracting the causality bounds. If an appropriate φ1234k (p) makes the right hand side of
eq. (5.1) positive, we can then obtain a condition on the Wilson coefficients∑

1234,k

∫ Λ

0
dpφ1234k (p)

(
δk,2a

1234
k,−1
−1
p2 + a1234k,0 + a1234k,1 (−p2) + a1234k,2 (−p2)2

)
≥ 0 . (5.3)
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Going through all possible φ1234k (p), we can find the tightest constraints on these coefficients.
The problem of finding the best bounds can be formulated as an SDP with an infinite
number of constraints, enumerated by the discrete variable ` and the continuous variable
µ. Also, the functional space of all possible φ1234k (p) is parametrized by an infinite number
of parameters, so numerically we also need to approximate this functional space, which will
be explained shortly in section 5.2.

To see how this optimization is implemented, notice that F 1234
k,` (µ,−p2) contains an

infinite number of UV partial amplitudes c12`,µ and their complex conjugates, which we are
agnostic about from the point view of bootstrapping from low energies. In order to proceed,
we need to eliminate them in the optimization problem, which naturally turns this into an
SDP problem.

Before that, let us isolate the minimal set of c12`,µ that are necessarily involved when
performing this SDP. First, note that in a theory with parity conservation, we can divide the
sum over all possible intermediate states in 〈. . .〉 (see eq. (3.10)) into two parts, one being
summation over parity-even X states and the other summation over parity-odd states.
Denoting the parity of state X by PX , we have the following relations for the partial wave
amplitudes

c12PX ,`,µ = PXc
2̄1̄
PX ,`,µ

, (5.4)
c12PX ,`,µ = (−1)`c21PX ,`,µ . (5.5)

Because of time reversal invariance that we assume, we haveM1234 =M3̄4̄1̄2̄, which implies
that Im(∑PX

c12PX ,`,µc
∗,3̄4̄
PX ,`,µ

) = 0. Denoting c12PX ,`,µ = c12,<PX ,`,µ
+ i c12,=PX ,`,µ

, we then have
∑
PX

c12PX ,`,µc
∗,3̄4̄
PX ,`,µ

=
∑
I=<,=

∑
PX

c12,IPX ,`,µ
c3̄4̄,IPX ,`,µ

=
∑
PX

(
c12,<PX ,`,µ

c3̄4̄,<PX ,`,µ
+ c12,=PX ,`,µ

c3̄4̄,=PX ,`,µ

)
. (5.6)

So the real and imaginary parts of c12PX ,`,µ are separated and play a similar role in the disper-
sive sum rules. From the perspective of imposing positivity bounds, this extra summation
over the real and imaginary part is essentially redundant, since, as mentioned above, we
are agnostic about the values of c12PX ,`,µ. Following [4, 37], we will simply absorb the sum-
mation over I = <,= into the summation over X and take c12PX ,`,µ as real functions in the
following. Using these separations, we can express a generic quantity obtained by mixing
different helicities of F 1234

k,` and integrating over p in the following form:

∑
1234,k

∫ Λ

0
dpφ1234k (p)F 1234

k,` (µ,−p2) :=
∑

PX=±1

∑
A,B

BA,B
PX ,`

(µ)cAPX ,`,µc
B
PX ,`,µ

, (5.7)

where the summation of A and B is over 00,+0,++,+− and BA,B
PX ,`

is independent of p and
can be extracted from eq. (3.19). The reason why A and B only run over 00,+0,++,+−
is that we can use eqs. (5.4) and (5.5) to convert other helicities to these four. According
to parity PX and whether ` is odd, the summation on the right hand side of eq. (5.7) splits
into four independent parts, (PX , `) = (+1, even), (+1, odd), (−1, even), (−1, odd), each of
which can be written in the following form

(CPX ,`,µ)T BPX ,`(µ) CPX ,`,µ , (5.8)
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where BPX ,`(µ) is a 4× 4 matrix and we have defined that

CPX ,`,µ =
(
c00
PX ,`,µ

c+0
PX ,`,µ

c++
PX ,`,µ

c+−
PX ,`,µ

)T
. (5.9)

The reason why it is beneficial to separate the sum in eq. (5.7) according to parity PX and
the oddness of ` is that some of the c12PX ,`,µ often vanish owing to eq. (5.4) and eq. (5.5), in
which case we can omit the corresponding entries of the BPX ,`(µ) matrix in the SDP. This
leads to better bounds and reduces computational costs. Again, the non-vanishing c12PX ,`,µ
depend on the UV model, and for a generic bootstrap program we choose to be agnostic
about them.

With these established, we see that the requirement of the right hand side of eq. (5.7)
being positive is equivalent to the conditions that all the BPX ,`(µ) matrices be positive
semi-definite

BPX ,`(µ) � 0 , for PX = ±1, all possible ` and all µ ≥ Λ2 . (5.10)

These conditions will in turn ensure that the left hand side of eq. (5.7) is positive, giving
rise to a condition for some Wilson coefficients (5.3) for a given set of φ1234k (p). To obtain
the best bounds, we optimize over all possible φ1234k (p). In practice, of course, we can
not impose the conditions for all ` and µ and go through all possible φ1234k (p), and some
numerical approximations are needed. Note that the SDPB package can deal with an SDP
with only one continuous parameter if the entries of the linear matrix inequalities eq. (5.10)
are polynomials of this parameter, but unfortunately this is not the case here. In the
following subsection, we shall outline approximations that can be used to overcome this
problem, along with how to effectively truncate the φ1234k (p) functional space.

5.2 Numerical details

Having formulated the causality bounds finding as a SDP, we now get to the nitty-gritty
of implementing it numerically, largely following the numerical implementation of [56]
and [44]. To simplify the expressions, we shall set Λ = 1 from now on, but restore it in the
final results for clarity.

As mentioned, SDPB can directly solve a SDP with a finite number of linear matrix
inequalities, and the entries of these matrices can be polynomials of a continuous variable.
However, for our current case, entries of BPX ,`(µ) are more complex than polynomials of a
continuous variable. To take in as many constraints as possible in the numerical program,
we can divide the µ-` constraint space into five regions, as shown in figure 3, and will make
approximations for the five regions separately.

Finite µ and finite `: in this region, we will simply discretize the continuous parameter
µ. Since the UV scale µ ≥ 1, we can choose a discrete set of µ. We find that the point
density needed to achieve convergence depends on the dimension of the truncated φ1234k (p)
functional space, which is the main limiting factor to use a higher dimensional functional
space. We also only make use of the partial waves up to `max.
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Figure 3. Various regions in the µ-` constraint space. The constraints are implemented differently
in different regions.

Large µ and finite `: when µ is large, the entries of the BPX ,`(µ) matrices can be
expanded as a Taylor series of 1/µ around µ → ∞, which allows us to approximate the
entries of BPX ,`(µ) by truncating the expansion and retaining the leading few orders. Then,
we multiply all the sum rules by an appropriate power of µ to make entries of the BPX ,`(µ)
matrices polynomials of µ, and take µ as the continuous parameter in SDPB. Alternatively,
when the dimension of the φ1234k (p) functional basis is not too large, we find that it is also
numerically sufficient to work with the exact dependence on µ and just take a few discrete
large µ points along with finite ` ≤ `max.

Finite µ and large `: when ` is large, the Wigner d-functions (or rather the hypergeo-
metric function) oscillate with p2/µ and thus tend to vanish after integrating against the
weight functions. This is the reason why we also seemingly redundantly add the forward-
limit sum rules (3.20) in the SDP, in order to effectively use the constraints from this
region. That is, in the large ` limit, with the forward-limit sum rules included, we can
neglect the terms with the hypergeometric functions from the non-forward sum rules, since
the contributions from the forward-limit sum rules dominate in this limit. In the large
` limit, we can approximate ` as a continuous variable; however, the forward-limit sum
rules contain square roots of polynomials of `:

√
(`+ c1)(`+ c2) . . . (`+ cn), where ci are

real constants, which are not admissible by SDPB. To resolve this problem, we shall ex-
pand them as a Laurent series in the limit ` → ∞ and only keep a few leading terms:
`n/2 + 1/2(c1 + c2 + · · · + cn)`n/2−1 + O(`n/2−2). We then make the variable change
` → (y +

√
`max)2 so that it becomes a polynomial of y where y ≥ 0. Then, we can

again discretize µ, and, for a fixed µ, the entries of the BPX ,`(µ) matrices can be viewed
as polynomials of ` for large `, the semi-positivity of BPX ,`(µ) then becoming admissible
for SDPB. Note that while the added forward limit sum rules do technically alter the SDP
in this region as well as in the finite ` regions, they become negligible in other regions.
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Large µ, ` and finite b: this region can be made accessible by using the asymptotic be-
havior of the Wigner d-functions in F 1234

k,` (µ,−p2). TheWigner d-functions can be expressed
in terms of the hypergeometric function, which has the following asymptotic behavior

lim
µ,`→∞; 2`/√µ=b

2F1(h1 − `, `+ h1 + 1;h1 − h2 + 1; p2/µ) = Γ(h1 − h2)
(bp/2)h1−h2

Jh1−h2(bp) , (5.11)

where Jh(x) is the Bessel function of the first kind and the limit is taken with fixed b =
2`/√µ. That is, we sample the constraints along lines b√µ = 2` (with different b) in the
region of large µ and large `, and each of these lines has a natural physical interpretation
of scatterings with fixed impact parameter b = 2`/√µ [44]. With these established, we can
easily Taylor expand F 1234

k,` (µ,−p2) around µ→∞ with fixed b, and only retain the leading
terms, namely the 1/µ3 term in this case. (We do not need to expand µ in the partial wave
amplitudes c12PX ,`,µ, because they are limited in size by partial wave unitarity.) We find
that only F 1234

(1,2),`(µ,−p2) have non-vanishing O(1/µ3) terms, so only these dispersive sum
rules need to be considered in the large µ and ` region. For example, the leading term of
F+0−0

2,` (µ,−p2) in this limit is given by

F+0−0
2,` (µ,−p2) = 2

µ3J0(bp)|c+0
PX ,`,µ

|2 +O
( 1
µ4

)
. (5.12)

Note that in the leading order the ` dependence is only in c12PX ,`,µ’s, which do not go into
the definition of B̃PX ,˜̀(b). However, B̃PX ,˜̀(b) does depend on the oddness of `, because
we need to use c12PX ,`,µ = (−1)`c21PX ,`,µ to convert c12PX ,`,µ’s to a standard independent basis.
This means that the matrix µ3BPX ,` only depends on b, PX and the oddness of ` at leading
order in the large µ and ` region. Let us define B̃PX ,˜̀(b) := µ3BPX ,`(µ) in this region, where
˜̀means B̃PX ,˜̀(b) depends on the oddness of ` rather than its explicit value. Therefore, for
large µ and `, we can simply impose the following linear matrix inequalities as a leading
approximation

B̃PX ,˜̀(b) � 0, for all b > 0, PX = ±1 and ˜̀= even or odd . (5.13)

To explicitly compute B̃PX ,˜̀(b), we note the following well known integration formula

Γ(ν)
(b/2)ν−1

∫ 1

0
dppn+1−νJν−1(bp) = 1

n+ 1 1F2

(
n+ 1

2 ; n+ 3
2 , ν;−b

2

4

)
. (5.14)

So the entries of B̃PX ,˜̀(b) are still not polynomials of b, and we need to make further
approximations. For finite b < bmax, we can discretize it into b = {εb + kδb|0 ≤ k <

(bmax − εb)/δb, k ∈ N}, where εb is a very small starting point.

Large µ, ` and large b: for large b, by the asymptotic form of the generalized hyper-
geometric function, we can write B̃PX ,˜̀(b) in the following form,

B̃PX ,˜̀(b) = f(b) + g(b) cos(b) + h(b) sin(b) , (5.15)
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where f(b), g(b) and h(b) are 4×4 matrices whose entries are polynomials of 1/b, truncated
to order (1/b)Rb . For large b, it is a good approximation to replace the semi-positiveness
of B̃PX ,˜̀(b) with the following slightly stronger condition

bRb

(
f(b) + g(b) h(b)

h(b) f(b)− g(b)

)
� 0, for b ≥ bmax , (5.16)

where the factor bRb makes bRbf(b), bRbg(b) and bRbh(b) polynomials of b.

Apart from the approximations in the µ-` constraint space, we also need to numerically
approximate the functional spaces of all possible φ1234k (p). Recall that φ1234k (p) are supposed
to run over all possible functions within the interval [0, 1]. By the Weierstrass approxima-
tion theorem, a simple functional basis over a finite interval would be power functions pn,
and in the numerical approximation we truncate to keep the leading few orders. However,
for the technical reasons to be explained below, for some φ1234k (p), we will need to choose
(1− p)2pn.

First, note that, in order to obtain the bounds on the leading order coefficients, the
positivity condition (5.10) can not be satisfied without F 0000

1,` , F 0000
2,` , F+0−0

1,` , F+0−0
2,` and

F++−−
2,` . This is because all other leading F 1234

k,` in the large µ and large ` region either
lead to a non-diagonal term in BPX ,` or contribute to a term in BPX ,` that changes its
sign under the parity PX or the oddness of `. For BPX ,` to be semi-positive, we need the
diagonal terms to be semi-positive and we need BPX ,` to be semi-positive for both all cases
of PX and `. Additionally, we aim to derive bounds projected onto 1/M2

P , and only the
above five improved sum rules involve 1/M2

P .
Let us see what kinds of bases are suitable for F 0000

1,` , F 0000
2,` , F+0−0

1,` , F+0−0
2,` and F++−−

2,`
for our purposes. The technical requirements come from implementing the constraints in
the large ` and µ region. We take F++−−

2,` as an example. In this region with fixed
b = 2`/√µ, a necessary condition to satisfy the positivity condition (5.13) is∫ 1

0
dpφ++−−

2 (p)J0(bp) ≥ 0 , for all b > 0 . (5.17)

This actually implies that the Fourier transform of φ++−−
2 (p)/p is non-negative and also

limp→0 φ
++−−
2 (p)/p > 0. As a result, the basis for φ++−−

2 (p) should start at pnmin with
nmin ≤ 1. On the other hand, this choice necessarily results in an IR divergence from
integrating in the low energy region near p = 0. The best one can do for F++−−

2,` is to
choose nmin = 1, which only leads to a logarithmic divergence. This IR divergence arises
from how the scattering amplitudes are defined for massless particles in 4D, and may be
resolved using better observables [56]. We will simply regulate it with an IR cutoff scale
mIR, which may be taken to be the Hubble scale as a conservative choice. The cases of
F 0000

1,` , F 0000
2,` , F+0−0

1,` and F+0−0
2,` are analogous. Going through similar steps, we can see

that the basis of φ0000
1 (p), φ0000

2 (p), φ+0−0
1 (p), φ+0−0

2 (p) and φ++−−
2 (p) should be chosen to

start with p−1, p, p−1, p and p respectively.
There is actually one additional consideration for choosing the suitable basis, namely,

the requirement that g(b) or h(b) should not dominate in the large `, µ, b region in order
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`max 42
bmax 10001/250
εb 1/250
Rb 10
Np 7

Discrete set of µ for finite ` {1/(1− k/100)|0 ≤ k ≤ 90 , k ∈ Z}
∪{1/(1− k/400)|361 ≤ k ≤ 399 , k ∈ Z}

Discrete set of µ for large ` {1/2500 + 1/(1− k/100)1/2|0 ≤ k ≤ 99, k ∈ Z}
Discrete set of b = 2`/√µ {εb + k/32|0 ≤ k ≤ 1280, k ∈ Z}

Non-default SDPB parameters

–precision=766
–dualityGapThreshold=1e-11
–maxComplementarity=1e+80

–maxIterations=20000

Table 1. Numerical parameters used in the SDPB computations.

to satisfy condition (5.16). Again, take F++−−
2,` as an example. By eq. (5.11), we can get

µ3
∫ 1

0
dppnF++−−

2,` (µ,−p2) large b−−−−→
(
|c++
PX ,`,µ

|2 + |c+−
PX ,`,µ

|2
)

(5.18)

·
[ 1
bn+1

2nΓ(1+n
2 )

Γ(1−n
2 )

+
√

2 cos(b− 3π
4 )

√
πb

3
2

+
√

2(8n− 5) sin(b− 3π
4 )

8
√
πb

5
2

+O
( 1
b

7
2

)]
.

If the oscillating term cos(b) or sin(b) dominates in the large b limit, the positivity con-
dition (5.16) can not be satisfied. However, we already require that when p goes to zero,
nmin in the basis pnmin should not be less than 1 so as to avoid non-logarithmic IR diver-
gences. To overcome this, we can multiply the corresponding weight function with a factor
(1− p)2, which cancel the leading oscillating terms upon integration and make f(b) domi-
nate in eq. (5.16). Again, the cases of F 0000

1,` , F 0000
2,` , F+0−0

1,` and F+0−0
2,` are analogous. Thus,

the final result is that the basis of φ0000
1 (p), φ0000

2 (p), φ+0−0
1 (p), φ+0−0

2 (p) and φ++−−
2 (p)

should be chosen to start from (1 − p)2p−1, (1 − p)2p, (1 − p)2p−1, (1 − p)2p, (1 − p)2p

respectively.
For other F 1234

k,` (µ,−p2) that result in leading order contributions in the large µ, ` limit,
the bases are chosen such that they lead to the same large b behavior in the B̃PX ,˜̀(b) matrix
as the above five F 1234

k,` (µ,−p2). For the rest of the F 1234
k,` (µ,−p2) that are sub-leading in

the large µ, ` limit, we can simply choose their bases to be 1, p, p2, p3, . . .. In our numerical
calculations, it is sufficient for our purposes to choose the dimension of the functional space
of φ1234k (p) to be Np = 7. The numerical parameters we use to run SDPB are listed in table 1.

In general, when performing the numerical optimization to obtain bounds on a given
set of Wilson coefficients, we hope to utilize as many sum rules as possible so as to derive the
strongest bounds. For that, we can often include sum rules that contain Wilson coefficients
not in that given set. The reason is that we can choose the weight functions φ1234k (p)
properly so that the weight-function-smeared sum rules do not contain the extra Wilson
coefficients.
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6 Bounds on EFT coefficients and their implications

In this section, we shall constrain the Wilson coefficients of scalar-tensor theory using
the dispersive sum rules obtained in section 3, via the numerical optimization procedure
outlined in section 5. We will consider generic scalar-tensor EFTs as well as EFTs with
some of the coefficients fine-tuned, the latter being also popular as modified gravity and
cosmological models phenomenologically. In appendix C, we will give an explicit example
to demonstrate how to use the optimization scheme to obtain the causality bounds. We
will first derive the bound on α, the coefficient of the (∂φ)4 term in the Lagrangian. We
will show that the value of α will significantly affect the bounds on a coefficient when
all the sum rules of the coefficient contain c00

PX ,`,µ
, in agreement with the discussions in

section 4. Therefore, we will compute the bounds on the other coefficients for various values
of α. Particularly, we will compute the bounds on the Gauss-Bonnet couplings, which give
rise to the intriguing phenomena of hairy black holes and scalarization in compact stars.
These couplings are currently being intensively probed with gravitational wave and other
observational means. We shall discuss the phenomenological implications of our bounds
for these couplings. We will also calculate the causality bounds for large values of α, which
confirms the scaling behaviors that have been estimated in section 4. We will also show
that some fine-tuned EFTs can not be exact, as they will lead to inconsistencies among
the sum rules, so some additional terms must exist. Moreover, some higher dimensional
coefficients can significantly affect the bounds on the lower dimensional coefficients.

6.1 Scalar four-derivative term

Let us first derive the lower bound for the coefficient α, the coupling constant of the
(∂φ)4 = (∇µφ∇µφ)2 term. In the graviton decoupling limit, the lower bound on this dim-8
coefficient is α > 0. This was one of the earliest causality bounds [3] and gives rise to the
term of “positivity bounds”, often used synonymously with “causality bounds”, as we do in
this paper. In the presence of gravity, however, it has been predicted that the lower bound
slightly dips blow zero, the negativity being suppressed by the Planck mass squared [54].
This has been illustrated explicitly with a string theory example [55] and also numerically
confirmed for generic UV completions [56].

We refer the readers to appendix C for a more detailed explanation of how to implement
the numerical procedure of section 5. Here we shall simply outline the main steps of this
procedure for the case of obtaining the lower bound on α.

• First, we collect relevant improved dispersive sum rules. In principle, the sum rules
that do not contain α should also be included for deriving the strongest bound,
because those sum rules contain the information of full crossing symmetry/null con-
straints. However, for this particular case, we find that the only relevant sum rules
are fromM0000, and hence we only need:

− 1
M2
P

+ 2αt− γ4t
2 =

〈
F 0000

1,` (µ, t)
〉
, (6.1)

− 1
M2
P

1
t

+ 2α− γ4t+ 12gS0,2t2 =
〈
F 0000

2,` (µ, t)
〉
. (6.2)
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• Then, we sum over the sum rules after integrating them against the weight functions
and define BPX ,`(µ) via ∑k

∫ 1
0 dpF 0000

k,` (µ,−p2) = (CPX ,`,µ)TBPX ,`(µ)CPX ,`,µ. The
weight functions are decision variables. Imposing BPX ,`(µ) � 0 then gives us inequal-
ities on the Wilson coefficients. Since here we are only concerned about the bound
on α and agnostic about all the other Wilson coefficients, we can choose the weight
functions such that the combinations in front of all the other Wilson coefficients van-
ish in the summed-over sum rules. For example, if we want to be agnostic about γ4,
we can impose the condition on the weight functions:∫ 1

0
dp
[
φ0000

1 (p)(−(−p2)2) + φ0000
2 (p)(−(−p2))

]
= 0 . (6.3)

where φ0000
1 (p) and φ0000

2 (p) are the weight functions multiplying eq. (6.1) and eq. (6.2)
respectively. We must impose conditions like this such that the only coupling con-
stants are 1/M2

P and α in the summed-over sum rules, which will be used in the
numerical optimizaiton.

• Then, we impose BPX ,`(µ) � 0 and conditions like eq. (6.3), which leads to inequalities
like∫ 1

0
dp
(
−φ0000

1 (p) + φ0000
2 (p) 1

p2

) 1
M2
P

+ 2
∫ 1

0
dp
(
φ0000

1 (p)(−p2) + φ0000
2 (p)

)
α ≥ 0 .

(6.4)
To find the strongest lower bound on α, we can normalize

∫ 1
0 dp

(
− φ0000

1 (p) +
φ0000

2 (p) 1
p2
)

= 1, and maximize

2
∫ 1

0
dp
(
φ0000

1 (p)(−p2) + φ0000
2 (p)

)
. (6.5)

for all possible choices of weight functions φ0000
i (p). However, as discussed in sec-

tion 5.2, the finite dimensional expansion of φ0000
1 (p) must begin with p−1(1 − p)2,

and that of φ0000
2 (p) must begin with p(1 − p)2, so the integral of the normalization

condition contain a logarithmic divergence and we need to include an IR cutoff mIR.
It is a good approximation to only preserve the log(Λ/mIR) term in the integration,
as will be explained in section 6.2. With the IR cutoff, the normalization condition
becomes

− x0000
1,−1 + x0000

2,1 = 0 , (6.6)
where we have parameterized the weight functions as φ1234k (p) = ∑

n=nmin x
1234
k,n p

n

(1− p)2.

• Finally, we solve the following SDP:

maximize: 2
∫ 1

0
dp
(
φ0000

1 (p)(−p2) + φ0000
2 (p)

)
,

subject to: − x0000
1,−1 + x0000

2,1 = 0 ,

conditions like eq. (6.3) :
∫ 1

0
dp
∑
k

φ0000
k (p)(−p2)nk = 0 ,

positivity condition: BPX ,`(µ) � 0, for all PX , ` and µ .

(6.7)
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where Λ is set to be 1. We sum k up to k = 4 and nk are chosen to eliminate higher
order coefficients in the SDP. In the practical numerical calculations, since we can only
optimize over a finite dimensional subspace of the infinite φ0000

k (p) functional space, we
supplement this SDP with some extra forward-limit sum rules. These forward-limit sum
rules are redundant, but numerically they help minimize the impact of the uncertainties
from implementing the constraints in the large ` and finite µ region (see appendix C).
Thus, numerically, this SDP gives rise to the lower bound on α:

α ≥ −16.091log(Λ/mIR)
Λ2M2

P

. (6.8)

which is consistent with the analysis in [54, 56]. However, we can not use a similar SDP to
derive the upper bound on α. This is completely analogous to the pure scalar case where
the corresponding α has a lower bound α ≥ 0, which can be recovered from the above
bound by taking MP → ∞, but can not be bounded from above by the positivity of the
spectral function. In the pure scalar case, α can be bounded from above by making use of
more information from unitarity, particularly using the upper bound on the partial wave
amplitude |c00

`,µ|2 ≤ O(1). This produces an upper bound of order O(1/Λ4), which is very
large if MP � Λ. It is expected that the upper bound is something similar in the presence
of gravity, which would be consistent with the estimate in section 4.

In the following subsections, we will see that the bounds on some coefficients, particu-
larly the couplings involving the scalar, strongly depend on the value of α, while the other
coefficients are insensitive to α. Specifically, we will see that the bounds on the former
coefficients, projected on 1/M2

P , become weaker as the value of α increases. The sensitiv-
ity/insensitivity of the bounds on α originates from the fact that often being agnostic about
α essentially means that we are largely agnostic about c00

PX ,`,µ
. So, if the determination

of the bounds on a coefficient requires the BPX ,`(µ) matrices to have nontrivial (00, ∗) or
(∗, 00) entries (cf. eqs. (5.8) and (5.9)), this coefficient will at least weakly depend on α.
These coefficients include β2 and γ1,2,3,4. On the other hand, a coefficient strongly depend-
ing on α is when all of its sum rules themselves contain c00

PX ,`,µ
; in this case, of course, the

BPX ,`(µ) matrices will have nontrivial (00, ∗) or (∗, 00) entries in the optimization results.
For example, the γ1 sum rules themselves do not involve c00

PX ,`,µ
, so the bounds on γ1 do

not strongly depend on α; nevertheless, γ1 weakly depends on α, because the BPX ,`(µ)
matrices contain effective (00, ∗) or (∗, 00) entries that are nonzero when optimizing to get
the bounds on γ1, as we shall see in section 6.5. All of these confirm the rough estimates
in section 4.

More explicitly, note that, to satisfy our positivity condition BPX ,`(µ) � 0, a necessary
condition is that all diagonal entries of the matrix BPX ,`(µ) must be non-negative; making
use of the explicit expressions of F 1234

m,` in appendix B and judicious choices of φ1234k (p),
we find that it is easy to make the (++,++), (+−,+−) and (+0,+0) entries of BPX ,`(µ)
positive, but often this can not be done for the (00, 00) entry. To see this, note that, the
lowest order dispersive sum rules contributing to the (00, 00) entry come from amplitude
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Figure 4. Causality bounds on γ0 and β1. We have defined β̃1 = β1Λ2/
(
MP

√
log(Λ/mIR)

)
and

γ̃0 = γ0Λ4/
(
M2
P

√
log(Λ/mIR)

)
. The log(Λ/mIR) = ∞ case represents the leading approximation,

while the log(Λ/mIR) = 50 and log(Λ/mIR) = 20 (log being the natural logarithm) cases are
computed with 2 iteration of linear improvements. The bounds are almost symmetric with respect
to γ0 → −γ0 and β1 → −β1 because the leading approximation mostly constrains γ2

0 and β2
1 .

M0000, of which the only relevant ones, to the lowest orders, are

− 1
M2
P

+ 2αt− γ4t
2 =

〈
F 0000

1,` (µ, t)
〉
,

− 1
M2
P

1
t

+ 2α− γ4t+ 12gS0,2t2 =
〈
F 0000

2,` (µ, t)
〉
.

(6.9)

If we wish to get a bound on the coefficients while being agnostic about α, we can add
the above two sum rules and additionally choose more restricted φ0000

1,2 (p) to suppress the
α terms on the left hand sides of the sum rules∫ 1

0
dpφ0000

1 (p)(−p2) +
∫ 1

0
dpφ0000

2 (p) = 0 . (6.10)

However, with these extra constraints, we find that usually the (00, 00) entry of BPX ,`(µ)
can not be positive for every µ and `. In the following, we shall probe how the bounds
vary with the scalar dim-8 coupling α.

6.2 Linear Gauss-Bonnet coupling

The φG term has been shown to be one of the very few ways to generate black hole
solutions with non-trivial/hairy solutions that are different from those of GR [93–95]. The
no-hair theorems underpin many of our modern understandings of the deep nature of
gravity [108, 126], and also observational confirmations of black hole solutions are important
tests of Einstein’s gravity.

In this subsection, we shall compute the positivity bounds on β1 in conjunction with
the bounds on γ0, the coefficient of the R(3) term,

L ⊃
√
−g

(
β1
2! φG + γ0

3!R
(3)
)
. (6.11)
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Figure 5. Bounds on γ2
0 and β2

1 for various α, where α̃ = αM2
PΛ2/log(Λ/mIR), β̃2

1 =
β2

1Λ4/(M2
P log(Λ/mIR)) and γ̃2

0 = γ2
0Λ8/(M4

P log(Λ/mIR)). The main difference from figure 4 is
that here we also include sum rules involving c00

PX ,`,µ
. The four lines are almost indistinguishable

from each other, meaning that the bound on γ2
0 and β2

1 is insensitive to α. There are kinks at
(γ̃2

0 , β̃
2
1) = (4.32, 6.53) and (γ̃2

0 , β̃
2
1) = (2.42, 7.16) respectively.

At times, the specific structure of EFT amplitudes may lead to additional constraints in
the sum rules. The case of γ0 and β1 provides a good example. In the tree level EFT
amplitudes, some coefficients are non-negative because they are of the form of β2

1 or γ2
0 .

These forms come from squares of 3-leg vertices in the amplitudes, as the Lagrangian
terms with coefficient β1 and γ0 can generate 3-leg vertices. However, the corresponding
right hand side terms in the sum rules do not automatically enforce such positivity. So
we can take these extra constraints into account when handling the sum rules with β2

1
and γ2

0 . Ignoring them erroneously weakens the bounds on the other coefficients. (For the
Newton’s constant 1/M2

P , on the other hand, there is no need to impose its positivity in
our formalism, as its positivity is implied by the sum rules.)

We will be interested in bounds on γ0 and β1, agnostic about α. As discussed in the
previous subsection, this means that we can not use the sum rules containing c00

PX ,`,µ
, as

well as the sum rules that rely on c00
PX ,`,µ

to satisfy eq. (5.10). This means that we will only
use improved dispersive sum rules (B.16)–(B.23), (B.49)–(B.52) and (B.55)–(B.57). Addi-
tionally, we also use some forward-limit sum rules to improve the numerical convergence
in the large ` and finite µ region. Another ad hoc trick to improve the numerics in this
region is to use both sum rules with helicities 1322 and 1232. This will include more null
constraints in the SDP, given that our numerical implementation truncates the sum rules
at a finite order of k (see eq. (3.18)).

To determine the boundary of the positivity region, we can make use of angular opti-
mization. To this end, we parametrize γ0 and β1 as follows

γ0Λ4

M2
P

= r cos θ , β1Λ2

MP
= r sin θ . (6.12)

Then, for a given θ, the optimization program for bounds on γ0 and β1 outputs a quadratic
inequality of r, which gives a bound on r; going through sufficiently many θ, we get a 2D
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bound in the γ0-β1 plane. However, this is not an optimization problem directly solvable
by the SDPB package, because both r and r2 are present in the inequality. Nevertheless,
for phenomenological interesting cases (for which the IR logarithm log(Λ/mIR) is not too
small), we can drop the linear term in the r inequality, and then the problem becomes
directly solvable by SDPB for a given θ. If we want to improve the accuracy of the bound
with the linear r terms, we can use the above result as an initial background solution r∗ of
the quadratic r inequality and seek a linear perturbative improvement δr on top of it:

γ0Λ4

M2
P

= (r∗ − δr) cos θ , β1Λ2

MP
= (r∗ − δr) sin θ . (6.13)

This of course can be iterated for further improvements: set r∗ → r∗−δr and repeat several
times to a desired accuracy.

In figure 4, we compare the bounds obtained from the leading approximation and
its improvements with the above iterations. The leading approximation, where the linear
r terms are dropped, can be extracted by the limit log(Λ/mIR) → ∞), while for the
log(Λ/mIR) = 50 and log(Λ/mIR) = 20 cases we have performed two iterations of linear
improvements. We see that, for a phenomenological interesting log(Λ/mIR), the leading
approximation is actually rather good. The non-convexity of figure 4 results from the fact
that the SDP is performed on quadratic functions of γ0 and β1, but figure 4 is plotted for γ0
and β1 themselves. Also, from figure 4, we see that the allowed values of the dimensionless
coefficients γ̂0 and β̂1, modulo (log(Λ/mIR))1/2, are order one, which is consistent with the
dimensional analysis in section 4. This is also consistent with the parametric bound on
β1 in ref. [115], estimated from requiring the absence of acausal time advances when the
graviton and the scalar scatter off a heavy object in the eikonal regime. Also, the bounds
on γ0 have previously been computed in ref. [44], which can be compared with ours by
setting β1 = 0. Our bounds on γ0 are a few percents stronger than those of ref. [44], which
probably arises from the differences in using dispersion relations and approximations in the
large µ, ` region.

To obtain the bounds on γ0 and β1 in figure 4, we only used sum rules that do not
relate to the partial wave amplitude c00

PX ,`,µ
. To utilize other sum rules, one needs to have

some prior knowledge of α and, potentially, for a given α, the bound on γ0 and β1 could
be significantly reduced. However, in section 4, we have estimated that this should not
happen. Here, with the numerical scheme, we can confirm that the bound on γ0 and β1 is
insensitive to the value of α; see figure 5 for how the bound varies with α using the leading
approximation. Even if the value of α has varied from near its lower bound to O(100),
the impact on the bound on γ0 and β1 is only about 0.001%, consistent with a numerical
error. Note that in figure 5 we only plot bounds on γ0 and β1 (more precisely γ2

0 and β2
1) in

the first quadrant. The bounds on the other quadrants are almost mirror symmetric with
respect to the one in the first quadrant, because the sum rules used mostly contain γ2

0 and
β2

1 , except for one couple of them which contains β1γ0. The effects of the sum rules with
β1γ0 turn out to be very weak in the optimization.

The φG operator itself is shift symmetric φ→ φ+const, but in plotting figure 5 we are
agnostic about the coefficients of non-shift symmetric operators such as φ2G, that is, figure 5
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Figure 6. Bounds on γ2
0 and β2

1 with some low spins removed, where γ̃2
0 = γ2

0Λ8/(M4
P log(Λ/mIR))

and β̃2
1 = β2

1Λ4/(M2
P log(Λ/mIR)). For a line with ` ≥ `0, we only impose positivity conditions

with UV spin ` ≥ `0. The ` = 1 states decouple so that the ` ≥ 1 and ` ≥ 2 curves are the same.
The ` ≥ 3 and ` ≥ 4 curves only differ slightly. The zoom-ins of the kinks are also shown.

is for a generic theory without shift symmetry. Incidentally, one may be interested in how
the causality bounds differ if the theory is actually shift-symmetric. This is equivalent
to setting the coefficients of terms like φ2G to zero, which gives rise to some extra null
constraints. However, our numerical results show that the bounds on γ0 and β1 are virtually
unchanged if we impose the shift symmetry. The differences between the shift-symmetric
bounds and the generic bounds are about O(10−5), which may well be numerical errors.
This is not surprising from the point of view of the dispersion relations: the bounds on γ0
and β1 mostly come from the constraining powers of the four-graviton dispersion relations,
but the latter do not contain γ1 and β2 at all.

In figure 5, we find that there are two kinks at (γ̃2
0 , β̃

2
1) = (4.32, 6.53) and (γ̃2

0 , β̃
2
1) =

(2.42, 7.16), which will be referred to as “Kink 1” and “Kink 2” respectively; see figure 6
for the close-ups. Often, a kink indicates a theory with special features, as it delineates two
continuous classes of EFTs. (From the perspective of the convex cone of the s2 coefficients,
already, kinks correspond to UV states that are irreps of the spacetime and internal sym-
metries of the EFT [4].) To probe the nature of these kinks, in figure 6, we also calculate
the bounds on β2

1 and γ2
0 with some of the UV spin states suppressed. By ` ≥ `0, we assume

that there are no UV states with spin ` < `0. We do not plot the ` ≥ 1 case because the
` = 1 states decouple from this process so that the ` ≥ 1 curve is the same as the ` ≥ 2
curve. Also, in figure 6, we also find that the ` ≥ 3 and ` ≥ 4 curves only differ slightly.

The reason why the bounds on β1 and γ2
0 receive no contributions from the ` = 1

partial waves and are insensitive to the ` = 3 partial waves is a result of spin selection
rules, thanks to the fact that the EFT only includes spin-0 and spin-2 modes. To see this,
note that the amplitude discontinuity in the dispersion relations schematically goes like

DiscM1234(µ, t) ∼
∑
`

d`h12,h43(arccos(1 + 2t/µ))c12`,µ(c3̄4̄`,µ)∗

For an odd `, we have c12`,µ = 0 if 1 = 2, due to the Bose symmetry. On the other hand, for
1 6= 2, 3 6= 4 and ` = odd, the Wigner functions d`h12,h43

vanish if ` < max{|h12|, |h43|}. This
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is the case for ` = 1, because, for a scalar-tensor EFT, when hi 6= hj , we have |hi−hj | = 2
or 4. Therefore, the bounds receive no contributions from the ` = 1 partial waves. For the
` = 3 case, we still have ` < max{|h12|, |h43|} if we consider pure graviton scattering in
which we have |hi − hj | = 4. So, for ` = 3, the Wigner functions in most of the dispersion
relations vanish. Additionally, the bounds on γ0 and β1 turn out to be insensitive to the
rest dispersion relations from the non-pure graviton scatterings. Therefore, the bounds are
insensitive to the ` = 3 partial waves.

Since the ` = 1 states decouple, the ` ≥ 2 curve in figure 6 shows that the horizontal
boundary of the all-` bound on β2

1 and γ2
0 cannot be reached if we assume that there

are no scalar degrees of freedom in the UV, while the vertical boundary does not have
contributions from the heavy scalars.

As with the all-` case, the bound on β2
1 and γ2

0 with ` ≥ 2 still mainly results from
the four-graviton sum rules and is insensitive to the value of α. However, this changes if
the UV theory only has higher spin states ` ≥ 3, and then the bounds on β2

1 and γ2
0 are

significantly reduced in all directions, as shown in figure 6. Furthermore, for ` ≥ 3, we find
that the dimension α is fixed to be O(1/(M2

PΛ2)) and can no longer reach the all-` upper
bound O(1/Λ4). To understand this, we can look in the graviton decoupling limit, where
all the forward limits of the dispersive sum rules can be used. Notice that the lowest order
st null constraint a0000

3,1 = a0000
1,3 gives

0 = 16π
∑

`≥4,even;X
(2`+ 1)

∫ ∞
Λ2

dµ
π

`(`+ 1)(`2 + `− 8)
2µ5 |c00

`,µ|2 , (6.14)

where we have imposed c12`,µ = 0 for ` < 3 as intended and used the fact that c00
`,µ = 0 for odd

`. When ` ≥ 4, the right-hand side of eq. (6.14) is non-negative for all ` and µ. Therefore,
eq. (6.14) implies c00

`,µ = 0 for all ` and µ, which leads to a0000
k,n = 0 for k + n ≥ 3. This

means that the scalar self-interaction operators with dimension 8 or higher must vanish.
Therefore, all these operators must be suppressed by appropriate powers of MP away form
the decoupling limit, which is consistent with the numerical results that α ∼ O(1/(M2

PΛ2))
in figure 6. In the language of section 4, this suggests that the correspondence c00

`,µ ⇔ Λ/MP

is the only option. The numerical results are essentially the same if the UV theory only
has higher spin states ` ≥ 4, as shown in figure 6.

On the other hand, a theory with only ` ≥ 5 does not exist. The reason is exactly
the same as why a pure scalar theory with only ` ≥ 3 does not exist. Notice that, in the
presence of gravitons, the lowest order null constraint for 2-to-2 scalar scattering in the
forward limit is 0 =

〈
∂4
t F

0000
3,` (µ, 0)

〉
. With the assumption ` ≥ 5, it becomes

0 = 16π
∑

`≥6,even;X
(2`+ 1)

∫ ∞
Λ2

dµ
π

(
`6

18 + `5

6 −
55`4
36 −

10`3
3 + 233`2

36 + 49`
6

) 1
µ8 |c

00
`,µ|2, (6.15)

where we have used the fact that c00
`,µ = 0 for odd ` again. When ` ≥ 6, the right hand

side is positive for all µ. Therefore we can infer that c00
`,µ = 0, which in turns implies that

1/M2
P = 0. Therefore, such kind of scalar-tensor theories can not exist.
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Figure 7. Bounds on β2
1 and γ2

0 using different sum rules. The “Opposite helicities” bound is
obtained using 4 sum rules with F++−− and F+−+−, i.e., eqs. (B.49), (B.50), (B.55) and (B.56).
The “Add + helicity” bound is obtained by adding the F++++ sum rules, i.e., eqs. (B.16) and (B.17),
while the “Add high order” bound is obtained by adding 3 high order sum rules (B.51), (B.52)
and (B.57), compared with the “Opposite helicities” case. The “All” bound is the one shown in
figure 5. Kink 1 is located near the interaction point of “Add + helicity” and “Add high order”.

On the other hand, if the UV theory only has finite spins ` < `M, causality bounds will
restrict β2

1 and γ2
0 to be zero. We can easily see this for ` < 4 directly from the sum rules.

To this end, note that we have F+++−
1,` (µ, t) = (· · · )d`,µ,t4,0 + (· · · )∂td`,µ,00,−4 + (· · · )∂td`,µ,04,0 = 0

for ` < 4 from their definitions. If the UV partial amplitude has no support for ` ≥ 4 spins,
we can infer that F+++−

1,` (µ, t) = 0 for all `. Therefore, we have

− γ0
M4
P

t2 =
〈
F+++−

1,` (µ, t)
〉

= 0 , for all −Λ2 < t < 0 , (6.16)

which suggest that γ0 = 0. (The same result can also be obtained by using F+++−
2,` .)

Similarly, for F+0−0
1,` , we have F+0−0

1,` (µ, t) = (· · · )d`,µ,t2,2 = 0 for ` < 2. If the UV partial
amplitude has no support for ` ≥ 2 spins, we have

− 1
M2
P

− β2
1

M4
P

t2 =
〈
F+0−0

1,` (µ, t)
〉

= 0 , for all −Λ2 < t < 0 , (6.17)

which leads to β1 = 0. Moreover, this also leads to MP → ∞, which means that this
kind of scalar-tensor theory is excluded by causality bounds. For some larger `M, we have
numerically verified that β2

1 and γ2
0 are also forced to be zero by positivity bounds.

It is also instructive to see how presence or absence of certain sum rules impacts the
bound on γ0 and β1. Starting from a small set of sum rules with only the graviton scattering
with opposite helicities, figure 7 shows that adding sum rules from M++++ significantly
strengthens the bound on β1, the coefficient of φG, while adding high order sum rules with
opposite helicities primarily enhances the bound on γ0, the coefficient of R(3). The former
is due to the fact that β2

1 also appears in the sum rule with F++++, unlike γ2
0 . The latter is
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Λ(10−10eV) BHXB [98] NS [104] GWBBH [102] GWNSBH [106] GWCB [106]

Conservative 1.5 2.2 1.6 2.1 2.4
Kink 1 1.4 2.1 1.6 2.0 2.3

Fine-tuned 0.27 0.39 0.30 0.38 0.43

Table 2. Lower bounds on the EFT cutoff Λ (in units of 10−10eV) from binary compact star
observations, by converting β̃1MP log(Λ/mIR)/Λ2 < βobs

1 with various choices of the dimensionless
β̃1. “Conservative”, “Kink 1” and “Fine-tuned” refer to choosing β̃1 to be, respectively, its global
upper bound, at Kink 1 in figure 5 and when g̃T1

4,0 = gT1
4,0Λ6M2

P / log (Λ/mIR) = 0.01 and g̃T1
6,0 =

gT1
6,0Λ10M2

P / log (Λ/mIR) = 0.01. The BHXB bound comes from a black hole low mass X-ray binary
(A0620-00), while the neutron star (NS) bound is from the mass-radius measurement of pulsar
J0740+6620. The other bounds are extracted from constraints from the dephasing of gravitational
waves: GWBBH is inferred from combining several low mass binary black hole events, GWNSBH
is from the best neutron star black hole binary event (GW200115) and GWCB is extracted from
combining several BBH and NSBH events.

because γ2
0 can manifest in high order sum rules with opposite helicities. It can be observed

that Kink 1 is roughly located at the intersection point of the two choices of adding extra
sum rules in the optimization.

As mentioned previously, there has been a lot of recent interest in astrophysics to probe
the φG operator in strong and dynamical gravity environments, as it is one of the leading
viable scalar-curvature couplings beyond Einstein’s gravity. In some of these settings, the
φG operator and the scalar kinetic term are assumed to be the only extra Lagrangian terms,
which is a fine-tuned scenario we shall consider in section 6.6. From the perspective of the
causality bounds, fine-tuned cases often have tighter bounds, sometimes incredibly restric-
tive, as we shall see. Therefore, one deduces conservative conclusions when comparing the
generic causality bounds with the observational results for the fine-tuned theories. On the
other hand, when constraining the β1 coefficient from binary compact star observations,
the results, in contrast to the causality bounds, are less sensitive to corrections from higher
dimensional operators, as φG gives the leading contributions in the astrophysical computa-
tions. Thus, the proxy model with only φG should capture the salient astrophysical features
of a generic model. With these in mind, we shall use the observational bounds to constrain
the cutoff of the scalar-tensor EFT in the following.

Having established the sharp causality bounds, we can convert these experimental
bounds to the bounds on the cutoff of the theory for a few specific EFTs. A specific EFT
has a specific dimensionless β̃1, and the lower bound on Λ can be extracted from

β̃1MP log (Λ/mIR)
Λ2 = β1 < βobs

1 , (6.18)

where βobs
1 is an observational bound and we choose 1/mIR to be the Hubble scale. In

table 2, we have surveyed three EFTs: for the “Conservative” case we take β̃1 to be its
maximum value in figure 5, which is valid regardless of values of other Wilson coefficients;
“Kink 1” refers to the Kink 1 in figure 5 (the bounds on Λ for Kink 2 being almost
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the same); the “Fine-tuned” case is when we take β̃1 to be its maximum value when
higher order coefficients gT1

4,0 and gT1
6,0 are set to be relatively small g̃T1

4,0 = 0.01, g̃T1
6,0 =

0.01, which will significantly reduce the upper bound on |β̃1| (see figure 13) and in turn
impose much stronger bounds on the EFT cutoff. The observational constraints on βobs

1
in table 2 are obtained as follows. “BHXB” refers to a bound from a black hole low mass
X-ray binary A0620-00 where the black hole’s companion is a K-type main-sequence star,
whose matter is accreted into the black hole to produce X-rays [98]. “GWBBH” [102] ,
“GWNSBH” [106] and “GWCB” [106] are bounds from the newly available observational
channel of gravitational waves. The BBH one is inferred from combining several most
constraining low mass binary black hole events, the NSBH case is from the neutron star
black hole binary event (GW200115) and the CB one is extracted from combining several
BBH and NSBH events. All the bounds from these binaries are derived from the fact that
the scalar Gauss-Bonnet coupling gives rise to corrections to the binary’s orbital decay
rate due to extra scalar dipole radiation that is of “−1 PN” order. For X-ray observations
from the BHXB, this results in corrections to the period, while for gravitational waves this
leads to dephasing in the waveforms. It is also not surprising that the strongest bounds
come from the lower mass compact stars, as gravity is the strongest in those environments.
On the other hand, “NS” refers to a bound from the mass-radius measurement of pulsar
J0740+6620, taking the most conservative case with respect to the choice of the equation
of state for the neutron star [104].

To clarify, table 2 constrains the cutoffs of the models at a few special places within
the causality bounds. These special models serve as benchmarks for causality-bounds-
compatible EFT models. Since β̃1 is known for these specific models, one can convert the
experimental bound to the lower bound on the cutoff, via eq. (6.18). This exercise is related
to causality bounds because these specific models are special only from the point of view
of the causality bounds. It can be viewed as a succinct survey about how the cutoff may
change within the causality bounds, which serves to gauge the strength of the causality
bounds in the context of observational bounds.

It is worth noting that the current experimental bounds are parametrically close to the
bound from the cosmic censorship that there should be no naked singularity. An intriguing
feature of the scalar-Gauss-Bonnet coupling φG is that it leads to a finite radius singularity
at r4

S = 48β2
1 [94]. So if we require the singularity to be cloaked by the event horizon, for

a spherically symmetric black hole with its horizon at rh, this leads to an upper bound on
the coupling

β2
1 <

r4
h

48 , (6.19)

(For generic f(ϕ)G, we will have (df(ϕ(rh))/dϕ)2 < r4
h/48.) This will impose stronger

bounds on the cutoff Λ for smaller black holes for which rh is smaller. Taking rh to be
∼km would lead to Λ & O(1)× 10−10eV if β̃1 saturates its upper bound.

6.3 More generic Gauss-Bonnet couplings

Beyond the linear coupling φG, more complex couplings to the Gauss-Bonnet invariant
f(φ)G have also been extensively investigated, due to their ability to generate the inter-
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Figure 8. Bounds on β2, β2
1 and γ2

0 for various α. Four representative cross sections are
chosen that pass through the β2 axis. The dimensionless coefficients are defined as follows:
α̃ = αM2

PΛ2/log(Λ/mIR), β̃2 = β2Λ2/ log(Λ/mIR), β̃2
1 = β2

1Λ4/(M2
P log(Λ/mIR)) and γ̃2

0 =
γ2

0Λ8/(M4
P log(Λ/mIR)).

esting mechanism of (spontaneous) scalarization [96, 97]. Scalarization is a phenomenon
where the scalar field can develop a non-trivial profile (non-constant across the space) when
the curvature near compact stars is sufficiently strong in some modified gravity models.
All known scalarization mechanisms for the black hole utilize the scalar-Gauss-Bonnet cou-
pling f(φ)G [112] (for neutron stars other ways are possible). In particular, they usually
rely on the φ2G term to give rise to an effective scalar mass term that is of a tachyonic
nature, which is quenched by higher order terms to achieve stable scalarization. Near a
compact star, the effective mass term has to be sufficiently negative to develop tachyonic
instabilities, as there are positive contributions to the effective potential coming from the
mass and angular momentum of the compact star. As the effective mass term is propor-
tional to G, this requires the curvature near the compact star to be sufficiently large, so
smaller compact stars tend to be scalarized.

In this subsection, we shall constrain the function f(φ) to the next leading order φ2.
The leading two orders of the f(φ) expansion can contribute to tree-level 4-leg amplitudes
and thus can be effectively constrained with our method. More specifically, we will be
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β2 > 0 β2 < 0
EoS MS1 MPA1 WFF1 MS1 MPA1 ENG APR4 WFF1

Λ(10−10eV) 1.4 2.1 3.4 2.9 4.0 4.7 5.2 5.9

Table 3. Lower bounds on the EFT cutoff Λ from the NS-WD binary J0348+0432 for various
equations of state (EoS) of the neutron star.

NS-WD pair J0348+0432 J1012+5307 J2222-0137
Λ(10−10eV) 4.0 3.6 3.7

Table 4. Lower bounds on the EFT cutoff Λ from three NS-WD binaries, assuming the MPA1
equation of state for the neutron star and β2 < 0.

concerned with the coefficients in the following Lagrangian terms

L ⊃
√
−g

(
γ0
3!R

(3) + β1
2! φG + β2

4 φ
2G + α

2 (∂φ)4
)

(6.20)

and investigate how the bound on β1 and β2 varies with α and γ0.
Since we have seen in the last subsection that keeping only the quadratic pieces of γ0

and β1 in the dispersion relations quite accurately captures the bounds, we shall directly
adapt that approximation here. Since β2 is only contained in the dispersive sum rule with
F++00

2,` , in order to derive a bound on β2, we need to specify the value of α, as discussed in
section 6.1. In this subsection, we assume α ∼ O(1/(M2

PΛ2)). (The case of α ∼ O(1/Λ4),
particularly the scaling of β2 with respect to α, will be explored in section 6.5.)

A few cross sections of the 3D bounds for β2, β2
1 and γ2

0 are shown in figure 8, all
of the cross sections passing through the β2 axis. While the boundaries of β2

1 and γ2
0 are

insensitive to the value of α, the limit of β2 changes dramatically with it. On the other
hand, the limit of β2 is insensitive to the values of β2

1 and γ2
0 . We can see that β2 is of order

O(1/Λ2) and becomes greater when α increases, consistent with the estimate in section 4.
Another obvious visual pattern is that the bounds are symmetric with respect to the plane
of β2 = 0, up to about 0.01%. We have also numerically verified that, for α̃ ≥ −15, the
global minimum and maximum of β2 are on the line of γ0 = 0 and β1 = 0. We have chosen
both the cross sections of γ0Λ2/(β1MP ) = ±1 because there is a γ0β1 term in the sum rules
from M++−0 and its crossing. However, as we can see explicitly in figure 8, the effect of
this term is minimal in the results.

The reason why we choose α̃ from α̃ = −15 to plot figure 8 is that α̃ = −16.091 is
its lower bound. A peculiar feature near the lower bound when α̃ = −15 is that the cross
sections in figure 8 are almost rectangular. From the 3D point of view, the bounds on β2,
β1 and γ0 are basically a “plate” lying on the plane of the β2

1 and γ2
0 directions with a

“thickness” along the β2 direction. This means that the bounds on β1 and γ0 are almost
independent of the bounds on β2, which is not at all obvious from the sum rules and we
have not identified the underlying reason.

In the absence of the β1 term, the β2 term can result in scalarization in compact
stars [96, 97]. As argued in section 4, a relatively suppressed β1, compared with β2, is
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parametrically natural for a generic UV completion. We will also verify this numerically
in section 6.5. The β2 coupling has been observationally constrained with binary pulsars,
as it can also give rise to dipole scalar radiation, which affects the orbital decay rate of
the binaries. ref. [127] considered three neutron star-white dwarf (NS-WD) binaries, and
has put some upper bounds on |β2| for both β2 > 0 and β2 < 0. Note that for black
holes β2 needs to be positive in order to have tachyonic instabilities, which is necessary
for scalarization to occur, but for neutron stars both signs of β2 are possible. Similar to
the case of β1, we can convert these experimental constraints to bounds on the cutoff Λ by
saturating |β2| with the causality bounds for α = 0, β1 = 0: |β̃2|/Λ2 < |βobs

2 |. In table 3
the uncertainties of the Λ bounds are surveyed for various different equations of state of
the neutron stars, while in table 4 the Λ bounds extracted from three different NS-WD
binaries are compared.

The observational bounds on β1 and β2 have only been established individually. As-
suming the scalar interacts with gravitational strength, the β1 term gives rise to the leading
order effects in the relevant astrophysical processes, and we may take the observational up-
per bounds on β1 to be valid for all reasonably valued β2. This is a rough approximation,
which we shall be content with in the absence of any rigorous 2D astrophysical analysis so
far.

Then, if we let the observational bound on β2 saturate its causality bound (letting
the right end of the thick green line, which lies on the β̃2 axis, align with the most right
end of the causality bound on β̃2 when β̃1 = 0), which fixes the cutoff of the EFT and in
turn fixes the causality bound on β1 and β2, the causality bound on β1 and β2 may be
used to tentatively exclude parameter regions in the β1 and β2 space and compare with
the observational bounds. See figure 9 for a comparison with a couple of choices of the
observational bounds. We emphasize that this is not intended to be a rigorous comparison.
Rather, it is just an attempt to estimate potential interactions between the causality bounds
and the observational constraints, which should be updated when suitable astrophysical
analyses become available.

6.4 Other six derivative terms

In the previous subsections, we have mainly focused on Lagrangian terms with four deriva-
tives, except for γ0, which is a term with six derivatives. In this subsection, we shall
compute the positivity bounds on all other six derivative terms: γ1, γ2, γ3 and γ4. After
all, as argued in section 4, if the scalar interactions are constrained to be comparable with
the gravitational interactions (for example, when α ∼ 1/(M2

PΛ2)), all the six derivative
terms should be all suppressed by 1/Λ4 (cf. eq. (4.30)).

Numerically, for α̃ = αM2
PΛ2/ log(Λ/mIR) ≥ −15, we find that γ1, γ2 and γ3 reach

their global bounds (i.e., the loosest bounds) approximately when γ0 = 0 and β1 = 0,
and the bounds on γ4 are actually insensitive to the values of γ2

0 and β2
1 . To see how

the bounds change with α, we shall present the bounds on γ1, γ2, γ3 and γ4 for α̃ =
{−15,−10, 0, 10, 100}, with γ0 = 0 and β1 = 0, as shown in figure 10.

In section 4, we have argued that γ1 must be O(MP /Λ4) and insensitive to the value of
α. This is what we see with the SDP computations: in figure 10a, we see that the bounds
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Figure 9. Comparisons of the observational bounds and causality bounds on β1 when the ob-
servational bound on β2 saturates its causality bound. The “Causality bound” corresponds to the
theoretical bounds for the case of α = 0 and γ0 = 0 in figure 8. “Obs. bound on β1” means the
observational upper bound on β1 coming from the most stringent gravitational wave constraint
of [106], assuming β2 = 0. “Obs. bound on β2 with MPA1/MS1” means the observational upper
bound on β2 from the orbital decay rate measurements using the MPA1/MS1 equation of state for
the neutron stars [127], assuming β1 = 0. The observational bound on β2 using MS1, shown on
the right subfigure, is the most conservative one in [127]. We let the observational bound on β2
saturate its causality bound, which means that the right end of the thick green line (lying on the
β̃2 axis) is at the most right end of the causality bound on β̃2 when β̃1 = 0.

on γ1 depend very weakly on the value of α. Despite this, as mentioned in section 6.1,
because γ1 only appears in the sum rules of F+++0

1,` and F+++0
2,` , we can not use our setup

to numerically find the bounds on γ1 without specifying α. Although hardly visible in
figure 10a, the bound on γ1 does become weaker very slowly when α increases. In fact,
as will be shown in section 6.5, the value of γ1 will be of the same order even when α is
very large, for example, α ∼ O(1/Λ4). On the other hand, the bounds on γ2,3,4 become
weaker significantly when α increases, so there is a sizable difference between the case
of α ∼ O(1/(M2

PΛ2)) and α ∼ O(1/Λ4), which is again consistent with the analysis in
section 4.

6.5 Coefficients for large α

In the previous subsections, we have seen that the bounds on some coefficients depend
on the size of α. For the explicit bounds on these coefficients, we have chosen α ∼
O(1/(M2

PΛ2)), in which case the scalar self-interaction, along with other interactions in-
volving the scalar, is comparable with the spin-2 interactions. In this subsection, we shall
also explore the possibility that α ∼ O(1/Λ4) when the scalar self-interaction is strong,
close to its upper limit. As already argued in section 4, the EFT operators scale differently
in this case. In this subsection, we shall confirm these estimates with explicit calculations.

For concreteness, we will concentrate on the following three Wilson coefficients:

γ1: the coefficient of the φR3 term in the Lagrangian, which appears in the F+++0
(1,2),` (µ, t)

sum rule and thus is of order O(MP /Λ4) for any value of α, according to the dimen-
sional analysis in section 4;
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Figure 10. Bounds on γ1,2,3,4 for various values of α. As expected, these bounds scale up as α in-
creases, that is, as α transits from O(1/(M2

PΛ2)) and O(1/Λ4). Note that α̃ = αM2
PΛ2/log(Λ/mIR),

γ̃1 = γ1Λ4/(MP log(Λ/mIR)), γ̃2 = γ2Λ4/ log(Λ/mIR), γ̃3 = γ3Λ4MP / log(Λ/mIR) and γ̃4 =
γ4Λ4M2

P / log(Λ/mIR).

β2: the coefficient of φ2G, which only appears in the sum rule with F++00
2,` and thus is of

order O(1/Λ2) when α ∼ O(1/(M2
PΛ2)) or O(MP /Λ3) when α ∼ O(1/Λ4);

gM4
0,2 : the coefficient of the s2u2 term in the amplitude M+0−0, which appears in the

forward-limit sum rule gM4
0,2 = 〈2|c+0

`,µ|2/µ5〉 and thus should be of order O(1/(M2
PΛ6))

and insensitive to α, meaning that the coefficient of a 8 derivative operator φ2R2∂4

in the Lagrangian should scale as O(1/Λ6) (this is an expected example that does
not follow eq. (4.3) with Ñφ = bNφ/2c, which would suggest an incorrect scaling of
O(MP /Λ7)).

We shall proceed by probing the bounds on these coefficients with a number of different
hierarchies between MP and Λ, up to a fiducial big ratio of MP /Λ = 1016. That is, we
shall compute the bounds for these coefficients with α up to α ∼ 1032 log(Λ/mIR)/(M2

PΛ2).
As we will see in the following, the bounds on coefficients such as γ1 are insensitive to the
changes in α, even for large α, whereas the bounds on coefficients such as β2 increase
significantly as α increases.

First, let us see how the upper bound on |γ1| varies for different α when γ0 = 0 and
β1 = 0. The choice of γ0 = 0 and β1 = 0 makes the obtained bounds approximately the
global upper bounds on |γ1| for all γ0 and β1. As we see in figure 11a, the upper bound on
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Figure 11. Upper bounds on |γ1| and |β2| for large values of α. The upper bound on |γ1| is
insensitive to the value of α, while the upper bound on |β2| increases rapidly with α. The line in
subfigure (b) is nearly linear with a slope of 1/2, which is consistent with the argument in section 4.
Note that γ̃1 = γ1Λ4/(MP log(Λ/mIR)), β̃2 = β2Λ2/ log(Λ/mIR) and α̃ = αΛ2M2
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Figure 12. Upper bound on gM4
0,2 for large α. The upper bound on g̃M4

0,2 increases more rapidly
than that on γ̃1, but much slower than that on β̃2. We have defined that α̃ = αΛ2M2

P / log(Λ/mIR)
and g̃M4

0,2 = gM4
0,2M

2
PΛ6/ log(Λ/mIR). We see that, in contact to β2, its slope is much less than 1/2

(the case of the red line), meaning that it is insensitive to α.

|γ1| remains stable aroundMP /Λ4 even when α has changed for many orders of magnitude,
completely consistent with the dimensional analysis in section 4. Note that the dimensional
analysis in section 4 suggests that γ1 is insensitive to α, because eq. (4.18) does not contain
ĉ00
`,µ. In deriving sharp bounds on γ1, we will use eq. (4.18) along with other dispersion
relations. Although the dispersion relations containing γ1 do not contain c00

`,µ, the rest
dispersion relations do contain c00

`,µ. More specifically, γ1 is contained in the dispersion
relations with F+++0

1,` and F+++0
2,` . When we add them into the numerical procedure and

impose the positivity condition BPX ,`(µ) � 0, it is necessary for the (+0,+0) element of
BPX ,`(µ) to be positive, which means that the dispersion relation with F+0−0

k,` must be
included. For k ≥ 2, including F+0−0

k,` will in turn contribute to the (00,+0) and (+0, 00)
elements of BPX ,`(µ). Hence, it is necessary for the (00, 00) element of BPX ,`(µ) to be
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positive, so we need to include F 0000
k,` in the SDP. F 0000

k,` does contain c00
`,µ, which eventually

leads to γ1 having some dependence on α. These very indirect links also mean that the
dependence of γ1 on α is very weak, which is exactly what we see in figure 11a.

For the upper bounds on |β2|, we again look at the direction along γ0 = 0 and β1 = 0,
which gives approximately the global upper bounds on |β2|. In figure 11b, we see that the
upper bound on |β2| scales with the square root of α, accurate to several decimal places
for large α,

|β̃(up)
2 | ∝ α̃

1
2 , (6.21)

precisely as what is argued in section 4. To see why this is consistent with the dimensional
analysis in section 4, note that a large α of order α ∼ Λ−4 can be viewed as originating from
a large hierarchy betweenMP and Λ: α ∼ Λ−4 = (MP /Λ)2(MPΛ)−2. So the horizontal axis
in figure 11b can be viewed as depicting different values of (MP /Λ)2. In section 4, we argued
that, switching from the ĉ00

`,µ ⇔ Λ/MP correspondence to ĉ00
`,µ ⇔ 1, the upper bound on |β2|

will be boosted by an extra factor of MP /Λ, to be of order |β2| ∼MP /Λ3 = (MP /Λ)Λ−2,
while for α the boost factor is (MP /Λ)2. This explains the 1/2 exponent in the fitted
eq. (6.21).

The fact that β2 increases significantly with α has interesting implications for the
scalarization models. Notice that a scalarization model should accommodate non-hairy
black holes, so the β1 coefficient is usually assumed to be negligible, since a sizable φG
coupling generically leads to a hairy black hole [93]. The fact that the causality bounds
allow the β2 coefficient to generically have an enhancement of a factor of up to MP /Λ
implies that the β2 coupling can be naturally stronger than the β1 coupling. This can be
achieved by UV models where the scalar interacts with the heavy states stronger than the
gravitational force.

Regarding the bounds on gM4
0,2 , from the sum rule gM4

0,2 = 〈2|c+0
`,µ|2/µ5〉, we know that the

lower bound on gM4
0,2 is 0, so let us compute its upper bound. Again, explicitly computation

shows that gM4
0,2 reaches its global upper bounds when γ0 = 0 and β1 = 0. The dimensional

analysis of the sum rule suggests that the bound should be insensitive to the value of α.
Indeed, in figure 12, we see that the upper bound on gM4

0,2 only depends on α relatively
weakly, although more sensitively than the case of γ1. This can be seen by comparing with
the red line with slope 1/2, which is for the case if the upper bound were really sensitive to
α. This example underlies the importance of rigorous calculations if we want to accurately
capture the bounds on a specific coefficient.

6.6 Fine-tuned EFTs

Up to now, we have considered generic scalar-tensor EFTs without any a priori constraints
on the Wilson coefficients. The bounds on them purely come from unitary and causal-
ity of all possible UV theories, which as we have seen actually defines a power counting
scheme for the higher dimensional EFT operators in the Lagrangian. However, for various
reasons, one often devises models that fine-tune some of the Wilson coefficients to zero or
be suppressed. These reasons may be of a UV nature, where certain UV symmetries or
other mechanisms may prohibit the EFT from possessing certain operators; or, there could
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be some phenomenological considerations to have certain coefficients highly suppressed or
tuned to zero so as to make the model fit the observational data. Of course, many results
about the leading φG coupling are insensitive to or independent of the higher order oper-
ators, as per the standard EFT power-counting. The same may not be said about other
hairy black hole models or the scalarization models. In this subsection, we shall explore
the consequences of fine-tunings for a couple of examples in scalar-tensor theory. Notice
that a priori fine-tuning of the Wilson coefficients essentially gives rise to extra sum rules
from the perspective of bounding the EFT. For example, restricting some coefficients to
zero will lead to some null constraints, which sometimes may result in inconsistencies in
the dispersion relations, as we shall see.

By this discussion, we wish to further raise the awareness of the theoretical obstacles
one may face if one’s model-building replies on fine-tunings of the EFT coefficients, ex-
plicitly demonstrating what can go wrong for some inconsiderate model-building with the
EFT operators, illustrating the slogan “not everything goes”. That is, the main purpose of
this subsection is not to promote these fine-tuned EFTs or trying to confront them with
the observational constraints, rather it is to point out a caveat for potential misuses of fine-
tunings in the EFT coefficients. It also acts as a reminder that even following the standard
EFT power-counting may not be sufficient, and for a precision result there may be a need
to also check with the causality bounds. Alternatively, one may reserve the argument and
use the results here and/or the observational bounds on the lower dimensional operators
to constrain the higher dimensional operators.

Let us first consider a simple example widely used in discussing hairy black holes and
spontaneous scalarization, the f(φ)G model. In this model, apart from the standard kinetic
terms for the scalar and the graviton, all terms except the f(φ)G operators are tuned to
zero:

L =
√
−g
(
M2
P

2 R− 1
2(∂φ)2 +

(
β1
2! φ+ β2

4 φ
2 + . . .

)
G
)
. (6.22)

In this fine-tuned EFT, we no longer need to subtract the higher order t terms in the left
hand side of the original dispersion relations, because the tree level EFT amplitude from
this model only contains finite terms. Moreover, the absence of the higher order t terms
gives rise to a multitude of extra null constraints. Therefore, in the model, we may simply
define sum rules with

F̃ 1234
k,l (µ, t) := ∂ks

k!

( s2d`,µ,th12,h43

µ2(µ− s)c
12
`,µc
∗3̄4̄
`,µ +

(−s− t)2d`,µ,th14,h23

µ2(µ+ s+ t) c14`,µc
∗,3̄2̄
`,µ

)∣∣∣∣
s→0

. (6.23)

Taking this at its face value, it is easy to find inconsistencies. Let us look at the forward
limit of the sum rule with F̃++−−

4,` (µ, 0):

0 =
〈
F̃++−−

4,` (µ, 0)
〉

=
〈 1
µ5 (|c++

`,µ |
2 + |c+−

`,µ |
2)
〉
. (6.24)

Clearly, this implies that every 3-leg partial wave amplitudes c++
`,µ and c+−

`,µ must vanish for
all µ. However, this clearly contradicts with the sum rule from F̃++−−

2,` (µ, t):

− 1
M2
P

1
t

=
〈 1
µ3d

`
0,0(1 + 2t/µ)|c++

`,µ |
2 + 1

(µ+ t)3d
`
4,4(1 + 2t/µ)|c+−

`,µ |
2
〉

= 0 , (6.25)
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Figure 13. Bounds on γ2
0 and β2

1 for various gT1
4,0 and gT1

6,0. Causality bounds require gT1
4,0

and gT2
2,0 to be nonzero for γ0 and β1 to have non-vanishing values. We have defined that

β̃2
1 = β2

1Λ4/(M2
P log(Λ/mIR)), γ̃2

0 = γ2
0Λ8/(M4

P log(Λ/mIR)), g̃T1
4,0 = gT1

4,0Λ6M2
P / log (Λ/mIR) and

g̃T1
6,0 = gT1

6,0Λ10M2
P / log (Λ/mIR).

because it forcesMP to be infinitely large or the Newton’s gravitational constant to vanish,
which prevents the existence of a coupled scalar-tensor theory. This tells us that the f(φ)G
model (6.22) should not be taken at its face value. Instead, we should allow some nonzero
values for the higher order operators.

Generically, our formalism provides us with the following criterion to test whether a
fine-tuned scalar-tensor model is compatible with unitarity and causality: if we can deduce
either c00

`,µ = 0 or c+0
`,µ = 0 or c++

`,µ = c+−
`,µ = 0 in the sum rules, then the scalar-tensor theory

is inconsistent, in the sense that its Planck mass is forced to be infinitely large. To see this,
notice that we have the following sum rules

− 1
M2
P

+ 2αt− γ4t
2 =

〈
F 0000

1,` (µ, t)
〉
, (6.26)

− 1
M2
P

− β2
1

M4
P

t2 =
〈
F+0−0

1,` (µ, t)
〉
, (6.27)

− 1
M2
P

1
t

=
〈
F++−−

1,` (µ, t)
〉
. (6.28)

Using the explicit expressions of the Wigner d-functions, we can see that F 0000
1,` only contains

|c00
`,µ|2, F

+0−0
1,` only contains |c+0

`,µ|2 and F++−−
2,` only contains a sign-definite combination of

|c++
`,µ |2 and |c+−

`,µ |2. Thus, we can infer that 1/M2
P must go to zero if c00

`,µ = 0 or c+0
`,µ = 0 or

c++
`,µ = c+−

`,µ = 0.
Therefore, care should be taken to completely switch off coefficients that are allowed

by the symmetries of the EFT. For the f(φ)G model to be consistent with the causality
bounds, we need to abandon the rigid definition of (6.22) and switch back on some other
operators in the Lagrangian, for example, the γ0 term or some other higher dimensional
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Figure 14. Insensitivity of the upper bound of β̃2 to higher order coefficients. The short dotted
line in the right subfigure denotes the lower bound on g̃S2,0 when α̃ = −15. We have defined
that α̃ = αM2

PΛ2/ log(Λ/mIR), β̃2 = β2Λ2/ log(Λ/mIR), g̃T1
4,0 = gT1

4,0M
2
PΛ6/ log(Λ/mIR) and g̃S2,0 =

gS2,0M
2
PΛ6/ log(Λ/mIR). Note that α̃ = −15 is almost the lower causality bound of α̃.

terms. To determine how large the extra coefficients need to be in order to be consistent
with causality and unitarity, we can run our numerical programs. We will see that the
bounds on the coefficients of f(φ) shrink as we tune the higher dimensional coefficients to
be smaller. For example, in figure 13, we can see how the bounds on γ2

0 and β2
1 reduce as

gT1
4,0 and gT1

6,0 go toward zero along the surface gT1
4,0 = 2Λ4gT1

6,0. It is interesting to see that
these higher order terms in the Lagrangian can have such dramatic effects on the bounds
on the lower order Wilson coefficients, merely assuming that there exists an analytic UV
model, even though the higher orders may be negligible phenomenologically.

On the other hand, the bound on the β2 coupling is insensitive to the higher order
Wilson coefficients; see figure 14. Note that as gT1

4,0 and gS2,0 approach zero, the upper bound
on β2 decreases only slightly. Not visible in figure 14, we have also verified this numerically
as both gT1

4,0 and gS2,0 approach zero.
We can understand the difference in sensitivity for β1 and β2 without actually solving

the SDP. Let us look at the example of how gT1
4,0 affects the bounds on β1 and β2. For gT1

4,0, its
forward-limit sum rule is positive definite on the right hand side: gT1

4,0 = 〈F̃++−−
4,` (µ, 0)〉 =

〈(|c++
`,µ |2+|c+−

`,µ |2)/µ5〉 ≥ 0. Note that this positive structure is important for the arguments
below and, fortunately, this kind of forward-limit sum rules come by quite often. In the
SDP, the gT1

4,0 coupling enters BPX ,` in eq. (5.10) as

BPX ,` ∼ (· · · ) + y∗O
(
µ−n∗

)
+ yT1

4,0O
(
µ−5

)
� 0 (6.29)

where yT1
4,0 is the decision variable associated with gT1

4,0 in the optimization process and y∗
is the decision variable associated with a Wilson coefficient β∗ that we are concerned with.
For every viable set of decision variables, acting 〈. . .〉 on eq. (6.29), we get a condition on
the Wilson coefficients

[· · · ] + y∗β∗ + yT1
4,0g

T1
4,0 ≥ 0 (6.30)

First, suppose that gT1
4,0 is suppressed and becomes smaller, and let us see how it affects

the bounds on the coefficient β∗. Owing to the smallness of gT1
4,0, y

T1
4,0 can be very large and
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Figure 15. Entanglement in BPX ,` does not necessarily leads to strong correlations between the
coefficients. We take gS2,0, gM4

0,2 and gT1
4,0 to approach zero along g̃S2,0 = g̃M4

0,2 = g̃T1
4,0. The short

dotted line denotes the lower bound on g̃S2,0 when α̃ = −15. Note that β̃2 = β2Λ2/ log(Λ/mIR),
g̃T1

4,0 = gT1
4,0M

2
PΛ6/ log(Λ/mIR), g̃M4

0,2 = gM4
0,2M

2
PΛ6/ log(Λ/mIR) and g̃S2,0 = gS2,0M

2
PΛ6/ log(Λ/mIR).

still does not significantly affect the inequality (6.30), and gT1
4,0 becoming smaller will allow

yT1
4,0 to be larger. In the small gT1

4,0 limit, eq. (6.30) can be approximated by [· · · ]+y∗β∗ ≥ 0,
which leads to the upper bound on β∗: β∗ ≤ |[· · · ]/y∗|. Then, thanks to the positivity of
the gT1

4,0 sum rule, when gT1
4,0 becomes smaller, linear matrix inequality (6.29) will allow y∗

to take more values, which in turn means that the bounds on β∗ will become tighter. This
is what we have seen for both β1 and β2 in figure 13 and figure 14, albeit for β2 the effect
is very small.

The reason why β1 is sensitive to the value of gT1
4,0 is linked to the fact that n∗ = 4 for

β1. To see this, let us first consider the large µ region of linear matrix inequality (6.29). In
this region, both the y∗ and yT1

4,0 terms (i.e., the β1 and gT1
4,0 terms) are negligible, compared

to the leading O(µ−3) term in BPX ,`. So the large µ region does not significantly constrain
y∗. On the other hand, in the small µ region, the positive yT1

4,0 term can be significant due
to the O

(
µ−5) scaling, which also leads to weak constraints on y∗. Therefore, a loosely

constrained y∗ results in a strong bound on β1. Furthermore, as gT1
4,0 becomes smaller, yT1

4,0
is allowed to take larger values, which leads to stronger bounds on β1. This is what we saw
in figure 13.

On the other hand, for β2, we have n∗ = 3 in eq. (6.29). In this case, the argument for
the small µ region is similar to that of β1. However, in the large µ region, the y∗ term has
the leading O(µ−3) scaling, so linear matrix inequality (6.29) now does impose significant
constraints on y∗, which leads to loose bounds on β2. This explains why β2 is insensitive
to gT1

4,0.

One may be tempted to suggest that the difference between β1 and β2 in sensitivity
to gT1

4,0 is due to the distribution of relevant terms in the BPX ,` matrix. One may observe
that the gT1

4,0 sum rules give rise to nonzero contributions to the blue region in the lower
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right corner of the BPX ,` matrix, as depicted below:

The main β1 sum rules occupy the same region in BPX ,`, while the β2 sum rule occupies
the brown region in the upper left corner, which only slightly overlaps with the gT1

4,0 block.
This means that β1 and gT1

4,0 are more entangled in the BPX ,` matrix, which might suggest
that the mixing in BPX ,` is the main reason for β1 to be more sensitive to gT1

4,0. However,
this might not be the case here. We find that, while being separated in BPX ,` generally
leads to insensitivity between the coefficients, being mixed in BPX ,` does not necessarily
leads to strong correlations between the coefficients. For example, for the case of figure 15,
the three higher order coefficients occupy the whole BPX ,` matrix, and yet we still find that
β2 is insensitive to these coefficients.
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A Generic 4-leg amplitudes for scalar-tensor theory

In this appendix, we shall derive the generic forms of the tree-level amplitudes for scalar-
tensor theory. The amplitudes can be written as functions of s, t, u, with certain symmetries
among the Mandelstam variables, and also need to satisfy the helicity structure of the
scattering particles. For a tree-level amplitude, there are only two types of contributions,
one being two 3-leg vertices connected by a propagator and the other type being a 4-leg
contact vertex.

For massless particles, the on-shell 3-leg amplitudes, with the momenta extended to
be complex, are uniquely fixed by the momentum conservation and the little group scaling
up to an overall constant [130]

M(1h12h23h3) ∝

〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , h ≤ 0,
[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , h ≥ 0,

(A.1)
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where hi is the helicity of particle i and h ≡ h1 + h2 + h3. A 4-leg amplitude can be
obtained by glueing one leg of a 3-leg amplitude with one leg of another 3-leg amplitude
with opposite helicity. Alternatively, we can simply enumerate the Lagrangian terms with
lowest few mass dimensions and compute the leading few orders of amplitudes from those
terms. This allows us to enumerate all possible pole contributions to the amplitudes from
double 3-leg vertex insertions. Then, the rest of the terms can be enumerated in a fashion
similar to how eq. (A.1) is obtained, as we shall see shortly. For the latter approach, note
that the Lagrangian terms that can give rise to 3-leg vertices are given by

L ⊃
√
−g
(
M2
P

2 R− 1
2∇µφ∇

µφ− λ3
3! φ

3 + β1
2! φG + γ0

3!R
(3)
)
. (A.2)

Computing the relevant amplitudes with these terms only, the independent 2-to-2 ampli-
tudes are given by

M0000
(3) = λ2

3

(1
s

+ 1
t

+ 1
u

)
+ 1
M2
P

(
su

t
+ st

u
+ ut

s

)
, (A.3)

M++−−
(3) = 1

M2
P

s3

tu
− β2

1
M4
P

s3 + γ2
0

M6
P

s3tu , (A.4)

M+++−
(3) = γ0

M4
P

stu , (A.5)

M++++
(3) = 10γ0

M4
P

stu− 3β2
1

M4
P

stu+ γ2
0

M6
P

stu(s2 + t2 + u2) , (A.6)

M+++0
(3) = 0 , (A.7)

M++0−
(3) = β1

M3
P

s2 − γ0β1
M5
P

s2tu , (A.8)

M++00
(3) = λ3β1

M2
P

s+ γ0
M4
P

stu+ β2
1

M4
P

s3 , (A.9)

M+−00
(3) = 1

M2
P

tu

s
+ β2

1
M4
P

stu , (A.10)

M+000
(3) = β1

2M3
P

(s2 + t2 + u2) , (A.11)

where we have included contributions from both the amplitudes with double 3-leg insertions
and those from contact 4-leg vertices. The subscript (3) indicates that these contributions
are from the above Lagrangian terms containing 3-leg vertices. Note that most of the terms
in eq. (A.2) can generate both 3-leg and 4-leg vertices, and it is only when both of them
are included can the Ward identities be satisfied. Amplitudes with other helicities can be
obtained from the above ones via crossing, using eq. (2.13) to eq. (2.21).

Having found all terms including the 3-leg vertices, we now turn to those purely from
the contact vertices. Possible such terms can be constructed by considering restrictions
from little group scaling, momentum conservation, locality and crossing symmetry. To see
how this works, first note that a 4-momentum goes like p ∼ |]〈| and a polarization vector
goes like ε ∼ |]〈|/[] or |]〈|/〈〉. So, by Lorentz symmetry, a 4-leg amplitude term from a
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contact term must be a product of powers of [ij] and 〈ij〉 going like

M1234
m ∝ [12]a12 [13]a13 [14]a14 [23]a23 [24]a24 [34]a34〈12〉b12〈13〉b13〈14〉b14〈23〉b23〈24〉b24〈34〉b34 ,

(A.12)
where m denotes the number of partial derivatives in the contact vertex and aij and bij
are integers. From little group scaling and locality, we can infer some constraints on aij
and bij .

Let us see what these constraints are. Since a momentum in the contact vertex is of
dimension 1 and polarization vectors or tensors are dimensionless, we must have

a12 + a13 + a14 + a23 + a24 + a34 + b12 + b13 + b14 + b23 + b24 + b34 = m. (A.13)

Also, since |i] and |i〉 scale as |i] → ti|i], |i〉 → t−1
i |i〉 and polarization tensors scales

εhi → t2hii εhi under little group scaling, we have

a12 + a13 + a14 − b12 − b13 − b14 = 2h1 ,

a12 + a23 + a24 − b12 − b23 − b24 = 2h2 ,

a13 + a23 + a34 − b13 − b23 − b34 = 2h3 ,

a14 + a24 + a34 − b14 − b24 − b34 = 2h4 .

(A.14)

Furthermore, since we are considering a theory that is local and the momenta from the
partial derivatives in the local EFT operators contribute non-negatively to the amplitude’s
dimension, it must be that the minima of m for the following helicity amplitudes are as
follows 

m ≥ 0, for M0000
m ,

m ≥ 2, for M+000
m ,

m ≥ 4, for M++00
m , M+−00

m , M++−−
m ,

m ≥ 6, for M+++0
m , M++−0

m ,

m ≥ 8, for M++++
m , M+++−

m .

(A.15)

The reason why the lower m terms vanish is similar to the well-known fact that in non-
Abelian gauge theory non-MHV 2-to-2 amplitudes must vanish. The easiest way to see
this for cases other thanM++−−

m , as in the case of non-Abelian gauge theory, is to appro-
priately choose reference momenta to make all the contractions between the polarizations
vanish. So the nonzero M1234

m (except for M++−−
m ) are those where every Lorentz index

in the polarizations is accompanied by one contracting momentum from the vertex partial
derivative. As forM++−−

m , we can set the reference momentum in the polarization tensor
of the 1st and 2nd particle to be p4 and that of the 3rd and 4th particle to be p1, which will
only leave the contraction of polarizations between particle 2 and 3 nonzero, and then the
polarizations of particle 1 and 4 must contract with momenta from the vertex to give rise
to nonzero terms, leading to m ≥ 4 forM++−−

m . We emphasize that although it is easy to
see it by choosing some special reference momenta, the constraint (A.15) obviously holds
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independent of the choice of reference momenta. So we still have the freedom to choose
the reference momenta.

Indeed, if we choose the reference momentum in the polarization tensor of the 1st and
2nd particle to be p4 and that of the 3rd and 4th particle to be p1 for all the helicity
amplitudes, then we further have the following constraints

a13 ≥ min[0, h3] , a14 ≥ min[0, h1] + min[0, h4] , a24 ≥ min[0, h2] , (A.16)
b13 ≥ min[0,−h3] , b14 ≥ min[0,−h1] + min[0,−h4] , b24 ≥ min[0,−h2] , (A.17)

and all the other aij and bij are non-negative. (A caveat is that one should find appropriate
reference momenta in the above construction; otherwise there can be spurious terms in the
final amplitude. This can be done by going through a few choices of the reference momenta
and pick up the most constraining one.) Furthermore, the contact vertices do not give rise
to poles of s, t, u in the amplitude, so we also have

a12 + a34 + b12 + b34 ≥ 0 ,
a13 + a24 + b13 + b24 ≥ 0 ,
a14 + a23 + b14 + b23 ≥ 0 .

(A.18)

With all these constraints established, we can solve these constraints for aij and bij . Typ-
ically, these constraint equations lead to multiple (in fact, many) solutions. For example,
for the case of m = 4, h1 = h2 = +2, h3 = h4 = 0, there are 9 solutions for aij and bij ,
while we have 4570 solutions for m = 10, h1 = h2 = h3 = h4 = +2. However, they all
collapse to a small number of cases after converting to expressions in terms of s, t, u.

To convert to an expression in terms of s, t, u, we can use an explicit choice for the
momenta (all momenta chosen as ingoing and thus related to physical ones by pphysical

3 =
−p3 and pphysical

4 = −p4) and the spinors

p1 = ω(1, 0, 0, 1), p2 = ω(1, 0, 0,−1), p3 = −ω(1, sin θ, 0, cos θ), p4 = −ω(1,− sin θ, 0,− cos θ),

|1〉 =
√

2ω
(

0
1

)
, |2〉 =

√
2ω
(

1
0

)
, |3〉 = i

√
2ω
(
− sin θ

2
cos θ2

)
, |4〉 = i

√
2ω
(

cos θ2
sin θ

2

)
,

(A.19)

where particle 1, 2, 3 and 4 are moving in the direction of (0, 0), (π, π), (θ, φ) and (π −
θ, φ+ π) with φ = 0 respectively. Here θ and φ are the polar and azimuthal angles. There
is an extra i in the |3〉 and |4〉 expression because we need to analytically continue

√
ω to

i
√
ω to account for unphysical p3 and p4.2 Also, we have s = −(p1 + p2)2 = −(p3 + p4)2 =
2For a massless particle, a generic momentum is given by pµ = ω(1, sin θ cosφ, sin θ sinφ, cos θ), and a

generic helicity-spinor can be written as

|p]ȧ = λ̃ȧ =
√

2ω
(

cos θ2
sin θ

2e
iφ

)
, |p〉a = λa =

√
2ω
(
− sin θ

2e
−iφ

+ cos θ2

)
. (A.20)

Note that ε12 = ε21 = +1, ε21 = ε12 = −1, εij = εi̇j̇ , εij = εi̇j̇ , We have pphysical = εpp, where εp = −1
if the direction of the physical mementum goes against the assumed direction (otherwise εp = 1), and also
〈pk〉∗ = εpεk[kp] because there is an extra i in |j] and |j〉.

– 58 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
5

(2ω)2, t = −s(1 − cos θ)/2 = −s sin2(θ/2), u = −s(1 + cos θ)/2 = −s cos2(θ/2). We can
cast ω and θ in terms of s, t, u

ω = 1
2
√
s,
√

2ω = s
1
4 , sin θ2 =

√
−t
s
, cos θ2 =

√
−u
s
, (A.21)

from which we can find that

〈12〉 =
√
s, 〈13〉 = −i

√
−t, 〈14〉 = i

√
−u, 〈23〉 = −i

√
−u, 〈24〉 = −i

√
−t, 〈34〉 = −

√
s,

(A.22)
[12] = −

√
s, [13] = i

√
−t, [14] = −i

√
−u, [23] = i

√
−u, [24] = i

√
−t, [34] =

√
s.

(A.23)

Substituting these replacements into the large numbers of expressions in terms of [ij] and
〈ij〉 and imposing appropriate crossing symmetries, we can see that they collapse to a small
number of functions of s, t, u.

In the end, we find that the results are consistent with simply taking the fi(s, t, u)
functions in eqs. (2.3)–(2.11) to be generic polynomials of s, t, u that share the symmetries of
the corresponding amplitudes, except forM++++. In theM++++ case, letting fT3(s, t, u)
be generic polynomials of x, y would give rise to a couple of spurious terms, which should
vanish according to the analysis above. Therefore, including the contributions from the
3-leg vertices (eq. (A.3) to eq. (A.11)), we can parametrize the 4-leg amplitudes as follows:

M0000 = λ2
3

(1
s

+ 1
t

+ 1
u

)
− λ4 + 1

M2
P

(
su

t
+ st

u
+ ut

s

)
+

∑
n≥0,m≥0

gSm,nx
nym , (A.24)

M++−− = 1
M2
P

s3

tu
− β2

1
M4
P

s3 + γ2
0

M6
P

s3tu+
∑

n≥4,m≥0
gT1
n,ms

n(tu)m , (A.25)

M+++− = γ0
M4
P

y +
∑

n≥0,m≥2
gT2
m,nx

nym (A.26)

M++++ =
(

10γ0
M4
P

− 3β2
1

M4
P

)
y +

∑
n≥0,m≥0,
m+n≥2

gT3
m,nx

nym , (A.27)

M+++0 =
∑

n≥0,m≥1
gM1
m,nx

nym , (A.28)

M++0− = β1
M3
P

s2 − γ0β1
M5
P

s2tu+
∑

n≥3,m≥1
gM2
n,ms

n(tu)m , (A.29)

M++00 = λ3β1
M2
P

s+ γ0
M4
P

stu+
∑

n≥2,m≥0
gM3
n,ms

n(tu)m , (A.30)

M+−00 = 1
M2
P

tu

s
+ β2

1
M4
P

stu+
∑

n≥0,m≥2
gM4
n,ms

n(tu)m , (A.31)

M+000 = β1
2M3

P

x+
∑

n≥0,m≥1
gM5
m,nx

nym , (A.32)

where x = s2 + t2 + u2, y = stu. All other amplitudes can be obtained by crossing.
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B Explicit sum rules with st symmetry imposed

Here we explicitly list all the st-symmetry imposed sum rules that we use in this paper,
for a quick reference. The definition of F 1234

k,` (µ, t) is given by

F 1234
k,` (µ, t) = ∂ks

k!

(
s2

µ2(µ− s)d
`,µ,t
h12,h43

c12`,µc
∗3̄4̄
`,µ + (−s− t)2

µ2(µ+ s+ t)d
`,µ,t
h14,h23

c14`,µc
∗,3̄2̄
`,µ

)∣∣∣∣
s→0

(B.1)

− ∂kt
k!

(
s3

µ3(µ− s)d
`,µ,t
h13,h42

c13`,µc
∗2̄4̄
`,µ + (−s)3

(µ+ t)3(µ+ s+ t)d
`,µ,t
h14,h32

c14`,µc
∗2̄3̄
`,µ

)∣∣∣∣
t→0,s→t

.

The st-symmetry imposed sum rules derived from the stu-symmetric amplitudes are:

− 1
M2
P

+ 2αt− γ4t
2 =

〈
F 0000

1,` (µ, t)
〉

(B.2)

− 1
M2
P

1
t

+ 2α− γ4t+12gS0,2t2

=
〈
F 0000

2,` (µ, t)
〉

(B.3)

8gS0,2t− 4gS1,1t2 =
〈
F 0000

3,` (µ, t)
〉

(B.4)

4gS0,2 − 2gS1,1t+
(
gS2,0 + 48gS3,0

)
t2

=
〈
F 0000

4,` (µ, t)
〉

(B.5)

24gS0,3t− 12gS1,2t2 =
〈
F 0000

5,` (µ, t)
〉

(B.6)

8gS0,3 − 4gS1,2t+
(

2gS2,1 + 160gS0,4
)
t2

=
〈
F 0000

6,` (µ, t)
〉

(B.7)
β1

M3
P

t− γ3

MP
t2 =

〈
F+000

1,` (µ, t)
〉

(B.8)

β1

M3
P

− γ3

MP
t =

〈
F+000

2,` (µ, t)
〉

(B.9)

−4gM5
1,1 t

2 =
〈
F+000

3,` (µ, t)
〉
(B.10)

−2gM5
1,1 t+ gM5

2,0 t
2 =

〈
F+000

4,` (µ, t)
〉
(B.11)

− γ1

M3
P

t2 =
〈
F+++0

1,` (µ, t)
〉
(B.12)

− γ1

M3
P

t =
〈
F+++0

2,` (µ, t)
〉
(B.13)

−4gM1
1,1 t

2 =
〈
F+++0

3,` (µ, t)
〉
(B.14)

−2gM1
1,1 t+ gM1

2,0 t
2 =

〈
F+++0

4,` (µ, t)
〉
(B.15)

− γ0

M4
P

t2 =
〈
F+++−

1,` (µ, t)
〉
(B.16)

− γ0

M4
P

t =
〈
F+++−

2,` (µ, t)
〉
(B.17)

0 =
〈
F+++−

3,` (µ, t)
〉
(B.18)

gT2
2,0t

2 =
〈
F+++−

4,` (µ, t)
〉
(B.19)(

− 10γ0

M4
P

+ 3β2
1

M4
P

)
t2 =

〈
F++++

1,` (µ, t)
〉
(B.20)(

− 10γ0

M4
P

+ 3β2
1

M4
P

)
t+12gT3

0,2t
2

=
〈
F++++

2,` (µ, t)
〉
(B.21)

8gT3
0,2t− 4gT3

1,1t
2 =

〈
F++++

3,` (µ, t)
〉
(B.22)

4gT3
0,2 − 2gT3

1,1t+
(
gT3

2,0 + 48gT3
0,3

)
t2

=
〈
F++++

4,` (µ, t)
〉
.

(B.23)
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The st-symmetry imposed sum rules derived from amplitudes with su, st or ut symme-
try are:

β2

M2
P

− γ0

M4
P

t− gM3
2,1 t

2 =
〈
F++00

2,` (µ, t)
〉

(B.24)

γ2

M2
P

+ β2
1

M4
P

− gM3
2,1 t−g

M3
3,1 t

2

=
〈
F++00

3,` (µ, t)
〉

(B.25)

gM3
4,0 − g

M3
3,1 t+ (gM3

2,2 − g
M3
4,1 )t2

=
〈
F++00

4,` (µ, t)
〉

(B.26)

− γ0

M4
P

t2 =
〈
F+0+0

1,` (µ, t)
〉

(B.27)

− γ0

M4
P

t− gM3
2,1 t

2 =
〈
F+0+0

2,` (µ, t)
〉

(B.28)

0 =
〈
F+0+0

3,` (µ, t)
〉

(B.29)

gM3
2,2 t

2 =
〈
F+0+0

4,` (µ, t)
〉

(B.30)

− β2
1

M4
P

t+ gM4
0,2 t

2 =
〈
F+−00

2,` (µ, t)
〉

(B.31)

gM4
1,2 t

2 =
〈
F+−00

3,` (µ, t)
〉

(B.32)

gM4
2,2 t

2 =
〈
F+−00

4,` (µ, t)
〉

(B.33)

gM4
3,2 t

2 =
〈
F+−00

5,` (µ, t)
〉

(B.34)

gM4
4,2 t

2 =
〈
F+−00

6,` (µ, t)
〉

(B.35)

− 1
M2
P

− β2
1

M4
P

t2 =
〈
F+0−0

1,` (µ, t)
〉

(B.36)

− 1
M2
P

1
t
− β2

1
M4
P

t+gM4
0,2 t

2

=
〈
F+0−0

2,` (µ, t)
〉

(B.37)

2gM4
0,2 t+ 2gM4

1,2 t
2 =

〈
F+0−0

3,` (µ, t)
〉

(B.38)

gM4
0,2 + gM4

1,2 t+
(
gM4

2,2 − 3gM4
0,3

)
t2

=
〈
F+0−0

4,` (µ, t)
〉

(B.39)

−3gM4
0,3 t− 3gM4

1,3 t
2 =

〈
F+0−0

5,` (µ, t)
〉

(B.40)

−gM4
0,3 − g

M4
1,3 t+

(
− gM4

2,3 + 6gM4
0,4

)
t2

=
〈
F+0−0

6,` (µ, t)
〉

(B.41)
β1

M3
P

+ β1γ0

M5
P

t2 =
〈
F 0−++

2,` (µ, t)
〉

(B.42)

γ0β1

M5
P

t− gM2
3,1 t

2 =
〈
F 0−++

3,` (µ, t)
〉

(B.43)

−gM2
3,1 t− g

M2
4,1 t

2 =
〈
F 0−++

4,` (µ, t)
〉

(B.44)

0 =
〈
F 0+−+

1,` (µ, t)
〉

(B.45)
γ0β1

M5
P

t2 =
〈
F 0+−+

2,` (µ, t)
〉

(B.46)

0 =
〈
F 0+−+

3,` (µ, t)
〉

(B.47)

0 =
〈
F 0+−+

4,` (µ, t)
〉

(B.48)

0 =
〈
F+−+−

1,` (µ, t)
〉
(B.49)

0 =
〈
F+−+−

2,` (µ, t)
〉
(B.50)

0 =
〈
F+−+−

3,` (µ, t)
〉
(B.51)

0 =
〈
F+−+−

4,` (µ, t)
〉
(B.52)

0 =
〈
F+−+−

5,` (µ, t)
〉
(B.53)

0 =
〈
F+−+−

6,` (µ, t)
〉
(B.54)

− 1
M2
P

1
t

=
〈
F++−−

2,` (µ, t)
〉
(B.55)

− β2
1

M4
P

− γ2
0

M6
P

t2 =
〈
F++−−

3,` (µ, t)
〉
(B.56)

gT1
4,0 −

γ2
0

M6
P

t− gT1
4,1t

2 =
〈
F++−−

4,` (µ, t)
〉
(B.57)

gT1
5,0 − g

T1
4,1t− g

T1
5,1t

2 =
〈
F++−−

5,` (µ, t)
〉
(B.58)

gT1
6,0 − g

T1
5,1t+

(
gT1

4,2−g
T1
6,1

)
t2

=
〈
F++−−

6,` (µ, t)
〉
.

(B.59)

Note that one can take the forward limit of the sum rules F 1234
k,` (µ, t) with k ≥ 3, which are

valuable to extract the useful constraints in the finite µ and large ` region.
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C Explicit example of optimization scheme

The purpose of this appendix is to provide the nitty-gritty of using the dispersive sum rules
to obtain causality bounds on the Wilson coefficients. We shall demonstrate these by the
explicit example of deriving the bound on β2

1 and γ2
0 (projected to 1/M2

P ), using only the
dispersive sum rules from four graviton scattering for the sake of simplicity. This example
provides a representative illustration of the essential computational steps and subtleties
involved, while in the actual figures in section 6.2 all available dispersive sum rules are
used.

Even if we restrict to four graviton scattering, there are already quite a few dispersive
sum rules available to constrain β1 and γ0, which are given by

− β2
1

M4
P

− γ2
0

M6
P

p4 =
〈
F++−−

3,`
(
µ,−p2)〉 , 1

M2
P

1
p2 =

〈
F++−−

2,`
(
µ,−p2)〉 ,

gT1
4,0 + γ2

0
M6
P

p2 − gT1
4,1p

4 =
〈
F++−−

4,`
(
µ,−p2)〉 ,

0 =
〈
F+−+−

1,`
(
µ,−p2)〉 , 0 =

〈
F+−+−

2,`
(
µ,−p2)〉 ,

0 =
〈
F+−+−

3,`
(
µ,−p2)〉 , 0 =

〈
F+−+−

4,`
(
µ,−p2)〉 ,

− γ0
M4
P

p4 =
〈
F+++−

1,`
(
µ,−p2)〉 , γ0

M4
P

p2 =
〈
F+++−

2,`
(
µ,−p2)〉 ,

0 =
〈
F+++−

3,`
(
µ,−p2)〉 , gT2

2,0p
4 =

〈
F+++−

4,`
(
µ,−p2)〉 ,

−
(

10γ0
M4
P

− 3β2
1

M4
P

)
p4 =

〈
F++++

1,`
(
µ,−p2)〉 ,(

10γ0
M4
P

− 3β2
1

M4
P

)
p2 + 12gT3

0,2p
4 =

〈
F++++

2,`
(
µ,−p2)〉 ,

−8gT3
0,2p

2 − 4gT3
1,1p

4 =
〈
F++++

3,`
(
µ,−p2)〉 ,

4gT3
0,2 + 2gT3

1,1p
2 + (gT3

2,0 + 48gT3
0,3)p4 =

〈
F++++

4,`
(
µ,−p2)〉 . (C.1)

where the EFT cutoff has been set to Λ = 1. As mentioned in section 5.2, for technical
reasons, we also add some forward-limit sum rules (3.20) to effectively make use of the
constraints in the finite µ and large ` region:

− 2γ2
0

M6
P

=
〈
∂2
t F

++−−
3,` (µ, 0)

〉
, − γ2

0
M6
P

=
〈
∂tF

++−−
4,` (µ, 0)

〉
, − β2

1
M4
P

=
〈
F++−−

3,` (µ, 0)
〉
,

8gT3
0,2 =

〈
∂tF

++++
3,` (µ, 0)

〉
, 0 =

〈
∂3
t F

++−−
3,` (µ, 0)

〉
, (C.2)

where for illustration purposes only one forward-limit null constraint is included. It is
usually beneficial to include more forward-limit sum rules, as we do for the plots in section 6.
The reason for using forward-limit sum rules, as mentioned, is that the Wigner d-functions,
when integrated over p against the weight functions, tend to vanish in this region, and the
added forward-limit sum rules provide terms that are polynomials of ` in the large ` limit
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and that are dominant in this region. Ultimately, the reason why adding forward-limit
sum rules is helpful is that we only parametrize each of the weight functions with a few
parameters, while the actual functional spaces are infinite dimensional.

Similar considerations also apply when choosing the forward-limit sum rules. The two
dispersion relations with γ0 in eq. (C.2) are formally independent, but they are actually
linked by the st crossing. Nevertheless, we use both of them, as the enforcing of the st
crossing is not complete due to the finite dimensional truncation of the weight functions.
On the other hand, we do not use the forward-limit sum rule gT3

2,0 = 〈F++++
4,` (µ, 0)/4〉

because it is formally the same as the sum rule with ∂tF
++++
3,` (µ, 0), already guaranteed

by the su symmetry of the dispersion relations.
Our goal is to extract as much information as possible from these sum rules. To that

end, we integrate both sides of the sum rules (C.1) over various weight functions φ1234k (p)
and sum both sides of the sum rules (C.2) over weight parameters z1234k,n , which leads to
{∫ 1

0
dpφ++−−

2 (p) 1
p2

} 1
M2
P

+
{∫ 1

0
dp
(
−φ+++−

1 (p)p4+φ+++−
2 (p)p2−10φ++++

1 (p)p4+10φ++++
2 (p)p2

)}
γ0
M4
P

+
{∫ 1

0
dp
(
−φ++−−

3 (p)p4+φ++−−
4 (p)p2

)
−2z++−−

3,2 −z++−−
4,1

}
γ2

0
M6
P

+
{∫ 1

0
dp
(
−φ++−−

3 (p)+3φ++++
1 (p)p4−3φ++++

2 (p)p2
)
−z++−−

3,0

}
β2

1
M4
P

+
{∫ 1

0
dpφ++−−

4 (p)
}
gT1

4,0+
{∫ 1

0
dpφ++−−

4 (p)p4
}
gT1

4,1+
{∫ 1

0
dpφ+++−

4 (p)p4
}
gT2

2,0

+
{∫ 1

0
dp
(

12φ++++
2 (p)p4−8φ++++

3 (p)p2+4φ++++
4 (p)

)
+8z++++

3,1

}
gT3

0,2

+
{∫ 1

0
dp
(
−4φ++++

3 (p)p4+2φ++++
4 (p)p2

)}
gT3

1,1+
{∫ 1

0
dp
(
φ++++

4 (p)p4
)}

(gT3
2,0+48gT3

0,3)

=
〈∫ 1

0
dp
( ∑

1234,k

φ1234k (p)F 1234
k,`

(
µ,−p2

))
+

∑
1234,k,n

z1234k,n ∂
n
t F

1234
k,` (µ)

〉
(C.3)

:=
〈

(CPX ,`,µ)T BPX ,`(µ)CPX ,`,µ
〉
, (C.4)

where the last equality implicitly defines the BPX ,`(µ) matrices mentioned in section 5.1.
The weight functions and parameters are so-called decision variables in the optimization
problem. For some appropriate chosen decision variables, these matrices can be made
semi-positive:

BPX ,`(µ) � 0, for PX = ±1, all possible ` and all µ ≥ Λ2 , (C.5)

which in turn results in the right hand side of eq. (C.3) being semi-positive. This gives
rise to a bound on the Wilson coefficients appearing on the left hand side of eq. (C.3).
However, our goal here is more specific: we want to derive a bound on β2

1 and γ2
0 , projected

onto 1/M2
P . So we do not want other Wilson coefficients to be involved on the left hand
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side of eq. (C.3). We can achieve this by imposing the following constraints on the weight
functions:∫ 1

0
dp
(
φ++−−

4 (p)
)

= 0 ,
∫ 1

0
dp
(
φ++−−

4 (p)p4
)

= 0 ,
∫ 1

0
dp
(
φ+++−

4 (p)p4
)

= 0 ,∫ 1

0
dp
(

12φ++++
2 (p)p4 − 8φ++++

3 (p)p2 + 4φ++++
4 (p)

)
+ 8z++++

3,1 = 0 ,∫ 1

0
dp
(
− 4φ++++

3 (p)p4 + 2φ++++
4 (p)p2

)
= 0 ,

∫ 1

0
dp
(
φ++++

4 (p)p4
)

= 0 .

(C.6)
That is, we are deriving bounds on β1 and γ0 while being agnostic about all other Wilson
coefficients, except for 1/M2

P . (This is in contrast to the bounds with some other Wilson
coefficients fixed, which can often be stronger.) Then, the causality bounds that we can
derive are given by∫ 1

0
dp
(
φ++−−

2
1
p2

) 1
M2
P

+
∫ 1

0
dp
(
−φ+++−

1 p4+φ+++−
2 p2−10φ++++

1 p4+10φ++++
2 p2

)
γ0
M4
P

+
{∫ 1

0
dp
(
−φ++−−

3 p4+φ++−−
4 p2

)
−2z++−−

3,2 −z++−−
4,1

}
γ2

0
M6
P

+
{∫ 1

0
dp
(
−φ++−−

3 +3φ++++
1 p4−3φ++++

2 p2
)
−z++−−

3,0

}
β2

1
M4
P

≥ 0 , (C.7)

for all sets of weight functions φ1234k (p) and parameters z1234k,n satisfying eq. (C.5) and
eq. (C.6). If a set of weight functions φ1234k (p) and parameters z1234k,n satisfy condition
eq. (C.5) and eq. (C.6), so do the scaled set of λφ1234k (p) and λz1234k,n with λ > 0, leading
to an arbitrary normalization of eq. (C.7). Considering that we project all of our bounds
onto 1/M2

P , one is tempted to fix the normalization of eq. (C.7) by setting∫ 1

0
dpφ++−−

2 (p) 1
p2 = 1 . (C.8)

However, this is only a formal/schematic assignment, which can not be implemented nu-
merically. As discussed in section 5.2, the integration on the left hand side of eq. (C.8)
is actually divergent, so we need to introduce an IR cutoff mIR to regulate it, that is, we
actually choose to integrate from mIR to 1 against all the weight functions in the numerical
implementation. As we parametrize φ++−−

2 (p) by

φ++−−
2 (p) = (1− p)2∑

i=1
x++−−

2,i pi (C.9)

and the x++−−
2,1 term, i.e., the t-channel contribution, must be present to yield positivity

bounds, the leading term on the left hand side, which is logarithmic divergent as mIR → 0,
comes from the x++−−

2,1 term. For phenomenological interesting cases, the log(Λ/mIR) term
is usually O(102), which dominates the left hand side of eq. (C.8).

Thus, in the numerical implementation, we can choose the normalization to be

x++−−
2,1 = 1 . (C.10)
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Also, because of the large logarithmic term, it is a good approximation to neglect the linear
term γ0/M

4
P in the sum rules. (These two approximations are justified numerically in more

details in section 6.2.) After these considerations, the inequality (C.7) becomes
log Λ/mIR

M2
P

+
{∫ 1

0
dp
(
− φ++−−

3 p4 + φ++−−
4 p2

)
− 2z++−−

3,2 − z++−−
4,1

}
γ2

0
M6
P

+
{∫ 1

0
dp
(
− φ++−−

3 + 3φ++++
1 p4 − 3φ++++

2 p2
)
− z++−−

3,0

}
β2

1
M4
P

≥ 0 (C.11)

where the decision variables φ1234k (p) and z1234k,n must satisfy linear conditions eq. (C.5),
eq. (C.6) and eq. (C.10).

To carve out the boundary of the causality bound in a 2D parameter space, we choose
a fixed point within the convex bound region, use the optimization scheme to find the
end points of a ray at a fixed angle from the fixed point, and scan over all angles to get
the boundary. Although only γ2

0 and β2
1 appear in the inequality (C.11), to use the same

parametrization as section 6.2, we parametrize γ0 and β1 as
γ0
M2
P

= r cos θ , β1
MP

= r sin θ . (C.12)

Then the inequality (C.11) becomes

log Λ
mIR

≥
{
· · ·
}
γ2

0
M4
P

+
{
· · ·
}
β2

1
M2
P

=
({
· · ·
}

cos2 θ +
{
· · ·
}

sin2 θ

)
r2 . (C.13)

Therefore, for every fixed θ, we solve the following SDP problem

maximize:
{∫ 1

0
dp
(
φ++−−

3 (p)p4 − φ++−−
4 (p)p2

)
+ 2z++−−

3,2 + z++−−
4,1

}
cos2 θ (C.14)

+
{∫ 1

0
dp
(
φ++−−

3 (p)− 3φ++++
1 (p)p4 + 3φ++++

2 (p)p2
)

+ z++−−
3,0

}
sin2 θ,

(C.15)
subject to: eqs. (C.5), (C.6), (C.10) for all functions φ1234k (p) and parameters z1234k,n ,

(C.16)

to get the lowest upper bound on r2 at the given θ, which can be implemented by the SDPB
package. Scanning θ from 0 to π/2 for sufficiently many angles, the optimal results on r2

from different angles will depict the boundary of the bounds on β2
1 and γ2

0 .
Before ending, we would like to comment on whether more constraints can be added

to get more information, using the current example. This seems to be possible at first
glance but actually unachievable. For example, we know from amplitudes M+−+− and
M++−− that the coefficients a+−+−

n,2 = 0, a++−−
2,n = 0 with n ≥ 3. Thus, besides the st

null constraints a++−−
2,n = a+−+−

n,2 with n ≥ 3, it seems that we can use naively stronger
constraints a+−+−

n,2 = a++−−
2,n = 0. However, the information a+−+−

n,2 = 0 is actually already
contained in the dispersive sum rules and thus does not give rise to extra null constraints.
This can be seen from eq. (3.17):

∑
k=3

a+−+−
k,2 sk =

〈
∂2
t

2!

(s3d`,µ,t4,−4c
+−
`,µ c

∗−+
`,µ

µ3(µ− s) +
(−s)3d`,µ,t4,−4c

+−
`,µ c

∗−+
`,µ

(µ+ t)3(µ+ s+ t)

)∣∣∣∣
t→0

〉
= 〈0〉 , (C.17)
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That is, the dispersion relations automatically enforce this extra information. Another
example is that, as a result of the structure of 3-leg vertices in the theory, β2

1 appears in
both the sum rules fromM++−− andM++++, which leads to a constraint when equating
the expressions for β2

1 . This constraint does not come from crossing symmetry. However,
again, we do not need to explicitly impose this constraint, as we have used the dispersion
relations from both M++−− and M++++ in our optimization programs. Using several
dispersion relations involving a Wilson coefficient will give the same result as using one of
these dispersion relations and the constraints from these dispersion relations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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