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1 Introduction

Recently, we have proposed a new method to reduce the quantum field theory (QFT) in
Minkowski spacetime to its future/past null infinity (I+/I−) [1, 2]. In this method, we
start with a massless bulk QFT whose fundamental fields are collected as Fbulk and expand
the bulk fields near I+ schematically as

Fbulk = F (u,Ω)
r

+
∞∑

k=2

F (k)(u,Ω)
rk

(1.1)

where (u, r,Ω) are the retarded coordinates of Minkowski spacetime. The field F (u,Ω) and
higher order fields F (2)(u,Ω), F (3)(u,Ω), · · · become boundary fields of I+, and the bulk
equation of motion (EOM) imposes constraints among the fields

C(F, F (k)) = 0. (1.2)

The radiative modes of the bulk theory are encoded in the leading fall-off term F (u,Ω).
After reducing the symplectic form to I+, the field F (u,Ω) and its time derivative Ḟ (u,Ω)
are conjugate variables and obey non-trivial commutation relations in the quantized theory.
It is shown that the energy and momentum fluxes are completely determined by an energy
flux density operator T (u,Ω) which is quadratic in Ḟ

T (u,Ω) ∼ Ḟ 2. (1.3)

The smeared operator constructed from the energy flux density operator

Tf =
∫

dudΩf(u,Ω)T (u,Ω) (1.4)

could form a higher dimensional Virasoro algebra with a divergent central charge. The
central charge is proportional to the number of propagating degrees of freedom of the bulk
theory. When the test function f(u,Ω) is independent of the retarded time, the smeared
operator Tf could be regarded as the generator of supertranslation.

Similarly, the angular momentum and center-of-mass fluxes are determined by a flux
density operator MA(u,Ω) which is quadratic in F and Ḟ

MA(u,Ω) ∼ Ḟ∇AF − F∇AḞ . (1.5)

From the angular momentum flux density, one can define a smeared operator

MY =
∫

dudΩY A(u,Ω)MA(u,Ω). (1.6)
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When the test vector function Y A(u,Ω) is independent of the retarded time, the smeared
operator MY could be regarded as the generator of superrotation [3–8].

In the scalar theory [1], the smeared operators Tf and MY form a closed Lie algebra
when f(u,Ω) is time dependent and Y A(Ω) is not. The closed Lie algebra is a direct
generalization of the famous Bondi-Metzner-Sachs (BMS) group [9–11] at future null infinity
(I+) in asymptotically flat spacetime. When the central charge is zero, the closed Lie
group could be regarded as a representation of the Carrollian diffeomorphism [12, 13] in
the context of Carrollian manifold [14–19]. In the electromagnetic theory [2], one should
introduce a new smeared operator which generates the generalized electromagnetic duality
(EM duality) transformation to form an enlarged closed algebra. The new operator could
be interpreted as a helicity flux density operator.

Our method may provide new insight to flat space holography [20–32] and to con-
structing more physically interesting Carrollian field theories [33–49]. In this work, we
will explore the boundary theory for Einstein gravity. We obtain a tensor field theory by
projecting the linearized gravity to I+. The gravitational field has only two independent
propagating degrees of freedom which are encoded in the symmetric traceless shear tensor
CAB(u,Ω). We find the energy and angular momentum flux density operators and define
the supertranslation and superrotation generators, respectively. In order to make the
definition of the superrotation generators sensible, one should generalize the Lie derivative
variation to a covariant variation which is compatible with the metric at I+ similar to
what has been done in the electromagnetic theory. We also need to introduce a duality
transformation operator to close the Lie algebra. The algebra turns out to be isomorphic
to the one in the electromagnetic theory. The flux operators are shown to be equivalent to
the Hamiltonians defined using the symplectic form of the boundary theory. We will also
compare our construction of the flux operators with the BMS fluxes in the literature.

The layout of this paper is as follows. In section 2, we will introduce the general
framework and explain the terminology used in this paper. In section 3, we introduce the
energy and angular momentum flux density operator in the linearized gravity theory. We
also quantize the theory at I+ and find the supertranslation and superrotation generators. A
closed Lie algebra is found by including a duality transformation operator Og. We compare
the smeared operators with the BMS fluxes in the following section. We will summarize the
results and discuss some further open questions in section 5. Technical details are relegated
to six appendices.

2 Preliminaries

In this section, we will introduce the general framework to obtain the boundary theory in
Minkowski spacetime at future null infinity I+.

2.1 Boundary spacetime

In this work, the Minkowski spacetime R1,3 can be described in Cartesian coordinates
xµ = (t, xi)

ds2 = −dt2 + dxidxi = ηµνdxµdxν , (2.1)

– 2 –
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where µ = 0, 1, 2, 3 denotes the components of spacetime coordinates and i = 1, 2, 3 labels
the components of space coordinates. We also use the retarded coordinate system (u, r, θ, ϕ)
and write the Minkowski spacetime as

ds2 = −du2 − 2dudr + r2γABdθAdθB, A, B = 1, 2. (2.2)

The future null infinity I+ is a three dimensional Carrollian manifold

I+ = R× S2 (2.3)

with a degenerate metric
ds2

I+ ≡ γ = γABdθAdθB. (2.4)

The spherical coordinates θA = (θ, ϕ) are used to describe the unit sphere whose metric
reads explicitly as

γAB =
(
1 0
0 sin2 θ

)
. (2.5)

We will also use the notation Ω = (θ, ϕ) to denote the spherical coordinates in the context.
The covariant derivative ∇A is adapted to the metric γAB, while the covariant derivative
∇µ is adapted to the Minkowski metric in Cartesian frame. The integral measure on I+ is
abbreviated as ∫

dudΩ ≡
∫ ∞

−∞
du

∫
S2

dΩ, (2.6)

where the integral measure on S2 is∫
dΩ ≡

∫
S2

dΩ =
∫ π

0
sin θdθ

∫ 2π

0
dϕ. (2.7)

Besides the metric (2.4), there is also a distinguished null vector

χ = ∂u (2.8)

which is to generate the retarded time direction.
To obtain the metric of the Carrollian manifold (2.4) from bulk metric, one may choose

a cutoff
r = R (2.9)

such that the induced metric on the hypersurface

HR = {p ∈ R1,3| p = (u, r, θ, ϕ) with r = R} (2.10)

is
ds2 = −du2 + R2γABdθAdθB = R2

(
−du2

R2 + γABdθAdθB

)
. (2.11)

The constant r slices Hr are shown in figure 1. We use a Weyl scaling to remove the
conformal factor and take the limit

R → ∞ (2.12)
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const. r slices Hr

r increase, u finite

r increase, v finite

u v

Figure 1. A series of constant r hypersurfaces Hr. As r → ∞ while keeping u finite, the slices
approach to future null infinity I+. As r → ∞ while keeping v finite, the slices approach to past
null infinity I−.

while keeping the retarded time u finite such that (2.11) becomes the metric of the Carrollian
manifold I+. We define the limit

lim+ = lim
r→∞, u finite

(2.13)

to send the quantities on Hr to I+. Similarly, taking the limit below

lim− = lim
r→∞, v finite

(2.14)

sends the quantities on Hr to I− where v is the advanced time v = t + r.

2.2 Boundary theory

Consider a system which is described by a covariant Lagrangian L[F ] in Minkowski spacetime
R1,3, with the bulk field written as F (t, x). The Lagrangian 4-form is defined as

L[F ] = L[F ](d4x), (2.15)

where (d4x) is the volume form of R1,3. A variation of the bulk field F leads to

δL[F ] = δL
δF

δF − dΘ(F ; δF ). (2.16)

The first term on the right hand side is the equation of motion
δL
δF

= 0, (2.17)
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which gives constraints on the bulk field. To solve the equation of motion, one should
impose fall-off conditions for the field F near I+

F (t, x) = F (u,Ω)
r

+
∞∑

k=2

F (k)(u,Ω)
rk

. (2.18)

We have used the abbreviation

F (1)(u,Ω) = F (u,Ω) (2.19)

in the leading term of the fall-off conditions. The coefficients F (k)(u,Ω), k ≥ 1 are called
boundary fields corresponding to the bulk field F since they are defined on the boundary
manifold I+. By solving the bulk equation of motion asymptotically, one may obtain the
solution space which is determined by the relations between the boundary fields F (k)(u,Ω)

C(F (k)) = 0. (2.20)

The second term on the right hand side of (2.16) is exterior derivative of the presymplectic
potential 3-form Θ(F ; δF ). We have added a minus sign before this term by using the
convention in [50] that the exterior derivative is anticommutative with the field variation, i.e.,

dδ = −δd. (2.21)

The presymplectic form is defined as the variation of the presymplectic potential

ω(δF ; δF ) = δΘ(F ; δF ). (2.22)

The presymplectic form could be regarded as a 3-form in the spacetime and a 2-form in the
phase space. The symplectic form of the theory is obtained by integrating the presymplectic
form on a three dimensional hypersurface H

ΩH(δF ; δF ) =
∫
H

ω(δF ; δF ) =
∫
H
(d3x)µ ωµ(δF ; δF ). (2.23)

To find the symplectic form of the boundary theory at I+, we use the fall-off condition (2.18)
and choose a series of hypersurfaces Hr. By taking the limit r → ∞ while keeping the
retarded time u finite, we find the symplectic form for the boundary theory

Ω(δF ; δF ) = lim+ΩHr(δF ; δF ). (2.24)

The solution space together with the symplectic form (2.24) defines the classical theory
on the Carrollian manifold I+. Interestingly, for the massless scalar theory and the
electromagnetic theory, the symplectic form for the corresponding boundary theory can be
written as

Ω(δF ; δF ) =
∫

dudΩδF ∧ δḞ . (2.25)

To quantize the boundary theory, one may define the Poisson brackets using the symplectic
form and transform them into commutators. In order to get fundamental commutators,
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one can also use the mode expansion of the quantized field F in the bulk and project it
into the boundary in a suitable way. These two methods lead to the same commutators

[FI(u,Ω), FJ(u′,Ω′)] = i

2PIJα(u − u′)δ(Ω− Ω′), (2.26)

[FI(u,Ω), ḞJ(u′,Ω′)] = i

2PIJδ(u − u′)δ(Ω− Ω′), (2.27)

[ḞI(u,Ω), ḞJ(u′,Ω′)] = i

2PIJδ′(u − u′)δ(Ω− Ω′) (2.28)

at I+ which have been checked in the scalar and vector theory. The function α(u − u′) is
defined through

α(u − u′) = 1
2[θ(u

′ − u)− θ(u − u′)] (2.29)

with θ(x) being the Heaviside step function, and the Dirac function on the sphere can be
read out explicitly as

δ(Ω− Ω′) = 1
sin θ

δ(θ − θ′)δ(ϕ − ϕ′). (2.30)

We add a subscript in the field F to represent its possible tensor structure. The tensor PIJ

is symmetric under the exchange of I and J

PIJ = PJI . (2.31)

It turns out to be 1 for the scalar field and γAB for the vector field.

2.3 Leaky fluxes

For any massless field theory, there could be bulk particles radiated to I+. Correspondingly,
the Poincaré charges are sent to the boundary. These are called the leaky fluxes from bulk
to boundary. The Poincaré current can be written concisely as

Jµ = T µνξν (2.32)

where T µν is the stress tensor of the bulk theory and ξµ is a Killing vector of Minkowski
spacetime

∂µξν + ∂νξµ = 0. (2.33)

There are ten independent Killing vectors solving the Killing equation. For any global
spacetime translation, the Killing vector may be written as a superposition

ξc = ξρ
c ∂ρ, ξρ

c = cρ (2.34)

where cρ is any constant vector. Similarly, the Killing vector for any Lorentz rotation may
be written as

ξω = ξρ
ω∂ρ, ξρ

ω = ωµν(xµδρ
ν − xνδρ

µ), (2.35)

where ωµν is any constant antisymmetric tensor. The flux across a hypersurface H is
defined as

QH =
∫
H
(d3x)µJµ, (2.36)
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where Jµ is any conserved current satisfying ∂µJµ = 0. To obtain the Poincaré fluxes which
are leaked to I+, we set Jµ = T µνξν and choose a series of slices Hr to get

QHr
ξ =

∫
Hr

(d3x)µT µνξν . (2.37)

The normal covector of Hr is

dr in retarded coordinates = nidxi in Cartesian coordinates, (2.38)

where
ni = xi

r
= (sin θ cosϕ, sin θ sinϕ, cos θ) (2.39)

is the normal vector of S2. We may define two null vectors in Cartesian coordinates

nµ = (1, ni), n̄µ = (−1, ni). (2.40)

It is easy to show that

n2 ≡ ηµνnµnν = 0, n̄2 ≡ ηµν n̄µn̄ν = 0, n · n̄ ≡ ηµνnµn̄ν = 2. (2.41)

Therefore, the normal vector of Hr can be written as
1
2(n

µ + n̄µ)∂µ, (2.42)

and hence the flux (2.37) across Hr becomes

QHr
ξ = 1

2

∫
Hr

r2dudΩ(nµ + n̄µ)Tµνξν . (2.43)

The integration measure on S2 is defined through

dΩ = sin θdθdϕ. (2.44)

Taking the limit (2.13), we find the charge radiated to I+

Qξ = lim+
1
2

∫
Hr

r2dudΩ(nµ + n̄µ)Tµνξν . (2.45)

In the following, we will show that the fluxes Qξ defined above are exactly those in [1, 2].

1. For a massless scalar theory with action

S =
∫

d4x

[
−1
2∂µΦ∂µΦ− V (Φ)

]
, (2.46)

the stress tensor takes the form

Tµν = ∂µΦ∂νΦ+ ηµνL(Φ). (2.47)

The scalar field can be expanded asymptotically as

Φ(t, x) = Σ(u,Ω)
r

+
∞∑

k=2

Σ(k)(u,Ω)
rk

. (2.48)

– 7 –
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In [1], we have defined two smeared operators

Tf =
∫

dudΩf(u,Ω) : Σ̇2 :, (2.49)

MY = 1
2

∫
dudΩY A(u,Ω)(: Σ̇∇AΣ− Σ∇AΣ̇ :). (2.50)

• When ξ = ∂t, we find

Q∂t = lim+

∫
dudΩ r2niTi0 = − lim+

∫
dudΩ r2niT

0i. (2.51)

This matches with the smeared operator (2.49) with f = −1.
• When ξ = ∂i, we find

Q∂i
= lim+

∫
dudΩ r2njT ji, (2.52)

which is consistent with (2.49) when f = −ni.
• When ξ = xi∂j − xj∂i, we find

Qxi∂j−xj∂i
= lim+

∫
dudΩ r2nk(T kjxi − T kixj). (2.53)

This is exactly the smeared operator (2.50) with Y A = Y A
ij . The tensor Y A

ij ,
antisymmetric under exchanging i, j, denotes three Killing vectors on S2, seeing
appendix A for more details.

• When ξ = t∂i + xi∂t, we find

Qt∂i+xi∂t = lim+

∫
dudΩ r2nk(T kit − T k0xi). (2.54)

One recovers the smeared operator Tf +MY with Y A = Y A
i and f = 1

2u∇AY A
i ,

where the tensor Y A
i denotes three strictly conformal Killing vectors on S2,

defined in appendix A.

2. For the electromagnetic theory, the fall-off conditions are

au(t, x) = Au(u,Ω)
r

+O
( 1

r2

)
, (2.55)

aA(t, x) = AA(u,Ω) + A
(1)
A (u,Ω)

r
+O

( 1
r2

)
(2.56)

for the vector potential aµ in the radial gauge ar = 0. One can also reproduce the
smeared operators defined in [2] similarly. Note that there is an additional conserved
current jµ

duality which is related to the electromagnetic duality transformation for free
Maxwell theory. Therefore, one may choose the EM duality current in (2.36) and find

Qduality = lim+
1
2

∫
Hr

r2dudΩ(nµ + n̄µ)jµ
duality =

∫
dudΩȦCABϵBC (2.57)

which may be weighted by a parameter g(Ω). Thus, after taking normal order,
the operator

Og =
∫

dudΩg(Ω) : ȦCAB : ϵBC (2.58)

is exactly the generalized EM duality operator we have found.

– 8 –
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2.4 Hamiltonians from boundary theory

In this subsection, we will define the Hamiltonians using the symplectic form of boundary
theory defined on the Carrollian manifold I+. One may define an infinitesimal Carrollian
diffeomorphism generated by a vector ξ through [1]

Lξχ = µχ, (2.59)

where Lξ is the Lie-derivative along the direction of ξ. The general solution of (2.59) is

ξ = Y A(Ω)∂A + f(u,Ω)∂u. (2.60)

Note that the vector field Y A(Ω) is time independent in Carrollian diffeomorphism. When
Y A is time dependent, it violates the definition (2.59) and breaks the null structure of I+.
It has been shown that the Carrollian diffeomorphism is a physical transformation which
corresponds to the radiation flux from bulk to boundary [1]. Therefore, we may define a
Hamiltonian Hξ [51–53] whose infinitesimal variation is

δHξ = iξΩ(δF ; δF ) (2.61)

where iξ is the interior product in the phase space. More explicitly, we have

iξ = δξF
∂

∂δF
⇒ iξδF = δξF. (2.62)

Substituting the symplectic form (2.25) into (2.61), we find the variation of the Hamiltonian
Hξ corresponding to the vector field ξ

δHξ = 2
∫

dudΩδξFδḞ . (2.63)

We will explore this formula for scalar theory and electromagnetic theory in the following.

Scalar theory. For the previous scalar theory, we have F = Σ. The Carrollian diffeomor-
phism may be split into two parts

ξ = ξf + ξY , (2.64)

where
ξf = f(u,Ω)∂u, ξY = Y A(Ω)∂A (2.65)

and the scalar transforms as1

δfΣ = f(u,Ω)Σ̇, (2.66)

δY Σ = 1
2u∇AY A(Ω)Σ̇ + Y A(Ω)∇AΣ+ 1

2∇AY A(Ω)Σ. (2.67)

For ξ = ξf , we find

δHf = 2
∫

dudΩf(u,Ω)δΣ̇Σ̇ = δ

∫
dudΩf(u,Ω)Σ̇2. (2.68)

1As a matter of fact, the transformation law δf/Y Σ is induced from the bulk BMS transformation. We
believe there is an intrinsic way to derive this law at boundary which will be our future interest.
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Therefore, there is a natural integrable flux in the boundary theory

Hf =
∫

dudΩf(u,Ω)Σ̇2. (2.69)

This is exactly the smeared operator Tf . When ξ = ξY , we find

δHY = 2
∫

dudΩδΣ̇
(

Y A∇AΣ+ 1
2∇AY AΣ+ 1

2u∇AY AΣ̇
)

= δ

∫
dudΩΣ̇

(
Y A∇AΣ+ 1

2∇AY AΣ+ 1
2u∇AY AΣ̇

)
. (2.70)

We have used integration by parts at the second step. Therefore, we find the Hamiltonian
corresponding to ξY

HY =
∫

dudΩΣ̇
(

Y A∇AΣ+ 1
2∇AY AΣ+ 1

2u∇AY AΣ̇
)

= MY + Tf= 1
2 u∇·Y . (2.71)

Once subtracting the second part, it becomes the smeared operator MY .

Electromagnetic theory. In the electromagnetic theory, we have F = AA and the
fundamental field is AA whose variation under ξf reads

δf AA = f(u,Ω)ȦA. (2.72)

Now it is straightforward to find

δHf = δ

∫
dudΩf(u,Ω)ȦAȦA ⇒ Hf = Tf . (2.73)

When ξ = ξY , as has been shown in [2], we may replace the variation δY AA to covariant
variation δ/Y AA

δ/Y AA = 1
2u∇AY AȦA + Y C∇CAA + AC∇AY C − 1

2ΘAC(Y )AC (2.74)

where the symmetric traceless tensor ΘAB(Y ) is

ΘAB(Y ) = ∇AYB +∇BYA − γAB∇CY C . (2.75)

In this case, we may modify the equation (2.62) to

iξ = δ/ξF
∂

∂δF
⇒ iξδF = δ/ξF. (2.76)

Now it is straightforward to find

δHY = δ

(∫
dudΩȦAδ/Y AA

)
. (2.77)

Therefore, we get the corresponding flux

HY =
∫

dudΩȦAδ/Y AA = MY + Tf= 1
2 u∇·Y . (2.78)
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There is a new operator corresponding to electromagnetic duality transformation in
the free electromagnetic theory [2]. We could not find a vector field in spacetime for this
transformation. However, we can find the field variation due to the generalized EM duality
transformations with parameter g(Ω)

δgAA = −g(Ω)ϵABAB(u,Ω). (2.79)

The infinitesimal variation of the corresponding Hamiltonian reads

δHg = −
∫

dudΩg(Ω)(δȦAϵABAB − δAAϵABȦB)

= δ

∫
dudΩg(Ω)ȦAϵBAAB. (2.80)

Therefore, the Hamiltonian takes form

Hg =
∫

dudΩg(Ω)ȦAϵBAAB = Og. (2.81)

This duality flux generates the generalized EM duality transformations, i.e.,

δgAA = i[Og, AA]. (2.82)

Now we can define our terminology about various transformations which extends the
one in the vector theory. For geometric transformations, we have the following four kinds

Special supertranslation (SST) ⇔ ḟ = 0, (2.83)
General supertranslation (GST) ⇔ ḟ ̸= 0, (2.84)

Special superrotation (SSR) ⇔ Ẏ A = 0, (2.85)
General superrotation (GSR) ⇔ Ẏ A ̸= 0. (2.86)

Especially, a spacetime translation is a SST when f obeys the equation 2∇A∇Bf−γAB∇2f =
0 whose solution is f = aµnµ, with aµ constants. Similarly, a Lorentz transformation is a
SSR when Y satisfies the conformal Killing equation on S2

ΘAB(Y ) = 0, (2.87)

where we have used the symmetric traceless tensor ΘAB(Y ) defined in (2.75). The equa-
tion (2.87) is solved when Y is a CKV. It is clear that the transformations combining GSTs
and SSRs are just Carrollian diffeomorphisms.

Moreover, we have three kinds of duality transformations for electromagnetic theory
and the gravitational theory (defined in the next section)

Duality transformation (DT) ⇔ g = const., (2.88)
Special super-duality transformation (SSDT) ⇔ ġ = 0, (2.89)

General super-duality transformation (GSDT) ⇔ ġ ̸= 0. (2.90)

It is worth noting that there are non-local terms when considering the variations of the
vector field under GSDTs. This is similar to the case of GSRs. Therefore, we considered
the algebra generated by GSTs, SSRs and SSDTs in the vector theory [2]. The same is true
for the gravitational theory, as we will show in the next section.
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3 Linearized gravity

In Einstein gravity, there is no suitable definition of local stress tensor. Therefore, we will
first work in the linearized gravity and regard the gravitational theory as a spin 2 tensor
field theory in Minkowski background.

3.1 Fluxes

We may expand the metric around the Minkowski spacetime

gµν = ηµν + hµν . (3.1)

Then Einstein-Hilbert action becomes the Pauli-Fierz (PF) action

SPF = − 1
64πG

∫
d4x[∂µhαβ∂µhαβ − ∂µh∂µh + 2∂µhµν∂νh − 2∂µhµν∂ρhρ

ν ]. (3.2)

The PF action may be written as

SPF = − 1
64πG

∫
d4xLµ1µ2···µ6∂µ1hµ2µ3∂µ4hµ5µ6 , (3.3)

where the tensor Lµ1µ2···µ6 is

Lµ1µ2···µ6 = 1
2(η

µ1µ4ηµ2µ5ηµ3µ6 + ηµ1µ4ηµ2µ6ηµ3µ5)− ηµ1µ4ηµ2µ3ηµ5µ6

+ 1
2(η

µ1µ2ηµ3µ4ηµ5µ6 + ηµ1µ3ηµ2µ4ηµ5µ6 + ηµ4µ5ηµ6µ1ηµ2µ3 + ηµ4µ6ηµ5µ1ηµ2µ3)

− 1
2(η

µ1µ2ηµ3µ6ηµ4µ5 + ηµ1µ3ηµ2µ6ηµ4µ5 + ηµ1µ2ηµ3µ5ηµ4µ6 + ηµ1µ3ηµ2µ5ηµ4µ6).
(3.4)

Properties of this tensor can be found in appendix B.1. The action is invariant under the
linearized coordinate transformation

hµν → hµν + ∂µξν + ∂νξµ. (3.5)

There are various ways to obtain the stress tensor for the linearized theory. We will
accommodate the Landau-Lifshitz pseudotensor [54]

(−g)T µν
LL = 1

16πG

[
∂λg

µν∂κg
κλ − ∂λg

µλ∂κg
νκ + 1

2gµνgλκ∂σg
λτ ∂τg

κσ

− gµλgκτ ∂σg
ντ ∂λg

κσ − gνλgκτ ∂σg
µτ ∂λg

κσ + gλκgτσ∂τg
µλ∂σg

νκ

+ 1
8(2gµλgνσ − gµνgλσ)(2gκτ gζδ − gτζgκδ)∂λg

κδ∂σg
τζ
]

(3.6)

which is widely used in Post-Newtonian theory of gravitational theory [55]. In this framework,
the main variable is the so-called “gothic” inverse metric

gµν =
√
−ggµν . (3.7)
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From the metric expansion (3.1) in linearized theory, the “gothic” inverse metric is

gµν = ηµν − hµν + 1
2ηµνh (3.8)

up to the quadratic order of hµν . The indices are raised using Minkowski spacetime metric
ηµν and h is the trace of the tensor hµν

h = hµνηµν . (3.9)

Therefore, the stress tensor corresponds to the PF action is

T µν = 1
32πG

P µνµ1···µ6∂µ1hµ2µ3∂µ4hµ5µ6 , (3.10)

with the rank 8 tensor P µνµ1···µ6 defined as

P µνµ1···µ6 = 2ηµ2µηµ3νηµ1µ5ηµ4µ6 − 3ηµ1µ4ηµµ2ηνµ3ηµ5µ6 − 2ηµ1µ3ηµ2µηµ4µ6ηµ5ν

+ 2ηµ1µ4ηµ2µ6ηµµ3ηνµ5 + ηµµ1ηµ2µ4ηνµ3ηµ5µ6 + ηνµ1ηµ2µ4ηµµ3ηµ5µ6

+ 2ηµ1µηµ2µ3ηµ4µ5ηµ6ν + 2ηµ1νηµ2µ3ηµ4µ5ηµ6µ − 2ηµ1µηµ2µ5ηµ3µ4ηµ6ν

− 2ηµ1νηµ2µ5ηµ3µ4ηµ6µ − 2ηµ1µηµ2µ3ηµ4νηµ5µ6 + ηµ1µηµ2µ5ηµ3µ6ηµ4ν

− 2ηµνηµ1µ5ηµ2µ3ηµ4µ6 + 3
2ηµνηµ1µ4ηµ2µ3ηµ5µ6 − 1

2ηµνηµ1µ4ηµ2µ5ηµ3µ6

+ ηµνηµ1µ5ηµ2µ4ηµ3µ6 . (3.11)

In Cartesian coordinates, the gravitational field hµν may have the following fall-off
behaviour

hµν = Hµν

r
+ H

(2)
µν

r2 +O
( 1

r3

)
, µ, ν = 0, 1, 2, 3. (3.12)

Due to the diffeomorphism invariance of Einstein theory, we could choose Bondi gauge
in this work. The first few orders of the metric are [3]

huu = 2GM

r
+ X

r2 +O
( 1

r3

)
, (3.13)

hur = X̃

r2 +O
( 1

r3

)
, (3.14)

huA = 1
2∇

BCAB + 1
r

JA +O
( 1

r2

)
, (3.15)

hAB = rCAB + ZAB +O
(1

r

)
(3.16)

where M is the Bondi mass aspect and JA is related to the angular momentum aspect. In
those expansions, we have introduced the fields X, X̃, ZAB whose explicit forms are not
important in this work, though we can write out

X̃ = CABCAB

16 , ZAB = 1
4γABCCDCCD. (3.17)
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The symmetric and traceless tensor CAB

CAB = CBA, γABCAB = 0 (3.18)

is called shear tensor whose time derivative is referred to as news tensor

NAB = ĊAB = d

du
CAB. (3.19)

All the quantities M, X, CAB, JA are fields defined at I+. As we will show later, we do not
need the explicit form of X and JA in this work.

To transform the components of the metric in Bondi coordinates to Cartesian coordi-
nates, we use the transformation law of the metric

gµν = ∂x′α

∂xµ

∂x′β

∂xν
g′αβ , (3.20)

where α, β = u, r, θ, ϕ are indices for the retarded frame and µ, ν = 0, 1, 2, 3 denote
the Cartesian coordinates. We may relate the Cartesian coordinates to the retarded
coordinates by

xµ = 1
2(n

µ − n̄µ)(u + r) + 1
2(n

µ + n̄µ)r = u

2 (n
µ − n̄µ) + rnµ. (3.21)

The partial derivatives of retarded coordinates are

∂µu = −nµ, ∂µr = 1
2(nµ + n̄µ), ∂µθA = −1

r
Y A

µ (3.22)

where
Y A

µ = −∇Anµ, µ = 0, 1, 2, 3. (3.23)

As mentioned above, Y A
i is the strictly conformal Killing vector on the unit sphere, and the

vector Y A
0 vanishes. We may use the vector nµ and Y ν

A to construct the antisymmetric tensor

Y A
µν = Y A

µ nν − Y A
ν nµ. (3.24)

This antisymmetric tensor corresponds to the six conformal Killing vectors on the unit
sphere. Some properties of the vectors nµ, n̄µ, Y A

µ and the antisymmetric tensor Y A
µν are

collected in appendix A. The transformation law (3.20) can be written down explicitly in
Bondi gauge

gµν = nµnν(guu − gur)−
1
2(nµn̄ν + nν n̄µ)gur

+ 1
r
(nµY A

ν + nνY A
µ )guA + 1

r2 Y A
µ Y B

ν gAB. (3.25)

Now we can find the leading and subleading order of hµν

Hµν = 2GMnµnν + 1
2(nµY A

ν + nνY A
µ )∇BCAB + Y A

µ Y B
ν CAB, (3.26)

H(2)
µν =

(
X − X̃

)
nµnν − X̃ηµν + (ZAB + X̃γAB)Y A

µ Y B
ν + (nµY A

ν + nνY A
µ )JA. (3.27)
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Interestingly, Hµν is orthogonal to the null vector nµ and traceless

Hµνnν = 0, Hµνηµν = 0. (3.28)

Some useful properties for these two tensors are collected in appendix B.3. Using the chain
rule, we find

∂ρ ≡ ∂

∂xρ
= −nρ∂u + 1

2(nρ + n̄ρ)∂r −
1
r

Y A
ρ ∂A, ρ = 0, 1, 2, 3. (3.29)

Then the partial derivative of the field hνρ is

∂µhνρ = −nµḢνρ

r
−

nµḢ
(2)
νρ + 1

2(nµ + n̄µ)Hνρ + Y A
µ ∇AHνρ

r2 +O(r−3). (3.30)

The asymptotic expansion of the stress tensor is

T µν = 1
32πG

[
tµν
(2)
r2 +

tµν
(3)
r3 + · · ·

]
, (3.31)

where

tµν
(2) = P µνµ1···µ6nµ1nµ4Ḣµ2µ3Ḣµ5µ6 , (3.32)

tµν
(3) = P µνµ1···µ6Sµ1···µ6 . (3.33)

Here, we have defined a rank 6 tensor

Sµ1···µ6 =nµ1nµ4(Ḣµ2µ3Ḣ(2)
µ5µ6+Ḣµ5µ6Ḣ(2)

µ2µ3)+
1
2nµ1(nµ4+n̄µ4)Ḣµ2µ3Hµ5µ6 (3.34)

+1
2nµ4(nµ1+n̄µ1)Ḣµ5µ6Hµ2µ3+nµ1Y A

µ4Ḣµ2µ3∇AHµ5µ6+nµ4Y A
µ1Ḣµ5µ6∇AHµ2µ3 .

After lengthy calculation, we find

tµν
(2) = nµnνĊABĊAB, (3.35)

tµν
(3) =

(
nµnν + 1

2(nµn̄ν + nν n̄µ) + ηµν
)

ḢαβHαβ + (nµY ν
A + nνY µ

A )Ḣαβ∇AHαβ

− 2(nµY A
α Ḣαβ∇AH ν

β + nνY A
α Ḣαβ∇AH µ

β )

+ nµn̄α(HαβḢβν − ḢαβHβν) + nν n̄α(HαβḢβµ − ḢαβHβµ). (3.36)

Now it is time to calculate the fluxes for linearized gravity theory. The energy and
momentum charges radiated to I+ are

Qξc = lim+
1
2

∫
Hr

r2dudΩ(nµ + n̄µ)Tµνξν
c = − cµ

32πG

∫
dudΩ1

2(nν + n̄ν)tµν
(2)

= − cµ

32πG

∫
dudΩnµĊABĊAB. (3.37)
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The angular momentum and center-of-mass charges radiated to I+ are

Qξω = lim+
1
2

∫
Hr

r2dudΩ(nµ + n̄µ)Tµνξν
ω

= − ωµν

32πG

∫
dudΩu

2∇CY µνCĊABĊAB + ωµν

32πG

∫
dudΩY µνAHA(C, Ċ) (3.38)

where the co-vector HA(C, Ċ) with explicit expression

HA(C, Ċ) = 1
2(CBC∇AĊBC − ĊBC∇ACBC) +∇B(ĊBCCAC − CBCĊAC), (3.39)

is the hard Lorentz operator [56]. We have used the identities in appendix B.3 in the
derivation. In addition, we have discarded the total derivative terms

Y µνA d

du

(
CBC∇BCAC − 1

2CBC∇ACBC

)
(3.40)

through integration by parts.
We now construct two flux density operators from the fluxes

T (u,Ω) = 1
32πG

ĊABĊAB, (3.41)

MA(u,Ω) = − 1
32πG

HA(C, Ċ) (3.42)

similar to the scalar and vector theories. We use the flux density operators T (u,Ω) and
MA(u,Ω) to construct the following smeared operators

Tf =
∫

dudΩf(u,Ω)T (u,Ω), (3.43)

MY =
∫

dudΩY A(u,Ω)MA(u,Ω). (3.44)

3.2 Quantization

The smeared operators (3.43) and (3.44) are defined on the Carrollian manifold I+. The
symplectic form [53, 57] at a hypersurface H from the bulk theory is

ΩH(δg; δg) = 1
16πG

∫
H
(d3x)µQµνρσλκδgνρ ∧∇σδgλκ (3.45)

with

Qµνρσλκ = gµλgνκgρσ− 1
2gµσgνλgρκ− 1

2gµνgρσgλκ− 1
2gµλgνρgσκ+1

2gµσgνρgλκ. (3.46)

For the expansion (3.12) we find the finite symplectic form at I+

Ω(δ1C, δ2C;C) = lim+ΩHr(δg, δg; g) = 1
32πG

∫
dudΩ δCAB ∧ δĊAB. (3.47)

It follows that the standard commutators are [58–60]

[CAB(u,Ω), CCD(u′,Ω′)] = 8πGiPACDBα(u − u′)δ(Ω− Ω′), (3.48)
[CAB(u,Ω), ĊCD(u′,Ω′)] = 8πGiPACDBδ(u − u′)δ(Ω− Ω′), (3.49)
[ĊAB(u,Ω), ĊCD(u′,Ω′)] = 8πGiPACDBδ′(u − u′)δ(Ω− Ω′) (3.50)
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where the rank 4 tensor PABCD have been defined in the vector theory [2]

PABCD = γABγCD + γACγBD − γADγBC . (3.51)

The time dependent function α(u − u′) has also appeared in the scalar and vector theory,
and its definition was given previously in (2.29), i.e.

α(u − u′) = 1
2[θ(u

′ − u)− θ(u − u′)]. (3.52)

In the appendix D.2, we obtain the same commutators (3.48)–(3.50) using mode expansion
of the quantized field. In the free vacuum, the corresponding correlators are

⟨0|CAB(u,Ω)CCD(u′,Ω′)|0⟩ = 16πGPACDBβ(u − u′)δ(Ω− Ω′), (3.53)

⟨0|CAB(u,Ω)ĊCD(u′,Ω′)|0⟩ = 16πGPACDB
1

4π(u − u′ − iϵ)δ(Ω− Ω′), (3.54)

⟨0|ĊAB(u,Ω)CCD(u′,Ω′)|0⟩ = −16πGPACDB
1

4π(u − u′ − iϵ)δ(Ω− Ω′), (3.55)

⟨0|ĊAB(u,Ω)ĊCD(u′,Ω′)|0⟩ = −16πGPACDB
1

4π(u − u′ − iϵ)2 δ(Ω− Ω′). (3.56)

In order to get quantum operators, we need impose normal order for flux densities (3.41)
and (3.42)

T (u,Ω) = 1
32πG

: ĊABĊAB : , (3.57)

MA(u,Ω) = − 1
32πG

: HA(C, Ċ) : . (3.58)

Then we could construct smeared operators with these quantized densities as in (3.43)
and (3.44).

Now it is straightforward to find the following commutators

[Tf ,CA′B′(u′,Ω′)] =−if(u′,Ω′)ĊA′B′(u′,Ω′), (3.59)

[MY ,CA′B′(u′,Ω′)] =−i∆A′B′(Y ;C;u′,Ω′)+ i

2

∫
duα(u−u′)∆A′B′(Ẏ ;C;u,Ω′) (3.60)

where
∆EF (Y ;C;u,Ω) = 2Y A∇DCBCρABCDEF +∇DY ACBCPABCDEF . (3.61)

The rank 6 tensor PABCDEF takes the following form

PABCDEF = 1
4(γABPCEF D + γACPBEF D + γADPBEF C − γAEPF BCD − γAF PEBCD

− γBCPAEF D + γEF PABCD), (3.62)

and the tensor ρABCDEF is constructed from PABCDEF by

ρABCDEF = 1
2(PABCDEF + PAEF DBC) =

1
4γADPBEF C . (3.63)
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3.3 Supertranslation and superrotation generators

To interpret the operators Tf and MY , we should compute the transformation of the shear
tensor induced by supertranslation and superrotation. The result could be found in [3]

δf CAB = fĊAB + γAB∇C∇Cf − 2∇A∇Bf, (3.64)

δY CAB = 1
2u∇ · Y ĊAB + 1

2u∇C∇C∇ · Y γAB − u∇A∇B∇ · Y + Y C∇CCAB

+∇AY CCBC +∇BY CCAC − 1
2CAB∇ · Y. (3.65)

Unfortunately, the variation induced by diffeomorphism does not match with the commuta-
tors (3.59) and (3.60). The mismatching problem has been noticed in the electromagnetic
theory [2], where we have introduced the so-called covariant variation to solve this problem.
The covariant variation of any tensor field on I+ is denoted as

δ/f/Y (· · · ) (3.66)

The · · · in parenthesis is any well defined field on I+. The subscript f (or Y ) refers
to supertranslation (or superrotation). We use a slash to distinguish it from the original
variation induced by Lie derivative. They are called covariant due to the following conditions.

• Linearity. For any scalar fields f and g, any vector fields Y A and ZA and any constants
c1, c2, we have

δ/c1f+c2g(· · · ) = c1δ/f (· · · ) + c2δ/g(· · · ), (3.67)
δ/c1Y +c2Z(· · · ) = c1δ/Y (· · · ) + c2δ/Z(· · · ). (3.68)

Also, for any two fields F1 and F2 of the same type, the covariant variation preserves
the linearity of the tensor fields

δ/f/Y (F1 + F2) = δ/f/Y F1 + δ/f/Y F2. (3.69)

• Leibniz rule. For any two fields F1 and F2 on I+, their tensor product should obey
the Leibniz rule

δ/f/Y (F1F2) = F2δ/f/Y F1 + F1δ/f/Y F2. (3.70)

• Metric compatibility. The covariant variation of the metric should be zero

δ/f/Y γAB = 0. (3.71)

• For the scalar field Σ, the variation is the variation induced by bulk Lie derivative

δ/f/Y Σ = δf/Y Σ. (3.72)

In the vector theory, the supertranslation variation induced by Lie derivative agrees
with covariant variation, though the same is not true for superrotations. However, in
the gravitational theory, even the variation (3.64) is not a covariant variation due to the
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inhomogeneous terms without shear tensor. Therefore, we subtract the inhomogeneous
terms and define the covariant variation of the shear tensor under supertranslation as2

δ/f CAB = δf CAB − inhomogeneous terms = fĊAB. (3.73)

Then we find what we need
i[Tf , CAB] = δ/f CAB, (3.74)

and could identify the operator Tf with the supertranslation generators. It is worth noting
that the inhomogeneous terms in (3.64) vanishes for translations, namely f = aµnµ, with
aµ constants. The same is true for (3.65) whose inhomogeneous terms vanish for Lorentz
transformations, i.e. Y A = ωµνY A

µν with ωµν constants.
Now we will focus on the superrotation. We not only should subtract the inhomogeneous

terms in (3.65), but also need add terms from connections

δ/Y CAB = δY CAB − Γ C
A (Y )CCB − Γ C

B (Y )CAC − inhomogeneous terms. (3.75)

The connection ΓAB(Y ) can be chosen as a symmetric tensor which has been found in [2]

ΓAB(Y ) = 1
2ΘAB(Y ). (3.76)

Therefore, we get

δ/Y CAB = 1
2u∇CY CĊAB + Y C∇CCAB +∇[CYA]C

C
B +∇[CYB]C

C
A + 1

2CAB∇CY C .

(3.77)
Now we observe

δ/f= 1
2 u∇CY C CAB = 1

2u∇CY CĊAB, (3.78)

and notice that (3.61) can be rewritten as

∆AB(Y ;C;u,Ω) =Y C∇CCAB +∇[CYA]C
C

B +∇[CYB]C
C

A + 1
2CAB∇CY C . (3.79)

Hence, we find

δ/Y CAB = i[MY , CAB] + i
[
Tf= 1

2 u∇CY C , CAB

]
(3.80)

for Ẏ = 0. The second term has been identified as the contribution of a general supertrans-
lation, so we will say that MY generates superrotations.

2As a matter of fact, the inhomogeneous terms correspond to the soft part of the BMS fluxes in the
context of full Einstein gravity. We will discuss this issue in section 4 where we compare our fluxes at the
linear level with the ones at the full level.
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3.4 Commutation relations

Since Tf and MY are generators of supertranslation and superrotation, we may compute
the following commutators3

[Tf1 , Tf2 ] = CT (f1, f2) + iTf1ḟ2−f2ḟ1
, (3.81a)

[Tf ,MY ] = −iTY A∇Af + iMfẎ + iOẎ A∇BfϵBA
+ i

4Q d
du

(Ẏ A∇Af), (3.81b)

[Tf ,Og] = iOfġ, (3.81c)

[MY ,MZ ] = CM (Y, Z) + iM[Y,Z] + 2iOo(Y,Z) + NM (Ẏ , Ż), (3.81d)

[MY ,Og] = CMO(Y, g) + iOY A∇Ag + NMO(Ẏ , ġ), (3.81e)

[Og1 ,Og2 ] = CO(g1, g2) + NO(ġ1, ġ2). (3.81f)

We find two new smeared operators on the right hand side of the commutators. The first
operator Qh is constructed from the square of the shear tensor

Qh = 1
32πG

∫
dudΩh(u,Ω) : CABCAB : . (3.82)

Similar operator has also appeared in the scalar and vector theory. We can not find a
physical interpretation for it, since its commutators with CAB is totally non-local. Therefore,
we do not care the commutators between Qh and other operators here. Another smeared
operator is

Og = 1
32πG

∫
dudΩg(u,Ω) : ĊABC C

B : ϵCA

= 1
32πG

∫
dudΩg(u,Ω) : ĊABCCD : QABCD. (3.83)

We have defined a rank 4 tensor

QABCD = 1
4(γ

BCϵDA + γACϵDB + γBDϵCA + γADϵCB) (3.84)

at the second step. This operator is parity odd on the sphere and there is a similar operator
in the electromagnetic theory. Its commutator with the shear tensor is

[Og,CA′B′(u′,Ω′)] =−i∆A′B′(g;C;u′,Ω′)+ i

2

∫
duα(u−u′)∆A′B′(ġ;C;u,Ω′), (3.85)

where
∆AB(g;C;u,Ω) = g(u,Ω)QABCDCCD(u,Ω). (3.86)

We will discuss its physical meaning later. Here we have included its commutators with
supertranslation and superrotation operators as well as itself.

3The details can be found in the appendix E.
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There are three non-local terms appearing in (3.81) which read

NM (Ẏ , Ż) = i

64πG

∫
dudu′dΩα(u′ − u)∆AB(Ẏ ;C;u′,Ω)∆AB(Ż;C;u,Ω), (3.87a)

NMO(Ẏ , ġ) = i

64πG

∫
dudu′dΩα(u′ − u)∆GH(ġ;C;u,Ω)∆GH(Ẏ ;C;u′,Ω), (3.87b)

NO(ġ1, ġ2) =
i

64πG

∫
dudu′dΩα(u′ − u)∆CD(ġ2;C;u,Ω)∆CD(ġ1;C, u′,Ω). (3.87c)

Moreover, the related central terms are listed below

CT (f1, f2) = − ic

24π
If1

...
f2−f2

...
f1

, (3.88a)

CM (Y, Z) =
∫

dudu′dΩdΩ′Y A(u,Ω)ZB′(u′,Ω′)Λ(2)
AH′(Ω− Ω′)η(u − u′), (3.88b)

CMO(Y, g) = −4c

∫
dudu′dΩY A(u,Ω)∇Bg(u′,Ω)ϵABη(u − u′), (3.88c)

CO(g1, g2) = 4c

∫
dudu′dΩη(u − u′)g1(u,Ω)g2(u′,Ω), (3.88d)

where

Λ(2)
AH′(Ω,Ω′) = PABCDEF PH′I′J ′K′L′M ′ [P BI′J ′CP EL′M ′F δ(Ω− Ω′)∇D∇K′

δ(Ω− Ω′)
− P EI′J ′F P BL′M ′C∇Dδ(Ω− Ω′)∇K′

δ(Ω− Ω′)]. (3.89)

Besides, we use c to denote the Dirac function on sphere with argument equalling to zero,
i.e., c = δ(2)(0). The central charge CT (f1, f2) is exactly twice as much as the one in real
scalar case, as one expects. This is due to the fact that the number of the propagating
degrees of freedom for linearized gravity is 2. The same phenomenon appears in the vector
theory.

Notice that the (3.81a) is actually a higher dimensional Virasoro algebra. One can
perform Fourier transformation for f

f(u,Ω) =
∑
ℓ,m

∫ ∞

−∞
dωcω,ℓ,mfω,ℓ,m (3.90)

where fω,ℓ,m = e−iωuYℓ,m(Ω). The modes of Tf become

Tω,ℓ,m =
∫

dudΩe−iωuYℓ,m(Ω)T (u,Ω). (3.91)

Therefore, (3.81a) implies4

[Tω,ℓ,m, Tω′,ℓ′,m′ ] =

(ω′ − ω)
ℓ+ℓ′∑

L=|ℓ−ℓ′|

L∑
M=−L

cℓ,m;ℓ′,m′;L,MTω+ω′,L,M − ω3

6 (−1)mδ(2)(0)δ(ω + ω′)δℓℓ′δm,−m′ ,

(3.92)
4We have corrected the corresponding central term of higher dimensional Virasoro algebra in our previous

papers [1, 2] by inserting a (−1)m and replacing δm,m′ to δm,−m′ .
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where cℓ,m;ℓ′,m′;L,M are related to Clebsch-Gordan coefficients. They can be explicitly given
by Wigner 3j-Symbols as follows

cℓ1,m1;ℓ2,m2;L,M = (−1)M

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L + 1)

4π

(
ℓ1 ℓ2 L

0 0 0

)(
ℓ1 ℓ2 L

m1 m2 −M

)
. (3.93)

Truncations. The above algebra is not closed due to the non-local terms. We need to
eliminate them. It is easy to find that when

Ẏ = Ż = ġ1 = ġ2 = 0, (3.94)

all the non-local terms vanish. Moreover, three of the central terms CM , CMO, CO, and
the physically meaningless operator Qh all disappear. In this case, we obtain a closed
Lie algebra

[Tf1 , Tf2 ] = CT (f1, f2) + iTf1ḟ2−f2ḟ1
, (3.95a)

[Tf ,MY ] = −iTY A∇Af , (3.95b)

[Tf ,Og] = 0, (3.95c)

[MY ,MZ ] = iM[Y,Z] + 2iOo(Y,Z), (3.95d)

[MY ,Og] = iOY A∇Ag, (3.95e)

[Og1 ,Og2 ] = 0. (3.95f)

This Lie algebra is our main result whose structure is almost the same as the one in the
electromagnetic theory, except the factor 2 before the operator O in (3.95d). After rescaling
the operator O → 1

2O, the algebra is isomorphic to the one in the electromagnetic theory.
However, we will not try to rescale the operator, since the original commutators (3.81a)–
(3.81f) are not isomorphic to the one in the electromagnetic theory even with this rescaling.

Actually, it is possible to write the closed Lie algebra with an arbitrary parameter s

[Tf1 , Tf2 ] = CT (f1, f2) + iTf1ḟ2−f2ḟ1
, (3.96a)

[Tf ,MY ] = −iTY A∇Af , (3.96b)

[Tf ,Og] = 0, (3.96c)

[MY ,MZ ] = iM[Y,Z] + isOo(Y,Z), (3.96d)

[MY ,Og] = iOY A∇Ag, (3.96e)

[Og1 ,Og2 ] = 0. (3.96f)

For s = 0, 1, 2, the Lie algebra corresponds to the complex scalar, electromagnetic and
gravitational theory, respectively. It may be correct for the theory of arbitrary spin.

3.5 Duality operator

Duality invariance of Maxwell equation leads to the introduction of magnetic monopole and
the quantization of electric charge [61]. It has been elaborated in non-Abelian gauge theories
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by [62]. In the context of linearized gravity, the duality symmetry has been discussed in [63].
In de Sitter spacetime and anti-de Sitter spacetime, the duality symmetry of linearized
gravity is discussed in [64, 65]. Now we are going to derive the flux operator corresponding
to duality transformations in the linearized gravity.

Similar to what has been done in the electromagnetic theory, we introduce the dual
Riemann tensor

R̃µνρσ = −1
2ϵ αβ

µν Rαβρσ, (3.97)

where the linearized Riemann tensor reads

Rµνρσ = 1
2(∂ρ∂νhµσ − ∂ρ∂µhνσ − ∂σ∂νhµρ + ∂σ∂µhνρ). (3.98)

As a consequence of the Bianchi identity

Rµ[νρσ] = 0, (3.99)

the dual Ricci tensor is zero
R̃µν = 0. (3.100)

A gravitational duality is a SO(2) transformation which rotates the Riemann tensor and
its dual

R′
µνρσ = cosφRµνρσ + sinφR̃µνρσ, (3.101)

R̃′
µνρσ = − sinφRµνρσ + cosφR̃µνρσ, (3.102)

where φ is a constant rotation angle. One can show that the linearized equation of motion
is invariant under the dual transformation

R′
µν = cosφRµν + sinφR̃′

µν = 0, (3.103)
R̃′

µν = − sinφRµν + cosφR̃µν = 0. (3.104)

The next step is to introduce a dual gravitational field h̃µν such that

R̃µνρσ = 1
2(∂ρ∂ν h̃µσ − ∂ρ∂µh̃νσ − ∂σ∂ν h̃µρ + ∂σ∂µh̃νρ). (3.105)

Then the dual transformation may be written as a SO(2) rotation between hµν and h̃µν

h′
µν = cosφhµν + sinφh̃µν , h̃′

µν = − sinφhµν + cosφh̃µν . (3.106)

The dual Riemann tensor is invariant under the dual coordinate transformation

δ
ξ̃
h̃µν = ∂µξ̃ν + ∂ν ξ̃µ. (3.107)

We may expand the dual gravitational field near I+

h̃µν = H̃µν

r
+O

( 1
r2

)
, µ, ν = 0, 1, 2, 3 (3.108)
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where
H̃µν = 2GM̃nµnν + 1

2(nµY A
ν + nνY A

µ )∇BC̃AB + Y A
µ Y B

ν C̃AB. (3.109)

We will call M̃ the dual Bondi mass aspect and C̃AB the dual shear tensor which have been
extensively studied in the literature [66–72].

Combining the expansion (3.108) with the duality relation (3.97), we find the following
relation at the leading order near I+

−Y A
ρσY B

µν
¨̃
CAB = 1

2ϵ αβ
µν Y A

αβY B
ρσC̈AB. (3.110)

Considering the identity (A.11), the relation (3.110) is satisfied by imposing the duality
condition

C̃AB = Q CD
AB CCD. (3.111)

As a consequence of the duality invariance, we may construct the conserved current5

jµ
duality = 1

64πG
Lµρσµ4µ5µ6(hρσ∂µ4 h̃µ5µ6 − h̃ρσ∂µ4hµ5µ6). (3.112)

Using the fall-off conditions, we find the helicity flux leaking to I+ at time u

lim+
1
2

∫
S2

dΩr2(nµ + n̄µ)jµ
duality = 1

32πG

∫
S2

dΩĊABQABCDCCD. (3.113)

We may read out the helicity flux density operator (after quantization)

O(u,Ω) = 1
32πG

: ĊABQABCDCCD : , (3.114)

from which we can define the smeared operator

Og =
∫

dudΩg(u,Ω)O(u,Ω). (3.115)

From now on, we will call Og the duality operator.

3.6 Hamiltonians related to Carrollian diffeomorphisms and duality
transformations

In this subsection, we will use the boundary symplectic form (3.47) and the relation (2.61)
in covariant phase space formalism to compute the Hamiltonians corresponding to the
Carrollian diffeomorphisms and gravitational duality transformations. The interior product
in (2.61) should be modified to (2.76) similar to electromagnetic theory. We emphasize that
our computation of Hamiltonians is in the boundary Carrollian field theory.

5The conserved current may be derived similar to the electromagnetic duality current. The conserved
charge is the difference of the numbers of gravitons with positive and negative helicity. One can find more
details on the derivation in appendix F.
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1. For Carrollian diffeomorphism generated by ξ = ξf = f(u,Ω)∂u,

δHf = iξf

1
32πG

∫
dudΩδCAB ∧ δĊAB

= 1
32πG

∫
dudΩ{f(u,Ω)ĊABδĊAB − δCAB

d

du
[f(u,Ω)ĊAB]}

= 1
16πG

∫
dudΩf(u,Ω)ĊABδĊAB

= 1
32πG

δ

∫
dudΩf(u,Ω)ĊABĊAB. (3.116)

Therefore, we find an integrable flux

Hf = 1
32πG

∫
dudΩf(u,Ω)ĊABĊAB ≡ Tf . (3.117)

2. For Carrollian diffeomorphism generated by ξ = ξY = Y A(Ω)∂A,

δHY − δHf= 1
2 u∇·Y = iξY

1
32πG

∫
dudΩδCAB ∧ δĊAB

= 1
32πG

∫
dudΩ[∆AB(Y ;C;u,Ω)δĊAB − δCAB∆AB(Y ; Ċ;u,Ω)]

= 1
32πG

δ

∫
dudΩĊAB∆AB(Y ;C;u,Ω). (3.118)

The integrable flux reads out as

HY − Hf= 1
2 u∇·Y = 1

32πG

∫
dudΩĊAB∆AB(Y ;C;u,Ω) ≡ MY . (3.119)

When Y A is time dependent, there is an additional term

δHY − δHf= 1
2 u∇·Y = (· · · )− 1

32πG

∫
dudΩδCAB∆AB(Ẏ ;C;u,Ω). (3.120)

In this expression, the (· · · ) denotes the integrable flux (3.118). The additional term
is not integrable.

3. For the gravitational SSDT generated by a smooth function g(Ω) on S2,

δgCAB = g(Ω)QABCDCCD = ∆AB(g;C;u,Ω), (3.121)

we find

δHg = 1
32πG

∫
dudΩ[∆AB(g;C;u,Ω)δĊAB − δCAB∆AB(g; Ċ;u,Ω)]

= 1
32πG

δ

∫
dudΩĊAB∆AB(g;C;u,Ω). (3.122)

The integrable flux is

Hg = 1
32πG

∫
dudΩĊAB∆AB(g;C;u,Ω) ≡ Og. (3.123)

When g is time dependent, the corresponding variation δHg is not integrable.
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We have shown that the corresponding Hamiltonians for Carrollian diffeomorphisms and
gravitational duality transformations match with the ones derived from radiation fluxes.
More interestingly, the following formula

Hζ =
∫

dudΩĊABδ/ζCAB (3.124)

are exactly (3.117), (3.119) and (3.123) for ζ = f(u,Ω), Y A(Ω) and g(Ω), respectively. The
formula may be extended to

Hζ =
∫

dudΩḞ δ/ζF (3.125)

for general Carrollian field theories.

4 Relation to BMS fluxes in nonlinear Einstein gravity

The previous fluxes were first derived at the linear level from the bulk Landau-Lifshitz
pseudotensor. The energy and momentum fluxes are quadratic in news tensor, while the
angular momentum and center-of-mass fluxes happen to be the hard Lorentz operator after
discarding total time derivatives, which all take the same form as fluxes in the scalar and
vector theory [1, 2]. Moreover, we use the formula (2.61) to re-derive the aforementioned
fluxes, or called Hamiltonians in the sense of generating boundary transformations. In this
section, we will discuss the relation between our flux operators and the BMS fluxes defined
in the context of Einstein gravity [6, 70, 73–83].

4.1 Backgrounds

An asymptotically flat spacetime in general relativity is a solution of Einstein equation with
an external source

Gµν = 8πGTµν (4.1)

where Gµν is the Einstein tensor and Tµν is the stress tensor for matters. The stress tensor
is assumed to satisfy the fall-off conditions near I+

Tuu = tuu(u,Ω)
r2 +O

( 1
r3

)
, (4.2)

Tur = tur(u,Ω)
r4 +O

( 1
r5

)
, (4.3)

TuA = tuA(u,Ω)
r2 +O

( 1
r3

)
, (4.4)

Trr = trr(u,Ω)
r4 +O

( 1
r5

)
, (4.5)

TrA = trA(u,Ω)
r3 +O

( 1
r4

)
, (4.6)

TAB = tAB(u,Ω)
r

+O
( 1

r2

)
. (4.7)

An asymptotically flat metric may be written in Bondi gauge as

ds2 = ds2
M + δgµνdxµdxν (4.8)
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with ds2
M denoting line element for Minkowski spacetime, and the components of δgµν reading

δguu = 2GM

r
+O

( 1
r2

)
, (4.9)

δgur =
( 1
16CABCAB + 2πGtrr

) 1
r2 +O

( 1
r3

)
, (4.10)

δguA = 1
2∇

BCAB + 1
2r

[4
3N̄A − 1

8∇A(CBCCBC)
]
+O

( 1
r2

)
, (4.11)

δgAB = rCAB +
(1
4γABCCDCCD +DAB

)
+O

(1
r

)
. (4.12)

The symmetric traceless tensor DAB is conserved

ḊAB = 0. (4.13)

The conservation of the stress tensor ∇µTµν = 0 implies

ṫrA = 1
2∇A(γBCtBC), ṫrr = −γABtAB. (4.14)

The Bondi mass aspect M(u,Ω) and Bondi angular momentum aspect N̄A are constrained
by the following equations

Ṁ = −4πtuu − 1
8G

ĊABĊAB + 1
4G

∇A∇BĊAB, (4.15)

˙̄NA = −8π

(
tuA + 1

8∇A(γBCtBC)
)
+∇AM + 1

4G
∇B(∇A∇CCBC −∇B∇CCAC)

+ 1
4G

∇B(ĊBCCAC) +
1
2G

∇BĊBCCAC . (4.16)

The Bondi mass aspect and the Bondi angular momentum aspect may be used to define
the BMS charges [77]

Pf = 1
4π

∫
S2

dΩf(Ω)M, (4.17)

RY = 1
8π

∫
S2

dΩY A(Ω)NA, (4.18)

where NA is related to N̄A by

NA = N̄A − u∇AM − 1
4G

CAB∇CCBC − 1
16G

∇A(CBCCBC)

+ u

4G
□∇CCAC − u

4G
∇B∇A∇CCBC . (4.19)

We have changed the notation T to P to denote the supertranslation charge. The surface
charge Pf associated with f(Ω) is called supermomenta. At the same time, we have written
the superrotation charge as RY .6 The Bondi mass aspect is time dependent, we may
use (4.15) to find the supermomenta

Pf (ui, uf ) =
1
4π

∫ uf

ui

du

∫
S2

dΩf(Ω)Ṁ(u,Ω) (4.20)

6In [77], the BMS charge with Y A = γAB∂BΨ is called superboost charge. We will only use the concept
of superrotation, without distinguishing superrotation and superboost charges.
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where we have chosen an initial time ui and a final time uf . This is the supermomenta
radiated to I+ during the time duration ui < u < uf . The supermomentum may be
rewritten as an integral on the Carrollian manifold I+

Pf (ui, uf ) =
1
4π

∫
dudΩθ(uf − u)θ(u − ui)f(Ω)Ṁ(u,Ω). (4.21)

This may be generalized slightly to the following smeared operator

T̄f = − 1
4π

∫
dudΩf(u,Ω)Ṁ(u,Ω), (4.22)

where we have extended the function θ(uf −u)θ(u−ui)f(Ω) to any smooth function f(u,Ω)
on I+ which depends on the retarded time u. We have changed the notation from Pf

to T̄f to compare with our definition of flux operators Tf . We add a minus sign in the
definition since Ṁ is non-positive due to the radiation. Moreover, we add a bar in T̄f since
the quantity Ṁ in the BMS charge is from Einstein equation. It is not necessary to have
the same form as the energy flux density operator T (u,Ω) defined in the previous sections.

Similarly, the superrotation charge (4.18) may be written explicitly as

RY (ui, uf ) =
1
8π

∫ ∞

−∞
du

∫
S2

dΩ θ(uf − u)θ(u − ui)Y A(Ω)ṄA(u,Ω) (4.23)

and generalized to

M̄Y = − 1
8π

∫
dudΩY A(u,Ω)ṄA(u,Ω)− T̄f= 1

2 u∇AY A . (4.24)

We have also changed the notation from RY to M̄Y to compare with our definition of flux
operators MY . The operator T̄f= u

2 ∇AY A always appears on the right hand side, and we
may subtract it in the definition. We add a bar in M̄Y to distinguish with the flux operator
MY . There is no guarantee that the ṄA is proportional to the angular momentum flux
operator MA(u,Ω).

Formally, the supertranslation and superrotation generators constructed from the
flux operators are rather similar to the extended BMS charge operators (4.22) and (4.24).
However, the Bondi mass and angular momentum aspects are ambiguous since we may
add total time derivative terms in their definitions. In the following, we will show that
by adding suitable counterterms at I+, one may relate the smeared operators defined in
previous sections to the extended BMS charge operators in [77].

4.2 Scalar theory

For a real massless scalar field coupled to gravity with fall-off condition (2.48), we find the
leading order terms of stress tensor

tuu = Σ̇2, tuA = Σ̇∇AΣ, tAB = −γABΣ̇Σ (4.25)
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from the expression (2.47). To find the BMS charge in the flat space limit, we turn off the
gravitational field. Then the constraint equations (4.15) and (4.16) become

Ṁ = −4πtuu = −4πΣ̇2, (4.26)

ṄA = −8π

(
tuA + 1

8γBC∇AtBC

)
+ 4πu∇Atuu

= −8π

(
Σ̇∇AΣ− 1

4∇A(Σ̇Σ)−
u

2∇AΣ̇2
)

. (4.27)

Substituting these into the generalized BMS charges, we find

T̄f =
∫

dudΩf(u,Ω)Σ̇2, (4.28)

M̄Y =
∫

dudΩY A(u,Ω)[Σ̇∇AΣ− 1
4∇A(Σ̇Σ)]. (4.29)

Interestingly, the flux T̄f is exactly the supertranslation flux Tf defined in [1]. The flux
M̄Y is related to the flux operator MY by

M̄Y = MY + 1
8Q∇AẎ A . (4.30)

The operator Qh has also been defined in [1] as

Qh =
∫

dudΩh(u,Ω)Σ2. (4.31)

When Ẏ = 0, the operator Q is absent and then we find

MY = M̄Y . (4.32)

We note that the term ∇A(Σ̇Σ) in (4.27) is actually a total time derivative,

∇A(Σ̇Σ) =
1
2

d

du
∇AΣ2. (4.33)

One may modify the definition of NA by a further shift

N re
A = NA + N c.t.

A , (4.34)

where
N c.t.

A = 8παΣ∇AΣ. (4.35)

The coefficient α is not fixed so far. We may justify this counterterm in another way. We
assume the counterterm N c.t.

A to be local, and thus it can only depend on the field Σ and its
various derivatives. From dimensional analysis, the dimensions of various local operators are

[M ] = 1, [NA] = 0, [Σ] = 0, [Σ̇] = 1, [∇AΣ] = 0. (4.36)

A candidate counterterm should be

N c.t.
A = 8παΣ∇AΣ. (4.37)

There may be other terms such as Σ2∇AΣ,Σ∇A∇B∇BΣ from dimensional analysis. How-
ever, these terms are messy. We will impose two conditions to the counterterms
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1. The number of the field Σ in the counterterm should be no more than 2

#(Σ) ≤ 2. (4.38)

The number of the field in Σ2∇AΣ is 3, therefore we do not use it.

2. The number of the derivatives ∇A should be no more than 2

#(∇A) ≤ 2. (4.39)

This condition rules out the terms like Σ∇A∇B∇BΣ.

Therefore, we find a one-parameter family of the Bondi angular momentum and

Ṅ re
A = −8π

[
Σ̇∇AΣ− 1 + 4α

4 ∇A(Σ̇Σ)−
u

2∇AΣ̇2
]

. (4.40)

The corresponding superrotation charge is

M̄re
Y (α) = − 1

8π

∫
dudΩY A(u,Ω)Ṅ re

A − T̄f= 1
2 u∇AY A = MY (λ) (4.41)

where MY (λ) has been defined in [1] as

MY (λ) =
∫

dudΩY A(u,Ω)(λΣ̇∇AΣ− (1− λ)Σ∇AΣ̇). (4.42)

The relation between λ and α is
λ = 3

4 − α. (4.43)

In [1], λ = 1
2 is singled out by the orthogonality condition

⟨TfMY ⟩ = 0. (4.44)

It is equivalent to adding a counterterm with α = 1
4 . The lesson from the scalar theory is

that one may add total time derivative terms to both (4.15) and (4.16). This is equivalent
to modifying the Bondi mass aspect and Bondi angular momentum aspect by counterterms.

4.3 Electromagnetic theory

For a vector field aµ coupled to gravity, one imposes the following fall-off condition7

au = Au(u,Ω)
r

+O
( 1

r2

)
, (4.45)

aA = AA(u,Ω) +O
(1

r

)
. (4.46)

The stress tensor of free electromagnetic theory is

Tµν = fµρf ρ
ν − 1

4gµνfρσfρσ, (4.47)

7We choose the radial gauge ar = 0 for convenience.
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where the antisymmetric tensor fµν reads

fµν = ∂µaν − ∂νaµ. (4.48)

We find the following leading terms of stress tensor

tuu = γABȦAȦB, tuA = AuȦA + ȦC(∇AAC −∇CAA), tAB = 0 (4.49)

and thus

Ṁ = −4πȦAȦA, (4.50)
ṄA = −8πtuA − u∇AṀ. (4.51)

Now it is easy to check
T̄f = Tf . (4.52)

The superrotation flux is

M̄Y =
∫

dudΩY AtuA =
∫

dudΩY A[AuȦA + ȦC(∇AAC −∇CAA)]. (4.53)

From the equation of motion, one can determine Au

Ȧu = ∇AȦA ⇒ Au = ∇AAA + φ(Ω). (4.54)

Therefore, we find

M̄Y −MY = 1
2

∫
dudΩY A d

du
[AB∇CADPABCD] +

∫
dudΩY AȦAφ(Ω). (4.55)

We may add local counterterms

N c.t.
A = 8π

[1
2AB∇CADPABCD + AAφ(Ω)

]
(4.56)

to the Bondi angular momentum aspect and get

N re
A = NA + N c.t.

A . (4.57)

The corresponding superrotation flux becomes

M̄re
Y = − 1

8π

∫
dudΩY AN re

A − T̄f= 1
2 u∇AY A = MY . (4.58)

More generally, we may add the counterterm below

N c.t.
A (α) = 8πφ(Ω)AA + 8παAB∇CADPABCD. (4.59)

As a consequence, the superrotation flux becomes

M̄re
Y (α) = MY (λ), λ = 1− α. (4.60)
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4.4 Gravitational theory

For pure Einstein gravity, the constraint equations are

Ṁ = − 1
8G

ĊABĊAB + 1
4G

∇A∇BĊAB, (4.61)

˙̄NA = ∇AM + 1
4G

∇B(∇A∇CCBC −∇B∇CCAC)

+ 1
4G

∇B(ĊBCCAC) +
1
2G

∇BĊBCCAC . (4.62)

On the right hand side of the first equation, the second term which is linear in the shear
tensor relates to the memory effect. We find the supermomentum charge

T̄f = Tf + 1
16πG

∫
dudΩf(u,Ω)∇A∇BĊAB. (4.63)

We may add a local counterterm to modify the Bondi mass aspect

M re = M + M c.t., M c.t. = − 1
4G

∇A∇BCAB. (4.64)

With this modification, the corresponding supermomentum charge is exactly the super-
translation generator defined in previous section

T̄f = − 1
4π

∫
dudΩf(u,Ω)M re = 1

32πG

∫
dudΩf(u,Ω)ĊABĊAB = Tf . (4.65)

Now we turn to the Bondi angular momentum aspect. With the definition (4.19), we
find [77]

ṄA = u

8G
∇A(ĊBCĊBC) + 1

4G
HA(C, Ċ)

− u

4G
[∇A∇B∇CĊBC +∇B∇A∇CĊBC −∇B∇B∇CĊAC ]. (4.66)

Then the extended superrotation flux is

M̄Y = MY + linear terms in the news. (4.67)

MY is quadratic in the news or shear, while the terms linear in the news are soft part
which corresponds to the memory effect. The linear terms may be canceled by adding a
counterterm

N c.t.
A = 1

4G
[∇A∇B∇CCBC +∇B∇A∇CCBC −∇B∇B∇CCAC ] (4.68)

with
CAB(u,Ω) =

∫ u

du′u′ĊAB(u′,Ω) (4.69)

Unlike the scalar and vector theory, the counterterm is non-local. However, we note that
the operator CAB is associated to the spin memory effect. This is similar to the one in (4.64)
where the counterterm is associated with the displacement memory effect.
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4.5 Further comparisons

As a matter of fact, in the above comparison with [77] we turn off all the gravitational
fields for the scalar and vector theories, and it turns out that only superrotation flux needs
to be renormalized since we single out a particular flux by virtue of the orthogonality
condition (4.44) at quantum level from the family of classically equivalent fluxes. For
gravitational theory, we turn on gravitational fields and turn off matter fields. To agree with
our previous results, we remove the soft parts through counterterms in both supermomentum
and superrotation fluxes.

However, as shown in [75, 81, 83], one can make a separation of hard and soft variables
in phase space. Boundary terms can be added into the Einstein-Hilbert action, and the
renormalized boundary symplectic structure could be divided into hard and soft parts.
They give hard and soft surface charges on a spatial section of I+, and also hard and soft
fluxes on I+.

Such a separation of hard and soft parts has been justified through leading soft graviton
theorem (for supermomentum flux) and subleading soft graviton theorem (for superrotation
flux) [75]. Moreover, it has been shown that the total charges form a charge algebra under
modified Lie bracket (see (5.68) in [75]), while in [83], the authors have shown that the
fluxes of hard and soft parts can generate the transformations on the phase space, and form
a representation of extended BMS algebra (see (3.24) in [83] or (5.10) in [81]), respectively.

We have further compared our fluxes with the ones in [83]. When f and Y are time
independent, our fluxes Tf and MY agree with the hard parts of (3.15) and (3.16) in [83]
whose authors renormalize the phase space by separating the hard/soft variables and adding
boundary terms to the action, and gain integrable fluxes through the formula δHξ = iξΩ.
We have also used this equation to check our fluxes in section 3.6. To make the hard part
integrable, we use the notion of covariant variation /δY CAB which has been proposed in [2] to
make the superrotation variation for electromagnetic field compatible with boundary metric
γAB and make the corresponding superrotation fluxes integrable. We should emphasize
that although our processing (modifying the variation) is different from renormalizing the
symplectic form, these two methods give the same hard fluxes.

There is an important property about the integrability of the BMS charge. As stated
in [53, 78, 84], when using

∫
S2 kξ to construct the surface charge Qξ on a spatial section

of I+, the non-integrable part is the flux of the integrable charge. In the last comment of
section 2 in [78], the authors take a particular symmetry generator ∂t in the charge algebra
such that the time derivative of integrable charge d

dtQξ[ϕ] is exactly represented by the
non-integrable part as −Ξ∂t [δξϕ;ϕ]. If integrating d

dtQξ[ϕ] with respect to time, then one
will get the (integrated) flux on I+ which is also the integration of −Ξ∂t [δξϕ;ϕ]. These
integrated fluxes also agree with our results.

In summary, there are mature treatments in the literature for these issues and we refer
the interested readers to [70, 75–81, 83] and the references therein.

5 Conclusion and discussion

In this paper, we have reduced the linearized gravity theory in Minkowski spacetime to future
null infinity I+. The boundary tensor theory is characterized by the shear tensor CAB with
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a non-trivial symplectic form. The ten Poincaré fluxes are totally determined by the shear
tensor. We have defined the flux operators and interpreted them as supertranslation and
superrotation generators. As in the electromagnetic theory, one should define a covariant
variation to identify the superrotation generators. The flux operators do not form a closed
algebra in general. There is a truncated Lie algebra (3.81a)–(3.81f), if a gravitational duality
operator Og is included, and the parameters satisfy Ẏ = ġ = 0. The infinite dimensional
algebra is isomorphic to the one in the electromagnetic theory. We provide three different
ways to understand the flux operators Tf ,MY and the duality operator Og, which will be
compared in the following.

• Physical approach. This is also the main method used in our previous paper [1, 2].
In this way, we find the Poincaré fluxes as well as the helicity flux corresponding to
gravitational duality transformation from the conserved currents in the bulk, and thus
read out the flux density operators. To preserve the time and angular dependence
information in the flux density operators, one may try to transform the flux density
operators to its (generalized) Fourier space and define the corresponding smeared
operators Tf ,MY and Og. The test functions f, Y, g are assumed to be time and
angular dependent. After calculating the lengthy commutators among these operators,
one finds that it is necessary to require the following conditions

f = f(u,Ω), Y A = Y A(Ω), g = g(Ω), (5.1)

if we want a closed Lie algebra. In this approach, the physical meaning of the operators
are clear.

• Hamiltonians from boundary theory. The flux operators can also be realized as
Hamiltonians from the boundary Carrollian field theory. In this approach, the
boundary theory is determined by a solution space which should satisfy the boundary
constraints. The solution space is equipped with a symplectic form which could be
used to obtain the Hamiltonian through the formula (2.61). The operators Tf and
MY are identified with the Hamiltonians corresponding to Carrollian diffeomorphisms.
At the same time, the operator Og is identified with the Hamiltonian of the extended
gravitational duality transformation at I+. In this approach, the condition (5.1)
is found automatically by requiring the Hamiltonian to be integrable. We could
also obtain a general formula (3.124) which may be valid for general Carrollian
field theories.

• BMS charges from bulk theory. Though the flux operators Tf ,MY and Og are
obtained in linearized gravity, we could find their relations to the BMS charges in
fully nonlinear Einstein gravity. The identification is not straightforward, and one
need add counterterms to the Bondi mass and angular momentum aspects. The
counterterms are local for the scalar and vector theory, while they could be non-local
for the gravitational theory. It is not clear whether one can find a unique way to add
the counterterms at this moment.

There are various open questions that deserve further study.
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• Boundary theory in asymptotically flat spacetime. The starting point of our work
is to embed the boundary theory at I+ to four dimensional spacetime in which the
field theory is well known. However, there should be an intrinsic way to define the
boundary theory from the Carrollian diffeomorphism of I+.

• Hamiltonians. We could define the Hamiltonians from the symplectic form of the
boundary theory. The Hamiltonians are integrable for GSTs and SSRs as well as
SSDTs which could form a closed Lie algebra. On the other hand, they fail to
be integrable for GSRs and GSDTs. This is consistent with the fact that the flux
operators corresponding to GSRs and GSDTs would lead to non-local terms in the
commutators. There may be deep connections between the non-integrability and
non-local terms.

• Subleading terms and interactions. Our work mainly focuses on the leading terms
in the fall-off conditions and they are related to radiative modes in the bulk. The
radiative modes are free from EOM in the boundary theory which is universal for
general bulk theories. Namely, the boundary theories could be the same at the leading
order for different bulk theories. Therefore, to distinguish different bulk theories, one
may delve into the subleading terms in the fall-off conditions. These terms are related
to the radiative modes and the coupling constants through the constraint equations.

• Fall-off conditions. We derive the flux densities corresponding to the Killing symmetry,
and then use these densities to construct flux operators related to the Carrollian
diffeomorphism. However, it remains a problem how to extend the Carrollian dif-
feomorphism to the bulk and how this extension will affect the fall-offs and the
solution space.

Acknowledgments

The work of J.L. is supported by NSFC Grant No. 12005069.

A Properties of the vectors nµ, n̄µ, Y µ
A

The null vectors nµ and n̄µ are defined as

nµ = (1, ni), n̄µ = (−1, ni). (A.1)

The vectors Y µ
A are defined as

Y A
µ = −∇Anµ = −∇An̄µ. (A.2)

The Greek indices µ, ν, · · · are raised by ηµν while the Latin indices A, B, · · · are raised by
γAB. We may use nµ and Y ν

A to define the conformal Killing vectors of the unit sphere

Y µν
A = Y µ

A nν − Y ν
Anµ. (A.3)
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Y A
µν is antisymmetric

Y A
µν = −Y A

νµ. (A.4)

Its 0i components are exactly the strictly conformal Killing vectors

Y A
0i = Y A

i (A.5)

and ij components are the conformal Killing vectors Y A
ij which are defined in [1]. We list

the properties in the following.

1. Orthogonality

nµnµ = n̄µn̄µ = 0, nµY A
µ = n̄µY A

µ = 0, nµn̄µ = 2, Y A
µ Y B

ν ηµν = γAB (A.6)

2. Completeness
1
2(nµn̄ν + nν n̄µ) + Y A

µ Y B
ν γAB = ηµν . (A.7)

3. The identities involve covariant derivatives of Y A
µ

∇AY A
µ = nµ + n̄µ, nα∇AY B

α = δB
A , (A.8)

Y B
α ∇AY α

C = 0, ∇AY µ
B −∇BY µ

A = 0. (A.9)

4. The covariant derivative of Y A
µν takes the form

nµn̄ν − nν n̄µ = −∇AY µνA. (A.10)

5. The identity involves two CKVs

Y A
ρσY B

µνQ CD
AB +1

8ϵ αβ
µν (Y C

αβY D
ρσ+Y D

αβY C
ρσ)+

1
8ϵ αβ

ρσ (Y C
αβY D

µν+Y D
αβY C

µν)= 0.

(A.11)

6. The normal vector ni may be lifted to a four-vector (0, ni) which is the average of the
null vectors nµ and n̄µ

(0, ni) = 1
2(n

µ + n̄µ). (A.12)

Similarly, we can express the four-vector (1, 0) as the difference between two null vectors

(1, 0) = 1
2(n

µ − n̄µ). (A.13)

There are more identities involving more than one normal vector nµ and Y A
µ . To

simplify notation, we define the following three tensors

Nµν = nµnν , (A.14)

UA
µν = 1

2(nµY A
ν + nνY A

µ ), (A.15)

V AB
µν = 1

2(Y
A

µ Y B
ν + Y A

ν Y B
µ ). (A.16)
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They are symmetric under the interchange of the indices µ and ν

Nµν = Nνµ, UA
µν = UA

νµ, V AB
µν = V AB

νµ , (A.17)

and are transverse to the vector nµ

Nµνnν = 0, UA
µνnν = 0, V AB

µν nν = 0. (A.18)

Moreover, one can find the following trace

Nµ
µ = 0, UA

µνηµν = 0, V AB
µν ηµν = γAB, (A.19)

V AB
µν γAB = ηµν − 1

2(nµn̄ν + nν n̄µ). (A.20)

We can also compute their squares

NµνNµν = 0, UA
µνUBµν = 0, (A.21)

V AB
µν V CDµν = 1

2(γ
ACγBD + γADγBC). (A.22)

These tensors are orthogonal to each other

NµνUA
µν = NµνV AB

µν = UA
µνV µνBC = 0. (A.23)

Their products with the vector Y A
µ read

NµνY νA = 0, UA
µνY νB = 1

2γABnν , (A.24)

V AB
µν Y νC = 1

2(γ
BCY A

µ + γACY B
µ ). (A.25)

We can also find the following products

NµαNα
ν = NµαUαA

ν = NµαV αAB
ν = 0, (A.26)

UA
µαUαB

ν = 1
4γABnµnν , (A.27)

UA
µαV αBC

ν = 1
4(nµY C

ν γAB + nµY B
ν γAC), (A.28)

V AB
µα V αCD

ν = 1
4(γ

BCY A
µ Y D

ν + γBDY A
µ Y C

ν + γACY B
µ Y D

ν + γADY B
µ Y C

ν ). (A.29)

For the derivatives of the symmetric tensors Nµν , UA
µν and V AB

µν , we find

Nµν∇ANµν = Nµν∇AUB
µν = Nµν∇AV BC

µν = UAµν∇BNµν = 0, (A.30)

UµνA∇BUC
µν = V µνAB∇CNµν = V µνAB∇CV DE

µν = 0, (A.31)

UµνA∇BVµνCD = −V µν
CD∇BUA

µν = 1
2(γ

A
C γBD + γA

DγBC). (A.32)

– 37 –



J
H
E
P
1
0
(
2
0
2
3
)
1
1
7

When they are contracted with nµ or Y A
µ , one can find

nβ∇ANβµ = 0, (A.33)

nβ∇AUB
βµ = 1

2γB
A nµ, (A.34)

nβ∇AV BC
βµ = 1

2(γ
B
A Y C

µ + γC
A Y B

µ ), (A.35)

Y β
D∇ANβµ = −γADnµ, (A.36)

Y β
D∇AUB

βµ = −1
2(γADY B

µ + γB
DYµA), (A.37)

Y β
D∇AV BC

βµ = 1
2(γ

B
D∇AY C

µ + γC
D∇AY B

µ ). (A.38)

More identities are listed as follows

Nµα∇ANαν =0, (A.39)

Nµα∇AUB
αν =

1
2γB

A nµnν , (A.40)

Nµα∇AV BC
αν = 1

2γB
A nµY C

ν +1
2γC

A nµY B
ν , (A.41)

UµαA∇BNαν =−1
2γA

Bnµnν , (A.42)

UµαA∇BUC
αν =

1
4(−γA

BnµY C
ν −γACnµYνB+γC

BnνY µA), (A.43)

UµαA∇BV CD
αν = 1

4(γ
C
BY µAY D

ν +γD
B Y µAY C

ν +γACnµ∇BY D
ν +γADnµ∇BY C

ν ), (A.44)

V µαAB∇CNαν =−1
2(γ

B
C Y µAnν+γA

C Y µBnν), (A.45)

V µαAB∇CUD
αν =−1

4(γ
B
C Y µAY D

ν +γBDY µAYνC+γA
C Y µBY D

ν +γADY µBYνC), (A.46)

V µαAB∇CV DE
αν = 1

4(γ
BDY µA∇CY E

ν +γADY µB∇CY E
ν +γBEY µA∇CY D

ν +γAEY µB∇CY D
ν ).

(A.47)

The above equations lead to the following

Y A
µ Nµα∇ANαν = 0, (A.48)

Y A
µ Nµα∇AUB

αν = 0, (A.49)
Y A

µ Nµα∇AV BC
αν = 0, (A.50)

Y B
µ UµαA∇BNαν = 0, (A.51)

Y B
µ UµαA∇BUC

αν = 1
4γACnν , (A.52)

Y B
µ UµαA∇BV CD

αν = 1
4(γ

ACY D
ν + γADY C

ν ), (A.53)

Y C
µ V µαAB∇CNαν = −γABnν , (A.54)

Y C
µ V µαAB∇CUD

αν = −1
4(2γABY D

ν + γBDY A
ν + γADY B

ν ), (A.55)

Y C
µ V µαAB∇CV DE

αν = 1
4(γ

BD∇AY E
ν + γAD∇BY E

ν + γBE∇AY D
ν + γAE∇BY D

ν ). (A.56)
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B Higher rank tensors in Minkowski spacetime

B.1 Properties of the tensor Lµ1µ2···µ6

The tensor Lµ1µ2···µ6 defined in Minkowski spacetime has the following properties.

1. Symmetries. The tensor Lµ1µ2···µ6 is invariant under interchange of the second index
and the third

Lµ1µ2µ3µ4µ5µ6 = Lµ1µ3µ2µ4µ5µ6 . (B.1)

It is also invariant under the interchange of the fifth index and the sixth

Lµ1µ2µ3µ4µ5µ6 = Lµ1µ2µ3µ4µ6µ5 . (B.2)

The tensor Lµ1µ2···µ6 is invariant under the interchange of the first three indices and
the last three indices

Lµ1µ2µ3µ4µ5µ6 = Lµ4µ5µ6µ1µ2µ3 . (B.3)

2. Identities involving normal vector nµ and conformal Killing vectors Y A
µ . The following

identities can be checked straightforwardly.

Lµ1µ2µ3µ4µ5µ6Nµ2µ3Nµ4µ5 = 0, (B.4)
Lµ1µ2µ3µ4µ5µ6nµ4Nµ2µ3V AB

µ5µ6 = 0, (B.5)
Lµ1µ2µ3µ4µ5µ6nµ4Nµ5µ6UA

µ2µ3 = 0, (B.6)
Lµ1µ2µ3µ4µ5µ6nµ4UA

µ2µ3UB
µ5µ6 = 0, (B.7)

Lµ1µ2µ3µ4µ5µ6nµ4UA
µ2µ3V CD

µ5µ6 = 0. (B.8)

We may also need the following identity

1
2(nµ1+n̄µ1)Lµ1µ2µ3µ4µ5µ6nµ4V AB

µ2µ3V CD
µ5µ6 =

1
2(γ

ACγBD+γADγBC)−γABγCD.

(B.9)

B.2 Traces of the tensor Sµ1µ2···µ6

We use the notation that

(ij)(kl) ≡ Sµ1···µ6ηµiµj ηµkµl , i, j, k, l = 1, 2, · · · , 6. (B.10)

To find the radiation fluxes, we need the various traces of the tensor S. The following traces
vanish which have been used in the context.

(15)(46)= (14)(56)= (13)(46)= (24)(56)= (23)(45)= (23)(56)= (15)(23)= (14)(23)= 0.
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We also need the following nonvanishing traces.

(14)(26) = d

du
(H α

µ3 Hαµ5), (B.11)

(25)(34) = Hµ1αḢα
µ6 +

1
2nµ1 n̄µ3(Ḣµ2µ3Hµ2

µ6 − Hµ2µ3Ḣµ2
µ6)

+ nµ1Y A
µ3Ḣµ3µ5∇AHµ5µ6 ., (B.12)

(25)(36) = 2nµ1nµ4ḢαβḢ
(2)
αβ +

[
nµ1nµ4 +

1
2(nµ1 n̄µ4 + nµ4 n̄µ1)

]
ḢαβHαβ

+ (nµ1Y A
µ4 + nµ4Y A

µ1)Ḣ
αβ∇AHαβ , (B.13)

(14)(25) = d

du
(Hµ3αH α

µ6 ), (B.14)

(15)(24) = d

du
(Hµ3αHα

µ6). (B.15)

B.3 Various combinations of Hµν and H(2)
µν

To find the radiation fluxes, we may need the following identities

nµHµν = 0, (B.16)

n̄µHµν = nν(4GM) + Y A
ν ∇BCAB, (B.17)

Hµνηµν = 0, (B.18)

H(2)
µν ηµν = γABZAB − 2X̃, (B.19)

HµνHµν = CABCAB, (B.20)

nµH(2)
µν = −X̃nν , (B.21)

nµnνH(2)
µν = 0, (B.22)

n̄µH(2)
µν = 2(X − X̃)nν − X̃n̄ν + Y A

ν JA, (B.23)

HµαH ν
α = 1

4nµnν∇BCAB∇CCA
C + 1

2(n
µY νC + nνY µC)CA

C∇BCAB

+ Y µAY νBC C
A CCB, (B.24)

ḢµαH ν
α = 1

4nµnν∇BĊAB∇CCAC + 1
2nµY νCCA

C∇BĊAB

+ 1
2nνY µCĊAC∇BCAB + Y µCY νDĊA

CCAD, (B.25)

ḢαβHαβ = ĊABCAB, (B.26)

Y A
µ Hµν = 1

2nν∇CCAC + Y ν
C CAC , (B.27)

HµνH(2)
µν = ZABCAB = 0, (B.28)

Ḣαβ∇AHαβ = (CAC∇BĊBC − ĊAC∇BCBC) + ĊBC∇ACBC . (B.29)
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The following two combinations are important for the computation of the angular
momentum fluxes.

nνY A
α Ḣαβ∇AH µ

β −(µ↔ ν)= 1
2Y µνA(CAC∇BĊBC−ĊAC∇BCBC+2ĊBC∇BCAC)

+ 1
2(n

ν n̄µ−nµn̄ν)ĊABCAB, (B.30)

nµn̄α(ḢαβHβν−HαβḢβν)−(µ↔ ν)=−Y µνA(CAC∇BĊBC−ĊAC∇BCBC). (B.31)

C Higher rank tensors on S2

In this paper, we may use three main higher rank tensors on S2. The rank 4 tensor PABCD

has been defined in the vector theory

PABCD = γABγCD + γACγBC − γADγBC . (C.1)

The other rank 4 tensor QABCD is used to define the duality operator

Og = 1
32πG

∫
dudΩg(u,Ω)ĊABCCDQABCD (C.2)

with
QABCD = 1

4(γ
BCϵDA + γACϵDB + γBDϵCA + γADϵCB). (C.3)

At last, the rank 6 tensor PABCDEF is used to define the angular momentum and center-of-
mass flux operators

MY = 1
32πG

∫
dudΩY A(u,Ω)(ĊBC∇DCEF − CBC∇DĊEF )PABCDEF (C.4)

with

PABCDEF = 1
4[γAB(γCEγDF +γCF γDE−γCDγEF )+γAC(γBEγDF +γBF γDE−γBDγEF )

+γAD(γBEγCF +γBF γCE−γBCγEF )−γAE(γBDγCF +γBF γCD−γBCγDF )
−γAF (γBDγCE+γBEγCD−γBCγDE)−γBCPAEF D+γEF PABCD]

= 1
4(γABPCEF D+γACPBEF D+γADPBEF C−γAEPF BCD−γAF PEBCD

−γBCPAEF D+γEF PABCD). (C.5)

We will study their properties in this appendix.

C.1 Properties of the rank 4 tensor PABCD

The properties of the rank 4 tensor PABCD are collected in the following. Some identities
have been obtained in the vector theory. We also add a few new properties which turn out
to be useful in this work.

• Symmetries

PABCD = PBADC = PBDAC = PDBCA = PCDAB = PDCBA = PACBD = PCADB .

(C.6)
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• Traces
P A

ABC = P A
BAC = P A

BC A = 2γBC , P A
BCA = P A

B AC = 0. (C.7)

• Fierz identity
ϵE

BPAECD + ϵE
DPABCE = 0. (C.8)

This equation comes from the Fierz identity

ϵABγCD + ϵBCγAD + ϵCAγBD = 0. (C.9)

• Product with itself 1
2PABCDP B D

E F = PACEF . (C.10)

• The tensor PABCD can also be written as

PABCD = γACγBD + ϵACϵBD. (C.11)

As a consequence, we have

PABCD + PADCB = 2γACγBD, (C.12)
PABCD − PADCB = 2(γABγCD − γADγBC) = 2ϵACϵBD. (C.13)

• Square
PABCDP ABCD = 8. (C.14)

C.2 Properties of the rank 4 tensor QABCD

By definition, the rank 4 tensor QABCD is constructed from the metric γAB and the
Levi-Civita tensor ϵAB

QABCD = 1
4(γ

BCϵDA + γACϵDB + γBDϵCA + γADϵCB). (C.15)

Its properties are collected below.
1. Symmetries

QABCD = QBACD = QABDC = QBADC . (C.16)

2. Traces
γABQABCD = 0, γCDQABCD = 0, γACQABCD = ϵDB. (C.17)

3. Antisymmetry
QABCD + QCDAB = 0. (C.18)

4. Contraction with the rank 6 tensor PABCDEF

QEF
BCPAEF DGH = Q EF

GH PABCDEF . (C.19)

As a consequence, one can find

QBC
EF ρABCDGH = 1

2γADQGHEF , (C.20)

QEF
BCρAEF DGH = Q EF

GH ρABCDEF . (C.21)

5. Square
QABCDQABCD = 2. (C.22)
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C.3 Properties of the rank 6 tensor PABCDEF

Several properties are listed below.

1. Traces. The tensor PABCDEF is traceless for the indices BC and EF .

PABCDEF γBC = 0, PABCDEF γEF = 0. (C.23)

Other useful traces are

PABCDEF γAB = 3
4PCEF D, (C.24)

PABCDEF γAD = 1
2PBEF C , (C.25)

PABCDEF γAE = −1
4PF BCD, (C.26)

PABCDEF γBD = −1
4PCEF A, (C.27)

PABCDEF γED = 3
4PF BCA, (C.28)

PABCDEF γBE = 1
4(3PCAF D − PF ACD). (C.29)

2. Symmetries
PABCDEF = PACBDEF , PABCDEF = PABCDF E . (C.30)

3. Algebraic relations

PABCDEF + PAEF DBC = 1
2γADPBEF C ≡ 2ρABCDEF . (C.31)

4. Products with PABCD

PABCDEF P E F
GH = 2PABCDGH , (C.32)

PABCDEF P B C
GH = 2PAGHDEF . (C.33)

5. Contractions with the shear tensor

ρABCDEF CEF = 1
2γADCBC , (C.34)

PAEF DBCCEF = 1
2(CABγDC + CACγDB + CBCγAD − CDCγAB − CDBγAC).

(C.35)

6. Contraction with the tensor QABCD

PABCDEF QBCEF = −2ϵAD. (C.36)

7. Square
PABCDEF P ABCDEF = 5. (C.37)
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D Mode expansion

The linearized gravity equation is easily solved by imposing de Donder gauge

∂µhµν − 1
2∂νh = 0, (D.1)

the PF equation becomes

□hµν − 1
2ηµν□h = 0 ⇒ □hµν = 0, (D.2)

i.e., the relativistic wave equation. We could therefore expand8

hµν(t, x) =
∑

α

∫
d3k

(2π)3
1√
2ωk

[ϵ∗α
µν(k)bα,ke−iωt+ik·x + ϵα

µν(k)b
†
α,keiωt−ik·x], (D.3)

where the creation and annihilation operators satisfy standard commutation relation

[bα,k, bβ,k′ ] = [b†α,k, b†β,k′ ] = 0, (D.4)

[bα,k, b†β,k′ ] = (2π)3δα,βδ(3)(k − k′), (D.5)

and the polarization tensor ϵα
µν(k) satisfies

ϵα
µν(k) = ϵα

νµ(k), kµϵα
µν(k) =

1
2kνϵµα

µ (k). (D.6)

There are six independent solutions for the above equations. We can further demand
ϵµα
µ (k) = 0 and ϵα

0µ(k) = 0. This actually leads to transverse and traceless gauge, and the
PF equation still reduces to wave equation, so the expansion with plane waves remains
reasonable. The completeness relation for the polarization tensor is [85]

∑
α

ϵ∗α
µν(k)ϵα′

ρσ(k)δα,α′ = 1
2(η̄µρη̄νσ + η̄µση̄νρ − η̄µν η̄ρσ) (D.7)

where
η̄µν = ηµν − 1

2(nµ(k)n̄ν(k) + nν(k)n̄µ(k)). (D.8)

The vectors nµ(k) and n̄µ(k) are

nµ(k) = (−1, ni(k)), n̄µ(k) = (1, ni(k)), ni(k) =
ki

|k|
. (D.9)

Substituting (A.7), the completeness relation becomes

∑
α

ϵ∗α
µν(k)ϵα′

ρσ(k)δα,α′ = 1
2(Y

A
µ YρAY B

ν YσB + Y A
µ YσAY B

ν YρB − Y A
µ YνAY B

ρ YσB). (D.10)

In this relation, the arguments of the vector Y A
µ are Ωk defined in the following (D.13).

8We have omitted a normalization factor
√

32πG in this expansion.
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D.1 Antipodal matching condition

In this subsection, we use mode expansion of quantized field to derive the antipodal matching
conditions. Starting from (D.3) and using asymptotic expansion of the spherical Bessel
function of the first kind

jℓ(ωr) =
sin
(
ωr − πℓ

2

)
ωr

+ ℓ(ℓ + 1)
2ω2r2 cos

(
ωr − πℓ

2

)
+O

( 1
r3

)
, (D.11)

we find the large-r expansion of the plane wave

e−iωt+ik·x = 4π
∑
ℓm

iℓ

2iωr
[e−iωu−iπℓ/2 − e−iωv+iπℓ/2]Y ∗

ℓ,m(Ωk)Yℓ,m(Ω)

+ 4π
∑
ℓm

iℓ ℓ(ℓ + 1)
4ω2r2 [e−iωu−iπℓ/2 + e−i(ωv−πℓ/2)]Y ∗

ℓ,m(Ωk)Yℓ,m(Ω) +O(r−3)

(D.12)

where we have used the spherical coordinates for the spatial position x and wave vector k

x = (r,Ω), k = (ω,Ωk). (D.13)

Therefore, we get the leading order terms at future and past null infinity9

H+(1)
µν (u,Ω) =

∫ ∞

0

dω√
4πω

∑
ℓ,m

[cµν;ω,ℓ,me−iωuYℓ,m(Ω) + h.c.], (D.14)

H−(1)
µν (v,Ω) =

∫ ∞

0

dω√
4πω

∑
ℓ,m

[c̃µν;ω,ℓ,me−iωvYℓ,m(Ω) + h.c.], (D.15)

where

cµν;ω,ℓ,m = ω

(2π)3/2i

∫
dΩk

∑
α

ϵ∗α
µν(k)bα,kY ∗

ℓ,m(Ωk), (D.16)

c†µν;ω,ℓ,m = iω

(2π)3/2

∫
dΩk

∑
α

ϵα
µν(k)b

†
α,kYℓ,m(Ωk), (D.17)

c̃µν;ω,ℓ,m = (−1)ℓ iω

(2π)3/2

∫
dΩk

∑
α

ϵ∗α
µν(k)bα,kY ∗

ℓ,m(Ωk), (D.18)

c†µν;ω,ℓ,m = (−1)ℓ ω

(2π)3/2i

∫
dΩk

∑
α

ϵα
µν(k)b

†
α,kYℓ,m(Ωk). (D.19)

Therefore, the antipodal matching condition for the annihilation and creation operators is

cµν;ω,ℓ,m = (−1)ℓ+1c̃µν;ω,ℓ,m, c†µν;ω,ℓ,m = (−1)ℓ+1c̃†µν;ω,ℓ,m. (D.20)

Similarly, the subleading terms are

H+(2)
µν (u,Ω) =

∫ ∞

0

dω√
4πω

∑
ℓ,m

[ iℓ(ℓ + 1)
2ω

cµν;ω,ℓ,me−iωuYℓ,m(Ω) + h.c.], (D.21)

H−(2)
µν (v,Ω) =

∫ ∞

0

dω√
4πω

∑
ℓ,m

[ℓ(ℓ + 1)
2iω

c̃µν;ω,ℓ,me−iωvYℓ,m(Ω) + h.c.]. (D.22)

9The superscript + is to denote the field at future null infinity and − is to denote the field at past
null infinity.
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To find antipodal matching condition, we need transform to Fourier space with respect
to retarded/advanced time. For leading terms, we find

H+
µν(ω,Ω) = θ(ω)

√
π

ω

∑
ℓ,m

cµν;ω,ℓ,mYℓ,m(Ω) + θ(−ω)
√
−π

ω

∑
ℓ,m

c†µν;−ω,ℓ,mY ∗
ℓ,m(Ω), (D.23)

and similarly

H−
µν(ω,Ω) = θ(ω)

√
π

ω

∑
ℓ,m

c̃µν;ω,ℓ,mYℓ,m(Ω) + θ(−ω)
√
−π

ω

∑
ℓ,m

c̃†µν;−ω,ℓ,mY ∗
ℓ,m(Ω)

= − θ(ω)
√

π

ω

∑
ℓ,m

cµν;ω,ℓ,mYℓ,m(ΩP )− θ(−ω)
√
−π

ω

∑
ℓ,m

c†µν;−ω,ℓ,mY ∗
ℓ,m(ΩP ),

(D.24)

where ΩP is antipodal to Ω = (θ, ϕ)

ΩP = (π − θ, π + ϕ) (D.25)

and the parity transformation of the spherical harmonic function is

Yℓ,m(ΩP ) = (−1)ℓYℓ,m(Ω). (D.26)

Comparing (D.23) and (D.24), one can find

H+
µν(ω,Ω) = −H−

µν(ω,ΩP ). (D.27)

To subleading order, we have

H+(2)
µν (ω,Ω) = H−(2)

µν (ω,ΩP ). (D.28)

Electric and magnetic fields. For linearized gravity, we could define electric and
magnetic fields analogous to Maxwell theory

Emn = −R0m0n, Bmn = 1
2 ϵnpq R pq

0m , m, n = 1, 2, 3 (D.29)

With (3.98), we can write them explicitly

Emn = 1
2(∂

2
0hmn − ∂0∂mh0n − ∂0∂nh0m + ∂n∂mh00), (D.30)

Bmn = −1
2ϵn

pq(∂p∂0hmq − ∂p∂mh0q). (D.31)

We may expand the electric and magnetic part asymptotically as

Emn = E+
mn(u,Ω)

r
+

∞∑
k=2

E+(k)
mn (u,Ω)

rk
, (D.32)

Bmn = B+
mn(u,Ω)

r
+

∞∑
k=2

B+(k)
mn (u,Ω)

rk
, (D.33)

Emn = E−
mn(v,Ω)

r
+

∞∑
k=2

E−(k)
mn (v,Ω)

rk
, (D.34)

Bmn = B−
mn(v,Ω)

r
+

∞∑
k=2

B−(k)
mn (v,Ω)

rk
. (D.35)
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Sending to null infinity, we obtain

E+
mn(u,Ω) = 1

2[Ḧ
+
mn(u,Ω) + nm(Ω)Ḧ+

0n(u,Ω) + nn(Ω)Ḧ+
0m(u,Ω) + nm(Ω)nn(Ω)Ḧ+

00(u,Ω)],
(D.36)

B+
mn(u,Ω) = 1

2ϵn
pq[np(Ω)Ḧ+

mq(u,Ω) + np(Ω)nm(Ω)Ḧ+
0q(u,Ω)] (D.37)

for I+, and

E−
mn(v,Ω) = 1

2[Ḧ
−
mn(v,Ω)− nm(Ω)Ḧ−

0n(v,Ω)− nn(Ω)Ḧ−
0m(v,Ω) + nm(Ω)nn(Ω)Ḧ−

00(v,Ω)],
(D.38)

B−
mn(v,Ω) = −1

2ϵn
pq[np(Ω)Ḧ−

mq(v,Ω)− np(Ω)nm(Ω)Ḧ−
0q(v,Ω)] (D.39)

for I−. Converting to Fourier space, one find

E+
mn(ω,Ω)=−1

2ω2[H+
mn(ω,Ω)+nm(Ω)H+

0n(ω,Ω)+nn(Ω)H+
0m(ω,Ω)+nm(Ω)nn(Ω)H+

00(ω,Ω)],

(D.40)

B+
mn(ω,Ω)=−1

2ω2ϵn
pq[np(Ω)H+

mq(ω,Ω)+np(Ω)nm(Ω)H+
0q(ω,Ω)], (D.41)

and

E−
mn(ω,Ω)=−1

2ω2[H−
mn(ω,Ω)−nm(Ω)H−

0n(ω,Ω)−nn(Ω)H0m(ω,Ω)+nm(Ω)nn(Ω)H−
00(ω,Ω)],

(D.42)

B−
mn(ω,Ω)= 1

2ω2ϵn
pq[np(Ω)H−

mq(ω,Ω)−np(Ω)nm(Ω)H−
0q(ω,Ω)]. (D.43)

Using the relation

ni(ΩP ) = −ni(Ω), (D.44)

we get the antipodal condition for electric and magnetic fields

E+
mn(ω,Ω) = −E−

mn(ω,ΩP ), B+
mn(ω,Ω) = −B−

mn(ω,ΩP ). (D.45)

As a matter of fact, we could discuss the antipodal matching conditions for linearized
Riemann tensor which is more general than electric and magnetic fields. We expand the
Riemann tensor asymptotically as

Rµνρσ =
R+

µνρσ(u,Ω)
r

+
∞∑

k=2

R
+(k)
µνρσ(u,Ω)

rk
, (D.46)

Rµνρσ =
R−

µνρσ(v,Ω)
r

+
∞∑

k=2

R
+(k)
µνρσ(v,Ω)

rk
. (D.47)
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At future/past null infinity, we find

R+
µνρσ(u,Ω) = 1

2
(
nρnνḦ+

ρσ(u,Ω)− nρnµḦ+
νσ(u,Ω)− nσnνḦ+

µρ(u,Ω) + nρnσḦ+
νρ(u,Ω)

)
,

(D.48)

R−
µνρσ(v,Ω) = 1

2
(
nρnνḦ−

ρσ(v,Ω)− nρnµḦ−
νσ(v,Ω)− nσnνḦ−

µρ(v,Ω) + nρnσḦ−
νρ(v,Ω)

)
.

(D.49)

In Fourier space, they are equivalent to

R+
µνρσ(ω,Ω)=−1

2ω2
(
nρnνH+

ρσ(ω,Ω)−nρnµH+
νσ(ω,Ω)−nσnνH+

µρ(ω,Ω)+nρnσH+
νρ(ω,Ω)

)
,

R−
µνρσ(ω,Ω)=−1

2ω2
(
nρnνH−

ρσ(ω,Ω)−nρnµH−
νσ(ω,Ω)−nσnνH−

µρ(ω,Ω)+nρnσH−
νρ(ω,Ω)

)
.

Consequently, we find the antipodal condition

R+
µνρσ(ω,Ω) = −R−

µνρσ(ω,ΩP ). (D.50)

D.2 Canonical quantization

In this subsection, we use mode expansion of quantized field to compute the fundamental
commutator of shear tensor in the transverse and traceless gauge. The result will be same
to the one in Bondi gauge.

Starting from (D.3), switching to retarded frame, and approaching future null infinity,
we find

hAB(t,x)=
∑

α

∫
d3k

(2π)3
1√
2ωk

r2Y i
AY j

B[ϵ
∗α
ij (k)bα,ke−iωt+ik·x+ϵα

ij(k)b
†
α,keiωt−ik·x]

= r

∫ ∞

0

dω√
4πω

∑
ℓm

[ci,j;ω,ℓ,mY i
AY j

BYℓ,m(Ω)e−iωu+c†i,j;ω,ℓ,mY i
AY j

BY ∗
ℓ,m(Ω)eiωu]+O(1),

(D.51)

where the boundary creation and annihilation operators are

ci,j;ω,ℓ,m = ω

(2π)3/2i

∫
dΩk

∑
α

ϵ∗α
ij (k)bα,kY ∗

ℓ,m(Ωk), (D.52)

c†i,j;ω,ℓ,m = iω

(2π)3/2

∫
dΩk

∑
α

ϵα
ij(k)b

†
α,kYℓ,m(Ωk). (D.53)

One can insert back the coefficient
√
32πG and read out the shear tensor

CAB(u,Ω)=
√
32πG

∫ ∞

0

dω√
4πω

∑
ℓm

[ci,j;ω,ℓ,mY i
AY j

BYℓ,m(Ω)e−iωu+c†i,j;ω,ℓ,mY i
AY j

BY ∗
ℓ,m(Ω)eiωu].

(D.54)

From the completeness relation, we find

[ci,j;ω,ℓ,m, ci′,j′;ω′,ℓ′,m′ ] = [c†i,j;ω,ℓ,m, c†i′,j′;ω′,ℓ′,m′ ] = 0, (D.55)

[ci,j;ω,ℓ,m, c†i′,j′;ω′,ℓ′,m,] =
1
2δ(ω − ω′)

∫
dΩ
(
η̄i,i′ η̄j,j′ − η̄i,j η̄i′,j′ + η̄i,j′ η̄i′,j

)
Y ∗

ℓ,m(Ω)Yℓ′,m′(Ω),

(D.56)
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where
η̄ij = δij − ninj = Y A

i (Ω)YjA(Ω). (D.57)

Thus we can obtain the following commutator

[CAB(u,Ω), CCD(u′,Ω′)] = 8πGiPACDBα(u − u′)δ(Ω− Ω′), (D.58)

as expected.

E Commutators

In this appendix, we will provide some details on the calculation of commutators among
flux operators. We will take [MY ,MZ ] as an example. To simplify computation, we start
from rewriting MY (without normal order written out due to its irrelevance to non-central
terms)

MY = 1
32πG

∫
dudΩY A(u,Ω)(ĊBC∇DCEF − CBC∇DĊEF )PABCDEF

= 1
32πG

∫
dudΩĊBC∆BC(Y ;C;u,Ω), (E.1)

where ∆BC(Y ;C;u,Ω) is given by (3.79). Then we can compute straightforwardly

[MY ,MZ ] =
1

32πG

∫
dudΩ[MY , ĊBC∆BC(Z;C;u,Ω)]

= −i

32πG

∫
dudΩ

[[
∆BC(Y ; Ċ;u,Ω)+1

2∆
BC(Ẏ ;C;u,Ω)

]
∆BC(Z;C;u,Ω)

+2ĊBCZA∇D∆EF (Y ;C;u,Ω)ρAEF DBC+ĊBC∇DZA∆EF (Y ;C;u,Ω)PAEF DBC

]
+ i

64πG

∫
dudΩdu′α(u′−u)ĊBC

×
[
2ρAEF DBCZA∇D∆EF (Ẏ ;C;u′,Ω)+PAEF DBC∇DZA∆EF (Ẏ ;C;u′,Ω)

]
.

(E.2)

Using the integration by part several times, we can obtain

[MY ,MZ ] =
−i

32πG

∫
dudΩ

[
∆EF (Y ; Ċ)∆EF (Z;C)−∆EF (Y ;C)∆EF (Z; Ċ)

]
+ i

64πG

∫
dudΩdu′α(u′ − u)∆EF (Ż;C;u,Ω)∆EF (Ẏ ;C;u′,Ω). (E.3)

The non-local term is precisely the previous NM (Y, Z), while for local terms, one can further
simplify to get

i

32πG

∫
dudΩĊEF

[
∆EF (Y ; ∆(Z;C))−∆EF (Z; ∆(Y ;C))

]
. (E.4)

To form the local operators, we need use an identity

∆EF (Y ;∆(Z;C))−∆EF (Z;∆(Y ;C))=∆EF ([Y,Z];C)+2o(Y,Z)CBCQEF BC , (E.5)
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whose proof demand some properties of higher rank tensor. The main ones are

2ρABCDEF P GIJHBC = γADP GIJH
EF , 2ρAIJDEF P GIJHBC = γADP GEF H

BC , (E.6)

PABCDEF P GIJHBC − P G
BC

H
EF PA

IJ
D

BC = 0, (E.7)

and

2QABCDQEF
IJ = γCBP DIJA

EF − γADP BIJC
EF . (E.8)

Now it is easy to find the local parts of [MY ,MZ ] can be written as
i

32πG

∫
dudΩĊEF [∆EF ([Y,Z];C)+2o(Y,Z)CIJQEF IJ

]
= iM[Y,Z]+2iOo(Y,Z). (E.9)

As for central charges, one need start from correlation functions of shear tensor, and we
will not show the details here.

For other commutators, we provide the key identities that may be used. The following
identity is useful for the calculation of [Tf ,MY ]

PABCDEF + ϵDAQEF BC − 1
4γADPBEF C = 0. (E.10)

To calculate [MY ,Og], one might make use of

2QBC
EF ρABCDGH = γADQGHEF , (E.11)

and

PABCD
EF QEF IJ − PAIJD

EF QEF BC = γADQBCIJ . (E.12)

The remaining commutators are relatively straightforward.

F Conserved current for duality transformation

The PF action is not invariant under duality transformation. Just like the electromagnetic
theory, we may construct a duality symmetric action

S[h, h̃] = 1
2(SPF[h] + SPF[h̃]). (F.1)

One can derive the equations of motion from this symmetric action. More importantly,
the action is invariant under duality transformation. To prove this, we note that the
infinitesimal duality transformation is

δϵhµν = ϵh̃µν , δϵh̃µν = −ϵhµν . (F.2)

Therefore, the variation of the symmetric action is

δϵS[h, h̃] =− 1
64πG

∫
d4xLµ1µ2···µ6∂µ1hµ2µ3δϵ∂µ4hµ5µ6−

1
64πG

∫
d4xLµ1µ2···µ6∂µ1 h̃µ2µ3δϵ∂µ4 h̃µ5µ6

=− ϵ

64πG

∫
d4xLµ1µ2···µ6∂µ1hµ2µ3∂µ4 h̃µ5µ6+

ϵ

64πG

∫
d4xLµ1µ2···µ6∂µ1 h̃µ2µ3∂µ4hµ5µ6

=0. (F.3)
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At the last step, we used the fact that the tensor Lµ1µ2···µ6 is invariant under the exchange
of indices

µ1µ2µ3 ↔ µ4µ5µ6. (F.4)

Now using the Noether’s theorem, the conserved current is

jµ
duality = 1

2
∂LPF(h)
∂(∂µhρσ)

δhρσ + 1
2

∂LPF(h̃)
∂(∂µh̃ρσ)

δh̃ρσ

= 1
64πG

Lµρσµ4µ5µ6(hρσ∂µ4 h̃µ5µ6 − h̃ρσ∂µ4hµ5µ6). (F.5)

At the first line, LPF(h) is the Lagrangian density

LPF(h) = − 1
64πG

Lµ1µ2···µ6∂µ1hµ2µ3∂µ4hµ5µ6 . (F.6)

At the second line, we have discarded the constant ϵ. One can use the equations of motion
to prove the conservation

∂µjµ
duality = 0. (F.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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