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Abstract: Superconformal indices of four-dimensional N = 1 gauge theories factorize into
holomorphic blocks. We interpret this as a modular property resulting from the combined
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1 Introduction

Indices and partition functions of two-dimensional (supersymmetric) CFTs are well-known
to possess modular properties. Within the context of string theory, such properties have
played a central role in the study of black holes. For example, modularity leads to an
asymptotic formula for the entropy of CFT states, the Cardy formula, which matches exactly
with the Bekenstein-Hawking entropy of an associated supersymmetric black hole [1, 2].
Various generalizations, including near-BPS and near-extremal black holes, typically still
involve this key ingredient. A closely related application is quantum gravitational physics
in AdS3. Here, modularity implies an expression for the elliptic genus as an average over
the modular group, which can be beautifully interpreted in terms of the gravitational path
integral [3, 4]. The latter is notoriously difficult to compute from first principles, which
reflects the power of modularity.

Recent work has revisited the study of supersymmetric black holes in AdSd>3 spaces
from the perspective of the dual CFT [5–9].1 In particular, various asymptotic limits of
the superconformal index have been shown to reproduce the Bekenstein-Hawking entropy
exactly, improving the earlier efforts of [11, 12].2 Because d is larger than three, one does not
expect to have modularity as an available tool. However, in the context of AdS5 black holes,
surprisingly, an SL(3,Z) modular-like property turns out to either feature explicitly in or
underlie the original works [7–9] and various follow-ups [23–42]. This property is associated
to the elliptic Γ function and was first proposed in a purely mathematical context [43]. For
concreteness, we state it here:

Γ(z; τ, σ) = e−iπQ(z;τ,σ)Γ
(

z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;

σ
τ ,−

1
τ

)
, (1.1)

1See [10] for a review and an extensive collection of early references.
2Further progress aimed at understanding the associated microstates can be found in [13–22].
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while leaving a detailed discussion to the main text. In the physical context, the elliptic Γ
function arises as the main building block of four-dimensional N = 1 gauge theory indices [44].
The relevance of the modular property to the asymptotics of the superconformal index was
emphasized in [9, 24, 41, 45–47].

The SL(3,Z) modular property of the elliptic Γ function has been previously invoked
in the physics literature. It made an early appearance in [48] in the context of anomaly
matching conditions for Seiberg dual theories. More relevant to the present work is the
physical interpretation of Nieri and Pasquetti [49]. Based on a factorization property of the
superconformal index of large class of N = 1 gauge theories [50, 51], the authors showed
that the superconformal lens indices IL(p,1) of those theories can be factorized into so-called
holomorphic blocks BS . Schematically:

IL(p,1) ∼=
∑

∥BS∥2fp
. (1.2)

They further proposed that the factorization reflects a Heegaard-like splitting of the
underlying geometry:

L(p, 1)× S1 ∼=
(
D2 × T 2

)
S

fp

⊔
(
D2 × T 2

)
S
. (1.3)

The holomorphic blocks are interpreted as partition functions on the
(
D2 × T 2)

S geometries.
These geometries are glued with an appropriate SL(3,Z) element combined with orientation
reversal, denoted by fp, which acts on T 3 = ∂D2×T 2. The subscript S indicates the action
of an element inside SL(2,Z)⋉ Z2, the group of large diffeomorphsims of D2 × T 2.3

A main ingredient in the proposal consists of a set of modular properties of the elliptic
Γ function. This includes (1.1), which features as a special case of (1.2): it reflects the
factorization of the S3 × S1 index of a free chiral multiplet. This provides a remarkable
physical interpretation of the modular property of the elliptic Γ function. In general, we
note that the factorization property (1.2) is rather distinct from the properties of ordinary
modular forms. Indeed, the property involves three functions that in general do not stand
on an identical footing, although for the chiral multiplet they do. Furthermore, there is a
combined action of SL(3,Z) and SL(2,Z)⋉ Z2, where the former relates the variables of
the holomorphic blocks while the latter is an overall transformation between the left and
right hand sides. For the original modular property in (1.1), the relevant SL(3,Z) element
exchanges τ and σ, while the SL(2,Z)⋉ Z2 transformation acts like an S-transformation
on the third argument of the Γ functions on the right hand side.

Recently, a proposal was made for the modular interpretation of the factorization
property in the inspiring work of Gadde [45]. Key to this insight is again the foundational
mathematical work [43]. There, it was already observed that the elliptic Γ function fits
into a 1-cocycle Xg for g ∈ G with G = SL(3,Z)× Z3, where the Z3 factor contains large
gauge transformations associated to a line bundle over T 3. Technically, Xg is an element of
H1(G, N/M), the first group cohomology of G valued in the space N/M of meromorphic
functions modulo phases, which satisfies a defining 1-cocycle condition:

Xg1g2(ρ) ∼= Xg1(ρ)Xg2(g−1
1 ρ) , (1.4)

3This observation is left unmentioned in previous works, but forms the basis of the present work.
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where ρ is shorthand notation for the moduli associated to the D2×T 2 geometries, on which
G acts. The equality in (1.4) holds up to multiplication by functions in M . This generalizes
the notion of a (weak) Jacobi form, such as the elliptic genus, which can be thought of as an
element of H0(J , N/M) for J = SL(2,Z)×Z2.4 In the physical context, (1.4) corresponds
to a property of the collection of (normalized) lens indices of a free chiral multiplet [45].
Gadde proposes an extension to general N = 1 gauge theories by constructing a “normalized
part of the lens index” Ẑα

g (ρ) with g ∈ G. Based on holomorphic block factorization of
the physical lens index, [45] argues that Ẑα

g (ρ) similarly satisfies a 1-cocycle condition. An
important part of the conjecture is that Ẑα

g (ρ) furnishes a non-trivial cohomology class
and that local trivializations, or “locally exact” expressions, are related to the holomorphic
block factorization.

The combined SL(3,Z) and SL(2,Z) ⋉ Z2 action in the factorization property (1.2)
can be understood from the 1-cocycle condition. In particular, for the case of the S3 × S1

index, one focuses on an order three element Y 3 = 1 in SL(3,Z), which, using the 1-cocycle
condition, implies the following equation for the normalized part of the index Ẑα

Y (ρ) [45]:

Ẑα
Y (ρ)Ẑα

Y (Y −1ρ)Ẑα
Y (Y −2ρ) = eiπP(ρ) , (1.5)

where P(ρ) turns out to capture the ’t Hooft anomalies of the theory. With some work,
this property can be translated into the factorization of the physical index.5

In a previous paper [47], we proposed a generalization of (1.5) to more general order
three elements and suggested an interpretation in terms of new factorization properties of
the index. In this work, we turn the logic around: we first present physical arguments for
a (modular) family of factorization properties of a given superconformal lens index. We
prove our proposal for the free chiral multiplet and SQED, and sketch how these arguments
can be extended to more general N = 1 gauge theories. The primary tool we use in the
proof consists of new modular properties of the elliptic Γ function that generalize (1.1) in
multiple directions. These properties are derived in appendix D without making use of the
fact that the elliptic Γ function is part of a 1-cocycle, as opposed to our previous work [47].
Assuming the validity of our proposal, we are able to provide a systematic and rigorous
proof of the 1-cocycle condition for Ẑα

g (ρ). In particular, our approach supplies a physical
interpretation of the fact that Ẑα

g (ρ) defines a non-trivial cohomology class. We now give a
more detailed summary of the remainder of this paper.

Summary. In section 2 we review the Heegaard-like splitting of (secondary) Hopf surfaces
with topology L(p, q)×S1, as represented in (1.3), including a mapping between the complex
structure moduli of the Hopf surface and the D2 × T 2 geometries. We emphasize certain
ambiguities in the Heegaard splitting of a Hopf surface. If a given Hopf surface admits a
Heegaard splitting in terms of some gluing transformation f(p,q)

L(p, q)× S1 ∼= D2 × T 2
f(p,q)
⊔ D2 × T 2 , (1.6)

4We review this mathematical framework in section 4.1.
5This connection is not obvious. Indeed, the three functions appearing in (1.5) appear on an equal footing,

whereas in the factorization property (1.2) this is not the case. We return to the translation between the
two in section 4.3.
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it also admits the Heegaard splittings:

L(p, q)× S1 ∼=
(
D2 × T 2

)
h

f ′
(p,q)
⊔

(
D2 × T 2

)
h̃
, (1.7)

with f ′(p,q) = hf(p,q)h̃
−1 and h, h̃ ∈ H ≡ SL(2,Z)⋉ Z2, the large diffeomorphism group of

D2 × T 2. The subscripts indicate the action of these elements on the respective moduli of
the D2 × T 2 geometries, generalizing (1.3) to arbitrary large diffeomorphisms in H.

In section 3.1, we tentatively propose a generalization of the factorization property (1.2)
to reflect the ambiguities in the Heegaard splitting. Schematically:

IL(p,q) ∼=
∑

∥Bh∥2f ′
(p,q)

. (1.8)

We stress that the left hand side is independent of (h, h̃): any two Heegaard splittings with
gluing transformations f and f ′ = hfh̃−1 lead to the same Hopf surface, and therefore
each factorization to the same compact space index. We continue in section 3.2 with a
comprehensive review of the original holomorphic block factorization of lens indices, as
written in (1.2). In the process, we promote an observation of [49] to a consistency condition:
the lens index should not depend on the boundary conditions imposed to compute an
individual holomorphic block. This condition constrains the proposal (1.8), as we will show
in section 3.3. In particular, we find that only certain pairs of large diffeomorphisms (h, h̃)
are compatible with the condition, which depend on f . This subset of large diffeomorphisms,
which we denote by Sf ⊂ H ×H, can be parametrized in terms of modular (congruence
sub)groups. This motivates our conjecture for the modular factorization of lens indices
in section 3.4. For example, we find that the L(p,±1)× S1 indices for any p ≥ 0 can be
factorized respectively in terms of two SL(2,Z) families of holomorphic blocks.6

In section 3.5, we discuss a geometric interpretation of the compatible diffeomorphisms
(h, h̃) ∈ Sf . We find that they parametrize all the ways in which the “time circle” inside a
given Hopf surface can be embedded into the D2 × T 2 geometries of the Heegaard splitting,
such that the associated gluing transformation fixes this cycle. Such an embedding is
indeed labeled by two large diffeomorphisms (h, h̃) ∈ H × H and the associated gluing
transformation is given by f ′ = hfh̃−1, as in (1.7). The condition effectively solves h̃
in terms of h (or vice versa) and leads precisely to the modular subset Sf ⊂ H × H.7
At the level of a lens index, we thus conclude that its factorization is only compatible
with those pairs of holomorphic blocks which are defined with respect to a common time
circle. All in all, this provides the geometric rationale for the modular factorization of
four-dimensional indices. Note that the origin of the modular structure is rather distinct
from the SL(2,Z) modularity of 2d torus partition functions, and in particular relies on
holomorphic block factorization.

For a given lens index, we have so far described the set of compatible holomorphic
blocks. It will also be of interest to instead fix a pair of holomorphic blocks and consider

6As is common, one defines L(0, ±1) ∼= S2 × S1.
7In the most general case, h itself cannot be entirely arbitrary in H, but sits in a congruence subgroup.

We will describe this in detail in section 3.3.
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the set of indices which can be factorized in terms of them. As a consequence of the above,
the relevant indices are labeled by a subset of gluing transformations, namely those which
fix the time circle. This subset of SL(3,Z) is large enough to glue (secondary) Hopf surfaces
of arbitrary topology. The chosen holomorphic blocks provide the unique pair in terms
of which all lens indices associated to the subset can be factorized. To factorize indices
associated to other subsets of SL(3,Z), one requires an alternative pair of holomorphic
blocks. Hence, we obtain a patchwise picture for the holomorphic block factorization of lens
indices: the lens index associated to any element in SL(3,Z) can be factorized in terms of
some pair of holomorphic blocks, but not all elements can be factorized in terms of the same
blocks. The maximal patch inside SL(3,Z) that can be factorized in terms of a common
pair of holomorphic blocks is in bijection with SL(2,Z)⋉ Z2.

Finally, in section 3.6 we show remarkable agreement between our physical arguments
and a family of modular properties obeyed by the elliptic Γ function, which vastly general-
ize (1.1). For example, the generalization relevant for the superconformal index of a free
chiral reads:

Γ(z;τ,σ)= e−iπQm(z;τ,σ)Γ
(

z
mσ+n ;

τ−ñ(kσ+l)
mσ+n , kσ+l

mσ+n

)
Γ
(

z
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ

)
, (1.9)

and may be compared to (1.1). A detailed derivation of the modular properties, includ-
ing (1.9), is contained in appendix D.8 These properties form the basis for a proof of
modular factorization in the context of the free chiral multiplet and SQED. We also point
out how these proofs can be extended to more general N = 1 gauge theories.

In section 4, we review relevant aspects of group cohomology. We then show how the
modular factorization of lens indices can be used to systematically prove that Ẑα

g (ρ) satisfies
a 1-cocycle condition for G such as in (1.4). The strategy of the proof follows the original
mathematical work [43], which can be viewed as a proof for the example of the free chiral
multiplet. We also show that Ẑα

g (ρ) defines a non-trivial cohomology class. This will follow
from the connection between holomorphic block factorization and locally exact expressions
for Ẑα

g (ρ), mentioned before, and the fact that a given set of holomorphic blocks can only
be used to factorize a strict subset of SL(3,Z) of the form SL(2,Z)⋉Z2. Finally, we return
to the perspective of our previous work [47], showing how the modular factorization can
also be obtained from relations in SL(3,Z) that generalize Y 3 = 1 referred to above.

In section 5, we turn to an application of the 1-cocycle condition: a concrete formula
for the L(p, q)× S1 index for q > 1. Up until now, such a formula has been absent in the
literature. We test our formula in context of the free chiral multiplet by subjecting it to
various consistency checks. Finally, we end the paper in section 6 with a discussion of
future directions, including implications for supersymmetric AdS5 black holes and modular
properties of indices.

In appendix A, we collect the definitions and properties of special functions appearing
in the main text. In appendix B, we review of secondary Hopf surfaces with topology
L(p, q)× S1 and their Heegaard splitting. In appendix C, we collect the contour integral
expressions of lens indices for general gauge theories. In appendix D, we derive various

8A subset of these results appears implicitly in [52, Theorem 3.8].
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G gluing group: SL(3,Z)⋉ Z3r (2.23)
H large diffeomorphisms of D2 × T 2: SL(2,Z)13 ⋉ Z2 (2.11)
H H with large gauge symmetries: SL(2,Z)13 ⋉ Z2(r+1) (2.26)
f gluing element f = gO with g ∈ G and O orientation reversal (2.8)
Sf set of compatible (h, h̃) for a given f (3.83)
F subgroup of G that fixes time circle: SL(2,Z)12 ⋉ Z2 (3.108)
Fh h−1FOhO with h ∈ H (3.118)

M(p,q)(ρ̂) Hopf surface of topology L(p, q)× S1 (2.16)
ρ̂ moduli of the Hopf surface (2.17)

Mf (ρ, ρ̃) Heegaard splitting of Hopf surface (2.27)
ρ (z⃗; τ, σ), moduli of left D2 × T 2 geometry (2.22)
ρ̃ (⃗̃z; τ̃ , σ̃), moduli of right D2 × T 2 geometry (2.28)

I(p,q)(ρ̂) supersymmetric partition function on M(p,q)(ρ̂) (3.1)
Zf (ρ) I(p,q)(ρ̂) with Heegaard splitting Mf (ρ, ρ̃) (3.2)
Zα

f (ρ) contribution to Zf (ρ) at Higgs branch vacuum α (3.7)
Zf (ρ) free chiral multiplet partition function (3.25)
Ẑα

g (ρ) normalized part index at vacuum α (4.21)
Bα(ρ) partition function on D2 × T 2(ρ) at vacuum α above (3.13)
Bα

h (ρ) Bα(hρ) with h ∈ H (3.6)
Cα(ρ) partition function on D2 × T 2(ρ) at vacuum α

with opposite b.c. from Bα(ρ) above (3.13)

Table 1. Summary of notation, with equations in which they are first defined.

modular properties of the elliptic Γ function. For the reader’s convenience, table 1 supplies
a glossary of notation.

2 Heegaard splitting of L(p, q) × S1

In this section, we review the Heegaard splitting of lens spaces L(p, q) and discuss the
generalization to (secondary) Hopf surfaces of topology L(p, q) × S1. We end with a
discussion of ambiguities in the Heegaard splitting of a Hopf surface, which will play a
central role in the remainder of this paper.

2.1 Topological aspects

The Heegaard splitting of a general smooth three-manifold M3 is the statement that M3 is
obtained from the gluing of two genus g handlebodies Hg and H ′

g:9

M3 ∼= Hg

f
⊔H ′

g , (2.1)

where the boundary Σg = ∂Hg is identified with Σ′
g = ∂H ′

g up to the action of an orientation
reversing diffeomorphism f . We will be interested in the lens space L(p, q), which can be

9See chapter 1 of [53] for a pedagogical review.
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µ

λ

µ̃

λ̃

f

(a) Heegaard splitting of L(p, q).

λ′

µ

λ

λ̃′

µ̃

λ̃

f

(b) Heegaard splitting L(p, q) × S1.

Figure 1. On the left, we depict two solid tori D2 × S1 with their cycles identified by f = gO
with g ∈ SL(2,Z) as in (2.3). Similarly, on the right we depict D2 × T 2 geometries with their cycles
identified by f = gO with g ∈ SL(3,Z) as in (2.8).

defined as a quotient of the three-sphere S3 viewed as a subset of C2:10

(z1, z2) ∼
(
e

2πiq
p z1, e

− 2πi
p z2

)
⇐⇒ (z1, z2) ∼

(
e

2πi
p z1, e

− 2πis
p z2

)
, (2.2)

with gcd(p, q) = 1. For later convenience, we have introduced an equivalent description in
terms of s = q−1 mod p. Both q and s are defined mod p. We note that L(1, 0) = S3 and
the fundamental group π1(L(p, q)) = Zp.

Every lens space admits a genus 1 Heegaard splitting [53]. The relevant (large)
diffeomorphisms f are classified by SL(2,Z), the mapping class group of T 2, and in the
following we consider f to be an element of SL(2,Z) combined with orientation reversal.
Let us denote the non-contractible and contractible cycles on either H1 = D2×S1 by (λ, µ)
and (λ̃, µ̃), respectively. The gluing transformation f identifies these cycles as:(

µ λ
)
=
(
µ̃ λ̃

)
f−1 , (2.3)

where for L(p, q) the transformation f is given by:

f = gO , g =
(
−s −r
−p −q

)
, O =

(
−1 0
0 1

)
, qs− pr = 1 . (2.4)

This description realizes L(p, q) as a torus fibration over an interval with a (1, 0) cycle
shrinking on one endpoint and a (q, p) cycle on the other (see appendix B.4). The slightly
awkward convention for the entries of g will facilitate comparison with the literature on
indices. See figure 1a for an illustration. When g is the identity matrix, the manifold is
S2 × S1, denoted as L(0,−1).

Clearly, the description of the lens space in terms of f is redundant when compared
to the quotient definition (2.2). These redundancies can be fixed with symmetries of the

10The minus sign in the phase is conventional in the physics literature [54–57]. It reflects the standard
choice of supercharge used to define the associated lens index (see appendix C).
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Heegaard splitting. For example, two lens spaces are diffeomorphic if their Heegaard
splittings are related through:

f ′ = f−1 or f ′ = ±OfO . (2.5)

The first transformation exchanges q ↔ s, while the second maps q → −q and s → −s.
In addition, consider the group of large diffeomorphisms of a solid torus. This is the
subgroup of SL(2,Z) that preserves the contractible cycle µ. It is usually denoted by Γ∞
and corresponds to the integer shifts λ→ λ+kµ. The action on either solid torus should not
change the topology, so that the manifolds associated to f and f ′ are diffeomorphic when:

f ′ = γfγ̃−1 , γ, γ̃ ∈ Γ∞ . (2.6)

These are generated by (q, r) → (q+ p, r+ s) and (s, r) → (s+ p, r+ q). Taken together, we
see that f modulo the ambiguities implies that L(p1, q1) and L(p2, q2) are diffeomorphic if:

p1 = p2 , q1 = ±q±1
2 mod p1 , (2.7)

as consistent with the quotient definition. It turns out that this is also a necessary
condition [58].

Let us now proceed with the four-manifolds L(p, q)×S1. In this case, the Heegaard-like
splitting glues two D2 × T 2 geometries along their boundary T 3 (see figure 1b). In general,
the gluing map takes its value in SL(3,Z), and the Heegaard splitting is defined through
the identification:

(
λ′ µ λ

)
=
(
λ̃′ µ̃ λ̃

)
f−1 , f = gO , g ∈ SL(3,Z) , O =

1 0 0
0 −1 0
0 0 1

 , (2.8)

where µ and µ̃ indicate the contractible cycles. To understand how a general SL(3,Z)
transformation realizes L(p, q)× S1, let us first describe the group SL(3,Z) in some detail.
This group is generated by the elementary matrices {Tij} with 1 ≤ i ̸= j ≤ 3, which are
defined as 3× 3 matrices that differ from the identity matrix by the entry 1 at the position
ij. These obey the following relations:

TijTkl = TklTij (i ̸= l, j ̸= k) , TijTjk = TikTjkTij , (TijT
−1
ji Tij)4 = 1 . (2.9)

Note that there are three obvious SL(2,Z) subgroups in SL(3,Z):

SL(2,Z)ij ≡ ⟨Tij , Sij⟩ , Sij ≡ TijT
−1
ji Tij , (2.10)

where we take j > i and Sij and Tij correspond to the usual S and T generators. Similar to
the three-dimensional case, the large diffeomorphisms of D2 × T 2 consist of those SL(3,Z)
transformations that fix µ [45]. Explicitly, they are given by:

H ≡ SL(2,Z)13 ⋉ Z2 , with Z2 = ⟨T21 , T23⟩ . (2.11)
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A general element inside H has the property that its 12 and 32 entries vanish, and its 22
entry is equal to 1:

h =

∗ 0 ∗
∗ 1 ∗
∗ 0 ∗

 for h ∈ H ⊂ SL(3,Z) . (2.12)

This subgroup will play an important role in this paper.
Similar to the three-dimensional case, the manifolds associated to f and f ′ are diffeo-

morphic if they are related by any of the following relations:

f ′ = hfh̃−1 , f ′ = f−1 = Og−1 , f ′ = Of−1O = g−1O , (2.13)

where h, h̃ ∈ H and the last transformation combines inversion with conjugation by O. We
can use the first relation to show that the gluing of two D2 × T 2 geometries with f ′ = g′O
for general g′ ∈ SL(3,Z) produces a manifold diffeomorphic to L(p, q)× S1 for some (p, q).
In particular, one can always find h, h̃ ∈ H for some (p, q) such that:

f ′ = hfh̃−1 , f = g(p,q)O , g(p,q) ≡

1 0 0
0 −s −r
0 −p −q

 ∈ SL(2,Z)23 . (2.14)

In other words, this means that there always exists a basis on the D2 × T 2 geometries such
that the gluing leaves invariant a non-contractible cycle. From the preceding discussion we
know that such a gluing produces a geometry with topology L(p, q)× S1, where we note
that g(p,q) by itself still redundantly encodes L(p, q).

2.2 Hopf surfaces

In this section, we summarize how manifolds with topology L(p, q)× S1 and D2 × T 2 can
be endowed with complex structure moduli and subsequently extend the Heegaard splitting
to include a mapping of the moduli. We refer to appendix B for a more detailed discussion.

A primary Hopf surface is a complex manifold with topology S3 × S1. It is defined as
a quotient of C2 \ {(0, 0)} by the Z-action:

(z1, z2) ∼ (p̂z1, q̂z2) , 0 < |p̂| ≤ |q̂| < 1 , (2.15)

with p̂ = e2πiσ̂ and q̂ = e2πiτ̂ representing the complex structure moduli.11 A secondary
Hopf surface is defined as the lens quotient (2.2) of a primary Hopf surface. As such, it has
topology L(p, q)× S1. We will denote these complex manifolds uniformly by:

M(p,q)(ρ̂) , (2.16)

where the primary Hopf surface has (p, q) = (1, 0) and we denote the moduli by:

ρ̂ ≡ (ẑa; τ̂ , σ̂) . (2.17)
11The complex parameters p̂ and q̂ are not to be confused with the integers p and q defining the lens

space L(p, q).
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x1 x2 x3

Figure 2. Schematic depiction of D2 ×T 2 with the contractible cycle shaded. Its complex structure
moduli (τ, σ) are represented by the homogeneous moduli xi.

The (real) holonomies ẑ1,...,r along S1 parametrize a rank r vector bundle over the Hopf sur-
face associated to a rank r global symmetry. With respect to ρ̂, the following transformations
yield an identical Hopf surface:

ẑa → ẑa + 1 , τ̂ → τ̂ + 1 , σ̂ → σ̂ + 1 ,
τ̂ → τ̂ − 1

p and σ̂ → σ̂ + q
p ,

τ̂ → τ̂ − s
p and σ̂ → σ̂ + 1

p ,

(2.18)

where we recall that s = q−1 mod p. The Hopf surface is also invariant under:

q → q + p , s→ s+ p , (2.19)

and finally:
τ̂ ↔ σ̂ and q ↔ s , (2.20)

both of which follow from the lens quotient in (2.2). Similar to the previous section, we
also define:

M(0,−1)(ρ̂) ∼= S2 × T 2 . (2.21)
In this case, σ̂ can be interpreted as the modular parameter of the T 2, while τ̂ captures
twists of S2 as one-cycles along either of the T 2 cycles (see appendix B.2). In addition, ẑa

can be viewed as a complex holonomy, capturing two real holonomies along both cycles of
the T 2. In this case, the group of large diffeomorphisms and gauge transformations is given
by H = SL(2,Z)⋉ Z2(1+r) [59]. We will describe its action on ρ̂ momentarily.

Finally, the D2 × T 2 geometry can be endowed with complex structure moduli and
holonomies in exactly the same way as M(0,−1)(ρ̂) [60]. To distinguish from the closed
manifolds, we denote these moduli by:

ρ ≡ (za; τ, σ) =
(
Za

x1
; x2
x1
,
x3
x1

)
, (2.22)

where the second equality substitutes the projective moduli (z⃗; τ, σ) in terms of homogeneous
moduli (Z⃗;x1, x2, x3). The xi can be thought of as complexifications of the cycle lengths of
T 3; we associate x2 to the contractible cycle [43, 45]. See figure 2.

In order to write the Heegaard splitting of a Hopf surface, we must first define the
action of the gluing transformation on the moduli ρ. The full gluing group consists of both
the large diffeomorphisms and gauge transformations of (the rank r vector bundle over)
T 3 [45]. This group is given by:

G ≡ SL(3,Z)⋉ Z3r . (2.23)

The subgroup SL(3,Z) ⊂ G acts on ρ by left matrix multiplication12 on the vector x =
12This contrasts with the action of SL(3,Z) on the cycles by right multiplication, cf. (2.8).
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(x1, x2, x3), and the t(a)i generators of each Z3 factor shift Za by xi [43, 45]:

g ∈ SL(3,Z) : x 7→ g · x ,

t
(a)
i ∈ Z3

a : Za 7→ Za + xi .
(2.24)

For completeness, we collect the mixed relations satisfied by Tij and t
(a)
i here, suppressing

a, which together with (2.9) fully specifies the relations in the group G:

Tijtk = tkTij , (i ̸= k) , Tijti = tit
−1
j Tij , titj = tjti . (2.25)

The subgroup of large diffeomorphisms and gauge transformations of D2 × T 2 is denoted
by H and takes the form:

H = SL(2,Z)13 ⋉ Z2(1+r) , Z2(1+r) = ⟨T21, T23, t(a)1 , t
(a)
3 ⟩ , (2.26)

which contains H, the group of large diffeomorphisms, defined in section 2.1. The action of
H on ρ is obtained from (2.24) by viewing H ⊂ G. This group also acts on M(0,−1)(ρ̂) ∼=
S2 × T 2, as mentioned above, and its action on the moduli ρ̂ is identical to the action on ρ.

We can now state the Heegaard splitting of a general Hopf surface:

M(p,q)(ρ̂) ∼=Mf (ρ, ρ̃) ≡ D2 × T 2(ρ)
f
⊔D2 × T 2(ρ̃) , (2.27)

where f = g(p,q)O with g(p,q) ∈ SL(2,Z)23 as in (2.14), as derived in appendix B.13 In
addition, ρ and ρ̃ capture the moduli of the two D2 × T 2 geometries and are related via
the gluing condition:

ρ̃ = f−1ρ . (2.28)

Finally, the moduli of the Hopf surface ρ̂ are related to ρ as follows:

ρ = (za; τ, σ) =

(ẑa; τ̂ , σ̂) , for p = r = 0 , q = s = −1 ,
(ẑa; τ̂ + sσ̂, pσ̂) , for p ̸= 0 .

(2.29)

Matching the holonomies requires us to set the imaginary part of za to zero. For later
convenience, we note that the gluing condition implies:

ρ̃ = (z̃a; τ̃ , σ̃) =

(ẑa;−τ̂ , σ̂) , for p = r = 0 , q = s = −1 ,
(ẑa; σ̂ + qτ̂ , pτ̂) , for p ̸= 0 .

(2.30)

2.3 Ambiguities in the Heegaard splitting

As we have seen in section 2.1, the gluing transformation f encodes the topology of
L(p, q)× S1 redundantly. This leads to ambiguities in the Heegaard splitting. For the Hopf
surfaces, these ambiguities arise when combining the action f → f ′ with an action on the
moduli (ρ, ρ̃) such that the gluing condition is preserved:

f ′ = hfh̃−1 , (ρ′, ρ̃′) = (hρ, h̃ρ̃) , h, h̃ ∈ H ,

or f ′ = f−1 , (ρ′, ρ̃′) = (ρ̃,ρ) ,
or f ′ = Of−1O , (ρ′, ρ̃′) = (Oρ̃,Oρ) ,

(2.31)

13We turn to the Heegaard splitting of a Hopf surface for g ∈ G general in section 2.3.
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ρ ρ̃
S23O

x1

x2

x3

x1

x3

x2

(a) MS23O(ρ, ρ̃).

S13ρ S13ρ̃
S−1
12 O

x3

x2

−x1

x2

x3

−x1

(b) M
S−1

12 O(S13ρ, S13ρ̃).

Figure 3. Illustration of (2.32) for the example ρ̃ = OS−1
23 ρ and h = h̃ = S13. We have written

the homogeneous moduli inside the relevant cycles of the D2 × T 2 geometries as in figure 2. The
arrows indicate the identification of cycles. Clearly, both Heegaard splittings represent the same
Hopf surface M(1,0)(ρ̂) with ρ = ρ̂.

where the action of h on ρ is defined by (2.24). It follows that a Hopf surface with Heegaard
splitting Mf (ρ, ρ̃), as defined in (2.27), also admits a Heegaard splitting for any of these
transformations:

M(p,q)(ρ̂) ∼=Mf ′(ρ′, ρ̃′) . (2.32)

Here, ρ′ is understood to be a function of ρ, which in turn is related to ρ̂ as in (2.29). This
makes our claim (1.6) in the introduction explicit. For illustration, we present an example in
figure 3 for h = h̃ = S13 and f = S23O. As a consequence of (2.14), the expressions (2.32)
relate the Hopf surfaces that were associated in section 2.2 to g(p,q) ∈ SL(2,Z)23 ⊂ SL(3,Z)
to any g′ ∈ SL(3,Z).

We stress that in general one should view the combined action (2.31) as distinct from
a large diffeomorphism, such as the SL(2,Z) action on the complex structure of a two-torus.
Indeed, the large diffeomorphisms (and gauge transformations) of a general Hopf surface
certainly do not include H×H. Instead, the action reflects ambiguities in the Heegaard
splitting of the Hopf surface.

In establishing (2.32), we have assumed that ρ̂ does not transform under the transfor-
mations (2.31). We now show that the symmetries of a Hopf surface M(p,q)(ρ̂), namely
the transformation (2.18) on ρ̂, the transformation (2.19) on (p, q), and the transforma-
tion (2.20) on ρ̂ and (p, q), can also be incorporated by a subset of transformations (2.31).
Namely, we want to show that:

M(p,q)(ρ̂) ∼= M(p,q′)(ρ̂′) ∼=Mf ′(ρ′, ρ̃′) , (2.33)
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where M(p,q′)(ρ̂′) is related to M(p,q)(ρ̂) by any of the above symmetries, and (ρ′, ρ̃′) are
related to ρ̂′ in the same way as (ρ, ρ̃) are related to ρ̂, as in (2.29).

For example, the first relation in (2.31) with h, h̃ ∈ ⟨T21, T31⟩ can be used to derive the
shift symmetries in (2.18). To see this, we first observe that:

T21 f T
−q
21 T

−p
31 = f , T−s

21 T
−p
31 f T21 = f ,

T31 f T
r
21T

s
31 = f , T r

21T
q
31 f T31 = f ,

(2.34)

with f = g(p,q)O as in (2.14). Since f is invariant, we need only consider the action on
the moduli (ρ, ρ̃). Using the relation with ρ̂ one easily checks that the action on (ρ, ρ̃)
is equivalent to the shift symmetries, establishing the claim. In addition, acting with
h = h̃ = t

(a)
1 also leaves f invariant; this corresponds to the symmetry of the Hopf surface

(plus vector bundle) under ẑa → ẑa + 1.
Similarly, the equivalence in (2.20) is the statement that:

M(p,q)(ẑi; τ̂ , σ̂) ∼= M(p,s)(ẑi; σ̂, τ̂) . (2.35)

This is reproduced by the inversion on the second line of (2.31). Finally, the fact that
the Hopf surface only depends on q, smod p follows from the first line of the combined
action (2.31), now taking h = T23 or h̃ = T23. These actions change f by the shifts
(s, r) → (s+ p, r + q) and (q, r) → (q + p, r + s), respectively. On the moduli ρ and ρ̃, they
correspond to the shifts τ → τ + σ and τ̃ → τ̃ + σ̃, respectively. From (2.29) and (2.30), it
follows that the combined action leaves ρ̂ invariant, and the claim follows.

Let us end with the special case f = O, corresponding to the Hopf surface M(0,−1)(ρ̂)
with topology S2 × T 2. Consider the first relation in (2.31) for h̃ = OhO:

O → hOh̃−1 = O . (2.36)

This action leads to the statement that:

MO(hρ,Ohρ) =MO(ρ,Oρ) . (2.37)

Given the fact that in this case ρ = ρ̂, we see that this specialization of the combined
action reduces to the statement that H is the group of large diffeomorphisms and gauge
transformations of M(0,−1)(ρ̂), which is indeed correct.

3 Modular factorization of lens indices

In this section, we consider supersymmetric partition functions on secondary Hopf surfaces,
also known as lens indices. We give a comprehensive review of the holomorphic block
factorization of lens indices, which is the statement that lens indices respect the Heegaard
splitting of a Hopf surface. We then argue that (a subset of) the ambiguities discussed in
section 2.3 lead to a modular family of holomorphic blocks into which a given lens index
can be factorized. After providing a geometric interpretation of the modular subset, we
proceed to prove the conjecture in the context of concrete N = 1 gauge theories. The proof
relies in particular on modular properties of the elliptic Γ function derived in appendix D.
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3.1 Towards a conjecture

It was shown in [57] (based on [61, 62]) that N = 1 theories with a U(1)R symmetry can
be formulated on the Hopf surfaces M(p,q)(ρ̂) for general values of the complex structure
moduli while preserving two real supercharges.14 An additional requirement is that the
R-charges of the fields are quantized as integers for the case p = 0 and q = −1, i.e., S2×T 2,
and as integer multiples of 2

q−1 for q > 1.
The supersymmetric background allows a computation of the supersymmetric partition

function on M(p,q)(ρ̂), which equals the associated index, i.e., a weighted trace over the
Hilbert space of the theory on L(p, q) [57, 63, 64].15 The fugacities appearing in the index
can be mapped to both the complex structure moduli of the Hopf surface and the holonomies
for background gauge fields associated to global symmetries.

It was argued in [57, 63] that such partition functions depend holomorphically on the
complex structure moduli and holonomies, while being insensitive to other details of the
background. This was confirmed in [59, 64, 67] through explicit localization computations.
In the following, we will always consider the formulation of the partition functions as
indices, ignoring the prefactor associated with the supersymmetric Casimir energy. We thus
collectively refer to the partition functions on secondary Hopf surfaces as lens indices and
denote them by:

I(p,q)(ρ̂) , (3.1)

where the notation reflects the holomorphic dependence on the complexified moduli ρ̂. Since
we are interested in the full collection of lens indices, we will assume that the R-charges are
quantized as even integers. As explained in [45], this can be achieved through an appropriate
shift of the R-symmetry by a flavor symmetry. The resulting R-symmetry typically does
not coincide with the superconformal R-symmetry of the IR N = 1 SCFT, and therefore
the indices are parametrized in a non-standard way.16

Let us now introduce an alternative notation for the lens index that reflects the Heegaard
splitting Mf (ρ, ρ̃), as defined in (2.27), of the underlying Hopf surface:17

Zf (ρ) ≡ I(p,q)(ρ̂) , (3.2)

where f = g(p,q)O with g(p,q) ∈ SL(2,Z)23 as in (2.14), and ρ is related to ρ̂ through (2.29).
Because of the gluing condition, we write Zf as a function of ρ only. As examples of the
notation, ZS23O(ρ) corresponds to the superconformal index, ZO(ρ) corresponds to the
index on S2 × T 2, and Zg(p,1) O(ρ) corresponds to the index on L(p, 1)× S1. These indices
are defined in appendix C in terms of ρ̂.

14The same result holds for the D2 × T 2(ρ) geometry [60].
15We define these indices for general N = 1 gauge theories in appendix C. The equality between the localized

partition function and the index holds up to a proportionality factor associated with the supersymmetric
Casimir energy [64–66].

16The Bethe Ansatz computation of the superconformal index also employs a shifted R-symmetry such
that the R-charges are quantized as integers [9, 68].

17In general, we should also include an Fayet-Iliopoulos parameter ξ to ρ. We suppress this parameter in
most of the discussion and comment on its role and transformation under a large diffeomorphism in the
example of SQED.
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Consider now two distinct Heegaard splittings Mf (ρ, ρ̃) and Mf ′(ρ′, ρ̃′) of a Hopf
surface, where f ′ is related to f via the orientation preserving transformations in (2.31):

f ′ = hfh̃−1 , ρ′ = hρ or f ′ = f−1 , ρ′ = ρ̃ = f−1ρ . (3.3)

Note that the first transformation implies ρ̃′ ≡ (f ′)−1ρ′ = h̃ρ̃ as recorded in the first line
of (2.31), while the second transformation similarly implies ρ̃′ ≡ (f ′)−1ρ′ = ρ as recorded
in the second line of (2.31). By definition of Zf (ρ), we have for either transformation:18

Zf ′(ρ′) = Zf (ρ) (3.4)

since the Hopf surface itself has not changed. As already mentioned in section 1, lens indices
of certain N = 1 gauge theories have a factorization property that reflects the Heegaard
splitting of the Hopf surface. Postponing a detailed review to section 3.2, we here note that
while the second transformation in (3.3) is trivially satisfied in factorized form, the first
transformation predicts:

Zhfh̃−1(hρ) = eiπP ′ ∑Bh(ρ)Bh̃(f
−1ρ) = eiπP ∑B(ρ)B(f−1ρ) = Zf (ρ) , (3.5)

where we plugged in (3.4) with the (schematic) factorized form of the indices alluded to in
section 1. The functions B(ρ) and Bh(ρ) represent the (supersymmetric) partition functions
on D2 × T 2 with moduli ρ and hρ respectively (see section 2.2), and are thus related:

Bh(ρ) ≡ B(hρ) . (3.6)

We also included the phases P and P ′ in the factorization, which in general depend non-
trivially on ρ and will be derived explicitly later on. Given the fact that the action of
h, h̃ ∈ H on ρ, ρ̃ is modular, the prediction (3.5) in factorized form has the flavor of a
modular covariance. However, let us stress some important distinctions. First of all, the
functions B by themselves are not (weight 0) automorphic forms under H: B(hρ) ≇ B(ρ)
for general h ∈ H, even though H represents the group of large diffeomorphisms and gauge
transformations of D2×T 2.19 It follows that the covariance relies on the product. But even
the product cannot be identified with an ordinary modular object, since the covariance
is with respect to a combined action, acting on both ρ and f (cf. (3.3)). In other words,
our proposed covariance does not reflect large diffeomorphisms of an underlying manifold,
as familiar from the T 2 partition function of CFT2’s.20 Instead, it reflects ambiguities
in the Heegaard spitting of a Hopf surface and is non-trivial only at the level of the
factorized expressions.

In the following sections, we subject this proposal to physical consistency conditions.
This will result in a refined proposal, discussed in section 3.4, for which we will provide
evidence in section 3.6. In particular, we will see that (3.5) does not hold for general pairs

18The behaviour under the orientation reversing transformation in (2.31) is more complicated, and we
return to it in section 4.2.

19Modular properties of holomorphic blocks in three dimensions are also more subtle than those of ordinary
modular forms [69].

20Indeed, the large diffeomorphisms of a general Hopf surface certainly do not include H.
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h, h̃ ∈ H. The subset of allowed pairs (h, h̃) still forms an interesting modular subset of
H × H, whose geometric interpretation we discuss in section 3.5. The fact that only a
subset of H × H is compatible with the factorization of a given index is closely related
to the conjecture of [45], which proposes that the normalized parts of lens indices form a
non-trivial cohomology class in H1(G, N/M), as we will show in detail in section 4.

3.2 Review of holomorphic block factorization

In this section we review in detail the factorization of lens indices into holomorphic blocks,
as anticipated in (1.2) and (3.5), based on [49, 60]. We first focus on structural properties of
the formulae for generic theories, and illustrate the claims in section 3.2.1 and section 3.2.2
with the example of a free chiral multiplet and SQED, respectively.

For three-dimensional gauge theories, factorization properties of supersymmetric parti-
tion functions on S2 × S1, S3 and L(p, 1) were first established and studied in [70–73]. The
result was obtained through manipulation of a Coulomb branch formula for the partition
functions, which takes the form of an integral over gauge holonomies associated to the
Cartan torus of the gauge group. In these works, it was also argued that the factors, dubbed
holomorphic blocks in [71], could be understood in terms of supersymmetric partition
functions on the solid tori associated to the Heegaard splitting of the three-manifold.

A more direct, path integral derivation of the factorization properties was given later
in [74–77]. These works employ a different localization scheme giving rise to a so-called Higgs
branch formula for the partition function. In this scheme, the gauge symmetry is completely
broken and the path integral only receives contributions from field configurations localized
at the centers of the two solid tori. The resulting formula takes on the form of a finite
sum over Higgs branch vacua of (a mass deformation of) the theory, and the summand is
naturally factorized. The equality between the Higgs and Coulomb branch formulae can be
established by performing the contour integrals defining the latter through residues [76, 77].

We focus here on a completely analogous story for the four-dimensional lens indices [49–
51]. In particular, either through evaluation of the contour integrals of the Coulomb branch
formula [49, 50], or through Higgs branch localization [51], the lens index of a general N = 1
gauge theory can be shown to take the following form:21

I(p,q)(ρ̂) = Zf (ρ) =
∑

α

Zα
f (ρ) =

∑
α

Zα
f,cl(ρ)Zα

f,1-loop(ρ)Zα
v (ρ)Zα

v (f−1ρ) , (3.7)

where we have used the notation in (3.2). In the language of the localization computation [51,
77], the summation runs over a finite number of Higgs branch vacua of the (mass deformed)
theory, and Zα

f (ρ) represents the contribution to the lens index from a given vacuum
α. We stress that the summation domain is independent of f [49]. The last equality
shows how the contributions Zα

f (ρ) split into a classical Zα
f,cl(ρ), perturbative Zα

f,1-loop(ρ)
21This expression assumes the existence of a Q-exact deformation of the theory such that the theory

localizes onto a finite number of Higgs branch vacua. A sufficient condition for the existence of the Higgs
branch expression in terms of the contour integral is the vanishing of the residue at the origin [51, 78]. For
theories with a U(1) factor in the gauge group, one can ensure this by adding a non-zero Fayet-Iliopoulos
term [51, 74, 75, 77].
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and non-perturbative vortex Zα
v (ρ) and anti-vortex Zα

v (f−1ρ) contributions. The latter
contributions capture codimension-2 multi-(anti-)vortex configurations which in terms of the
Heegaard splitting Mf (ρ, ρ̃) of the Hopf surface wrap the T 2 and are localized at the centers
of the disks [51]. “Anti” refers to the vortices on the orientation reversed D2 × T 2. Thus,
the vortex partition functions are naturally functions of ρ and ρ̃ = f−1ρ. The perturbative
contribution combines the one-loop fluctuations around the vortex configurations, which are
similarly localized at the centers of the disks. Finally, Zα

f,cl(ρ) captures the overall classical
action, which consists solely of an Fayet-Iliopoulos (FI) term and therefore is only present
when the gauge group contains a U(1) factor.

Based on [48], it was shown in [49] that the classical and perturbative contribution can
also be written in a manifestly factorized form:

Zα
f,cl(ρ)Zα

f,1-loop(ρ) = e−iπPf (ρ)bα
S(ρ)bα

S(f−1ρ) , (3.8)

where bα
S(ρ) (bα

S(f−1ρ)) captures the overall classical and one-loop fluctuations around the
(anti-)vortex configurations. The subscript S refers to the element S13 ∈ SL(2,Z)13, as we
will return to momentarily. Finally, the phase Pf (ρ) is given by a cubic polynomial in z⃗ and
encodes the ’t Hooft anomalies of the theory. It does not depend on α, which reflects the
fact that the anomalies do not depend on the vacuum in which the theory resides [45, 49].22

Combining all of the above, one is led to the holomorphic block factorization of lens indices:

I(p,q)(ρ̂) = e−iπPf (ρ)
∑

α

∥Bα
S(ρ)∥2f , ∥Bα

S(ρ)∥2f ≡ Bα
S(ρ)Bα

S(f−1ρ) , (3.9)

where again f = g(p,q)O with g(p,q) ∈ SL(2,Z)23 as in (2.14). Note that the presence of the
phase prevents full factorization of the summand. The holomorphic blocks Bα

S(ρ) combine
a factor of the perturbative part with a vortex partition function so that:23

Bα
S(ρ) = bα

S(ρ)Zα
v (S13ρ) . (3.10)

If we write Bα(ρ) for the supersymmetric partition function on a D2 × T 2 geometry with
moduli ρ = (z⃗; τ, σ) [60], the holomorphic block Bα

S used in [49] is given by:

Bα
S(ρ) = Bα(S13ρ) = Bα

(
z⃗
σ ;

τ
σ ,−

1
σ

)
, S13 ∈ SL(2,Z)13 ⊂ H , (3.11)

as we will see explicitly in the examples below. It follows that the factorization expressed
in (3.9) reflects a particular Heegaard splitting Mf ′(ρ′, ρ̃′) of the Hopf surface M(p,q)(ρ̂)
with f ′ and ρ′ given by:

f ′ = S13fS
−1
13 , ρ′ = S13ρ , ρ̃′ = (f ′)−1ρ′ = S13f

−1ρ . (3.12)

From our geometric discussion in section 2.3, it is natural to wonder why this specific
Heegaard splitting is singled out. This question motivated in part the present work, and
we will indeed show that there exist more factorized expressions for the index where S13 is
replaced by general elements h ∈ H.

22At a more technical level, this can be derived from the contour integral expression of the index by
making use of the gauge anomaly cancellation [49].

23Here we have used invariance Zα
v (ρ) under S13, a point we will discuss in more detail in sections 3.2.2

and 3.2.3.
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Boundary conditions. It was suggested in [49], and later confirmed in [60], that apart
from a choice of Higgs vacuum α for the entire theory, there exist (at least) two 1

2 -BPS
boundary conditions on D2 × T 2 for a given N = 1 multiplet of the theory. In particular, a
chiral multiplet can either have Dirichlet (D) or Robin-like (R) boundary conditions, while
a vector multiplet admits Neumann (N) or Dirichlet boundary conditions.

In the following, we will assume Neumann boundary conditions for the vector multiplet.
Let us assume that all chiral multiplets in the gauge theory obey the same boundary
condition, Dirichlet or Robin-like. For gauge anomaly cancellation on the boundary,24 the
anti-chiral multiplets have to satisfy the opposite boundary condition, i.e., Robin-like or
Dirichlet, respectively [49, 60]. We denote the holomorphic block of the full theory, including
the vector multiplets, by Bα(ρ) and Cα(ρ), respectively. One naturally expects that the
compact space partition function Zf (ρ) is independent of the boundary condition. This
independence was indeed observed in [49], where it was shown that the respective products
of holomorphic blocks are equal, up to a phase:

I(p,q)(ρ̂) = e−iπPf (ρ)
∑

α

∥Bα
S(ρ)∥2f = e−iπ(Pf (ρ)+P3d

f (ρ))∑
α

∥Cα
S (ρ)∥2f , (3.13)

where Cα
S (ρ) is defined in terms of Cα(ρ) as in (3.11).

We now summarize the physical arguments that lead to the equality, following [60],
which will be confirmed mathematically in the examples below. First of all, the boundary
conditions on the (anti-)chiral multiplets can be changed from D to R (or vice versa) through
a coupling of theory to degrees of freedom living on the boundary T 3 = ∂D2 × T 2. At the
level of the partition functions, it can be shown that:

Bα(ρ) = Zα
∂ (z⃗; τ)Cα(ρ) , (3.14)

where we recall that ρ = (z⃗; τ, σ) and Zα
∂ (z⃗; τ) captures the contribution of the boundary

degrees of freedom. Note that it does not depend on σ, the modulus of the non-contractible
T 2. In addition, it turns out that Zα

∂ (z⃗; τ) is invariant, up to a phase polynomial quadratic
in z⃗, under the usual action of SL(2,Z)⋉ Z2r:

(za; τ) →
(

za
mτ+n ;

kτ+l
mτ+n

)
, (za; τ) → (za + iτ + j; τ) . (3.15)

This action is generated by {S12, T21, t(a)1 , t
(a)
2 } when viewed as a subgroup of G. As

mentioned in the footnote above, this shows that the contribution of the boundary degrees
of freedom behaves essentially as the elliptic genus of a 2d (0, 2) theory. We will assume
that this is a general feature of the relation between the blocks Bα and Cα, and leave a
more detailed investigation to future work.

Given the equation (3.14) and the assumed modular property of Zα
∂ (z⃗; τ), we can now

derive (3.13). First, we write the product of the blocks Bα
S(ρ) as:

∥Bα
S(ρ)∥2f = Zα

∂ (z⃗ ′; τ ′)Zα
∂

(
O2g

−1
2 (z⃗ ′; τ ′)

)
∥Cα

S (ρ)∥2f . (3.16)

24As observed in [60, section 6], the relevant supersymmetric T 3 partition function of the 3d boundary
theory is formally equivalent to the superconformal index of a 2d (0, 2) theory. The anomaly cancellation,
then, refers to the cancellation of the gauge anomaly in the relevant 2d theory.
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Here, we have defined (z⃗ ′; τ ′) through (cf. (3.11)):

ρ′ ≡ (z⃗ ′; τ ′, σ′) = S13ρ . (3.17)

Furthermore, we used that f = g(p,q)O with g(p,q) given as in (2.14):

g(p,q) =

1 0 0
0 −s −r
0 −p −q

 . (3.18)

Since SL(2,Z)12 = S13 SL(2,Z)23 S−1
13 , the action of f on (z⃗ ′; τ ′) can be written in terms of

the standard g2 ∈ SL(2,Z) action. We thus arrive at the definition of g2:

g2 =
(
−q −p
−r −s

)
, O2 =

(
1 0
0 −1

)
, (3.19)

where we have included O2 as the restriction of O to (z⃗ ′; τ ′) as well. Finally, we require
one additional property of Zα

∂ :25

Zα
∂

(
O2g

−1
2 (z⃗ ′; τ ′)

)
∼=

1
Zα

∂

(
g−1
2 (z⃗ ′; τ ′)

) , (3.20)

where the equality holds up to a phase. The modular properties of Zα
∂ (z⃗; τ) mentioned

above now imply:
∥Bα

S(ρ)∥2f ∼= ∥Cα
S (ρ)∥2f , (3.21)

where the equality again holds up to a phase. We arrive at the final claim (3.13) as long
as the relative phase, P3d(ρ), is independent of α. This phase can be interpreted as the
anomaly polynomial of the effectively 2d (0, 2) boundary theory and is independent of α for
the same reasons as Pf (ρ) [60].

To summarize, the holomorphic blocks Bα
S(ρ) or Cα

S (ρ) of [49] correspond to a non-
standard Heegaard splitting of the (secondary) Hopf surface, as expressed in (3.12). Up
to a phase, both holomorphic blocks produce upon gluing the same compact space parti-
tion function.

3.2.1 Example: free chiral multiplet

In this section, we illustrate the above using the free chiral multiplet. The extension to
SQED and general gauge theories is discussed in sections 3.2.2 and 3.2.3, respectively.

Lens indices. Let us collect from appendix C the free chiral multiplet indices on S2 ×T 2,
S3 × S1, and L(p, 1) × S1. Since the chiral multiplet has a global U(1) flavor symmetry,
we may define the indices with respect to an R-symmetry such that fields have R-charges
quantized as even integers. In addition, for the S2 × T 2 index, we allow n ∈ Z units
of flavor symmetry flux through the S2. Finally, for simplicity of notation we do not

25In examples, we will see that Zα
∂ (z; τ) consists of a product of q-θ functions. This property then follows

from the extension and elliptic properties of the q-θ function (see (A.3) and (A.2)).
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include holonomies for the flavor symmetry along the non-contractible cycle in L(p, 1).26

We then have:

IR
(0,−1),g(ρ̂) =

p̂
R
12 x̂−

R
2
∏ |R|−1

2
m=− |R|−1

2
θ(ẑ +mτ̂ ; σ̂)sgn(R) , for R ̸= 0 ,

1 , for R = 0 ,

IR
(1,0)(ρ̂) = Γ(ẑ + R

2 (τ̂ + σ̂); τ̂ , σ̂) ,

IR
(p,1)(ρ̂) = Γ

(
ẑ + R

2 (τ̂ + σ̂) + pσ̂; τ̂ + σ̂, pσ̂
)
Γ
(
ẑ + R

2 (τ̂ + σ̂); τ̂ + σ̂, pτ̂
)
,

(3.22)

where R ≡ R+n−1 and R ∈ 2Z. The functions θ(z;σ) and Γ(z; τ, σ) represent the q-θ and
elliptic Γ function, respectively, defined in appendix A. Using properties of the functions
recorded there, one easily verifies that for both R and R even integers these functions are
invariant (up to a phase) under symmetries of the respective Hopf surfaces recorded in
section 2.2.

Recall that the moduli of the Hopf surface are related to the D2 × T 2 moduli as:

(z; τ, σ) =

(ẑ + n
2 τ̂ ; τ̂ , σ̂) , for p = r = 0 , q = s = −1 ,

(ẑ; τ̂ + sσ̂, pσ̂) , for p ̸= 0 ,
(3.23)

where for later convenience we have included a shift of ẑ in the first line to reflect a
non-trivial flavor flux through the S2. We then use the notation (3.2) to write:

Ztn
2 O(z; τ, σ) = IR

(0,−1),n(z + n
2 τ ; τ, σ) , ZS23O(z; τ, σ) = IR

(1,0)(z; τ, σ) , (3.24)

where we suppress the label R and use that the gluing transformation tn2O, which acts by
large gauge transformations on z (see (2.24)), produces an S2×T 2 geometry with n units of
flavor symmetry flux through the S2 [45]. Similarly, for the index on L(p, 1)× S1 we write:

Zg(p,1)O(z; τ, σ) = IR
(p,1)(z; τ − 1

pσ,
1
pσ) . (3.25)

To see how these indices factorize into holomorphic blocks, let us also record the partition
function on D2×T 2 with moduli ρ = (z; τ, σ). This was computed in [60] through localization
for two types of boundary conditions: Dirichlet and Robin-like boundary conditions. The
associated partition functions are given by:27

B(z; τ, σ) ≡ Γ(z + R
2 τ + σ; τ, σ) ,

C(z; τ, σ) ≡ Γ(z + R
2 τ ; τ, σ) .

(3.26)

Note that we do not write the label α, since for the free chiral multiplet it assumes only
a single value. Furthermore, we define the blocks without a phase prefactor, as opposed
to [60]. This is justified because holomorphic block factorization of the lens indices uniquely
fixes the overall phase due to properties of the elliptic Γ function. We also note that:

B(ρ) = θ(z + R
2 τ ; τ)C(ρ) , (3.27)

26The more general expressions are recorded in appendix C.
27Note the similarity between the D2 × T 2 partition functions and the index on S3 × S1 in (3.22).
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where we have used the shift property (A.15) of the elliptic Γ function. As anticipated in
general above, we now see explicitly that B(ρ) and C(ρ) are related through multiplication
by a function that is invariant, up to a phase, under SL(2,Z)12 ⋉ Z2+2 ⊂ G. Finally, unlike
the indices on closed manifolds, the functions B(ρ) and C(ρ) do not have automorphic
properties under the full group of large diffeomorphisms and gauge transformations H
of D2 × T 2. However, we note that they are periodic under z → z + 1, τ → τ + 1 and
σ → σ + 1, which again relies on the fact that the R-charges are quantized as even integers.

Holomorphic block factorization. We are now ready to describe the explicit factor-
ization of the indices (3.22) into holomorphic blocks, following [49]. We start with the
superconformal index ZS23O(ρ). The crucial property of the elliptic Γ function underlying
the factorization of this index is [43] (see also appendix A):

Γ(z; τ, σ) = e−iπQ(z;τ,σ)Γ
(

z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;

σ
τ ,−

1
τ

)
, (3.28)

where Q(z; τ, σ) is a cubic polynomial in z. Using this property, we may write:

Γ(z + R
2 (τ + σ); τ, σ) = e−iπQ(z+R

2 (τ+σ)−1;τ,σ)

× Γ
(

z+R
2 τ−1
σ ; τ

σ ,−
1
σ

)
Γ
(

z+R
2 σ−1
τ ; σ

τ ,−
1
τ

)
,

(3.29)

where we have made use of the periodicity of the elliptic Γ function under z → z + 1 and
the fact that R is quantized as an even integer. One now easily checks that the index can
be written as anticipated in (3.9):

ZS23O(ρ) = e−iπPS23 (ρ;R) ∥BS(ρ)∥2S23O , (3.30)

where the holomorphic block BS(ρ) is given in terms of B(ρ) in (3.26) as follows:

BS(ρ) = B(S13ρ) = Γ
(

z+R
2 τ−1
σ ; τ

σ ,−
1
σ

)
, (3.31)

and we define the corresponding phase by:

PS23(ρ;R) = Q(z + R
2 (τ + σ)− 1; τ, σ) . (3.32)

To factorize Zg(p,1)O(ρ), we use a closely related property for the first Γ function in the
expression (3.22):

Γ(z + σ; τ, σ) = e−iπQ(z+σ;τ,σ)
Γ
(

z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;−

σ
τ ,−

1
τ

) , (3.33)

while we use (3.28) on the second Γ function. Two of the four resulting Γ functions cancel,
and one easily verifies that in this case again:

Zg(p,1)O(ρ) = e
−iπPg(p,1) (ρ;R) ∥BS(ρ)∥2g(p,1)O , (3.34)

where now the phase is given by:

Pg(p,1)(ρ;R) = Q(z + R
2 τ + σ − 1; τ, σ) +Q(z + R

2 τ − 1; pτ − σ, τ) . (3.35)
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Finally, for factorization of the S2 × T 2 index, we first use the shift property of the
elliptic Γ function (A.15) to rewrite the index as follows:

Ztn
2 O(ρ) = p

R
12 q

nR
2 x−

R
2

Γ(z + R
2 τ ; τ, σ)

Γ(z −
(

R
2 + n− 1

)
τ ; τ, σ)

= p
R
12 q

nR
2 x−

R
2 Γ(z + R

2 τ ; τ, σ)Γ(z − (R
2 + n)τ ;−τ, σ) ,

(3.36)

where in the second line we have made use of the extension property (A.17) of the elliptic Γ
function. The latter equality already takes the form of a factorization:

Ztn
2 O(ρ) = p

R
12 q

nR
2 x−

R
2 ∥C(ρ)∥2tn

2 O
. (3.37)

We may also factorize Ztn
2 O(ρ) in terms of CS(ρ) ≡ C(S13ρ) by making use of:

θ
(

z
σ ;−

1
σ

)
= eiπB2(z,σ)θ(z;σ) , (3.38)

where B2(z;σ) is a quadratic polynomial in z (see appendix A). Using this transformation,
we can write:

Ztn
2 O(ρ) = p

R
12 q

nR
2 x−

R
2 e

iπP̃tn
2
(ρ;R) ∥CS(ρ)∥2tn

2 O
, (3.39)

where we indicate with the tilde that the phase is associated to CS(ρ), as opposed to BS(ρ),
and is given by:

P̃tn
2
(ρ;R) = sgn(R)

|R|−1
2∑

m=− |R|−1
2

B2(z + (m− n
2 )τ ;σ) . (3.40)

All in all, we have seen that the chiral multiplet indices can be factorized, up to a phase, in
terms of the holomorphic blocks BS(ρ) or CS(ρ). In fact, given the relation between the
blocks (3.27) and our general arguments above, it follows that the indices can be factorized
in terms of both blocks, as we show explicitly below. Before getting there, let us first show
that the relative phase captures the ’t Hooft anomalies of the theory [45, 48, 49].

Anomaly polynomials. A convenient parametrization of the ’t Hooft anomalies of a
general gauge theory is as follows [45]:

P(Z⃗;xi) ≡
1

3x1x2x3

(
kabcZaZcZc + 3kabRZaZbX + 3kaRRZaX

2 − kaZaX̃

+kRRRX
3 − kRXX̃

)
,

(3.41)

where Z⃗ and xi represent the homogeneous moduli defined in (2.22), and

X ≡ 1
2

3∑
i=1

xi , X̃ ≡ 1
4

3∑
i=1

x2i . (3.42)

The coefficients encode anomalies. For example, kabc = TrFaFbFc represents a cubic
anomaly for the flavor symmetry generators Fa, which would be diagonal for fundamental
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representations. The label R refers to the R-symmetry generator instead, and ka = TrFa

and kR = TrR capture the mixed-gravitational anomalies. In our conventions, the relation
between the anomaly polynomial as parametrized by (3.41) and the phase polynomial
PS23(ρ;R), is:

PS23(
Z+R

2 x1
x1

, x2
x1
, x3

x1
;R) = PχR(Z⃗;xi) , (3.43)

where PχR(Z⃗;xi) captures the anomalies of a chiral multiplet with R-charge R. Expanding
PR

S23
(Z+R

2 x1
x1

, x2
x1
, x3

x1
;R), one easily reads off the anomalies:

kF 3 = 1 , kF 2R = R− 1 , kF R2 = (R− 1)2 , kF = 1 , kR3 = (R− 1)3 , kR = R− 1 ,
(3.44)

as indeed appropriate for a free chiral multiplet.
To understand how the phases on the other backgrounds connect to the anomaly

polynomial, we note that Pg(p,1)(ρ;R) can be written as follows in terms of ρ̂:

Pg(p,1)(ρ;R) =
1
p
Q

(
ẑ + R

2 (τ̂ + σ̂)− 1, τ̂ , σ̂
)
+ p2 − 1

12p (2ẑ + (R− 1)(τ̂ + σ̂)− 1) , (3.45)

where we have made use of (3.23). This phase relates to a more general parametrization
of the anomalies. In particular, let us write an analogue of (3.41) with the same anomaly
coefficients (3.44) as follows:

P(p)(Z⃗; x̂i) ≡
1

3px̂1x̂2x̂3

(
kabcZaZbZc + 3kabRZaZbX + 3kaRRZaX

2 − kaZaX̃
(p,1)

+kRRRX
3 − kRXX̃

(p,1)
)
, (3.46)

where X is as before in terms of x̂i and we have defined X̃(p,1) as follows:

X̃(p,1) = 1
4
(
x̂21 + x̂22 + x̂23 − 2(p2 − 1)x̂2x̂3

)
. (3.47)

In this parametrization, Pg(p,1)(ρ;R) is related to the anomaly polynomial as before:

Pg(p,1)(
Z+R

2 x1
x1

, x2
x1
, x3

x1
;R) = P(p)

χR
(Z⃗; x̂i) , (3.48)

where we understand the xi on the left hand side as functions of x̂i through (3.23). Note
that for p = 1, this correctly reduces to the S3 × S1 case (3.43) as a function of x̂i. We will
derive the phase polynomial for general g(p,q) in section 5.2.2.

Finally, let us expand P̃tn
2
(ρ) in terms of Z = Ẑ + n

2x2 as follows:

P̃tn
2
(Z−x1+R

2 (x1+x3)
x1

, x2
x1
, x3

x1
;R) = R

x1x3

(
Ẑ2 + (R− 1)(x1 + x3)Ẑ + (R−1)2

4 (x1 + x3)2

− 1
12(x

2
1 + x23 − (R2 − 1)x22)

)
. (3.49)

Note that there are no cubic terms in this case. This is consistent with the fact that the
twisted theory on S2 × T 2 behaves effectively as a two-dimensional (0, 2) theory on T 2.
In particular, it consists of R Fermi multiplets for R > 0 and |R| chiral multiplets for
R < 0 [59]. The phase polynomial is therefore again consistent with an interpretation in
terms of the anomaly polynomial.
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Independence on boundary condition. Due to the relation between B(ρ) and C(ρ)
in (3.27), it follows from our general arguments that up to a phase both holomorphic
blocks lead to the same compact space partition function upon gluing. Explicitly, one may
verify that:

Zf (ρ) = e−iπPg(ρ) ∥BS(ρ)∥2f = e−iπP̃g(ρ) ∥CS(ρ)∥2f , (3.50)

where the phase polynomial P̃g is related to Pg through:

P̃g(z; τ, σ) = Pg(z + 1; τ, σ) . (3.51)

The difference between these phases takes on a similar form as the phase polynomial
associated to the (0, 2) multiplets in (3.49). For example, for g = g(p,1), we have:

P̃g(z; τ, σ)− Pg(z; τ, σ) =
1
p
B2

(
ẑ

τ̂
+ R(σ̂ + τ̂)

2τ̂ − 1, σ̂
τ̂

)
+ p2 − 1

6p , (3.52)

where B2(z; τ) is a quadratic polynomial in ẑ and is defined in appendix A. As mentioned
in the general discussion, we may interpret this phase as capturing the anomalies of the
effectively two-dimensional boundary theory, due to a coupling to the bulk, which changes
the boundary condition on the bulk fields from Dirichlet to Robin-like [60].

3.2.2 Example: SQED

In this section, we consider holomorphic block factorization for SQED with Nf flavors. For
clarity of exposition, we focus on the superconformal index and refer to [49] for both the
L(p, 1)× S1 and S2 × T 2 indices.

The contour integral expression for the SQED index can be obtained from the general
gauge theory index collected in appendix C:

ISQED
(1,0) (ρ̂) = (p̂; p̂)∞(q̂; q̂)∞

∮
dv

2πiv v
ξ

Nf∏
β=1

Γ(−u+ zβ + R
2 (τ̂ + σ̂); τ̂ , σ̂)

× Γ(u+ zβ + R
2 (τ̂ + σ̂); τ̂ , σ̂) ,

(3.53)

where we added a non-zero FI parameter ξ to ensure that the residue at v = 0 vanishes.
This is a necessary condition for a Higgs branch expression to exist (see footnote 21). We
note that ξ is integer quantized, as argued in [79], and therefore the index can depend
on it. We also introduced the chemical potentials zα for the diagonal subgroup of the
SU(Nf )× SU(Nf ) flavor symmetry, satisfying ∑α zα = 0. Furthermore, vanishing of the
mixed-gauge anomalies requires R = 1.

Performing the contour integral, one obtains an expression for the index of the
form (3.7) [50, 51]:

ISQED
(1,0) (ρ̂) = ZSQED

S23O (ρ) =
Nf∑

α=1
Zα

S23O,cl(ρ)Zα
S23O,1-loop(ρ)Zα

v (ρ)Zα
v (OS−1

23 ρ) , (3.54)
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where we employ the notation (3.2) and recall that in this case ρ̂ = ρ. Furthermore, the
factors in the summand can be written as:28

Zα
S23O,cl(ρ) = xξ

α(pq)ξ/2 ,

Zα
S23O,1-loop(ρ) =

1
Γ(0; τ, σ)

Nf∏
β=1

Γ(zβ − zα; τ, σ)
Γ(−zβ − zα; τ, σ)

,

Zα
v (ρ) =

∞∑
κ=0

qκξ
Nf∏

β=1

κ∏
j=1

θ(zα + zβ + jτ ;σ)
θ(zα − zβ + jτ ;σ) ,

(3.55)

where we have included the formal prefactor in Zα
S23O,1-loop(ρ) to cancel the β = α factor

in the numerator of the product. We also used Γ(z; τ, σ) = 1
Γ(τ+σ−z;τ,σ) and define the

κ = 0 term in Zα
v (ρ) as 1. The summation index κ can be thought of as the vortex charge.

Pulling out the factor (pq)ξ/2, we will now show how the remaining expression factorizes
into holomorphic blocks, following [49].

First of all, one can use properties of the q-θ function to show that each coefficient
in the sum of Zα

v (ρ) is invariant under the action of H = SL(2,Z)13 ⋉ Z2+2Nf on ρ. For
example, invariance under S13 follows from (3.38):

Nf∏
β=1

κ∏
j=1

θ( zα+zβ+jτ
σ ;− 1

σ )
θ( zα−zβ+jτ

σ ;− 1
σ )

=
Nf∏

β=1

κ∏
j=1

θ(zα + zβ + jτ ;σ)
θ(zα − zβ + jτ ;σ) , (3.56)

where we have used the SU(N) condition ∑α zα = 0 to show that:

Nf∏
β=1

κ∏
j=1

eiπ(B2(zα+zβ+jτ ;σ)−B2(zα−zβ+jτ ;σ)) = 1 . (3.57)

Invariance under the other generators of H follows from periodicity of θ(z;σ) under z → z+1
and σ → σ + 1 in combination with (3.56).

Furthermore, up to a prefactor independent of zα, the overall classical contribution can
be factorized as:

xξ
α = e

πi
6 ( τ

σ
+σ

τ
+3) θ

( zα
σ ; τ

σ

)
θ
(
τξ; τ

σ

)
θ
( zα

σ + τξ; τ
σ

) ×
θ
( zα

τ ; σ
τ

)
θ
(
σξ; σ

τ

)
θ
( zα

τ + σξ; σ
τ

) . (3.58)

One may easily verify the identity making use of the modular and extension property of
the q-θ function, as recorded in appendix A. We also note that expansion parameters in the
vortex partition functions for fixed vortex charges (κ1, κ2), qκ1ξ and pκ2ξ respectively, are
simply obtained by shifting zα → zα + κ1τ + κ2σ. This is trivial from the point of view of
the left hand side, but follows on the right hand side from the shift property (A.2) of the
q-θ function.

Finally, since the perturbative part of the index simply consists of a product of elliptic Γ
functions, i.e., (anti-)chiral multiplet indices, we can now use the results from section 3.2.1,

28Note that had we not included the FI parameter, the vortex contribution Zα
v (ρ) would have been diver-

gent.
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specifically (3.28), to factorize the entire SQED index. In particular, we formally define the
holomorphic block as:29

Bα(ρ) = θ (zα; τ) θ (τξ; τ)
θ (zα + τξ; τ)

1
Γ(0; τ, σ)

Nf∏
β=1

Γ(zβ − zα; τ, σ)
Γ(−zβ − zα; τ, σ)

×
∞∑

κ=0
qκξ

Nf∏
β=1

κ∏
j=1

θ(zα + zβ + jτ ;σ)
θ(zα − zβ + jτ ;σ) ,

(3.59)

where in this case we let
ρ ≡ (z⃗; τ, σ; τξ) (3.60)

to emphasize the dependence on the FI parameter ξ as well (see footnote 17). Furthermore,
the asymmetric appearance between chiral and anti-chiral multiplet contributions reflects
the D and R boundary conditions required for gauge anomaly cancellation (see above (3.13)).
Up to phase prefactors, the index can now be written in the factorized form

ISQED
(1,0) (ρ̂) = e

πi
6 ( τ

σ
+σ

τ
+3)(pq)ξ/2e

−iπP SQED
S23

(ρ)
Nf∑

α=1
∥Bα

S(ρ)∥2S23O , ρ̂ = ρ , (3.61)

where we recall the definition of the norm from (3.9) and extend the action of S13 as before
to include its action on τξ as well

Bα
S(ρ) ≡ Bα(S13ρ) = Bα

(
z⃗
σ ;

τ
σ ,−

1
σ ; τξ

)
. (3.62)

That is, for the factorization to hold we need to keep τξ fixed under the action of S13, as
implicitly observed in [49] as well. This implies that ξ by itself should transform as

ξ → σξ . (3.63)

This is indeed a natural transformation, since the quantization of ξ follows from invariance
under large gauge transformations along the temporal circle [79] and S13 precisely implements
the exchange of temporal circle 1 ↔ σ.

In addition, the phase polynomial is given by:

P SQED
S23

(ρ) = −Q(0; τ, σ) +
Nf∑

β=1

[
Q(zβ − zα; τ, σ)−Q(−zβ − zα; τ, σ)

]
. (3.64)

Similar to the case of the chiral multiplet, we note that P SQED
S23

(z⃗; τ, σ) parametrizes the
anomalies of the theory as in (3.41). In particular, because of the SU(N) condition∑

β zβ = 0, the anomaly polynomial is independent of α, as it should be. Another way to
understand this independence is from the integrand in (3.53). If we had reversed the order
of operations, namely first factorizing the Γ functions in the integrand of (3.53), the total
phase polynomial would have been manifestly u-independent because of gauge anomaly
cancellation [49]. This concludes our review of holomorphic block factorization for SQED.

29Since the FI parameter is integer quantized, this expression vanishes as it stands. However, for the
non-trivial large diffeomorphisms S13, we will see below that Bα

S(ρ) does not vanish. This will be true for
more general large diffeomorphisms too, as we will see in section 3.6.2.
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3.2.3 General gauge theories

We briefly point out the extension to general N = 1 gauge theories. As we have learned from
the SQED example, there are five ingredients that go into holomorphic block factorization
as we have presented it:

• The existence of a Higgs branch expression for the relevant index. A sufficient condition
is the vanishing of the residue at v = 0 (see footnote 21) [51, 78].30

• Invariance of the vortex partition function for fixed vortex charge, i.e. the coefficients
in the “grand canonical” vortex partition function Zα

v (ρ), to be invariant under
S13 ∈ SL(2,Z)13 ⊂ H.

• Factorization of the FI term if present.

• Factorization of the free chiral multiplet index.

• Independence of the phase polynomial on the Higgs branch vacuum α.

The first point follows from the contour integral expression of the gauge theory lens
indices and the pole structure of their integrands [49]. The second point holds for SQED
(section 3.2.2) and also SQCD with SU(N) gauge group and an arbitrary number of
flavors [49, 60]. A general argument for this should follow from gauge anomaly cancellation
in the four-dimensional theory, which would prohibit ’t Hooft anomalies in the vortex
worldsheet theory where the 4d gauge symmetries would appear as global symmetries. The
third and fourth point follow from the SQED and chiral multiplet examples respectively.
The final point follows from gauge anomaly cancellation, as we argued for SQED in the
final paragraph of the previous section.

3.3 Consistency condition and its solution

In this section, we impose the consistency condition (3.21), namely that the blocks Bα
S(ρ)

and Cα
S (ρ) lead to the same compact space partition function, on the more general proposal

in section 3.1. That is, we require:

Bα
h (ρ)Bα

h̃
(f−1ρ) ∼= Cα

h (ρ)Cα
h̃
(f−1ρ) , (3.65)

where equality may hold up to multiplication by a phase (independent of α). This constrains
(h, h̃) in a way that depends on f , and we will denote the set of pairs that solve the constraints
by Sf . This will lead to our conjecture for the modular factorization of lens indices in
section 3.4.

As we have seen in section 3.2, the holomorphic blocks Bα(ρ) and Cα(ρ) are related
through multiplication by a function Zα

∂ (z⃗; τ) that is invariant under SL(2,Z)⋉ Z2r up to
a phase. Plugging in this relation for Bα

h (ρ) and Bα
h̃
(ρ̃), we obtain:

Bα
h (ρ) = Zα

∂ (z′a; τ ′)Cα
h (ρ) , Bα

h̃
(f−1ρ) = Zα

∂ (z̃′a; τ̃ ′)Cα
h̃
(f−1ρ) , (3.66)

30We note that there are concrete expressions only for L(p, q) × S1 indices with q = 0, 1. We propose a
general formula for the index with q > 1 in section 5.1.
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where now (z′a; τ ′) and (z̃′a; τ̃ ′) are defined by:

ρ′ ≡ (z′a; τ ′, σ′) = hρ , ρ̃′ ≡ (z̃′a; τ̃ ′, σ̃′) = h̃f−1ρ . (3.67)

The condition (3.65) is satisfied as long as:

Zα
∂ (z′a; τ ′)Z̃α

∂ (z̃′a; τ̃ ′) ∼= 1 , (3.68)

where the equality may hold up to a phase. Using the fact that Zα
∂ (z; τ) consists of a

product of q-θ functions — see footnote 25 — this equation is satisfied if:

z̃′a + µ̃aτ̃
′ + ν̃a = z′a + µaτ

′ + νa

γτ ′ + δ
, τ̃ ′ = −ατ

′ + β

γτ ′ + δ
, αδ − βγ = 1 , (3.69)

where µa, νa ∈ Z and µ̃a, ν̃a ∈ Z can be arbitrary due to the ellipticity of Zα
∂ (za; τ).

Furthermore, the “−” sign reflects the fact that τ ′ and τ̃ ′ are related through an orientation
reversal transformation. These equations should be read as constraints on h, h̃ ∈ H for an
appropriate choice of (α, β, γ, δ) and (µa, νa; µ̃a, ν̃a). For simplicity, we will assume that
h, h̃ do not contain large gauge transformations, in which case we only have to solve the
second constraint. We also assume that f does not contain factors of t(a)2 , but comment at
the end of this section on the more general case.

To proceed, we take a generic ansatz for h, h̃ ∈ H and solve (3.69). Explicitly, let h
and h̃ be given by:

h =

n 0 m
b 1 a

l 0 k

 , h̃ =

ñ 0 m̃
b̃ 1 ã

l̃ 0 k̃

 , (3.70)

with kn− lm = 1 and k̃ñ− l̃m̃ = 1. We will assume periodicity of the holomorphic blocks
Bh(ρ) in its arguments, as encountered in section 3.2.1. This implies that the second and
third rows of h and h̃ are defined up to integer multiples of the first row:

h ∼ T21h ∼ T31h , (3.71)

and similarly for h̃. In particular, this fixes (k, l) and (k̃, l̃) for a given (m,n) and (m̃, ñ),
respectively. Furthermore, it implies that we may consider b mod n and b̃ mod ñ and
view (a, ã) as free integers. Plugging in the constraint (3.69) with (3.67), it follows that
αδ − βγ = 1 requires:

m̃ = m. (3.72)

The remaining constraints are solved if:

α = −q − pã , δ = −s− pa ,

mβ = r + qa+ sã+ paã , γ = pm ,
(3.73)

and:
b̃ = −αb− βn , ñ = δn+ γb ,

b = −δb̃− βñ , n = αñ+ γb̃ .
(3.74)
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Let us make some comments. First of all, using the fact that qs − pr = 1, it follows
immediately that αδ − βγ = 1. However, we need to ensure β ∈ Z, which imposes a
constraint on (m; a, ã). Secondly, note that the equations in the first line of (3.74) are
equivalent to those in the second line. Their solution is immediate either in terms of (b, n)
or (b̃, ñ). Thirdly, our ansatz requires the following coprime conditions on m:

gcd(m,n) = gcd(m, ñ) = 1 . (3.75)

Finally, note that the (redundant) set of constraints is invariant under the inversion symmetry
in (2.32), which effectively exchanges the untilded and tilded variables and q ↔ s. We will
see this symmetry, and also the other symmetries of the Hopf surface, reflected in the set
of solutions.

Let us first analyze the coprime conditions. If we choose to solve the equations in terms
of (b, n), we find that gcd(m, ñ) = 1 can be written as:

gcd(m, (s+ pa)n) = 1 . (3.76)

Since gcd(p, s) = 1, this constraint automatically implies the other coprime condition
gcd(m,n) = 1, apart from the special cases p = ±a = ∓s = 1 and a = s = 0.31 Solving in
terms of (b̃, ñ) instead, we similarly find that (3.75) can be captured in a single condition:

gcd(m, (q + pã)ñ) = 1 . (3.77)

We continue to solve for β ∈ Z. Combining (3.73) and (3.74), one finds that there exists an
integral solution for β as long as:

mb̃− ñã = q(mb− na)− rn , (3.78)

where we have used gcd(m,n) = 1. Alternatively, using the inversion symmetry we can also
find an integral solution for β as long as:

mb− na = s(mb̃− ñã)− rñ , (3.79)

where now we used gcd(m, ñ) = 1. Since we may take 0 ≤ b < n and 0 ≤ b̃ < ñ, it
follows that the pairs (a, b) and (ã, b̃) uniquely parametrize the single integers c and c̃,
respectively, through:

c = bm− an , c̃ = b̃m− ãñ ,

⇐⇒ (a, b) = (−ck + κm,−cl + κn) , (ã, b̃) = (−c̃k̃ + κ̃m,−c̃l̃ + κ̃ñ) ,
(3.80)

where we inverted the relation in the second line, and κ, κ̃ ∈ Z are fixed by the domain of b
and b̃. The conditions (3.78) and (3.79) can now be written, respectively, as:

c̃ = qc− rn , c = sc̃− rñ . (3.81)

These equations are consistent due to qs − pr = 1 and the relation between n and ñ. In
conclusion, we find that β ∈ Z if c̃ is solved in terms of c as in (3.81) (or vice versa).

31These cases will be treated separately in the examples.
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Let Sf ⊂ H ×H denote the set of pairs (h, h̃) that solve h̃ in terms of h.32 Taking
into account periodicity (3.71), the solution set is a right coset parametrized by three
integers (m,n, c):

Γ′
∞ × Γ′

∞\Sf , Γ′
∞ = ⟨T21, T31⟩ ⊂ H . (3.82)

Explicitly, an element in this set can be written as:

h =

 n 0 m

−cl 1 −ck
l 0 k

 , h̃ =

−sn+ pc 0 m

(qc− rn)l̃ 1 (qc− rn)k̃
l̃ 0 k̃

 , (3.83)

where we have chosen κ = κ̃ = 0 as a representative, and recall that (k, l) and (k̃, l̃) are
also fixed by periodicity. To describe (3.82) more concisely, let us take n, c ∈ Z general and
choose m such that it obeys the coprime condition (3.76). For fixed c (i.e., for fixed (a, b)
in the coset), this set of integers (m,n) has an elegant description in terms of the quotient
Γ∞\Γ0(s+ pa), where Γ0(n) ⊂ SL(2,Z) is the Hecke congruence subgroup:

Γ0(n) =
{(

a b
c d

)
| ad − bc = 1 , c = 0mod n

}
, (3.84)

and Γ∞ ⊂ SL(2,Z) is generated by the (upper triangular) T matrix. It follows that, as a
set, (3.82) can be described as:

Γ′
∞ × Γ′

∞\Sf
∼=
⋃
a∈Z

Γ∞\Γ0(s+ pa) . (3.85)

We thus find the existence of an interesting modular set of holomorphic blocks Bα
h (ρ) and

Bα
h̃
(f−1ρ) consistent with the factorization of a general lens index I(p,q)(ρ̂). We will study

some examples below to make this more concrete, and turn to a geometric interpretation in
section 3.5. For now, let us similarly describe the solution set S̃f where h is solved in terms
of the h̃ parameters:

Γ′
∞ × Γ′

∞\S̃f
∼=
⋃
ã∈Z

Γ∞\Γ0(q + pã) , (3.86)

where we have made use of (3.77). As explained above, we see that: Sf = S̃f−1 . Notice
also that both sets are separately invariant under the other symmetries of the Hopf surface,
including s→ s+ p and q → q + p.

Finally, it will be useful to have a description of the solution set Sf ′ for f ′ = g′O with
general g′ ∈ SL(3,Z). This is easily obtained from Sf by recalling that there always exist
h, h̃ ∈ H such that f ′ = hfh̃−1 with f = g(p,q)O and g(p,q) ∈ SL(2,Z)23 as in (2.14). This
leads us to the following description of Sf ′ :

Sf ′ =
{
(hfh

−1, h̃f h̃
−1) | (hf , h̃f ) ∈ Sf

}
, (3.87)

where Sf is as described above.
32We caution that in general Sf can not be thought of as a subgroup of H × H. This follows from the fact

that the coprime conditions (3.76) and (3.77) in general do not respect the semi-direct product structure
of H.
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Examples of Sf . Here, we describe the solution set Sf for some simple gluing transfor-
mations f . We will denote by S(a,b)

f the subset of Sf for fixed (a, b). We also point out in
which cases Sf or S(a,b)

f can be understood as a subgroup of H ×H.

S2 × T 2. The simplest example is obtained by taking f = O, i.e., p = r = 0 and
q = s = −1. The resulting manifold has topology S2 × T 2. In this case, the constraints
simplify significantly. In particular, the a parameter decouples from the modular part of
the solution set. We thus obtain the direct product:

Γ′
∞ × Γ′

∞\SO ∼= Γ∞\SL(2,Z)× Z ∼= Γ′
∞ × Γ′

∞\S̃O . (3.88)

More explicitly, SO is parametrized by the matrices:

h =

n 0 m
b 1 a

l 0 k

 , h̃ =

 n 0 m

−b 1 −a
l 0 k

 . (3.89)

It follows that SO embeds (almost) diagonally into H ×H:

SO = {(h,OhO) | h ∈ H} ⊂ H ×H , (3.90)

and it clearly forms a subgroup. The closely related case f = tg2 O can be checked to satisfy
the consistency condition for the above pair (h, h̃) as long as a = b = 0. This follows
from the elliptic properties of Zα

∂ (z; τ) discussed around (3.69). Concluding, there exists
a consistent family of holomorphic blocks for the S2 × T 2 index parametrized by Γ′

∞\H.
This is not surprising given that this index has ordinary modular properties under H, as
discussed in section 3.2.

S3 ×S1. Another basic example corresponds to f = S23O, i.e., p = −r = 1 and q = s = 0,
which has topology S3 × S1. The constraints again simplify significantly. In particular,
one finds:

ñ = c , c̃ = n . (3.91)

The condition on the integers (m,n, c) is now gcd(m,n) = gcd(m, c) = 1, which cannot be
reduced to a single coprime condition. The solution set is written as:

Γ′
∞ × Γ′

∞\SS23O
∼=
⋃
a∈Z

Γ∞\Γ0(a) ∼= Γ′
∞ × Γ′

∞\S̃S23O . (3.92)

The explicit matrices (h, h̃) are given by:

h =

 n 0 m

−ñl + κn 1 −ñk + κm

l 0 k

 , h̃ =

 ñ 0 m

−nl̃ + κ̃ñ 1 −nk̃ + κ̃m

l̃ 0 k̃

 , (3.93)

where we have written ñ as opposed to c and κ, κ̃ ∈ Z are free integers in SS23O, but can be
set to zero in the coset. The meaning of the factor Γ∞\Γ0(0) can be understood from the
explicit matrices (h, h̃) and corresponds to a single element (S13, S13).
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In the case ñ = n, k̃ = k and l̃ = l = κ̃ = κ, the solution set turns out to have a
particularly nice interpretation. First, note that the (h, h̃) can now be written as:

h = h̃ =

n 0 m

0 1 −1
l 0 k

 . (3.94)

That is, S(−1,0)
S23O almost embeds as a diagonal SL(2,Z) subgroup of H ×H. In fact, we can

modify f slightly to make this embedding exact. For this, we make use of the relation (3.87)
between two solution sets Sf ′ and Sf . It follows from the expression of Sij in terms of Tij

in (2.10) that:
T−1
32 O = T−1

23 S23O T23 . (3.95)

Since T23 ∈ H , we can apply (3.87) and find that S(0,0)
T−1

32 O does embed as a diagonal SL(2,Z)
subgroup of H ×H:

S
(0,0)
T−1

32 O = {(h, h) | h ∈ SL(2,Z)13} ⊂ H ×H . (3.96)

This example reappears below as a special case of L(p,−1)× S1 for p = 1. The connection
with S3×S1 follows from the symmetry of Hopf surfaces under ρ → T−1

23 ρ and f → T−1
23 fT23,

as mentioned in section 2.3.
Concluding, the superconformal index admits a consistent factorization in terms of

a family of holomorphic blocks containing a diagonal SL(2,Z)13 ⊂ H ×H. We turn to a
geometric interpretation of this potentially surprising fact in section 3.5.

L(p, ±1) × S1. Finally, we turn to f(p,±1) = S23T
−p
23 S

±1
23 O. The associated Hopf surface

has topology L(p,±1)× S1, and the constraints are solved by:

ñ = ∓n+ pc , c̃ = ±c . (3.97)

The solution set can be described as:

Γ′
∞ × Γ′

∞\Sf(p,±1)
∼=
⋃
a∈Z

Γ∞\Γ0(±1 + pa) ∼= Γ′
∞ × Γ′

∞\S̃f(p,±1) . (3.98)

In terms of the matrices (h, h̃) we have:

h =

 n 0 m

−cl + κn 1 −ck + κm

l 0 k

 , h̃ =

 ∓n+ pc 0 m

∓cl̃ + κ̃(∓n+ pc) 1 ∓ck̃ + κ̃m

l̃ 0 k̃

 . (3.99)

A simple and interesting example is the case when c = κ = κ̃ = 0. In this case, the set
S
(0,0)
f(p,−1)

embeds as a diagonal subgroup for any p ∈ Z:

S
(0,0)
f(p,−1)

= {(h, h) | h ∈ SL(2,Z)13} ⊂ H ×H . (3.100)

This reproduces our previous example for p = 1 since f(1,−1) = T−1
32 O. On the other hand,

S
(0,0)
f(p,1)

does not immediately define a subgroup. This follows from the fact that h̃ = S2
23 hS

2
12,
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which is not a conjugation of h. There is again a simple fix. We instead look at the solution
set for:

f ′(p,1) = S13 f(p,1) S
−1
13 . (3.101)

In this case, we find that S(0,0)
f ′

(p,1)
embeds as follows:

S
(0,0)
f ′

(p,1)
=
{
(h, S2

23 hS
2
23) | h ∈ SL(2,Z)13

}
⊂ H ×H . (3.102)

This defines a subgroup since S4
23 = 1. Concluding, we see that also the indices on

L(p,±1)×S1, for any p, admit a consistent factorization in terms of a family of holomorphic
blocks that contains an (almost) diagonal SL(2,Z)13 ⊂ H ×H.

3.4 Modular factorization conjecture

We can now state our modular factorization conjecture. Provided that a Higgs branch
expression for the index exists (see section 3.2), we claim that a given lens index can be
factorized in a variety of ways parametrized by Sf

I(p,q)(ρ̂) = e−iπPm
f (ρ)∑

α

Bα
h (ρ)Bα

h̃
(f−1ρ) , (h, h̃) ∈ Sf ⊂ H ×H . (3.103)

Without loss of generality, we take f = g(p,q)O with g(p,q) ∈ SL(2,Z)23 as in (2.14).33

Furthermore, we claim that the phase polynomial Pm
f (ρ) includes the ’t Hooft anomalies

of the theory, which will be seen to depend on both f and (h, h̃), the latter dependence
indicated through m ≡ (m;n, c). The constraint (h, h̃) ∈ Sf ensures that the index is
independent of the boundary conditions imposed on the blocks. That is, the factorization
also holds with respect to Cα

h (ρ) and Cα
h̃
(f−1ρ). The use of the word “modular” is motivated

by the fact that Sf contains modular (congruence sub-)groups.
Before turning to a geometric interpretation in section 3.5 and evidence in section 3.6,

let us examine the conjecture in more detail for the L(p,−1)× S1 index. This includes the
S2 × T 2 index for p = 0 and the S3 × S1 index for p = 1, up to a change of parameters:

Zf(1,−1)(T
−1
23 ρ) = ZS23O(ρ) ≡ I(1,0)(ρ̂) , ρ = ρ̂ . (3.104)

As mentioned at the end of section 3.3, the set Sf(p,−1) contains a diagonal SL(2,Z)13
subgroup of H ×H. Therefore, the modular factorization conjecture implies:

e−iπPm
f (ρ)∑

α

Bα(hρ)Bα(hf−1ρ) = e−iπP1
f (ρ)

∑
α

Bα(ρ)Bα(f−1ρ) , h ∈ SL(2,Z)13 ,

(3.105)
since both sides represent the same index. In fact, the equality holds at the level of the
summands, as will become clear in section 3.6. This equation appears similar to an ordinary
modular covariance, but, as also stressed in section 3.1, it is a covariance with respect to a
combined action:

ρ → hρ , f → hfh−1 . (3.106)
33The extension to more general gluing transformations follows from our observation in (2.14) and the

relation between Sf ′ and Sf in (3.87).
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As a result, unlike an ordinary modular covariance, it does not behave nicely under group
multiplication:

Bα(h1h2ρ)Bα(h1h2f−1ρ) ≇ Bα(h2ρ)Bα(h2f−1ρ) , (3.107)

unless h2 commutes with f−1. The commutant of f−1 inside SL(2,Z)13 ⊂ SL(3,Z) is trivial
unless p = 0. In the latter case, f = O and the commutant equals H. This is indeed
expected since the S2 × T 2 index has modular properties under H. Since a general lens
index should not have such modular properties, (3.107) should be viewed as a feature rather
than a bug. A general lens index only transforms under H in the generalized sense (3.106).
In section 4, we will nonetheless see that a natural modular object can be constructed
from the lens indices. This object respects the multiplication of gluing elements g ∈ G
in an interesting way, as opposed to the multiplication of large diffeomorphisms of the
D2 × T 2 geometries.

3.5 Geometric interpretation of Sf and universal blocks

Modular factorization asserts that a given lens index can be factorized in terms of a
(modular) family Sf ⊂ H×H of holomorphic blocks. The subset Sf arises from the physical
constraint that the compact space partition function should not depend on the boundary
conditions imposed on the holomorphic blocks. In this section, we will provide a geometric
interpretation of Sf in terms of “compatible” Heegaard splittings of a Hopf surface.

We start with an observation about the set Sf with f = gO and g ∈ SL(3,Z). First,
we define the subgroup F ⊂ SL(3,Z) as follows:

F ≡ SL(2,Z)12 ⋉ Z2 , with Z2 = ⟨T31 , T32⟩ , (3.108)

where SL(2,Z)ij and Tij were defined in section 2.1. Note that this subgroup takes on the
same form as H, but corresponds to a different embedding in SL(3,Z). It turns out the
following two statements are equivalent:

(h, h̃) ∈ Sg O if and only if g′ = h gOh̃−1O ∈ F . (3.109)

The right implication is easily verified for g = g(p,q), as in (2.14), by plugging in the
associated solutions (3.83) for (h, h̃).34 One finds that g′ is of the form:

g′ =

∗ ∗ 0
∗ ∗ 0
∗ ∗ 1

 , (3.110)

which indeed corresponds to an element in F ⊂ SL(3,Z). The converse can be proved by
solving the condition h g(p,q)Oh̃−1O ∈ F in terms of (h, h̃) and noting that the resulting
constraints are identical to those specifying Sf , as derived in section 3.3.35

34For general g ∈ SL(3,Z), the claim follows from the relation (3.87) and the observation in (2.14).
35In particular, one can check that the inverse of the SL(2,Z) matrix given by α, β, γ and δ in (3.69) is

equal to the upper left 2 × 2 block of g′, for g = g(p,q). We will see this explicitly later in (4.47) with (4.48).
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Consider now a Hopf surface with a Heegaard splitting in terms of some gluing
transformation f = gO and g ∈ SL(3,Z). Recall from section 2.1 the notation:(

λ′ µ λ
)
=
(
λ̃′ µ̃ λ̃

)
f−1 , (3.111)

which summarizes how the cycles of the two D2×T 2 geometries are identified. More general
Heegaard splittings of the same Hopf surface are labeled by (h, h̃) ∈ H ×H, associated to
the gluing transformation f ′ = hfh̃−1, which we similarly write as:(

λ′h µh λh

)
=
(
λ̃′

h̃
µ̃h̃ λ̃h̃

)
(f ′)−1 , (3.112)

where we defined:(
λ′h µh λh

)
≡
(
λ′ µ λ

)
h−1 ,

(
λ̃′

h̃
µ̃h̃ λ̃h̃

)
≡
(
λ̃′ µ̃ λ̃

)
h̃−1 . (3.113)

We define the compatible Heegaard splittings of this Hopf surface to be labeled by the
subset (h, h̃) ∈ Sf ⊂ H ×H. This subset has a nice geometric characterization. Indeed,
it follows from the form of g′ that the set Sf parametrizes all Heegaard splittings of the
associated Hopf surface such that the gluing transformation g′ fixes the cycle λ̃h̃ = λh.
This cycle is to be identified with the S1 inside the Hopf surface M(p,q)(ρ̂). The remaining
L(p, q) ⊂ M(p,q)(ρ̂) is then glued by the appropriate SL(2,Z) block in g′ acting on (λ′h, µh).

We can thus think of the large diffeomorphisms (h, h̃) ∈ Sf as the embeddings of
the “time circle” into the D2 × T 2 geometries such that the gluing transformation of the
associated Heegaard splitting leaves it fixed. This should be viewed as the four-dimensional
analogue of how one can choose any embedding of the time circle in a T 2 for a CFT2; for
the latter, this choice is a consequence of SL(2,Z) invariance of the CFT on the torus. It
provides a more transparent interpretation of Sf . Namely, modular factorization becomes
the statement that a given index can be factorized in terms of a pair of holomorphic blocks
only if the blocks are defined with respect to a common time circle.

So far, we have seen that for a given Hopf surface the associated set Sf parametrizes all
compatible ways in which the time circle can be embedded in the Heegaard splitting. Instead,
we could also fix the embedding of the time circle, i.e. fix a general pair (h, h̃) ∈ H ×H,
and consider all gluing transformations compatible with this embedding. Clearly, this set of
gluing transformations is in bijection with F , since any f = gO with:

g ∈ Fh,Oh̃O , Fh,Oh̃O ≡ h−1 F Oh̃O , (3.114)

solves (the right hand side of) (3.109) for a general pair (h, h̃). Note that only Fh ≡ Fh,h

corresponds to a subgroup of SL(3,Z), while for general h̃ the gluing transformations form
a subset. We conclude that the Heegaard splittings associated to gluing transformations
Fh,Oh̃O are compatible with the (h, h̃) embedding of the time circle into the D2 × T 2

geometries, and that this is the maximal compatible subset in SL(3,Z).
To illustrate the above, let us look at some specializations of (h, h̃), starting with

h = h̃ = 1. The associated blocks are the partition functions D2 × T 2(ρ), which we
denoted in section 3.1 by Bα(ρ). In this case, it is clear that any f = gO with g ∈ F
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solves the constraint in (3.109). It follows that the indices associated to any g ∈ F can be
consistently factorized in terms of Bα(ρ) and that F is the maximal subgroup of SL(3,Z)
with this property:

Zf (ρ) ∼=
∑

α

∥Bα(ρ)∥2f , g ∈ F , (3.115)

where we omit the relative phase. Note that F can be used to construct arbitrary topologies
L(p, q) × S1 since SL(2,Z)12 ⊂ F (see section 2.1). In this sense, Bα(ρ) is the unique
universal block for indices associated the subgroup F .

However, we could have made a different choice of embedding of the time circle. For
example, let us choose h = h̃ = S13 so that the relevant geometry is D2 × T 2(S13ρ). As
in section 3.2, we denote the associated partition function by Bα

S(ρ) = Bα(S13ρ) and, as
explained there, this corresponds to the block used in the original work [49]. The set of
gluing transformations which solve (3.109) is now given by:

FS ≡ S−1
13 F S13 = SL(2,Z)23 ⋉ Z2 , with Z2 = ⟨T12 , T13⟩ . (3.116)

Similarly to before, the index associated to any element in FS can be consistently factorized
in terms of Bα

S(ρ), and FS is the maximal subgroup of SL(3,Z) with this property:36

Zf (ρ) ∼=
∑

α

∥Bα
S(ρ)∥2f , g ∈ FS . (3.117)

Since the conventional definition of the Hopf surfaces is with respect to SL(2,Z)23 ⊂ FS ,
as discussed in section 2.2, this explains why the lens indices considered in [49] were all
factorized in terms of Bα

S(ρ). More generally, the holomorphic block Bα
h (ρ) for any h ∈ H

is the unique universal holomorphic block for indices associated to f = gO and g ∈ h−1Fh:

Zf (ρ) ∼=
∑

α

∥Bα
h (ρ)∥2f , g ∈ Fh ≡ h−1 F h . (3.118)

Finally, the factorization of indices in terms of the most general pair of holomorphic
blocks reads:

Zf (ρ) ∼=
∑

α

Bα
h (ρ)Bα

h̃
(f−1ρ) , g ∈ Fh,Oh̃O . (3.119)

In the remainder of this paper, we will only make use of holomorphic block factorizations
corresponding to the cases Fh, i.e. when the set of gluing transformations forms a subgroup
of SL(3,Z).

Let us now look at a restricted set of topologies. As in section 3.3, we consider the
example of f(p,−1) = g(p,−1)O with p arbitrary, associated to the topologies L(p,−1)× S1.
Explicitly, g(p,−1) is given by:

g(p,−1) =

1 0 0
0 1 0
0 −p 1

 . (3.120)

36This was also observed in [45].
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We immediately see that it is an element in F for any p, which means that the associated
indices can all be factorized in terms of Bα(ρ). However, for this subset of gluing transfor-
mations, the condition (3.109) is preserved for arbitrary h = h̃ ∈ SL(2,Z)13.37 Therefore,
there is an SL(2,Z) family of holomorphic blocks Bα

h (ρ) with h ∈ SL(2,Z)13 compatible
with the factorization of indices associated to g(p,−1). Geometrically, this follows from the
fact that g(p,−1) fixes both λ̃ = λ and λ̃′ = λ′, and therefore any combination of cycles
mλ+ nλ′ with gcd(m,n) = 1 could serve as a time circle.

Finally, we note that there does not exist a holomorphic block for which indices
associated to the full subgroup H ⊂ SL(3,Z) can be consistently factorized. For example,
one may check that for f = T13O and f = T31O, there exist no h, h̃ ∈ H such that (3.109)
holds for both transformations. This is consistent with the geometric interpretation: H
does not fix any combination of the non-contractible cycles λ and λ′ and therefore there is
no invariant embedding of the time circle.

3.6 Evidence for conjecture

In this section, we prove the modular factorization conjecture for the free chiral multiplet
and SQED, and indicate how the proof extends to more general N = 1 gauge theories.

3.6.1 Free chiral multiplet

For convenience, let us recall the relevant indices from section 3.2.1:

ZO(ρ) =
1

θ(z;σ) , ZS23O(ρ) = Γ (z; τ, σ)

Zg(p,1)O(ρ) = Γ (z + σ; τ, σ) Γ (z; pτ − σ, τ) ,
(3.121)

where we have taken the R-charge to be vanishing for notational convenience.38 Furthermore,
the D2×T 2 partition functions associated with Dirichlet and Robin-like boundary conditions
are given by:

B(ρ) = Γ(z + σ; τ, σ) and C(ρ) = Γ(z; τ, σ) , (3.122)

which satisfy:
B(ρ) = θ(z; τ)C(ρ) . (3.123)

Let us start with the superconformal index ZS23O(ρ). The most general modular
property involving three elliptic Γ functions is derived in appendix D.1. It can be written as:

Γ(z; τ, σ) = e−iπQm(z;τ,σ)Γ
(

z
mσ+n ;

τ−ñ(kσ+l)
mσ+n , kσ+l

mσ+n

)
Γ
(

z
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ

)
,

(3.124)

where m = (m,n, ñ), kn − lm = 1 and k̃ñ − l̃m = 1, and the phase prefactor can be
written as:

Qm(z; τ, σ) = 1
mQ(mz;mτ + ñ,mσ + n) + fm , (3.125)

37Note that O commutes with general h̃ ∈ SL(2,Z)13.
38We will indicate below how the formulae generalize to R ∈ 2Z.
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with fm a constant independent of ρ:

fm ≡ 2σ1(n, ñ, 1;m) , (3.126)

where σ1(n, ñ, 1;m) denotes a Fourier-Dedekind sum defined in (A.12), and can be written
in terms of an ordinary Dedekind sum s(n,m) for ñ = n:39

fm = 2s(n,m)− (m− 1)(m− 5)
12m . (3.127)

This Dedekind sum was also observed to play a role in the subleading order of generalized
Cardy-like limits of the index [37]. We now note that the transformed variables on the right
hand side precisely take the form hρ and h̃ρ̃ for the solutions (h, h̃) ∈ SS23O given in (3.93),
and with ρ̃ = OS−1

23 ρ. It follows that the modular property matches with the prediction of
modular factorization:

ZS23O(ρ) = e
−iπP m

S23
(ρ)
Bh(ρ)Bh̃(OS

−1
23 ρ)

= e
−iπP̃ m

S23
(ρ)
Ch(ρ)Ch̃(OS

−1
23 ρ) ,

(3.128)

where we recall that Bh(ρ) ≡ B(hρ) and similarly for Ch(ρ), and define the phases in terms
of PS23(ρ;R) (see (3.32)), which is:

PS23(z; τ, σ;R) = Q(z + R
2 (τ + σ)− 1; τ, σ) , (3.129)

as follows:

Pm
S23 (z; τ, σ) =

1
mPS23 (mz;mτ + ñ,mσ + n; 0) + f ′m ,

P̃m
S23 (z; τ, σ) =

1
mPS23 (mz + 1;mτ + ñ,mσ + n; 0) + fm ,

(3.130)

where f ′m is a constant involving Gauss floor function, which might be determined similarly
to fm, as discussed in appendix D.1. However, in appendix D.1 we only provide the analytic
expression for fm while the analytic form of f ′m is still less clear. The equality between the
two factorizations, up to a change in phase, follows from the relation between B(ρ) and
C(ρ) and the fact that the pair (h, h̃) ∈ SS23O solves the consistency condition (3.65). We
also note that the phase prefactor still clearly encodes the ’t Hooft anomalies, since it is
related to PS23(z; τ, σ;R) up to a change of variables. We do not have an interpretation of
the additional constants, but note that the Dedekind sum for the case ñ = n also appeared
in the subleading parts of the Cardy-like limits studied in [37].

Let us briefly comment on the generalization to R ∈ 2Z. Using the formulae for the
index in (3.22) and the D2 × T 2 partition functions in (3.26), the factorization would follow
from a property of the form:

Γ(z + R
2 (τ + σ); τ, σ) =

e−iπQm(z;τ,σ;R)Γ
(

z+R
2 (τ−ñ(kσ+l))

mσ+n ; τ−ñ(kσ+l)
mσ+n , kσ+l

mσ+n

)
Γ
(

z+R
2 (σ−n(k̃τ+l̃))

mτ+ñ ; σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ

)
,

(3.131)
39For details of this derivation, we refer again to appendix D.1.
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for some Qm(z; τ, σ;R). This formula reduces to (3.124) through repeated use of the
shift property (A.15) of elliptic Γ functions and the elliptic and modular property in (A.2)
and (A.5) of the q-θ function. In the process, one picks up phases, which define Qm(z; τ, σ;R)
in terms of Qm(z; τ, σ). Note that R ∈ 2Z is crucial for this to work.

We now turn to the lens index Zg(p,1)O(ρ). In this case, we need a modular property
that involves four elliptic Γ functions, as derived in appendix D.2:

Γ (z + σ; τ, σ) Γ (z; pτ − σ, τ) =

e−iπQmp (z;τ,σ)Γ
(

z
mσ+n1

; τ−c(k1σ+l1)
mσ+n1

, k1σ+l1
mσ+n1

)
Γ
(

z
m(pτ−σ)+ñ2

; τ−c(k̃2(pτ−σ)+l̃2)
m(pτ−σ)+ñ2

, k̃2(pτ−σ)+l̃2
m(pτ−σ)+ñ2

)
,

(3.132)

where k1n1 − l1m = 1, k̃2ñ2 − l̃2m = 1, ñ2 = −n1 + pc, c ∈ Z is a free integer and
mp = (m,n1, c; p). Furthermore, the phase is given by:

Qmp(z; τ, σ) = 1
mpQ

(
mz, m(pτ−σ)+ñ2

p , mσ+n1
p

)
+ p2−1

12p (2z − τ) + fmp (3.133)

with fmp a constant. Setting (n1, k1, l1) ≡ (n, k, l) and (ñ2, k̃2, l̃2) ≡ (ñ, k̃, l̃), we compare
the transformed variables on the right hand side to hρ and h̃ρ̃ with (h, h̃) ∈ Sg(p,1)O
given in (3.99) and ρ̃ = Og−1

(p,1)ρ. Sure enough, this property again precisely matches the
factorization conjecture for the lens index of the free chiral multiplet:

Zg(p,1)O(ρ) = e
−iπP

mp
g(p,1) (ρ)Bh(ρ)Bh̃(Og

−1
(p,1)ρ)

= e
−iπP̃

mp
g(p,1) (ρ)Ch(ρ)Ch̃(Og

−1
(p,1)ρ) ,

(3.134)

where the phases can now be defined in terms of Pg(p,1)(ρ;R):

Pg(p,1)(ρ;R) = 1
pQ

(
z + R

2 τ − 1, pτ−σ
p , σ

p

)
+ p2−1

12p (2z − 1 + (R− 1)τ) , (3.135)

which we have rewritten as compared to its first appearance in (3.35). In terms of this
function, the phases are defined as follows:

Pmp
g(p,1)

(z; τ, σ) = 1
mPg(p,1) (mz;mτ + c,mσ + n1; 0) + fmp ,

P̃mp
g(p,1)

(z; τ, σ) = 1
mPg(p,1) (mz + 1;mτ + c,mσ + n1; 0) + f ′mp

.
(3.136)

The constants fmp and f ′mp
are again distinct. It follows that the overall phase captures

again the anomalies, since it is related to Pg(p,1)(ρ;R) through a change of variables. The
extension to R ∈ 2Z follows along similar lines as in the case of the S3 × S1 index.

Finally, we verify our factorization conjecture for the S2 × T 2 index of the free chiral
multiplet. As in section 3.2.1, we first note that:

ZO(ρ) =
1

θ(z;σ) = Γ(z; τ, σ)Γ(z;−τ, σ) , (3.137)

in the case of vanishing R-charge. We now make use of the general modular property of the
q-θ function:

θ
(

z
mσ+n ;

kσ+l
mσ+n

)
= eiπBm

2 (z;σ)θ(z;σ) . (3.138)
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Using this transformation, we find:

1
θ(z;σ) = e−iπBm

2 (z;σ)Γ
(

z
mσ+n ;

τ+aσ+b
mσ+n , kσ+l

mσ+n

)
Γ
(

z
mσ+n ;−

τ+aσ+b
mσ+n , kσ+l

mσ+n

)
. (3.139)

We note that the left hand side of (3.137) is independent of τ because of the vanishing
R-charge. In general, however, it will depend on τ (cf. (3.22)). This constrains the form
of the second variable of the Γ functions on the right hand side of (3.139) as indicated.
Comparing with the factorization conjecture for ZO(ρ), with (h, h̃) ∈ SO as in (3.89), we
see again that the property above exactly matches with the conjecture:

ZO(ρ) = e−iπP m
1 (ρ)Bh(ρ)Bh̃(Oρ)

= e−iπP̃ m
1 (ρ)Ch(ρ)Ch̃(Oρ)

(3.140)

where the phases are given by:

Pm
1 (ρ) = Bm

2 (z − 1
m ;σ) + 1−m

m ,

P̃m
1 (ρ) = Bm

2 (z;σ) .
(3.141)

These phases can again be understood as changes of variable of the basic case Ptn
2
(ρ;R),

discussed in (3.40), for R = n = 0, which is the anomaly polynomial for the (0, 2) theory
associated with the twisted reduction of the chiral multiplet on S2. The extension to general
R-charge (and flavor symmetry fluxes) is straightforward and left to the reader.

We thus see that the modular properties of the elliptic Γ functions precisely match with
our modular factorization conjecture in the context of the free chiral multiplet. We find
this agreement between general physical arguments and mathematically rigorous properties
of the elliptic Γ function remarkable.

3.6.2 SQED

In this section, we show how modular factorization can also be proved for a non-trivial gauge
theory. As in section 3.2.2, we focus on the superconformal index of SQED for simplicity.
To this end, we recall the Higgs branch expression (3.54) for SQED index:

ISQED
(1,0) (ρ̂) = ZSQED

S23O (ρ) =
Nf∑

α=1
Zα

S23O,cl(ρ)Zα
S23O,1-loop(ρ)Zα

v (ρ)Zα
v (OS−1

23 ρ) , (3.142)

where the factors in the summand can be written as:

Zα
S23O,cl(ρ) = xξ

α(pq)ξ/2 ,

Zα
S23O,1-loop(ρ) =

1
Γ(0; τ, σ)

Nf∏
β=1

Γ(zβ − zα; τ, σ)
Γ(−zβ − zα; τ, σ)

,

Zα
v (ρ) =

∞∑
κ=0

qκξ
Nf∏

β=1

κ∏
j=1

θ(zα + zβ + jτ ;σ)
θ(zα − zβ + jτ ;σ) ,

(3.143)

Modular factorization can be arrived at as follows.
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First of all, we use the invariance of each coefficient in the sum of Zα
v (ρ) under

H = SL(2,Z)13 ⋉ Z2+2Nf to write:

Nf∏
β=1

κ∏
j=1

θ(zα + zβ + jτ ;σ)
θ(zα − zβ + jτ ;σ) =

Nf∏
β=1

κ∏
j=1

θ
(

zα+zβ+j(τ−ñ(kσ+l))
mσ+n ; kσ+l

mσ+n

)
θ
(

zα−zβ+j(τ−ñ(kσ+l))
mσ+n ; kσ+l

mσ+n

) , (3.144)

where kn− lm = 1 as in section 3.3 and in this equation ñ is an integer coprime with m

(although this is irrelevant for this specific identity).
Furthermore, we find that for m ̸= 0 the overall classical contribution can be factorized,

up to a prefactor, as (cf. (3.58)):

xξ
α = e

πi
6m(mτ+ñ

mσ+n
+mσ+n

mτ+ñ
+3−2σ1(kñ,1;m)) θ

(
zα

mσ+n ;
τ−ñ(kσ+l)

mσ+n

)
θ
(
(mτ+ñ)ξ

m ; τ−ñ(kσ+l)
mσ+n

)
θ
(

zα
mσ+n + (mτ+ñ)ξ

m ; τ−ñ(kσ+l)
mσ+n

)
×
θ
(

zα
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ

)
θ
(
(mσ+n)ξ

m ; σ−n(k̃τ+l̃)
mτ+ñ

)
θ
(

zα
mτ+ñ + (mσ+n)ξ

m ; σ−n(k̃τ+l̃)
mτ+ñ

) ,

(3.145)

where now also k̃ñ− l̃m = 1 and we made use of

θ
(

z
mσ+n ;

τ−ñ(kσ+l)
mσ+n

)
θ
(

z
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ

)
= e−πi( 1

m
B( mz

mσ+n
−1;mτ+ñ

mσ+n)+2σ1(kñ,1;m)) ,
(3.146)

where the constant σ1 is defined in (A.8). This property can be derived from the extension
and general modular property of the q-θ function in appendix A and the fact that

σ − n(k̃τ + l̃)
mτ + ñ

=
(
−k̃n −l − l̃ − ll̃m

m kñ

)
τ − ñ(kσ + l)
mσ + n

, (3.147)

where the action of the SL(2,Z) matrix is defined in the usual projective manner. In
particular, note that the transformation exchanges mσ + n↔ mτ + ñ. For completeness,
we separately define the m = 0 and n = ñ = 1 case of (3.145)

xξ
α = θ (zα; τ − σ) θ (τξ; τ − σ)

θ (zα + τξ; τ − σ) × θ (zα;σ − τ) θ (σξ;σ − τ)
θ (zα + σξ;σ − τ) , (3.148)

where we made use of the fact that ξ is quantized as an integer and the shift property (A.2)
of the q-θ function.

Finally, for the perturbative part we can use the results from section 3.6.1, specifi-
cally (3.124), to achieve factorization. We thus find that the index can be expressed for
m ̸= 0,40 in the following form

ISQED
(1,0) (ρ̂) = e

πi
6m(mτ+ñ

mσ+n
+mσ+n

mτ+ñ
+3−2σ1(kñ,1;m))(pq)ξ/2e

−iπP m,SQED
S23

(ρ)

×
Nf∑

α=1
Bα

h (ρ)Bα
h̃
(OS−1

23 ρ) , ρ̂ = ρ .
(3.149)

40Note that only the factorization of the FI term needs to be defined separately when m = 0, as we have
done in (3.148).
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In this expression, we used the formal definition of Bα(ρ) in (3.59), but now with a more
general action of (h, h̃) ∈ SS23O as in (3.93):

Bα
h (ρ) ≡ Bα(hρ) = Bα

(
z⃗

mσ+n ;
τ−ñ(kσ+l)

mσ+n , kσ+l
mσ+n ;

(mτ+ñ)ξ
m

)
, (3.150)

where we recall from section 3.2.2 that for SQED we extended ρ to include the FI parameter
as ρ = (z⃗; τ, σ; τξ). Similarly, since the action of OS−1

23 on ρ exchanges τ ↔ σ we have:

Bα
h̃
(OS−1

23 ρ) = Bα
(

z⃗
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ ;
(mσ+n)ξ

m

)
(3.151)

It may seem as if τξ transforms non-trivially under h, in which case modular factorization
actually does not hold. However, this is only apparent since

τξ
h−→ (mτ + ñ)ξ

m
= τξmod 1 , (3.152)

as long as we assume that ξ is quantized as a multiple of m. This should be closely related
to the fact that for L(p, 1)×S1 indices ξ is quantized as a multiple of p [49] and the relation
of the m ̸= 1 modular properties to lens-like quotients [39, 47].41 Furthermore, we note that
since (1, 1) /∈ SS23O, we never run into the issue that the formal expression vanishes (3.59)
given the invariance of τξ.

Finally, the phase polynomial is given by:

P SQED
S23

(ρ)=−P̃m
S23 (0;τ,σ)+

Nf∑
β=1

[
P̃m

S23(zβ−zα;τ,σ)−P̃m
S23(−zβ−zα;τ,σ)

]
, (3.153)

with P̃m
S23

(z; τ, σ) defined in (3.130). It follows from the discussions in section 3.2.2 and
section 3.6.1 that this polynomial captures the ’t Hooft anomalies of SQED.

In conclusion, we see that, up to phase prefactors, the SQED index can be factorized
in a variety of ways precisely matching with our modular factorization conjecture.

3.6.3 General gauge theories

Let us briefly indicate how our proof can be extended to more general N = 1 gauge theories.
As observed in section 3.2.3 in the context of the factorization in terms of Bα

S(ρ), there were
five main ingredients that go into the factorization of a lens index. The last four points
require an update in the context of the more general factorization properties:

• Invariance of the vortex partition function at fixed vortex charge under the full group
H = SL(2,Z)13 ⋉ Z2.

• Modular factorization of the FI term, if present.

• Modular factorization of the free chiral multiplet index.

• Independence of the phase polynomial of the Higgs branch vacuum α.
41This connection will be substantiated in upcoming work [80].
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The first point requires full modular invariance and ellipticity of the vortex partition function.
This should follow from the same arguments mentioned in 3.2.3, namely that ’t Hooft
anomalies for global symmetries on the vortex worldsheet should vanish. The second and
third point we have demonstrated in sections 3.6.1 and 3.6.2. Finally, the fourth point
also follows from the arguments made in 3.2.3, since the phase polynomials for the general
factorization properties are simply changes of variables of the phases there. In particular,
independence of α follows from gauge anomaly cancellation. All in all, we believe that this
provides strong evidence of modular factorization for more general N = 1 gauge theories,
as long as a Higgs branch expression for the index exists.

4 SL(3,Z) one-cocycle condition and lens indices

In this section, we begin with a gentle introduction to the mathematical framework of group
cohomology, geared towards a generalization of the notion of a modular form. The insight
of Gadde [45] relates lens indices to a non-trivial cohomology class in H1(G, N/M) with
G = SL(3,Z)⋉ Z3r. We establish this connection systematically and rigorously, assuming
the conjectured properties of lens indices in section 3. Our approach supplies a physical
interpretation of the fact that lens indices are related to a non-trivial cohomology class.
Finally, we briefly comment on a cohomological perspective on the modular factorization of
lens indices.

4.1 Modular group cohomology

For concreteness, let us consider the Jacobi group J = SL(2,Z)⋉Z2. This group acts by large
diffeomorphisms on the complex structure τ of a torus and by large gauge transformations
on a line bundle modulus z:

(z; τ) →
(

z

mτ + n
; kτ + l

mτ + n

)
, (z; τ) → (z + aτ + b; τ) . (4.1)

A (weight 0) automorphic form with respect to J transforms as follows:42

χ (z; τ) = ϕg(z; τ)χ(g−1(z; τ)) , (4.2)

where ϕg(z; τ) is a pure phase and known as the automorphic factor. It satisfies:

ϕg1g2(z; τ) = ϕg1(z; τ)ϕg2(g−1
1 · (z; τ)) . (4.3)

In general, χ(z; τ) is a meromorphic function of (z; τ). Following [43] (see also [45]), we
will now set up a general framework that allows us to identify such automorphic forms as
elements of the zeroth group cohomology H0(J , N/M) of the Jacobi group J , valued in
N/M to be defined momentarily.

To this end, let us look at the group of k-cochains Ck(G,A), where G will be a modular
group such as J and with A a multiplicative abelian group of functions. The group Ck(G,A)
consists of k-cocycles α : Gk → A such that αg1,...,gk

= 1 if gj = 1 for some j. Furthermore,
42The elliptic genera of two-dimensional SCFTs are examples of such forms (see, e.g., [81]).
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g

(a) (δα)g(ρ) = α(ρ)
α(g−1ρ) .

g1

g2g1g2

(b) (δα)g1,g2 (ρ) = αg1 (ρ)αg2 (g−1
1 ρ)

αg1g2 (ρ) .

g1

g2g1g2

g3

g1g2g3 g2g3

(c) (δα)g1,g2,g3 (ρ) = αg1,g2 (ρ)αg1g2,g3 (ρ)
αg1,g2g3 (ρ)αg2,g3 (g−1

1 ρ)
.

Figure 4. In the graphical representation, the right hand side of the equation reflects the boundary
components of the left hand side. The arrows indicate the orientation of the boundary components
and determine whether αg1,...,gk

(ρ) ends up in the numerator or denominator. In the above, the
arrows are directed such that there is a single point/edge/face not anchored to the same point as all
other points/edges/faces. This is reflected by the action of g1 on the relevant αg1,...,gk

(ρ). An arrow
can be flipped at the expense of inverting the group element, its orientation and anchoring point:
αg1,...,gk

(ρ) = 1/αg−1
1 ,g1g2,...,g1gk

(g−1
1 ρ).

one defines C0(G,A) = A. Let us denote by Y a complex manifold endowed with an action
of G. We parametrize the manifold in terms of a set of complex variables collectively
denoted by ρ. For example, when G = J we take ρ = (z; τ) with z ∈ C and τ ∈ H and the
action is as in (4.1). The other relevant example will be G = G, discussed in section 2.2, in
which case we have ρ = (z; τ, σ) with z ∈ C and τ, σ ∈ H, and the action is as in (2.24).
In addition, A will take three concrete forms: the group of meromorphic functions N on
Y , the group of holomorphic, nowhere vanishing functions M on Y , or the quotient N/M .
Note that M is nothing but the set of (holomorphic) phases. These three groups fit into a
short exact sequence:

1 →M → N → N/M → 1 . (4.4)

The G-action on Y induces an action on αg1,...,gk
(ρ) ∈ A as follows:

g · αg1,...,gk
(ρ) ≡ αg1,...,gk

(g−1ρ) . (4.5)

To construct the cohomology groups, one defines a coboundary operator δ ≡ δk from
Ck(G,A) → Ck+1(G,A) via:

(δα)g1,...,gk+1(ρ) = αg1,...,gk
(ρ)αg2,...,gk+1(g−1

1 ρ)
k∏

j=1
αg1,...,gjgj+1,...,gk+1(ρ)(−1)j

(−1)k+1

,
(4.6)
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where we recall that A is defined multiplicatively. Furthermore, for k = 0:

(δα)g(ρ) =
α(ρ)

α(g−1ρ) . (4.7)

We have illustrated this equation in figure 4 for k = 0, 1, 2. One may verify that δ2 = 1, as
appropriate for a coboundary operator. We can thus define cohomology groups as:

Hk(G,A) = ker δk

im δk−1
, k ≥ 1 , H0(G,A) = ker δ0 . (4.8)

Having set up the basic language, we can now describe the property (4.2). Consider an
element χ ∈ C0(J , N) = N . This function is a weight 0 automorphic form if:

(δχ)g(ρ) =
χ(ρ)

χ(g−1ρ) = ξg(ρ) , ξg(ρ) ∈ C1(G,M) , (4.9)

with ξg the factor of automorphy. Note that the cohomological structure automatically
ensures the condition (4.3):

(δξ)g1,g2 = 1 ⇒ ξg1(ρ)ξg2(g−1
1 ρ)

ξg1g2(ρ)
= 1 . (4.10)

It follows that such a χ can be thought of as an element in H0(J , N/M), since it is
annihilated by δ modulo M . This brings us to the claim at the beginning of this section.

The equivalence class [χ] of an automorphic form χ modulo M corresponds to a
cohomology class in H1(J ,M). To see this, consider the product of the automorphic form
χ with a phase ϕ ∈ M . Let ξg = (δχ)g and ψg = (δ(χϕ))g. Since ψg = ξg(δϕ)g, it follows
that ξg and ψg sit in the same cohomology class in H1(J ,M). As in [43], we call this map
from H0(J , N/M) to H1(J ,M): δ∗[χ] ≡ [δχ].

Note that the definition of δ∗ generalizes to higher degree. Together with the short
exact sequence (4.4), it induces a long exact sequence:

· · ·Hk−1(G,N/M) δ∗−→ Hk(G,M) i∗−→ Hk(G,N) p∗−→ Hk(G,N/M) δ∗−→ Hk+1(G,M) · · · ,
(4.11)

where i∗ and p∗ lift the inclusion and projection of the short exact sequence to the cohomology
groups. For exactness at the node Hk(G,M), we first note that the trivial class in Hk(G,N)
is of the form δCk−1(G,N). Therefore, ker i∗ contains all cocycles [ξg1,...,gk

] ∈ Hk(G,M)
that can be written as:

[ξg1,...,gk
] = [δ(χ)g1,...,gk

] = δ∗([χ])g1,...,gk
, χg1,...,gk−1 ∈ Ck−1(G,N) , (4.12)

where we have used the definition of δ∗. We thus see that im δ∗ = ker i∗. This implies, in
particular, that ker i∗ ⊂ H1(G,M) classifies automorphic forms modulo M . Exactness at
the other nodes follows similarly.

Let us now focus on H1(G, N/M). The elliptic Γ function can be understood as part of
a class H1(G, N/M), as first discussed in [43] (see also [47] for a recent review). From the
above, a class [Xg] ∈ H1(G, N/M) satisfies a 1-cocycle condition:

δ(X)g1,g2(ρ) =
Xg1(ρ)Xg2(g−1

1 ρ)
Xg1g2(ρ)

= ξg1,g2(ρ) , ξg1,g2(ρ) ∈ C2(G,M) . (4.13)
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We view this property as the degree 1 analogue of the automorphic property (4.9). As
stressed in [47], the properties of Xg are associated to relations in the relevant modular
group. This should be contrasted with the degree 0 case, where modular properties are
labeled by elements of the modular group.

Note that the case g2 = g−1
1 in particular implies:

Xg(ρ) =
1

Xg−1(g−1ρ) , (4.14)

where we use the choice ξg,g−1 = 1 [43]. Moreover, note that ξg1,g2 satisfies:

(δξ)g1,g2,g3 = 1 ⇒ ξg1,g2(ρ)ξg1g2,g3(ρ)
ξg1,g2g3(ρ)ξg2,g3(g−1

1 ρ)
= 1 . (4.15)

This is a 2-cocycle condition and the analogue of (4.3).
It will be important in the following that at degree 1 there is a notion of exact or

trivializable elements. Indeed, such classes can be written as:

[Xg] = [(δB)g] =
[

B(ρ)
B(g−1ρ)

]
, (4.16)

with B ∈ C0(G, N) = N . Any [Xg] of this form trivially satisfies (4.13), as can be easily
verified. Similar to ordinary differential forms, it will always be possible to find a locally
exact expression for [Xg] ∈ H1(G, N/M), i.e., for some g ∈ G. But if [Xg] ∈ H1(G, N/M)
corresponds to a non-trivial class, there exists no function B such that (4.16) holds for all g.

The 1-cocycle condition implies that a class [Xg] ∈ H1(G, N/M) is defined by its values
on the generators of G. Consider now the free group formed by the generators Tij and ti
of G.43 Any set of functions in N/M associated to the generators provides a 1-cocycle Xg

for the free group. This set of functions descends to a 1-cocycle for G if and only if the
relations in G are sent to one [43]. The SL(3,Z) relations (2.9) require:

XTij (ρ)XTkl

(
T−1

ij ρ
)
∼= XTkl

(ρ)XTij

(
T−1

kl ρ
)
, i ̸= l , j ̸= k ,

XTij (ρ)XTjk

(
T−1

ij ρ
)
∼= XTik

(ρ)XTjk

(
T−1

ik ρ
)
XTij

(
T−1

jk T
−1
ik ρ

)
,

XSij (ρ)XSij

(
S−1

ij ρ
)
XSij

(
S−2

ij ρ
)
XSij

(
S−3

ij ρ
)
∼= 1 ,

(4.17)

where the ∼= sign indicates that these equations should hold up to multiplication by a phase,
i.e., an element in C2(G,M). In addition, Xg must satisfy the mixed relations between the
Tij and ti given in (2.25):

XTij (ρ)Xtk

(
T−1

ij ρ
)
∼= Xtk

(ρ)XTij

(
t−1
k ρ

)
, i ̸= k ,

XTij (ρ)Xti

(
T−1

ij ρ
)
∼= Xti (ρ)Xt−1

j

(
t−1
i ρ

)
XTij

(
tjt

−1
i ρ

)
,

Xti (ρ)Xtj

(
t−1
i ρ

)
∼= Xtj (ρ)Xti

(
t−1
j ρ

)
.

(4.18)

We now turn to the physical relevance of this construction.
43See section 2 for definitions. We omit the label (a) on ti for notational convenience.
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4.2 The 1-cocycle condition and lens indices

In this section, we systematically prove that the candidate 1-cocycle of [45], constructed from
the collection of lens indices, realizes a non-trivial class in H1(G, N/M) for general N = 1
gauge theories, as long as their index admits a Higgs branch expression (see section 3.2 and
they have a global symmetry.44 Our proof is based on three main results from section 3:

1. Ambiguities in the Heegaard splitting lead to the same lens index:

I(p,q)(ρ̂) = Zf (ρ) = Zhfh̃−1(hρ) . (4.19)

2. Invariance of the lens indices under the action of their respective groups of large
diffeomorphisms and gauge transformations, up to a phase. More specifically, we use
periodicity of the superconformal index ZS23O(ρ) under za → za + 1, τ → τ + 1 and
σ → σ + 1 and the covariance of Ztn

2 O under an entire copy of H.

3. Modular factorization of lens indices:

I(p,q)(ρ̂) = e−iπPm
f (ρ)∑

α

Bα
h (ρ)Bα

h̃
(f−1ρ) , (h, h̃) ∈ Sf ⊂ H ×H . (4.20)

The first two points were discussed in section 3.1 and section 3.2, respectively, and the last
point in section 3.4. Let us summarize the strategy of our proof here.

1. After constructing the candidate 1-cocycle for G we evaluate it on the generators,
which using (4.19) can be expressed in terms of ZS23O and ZO.

2. Using these expressions, we show that it satisfies all basic relations in G, i.e., we
verify (4.17), (4.18) and also the inverse relation (4.14). The relations separate into
three classes that require distinct properties of the lens indices to prove:

(a) Relations that only involve generators in H ⊂ G. These relations can be proven
making use of the first result above.

(b) Relations that involve strictly one element in {T12, T32, t2}. These relations can
be proven making use of both the first and second result.

(c) Relations that involve more than one element in {T12, T32, t2}. These relations
can be proven making use of the third result.

(d) The relation between an element and its inverse is also proven using the third
result.

3. Finally, we show that the 1-cocycle defines a non-trivial class in H1(G, N/M) and
provide a physical interpretation in terms of the results of section 3.5.

Our proof can be viewed as a generalization to arbitrary gauge theories of the proof in [43]
that the elliptic Γ function is part of a 1-cocycle for G, which in the physical context
corresponds to the example of the free chiral multiplet [45, 47].

44This requirement follows from the requirement of (even) integral R-charges. See section 3.1 for more
details. In addition, due to the non-renormalization of indices the proof also applies to IR SCFTs that can
be reached through supersymmetric flows from the N = 1 gauge theories.
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A candidate 1-cocycle. The first result above implies that there always exists a lens
index I(p,q)(ρ̂) that can be associated to Zf (ρ) with f = gO and g ∈ G arbitrary. This
follows from the standard Heegaard splitting of a Hopf surface (2.27) in terms f = g(p,q)O
and our observation in (2.14). In addition, recall that there is a natural G action (2.24) on
ρ. These are two key features shared with a 1-cocycle Xg(ρ) of G. However, a 1-cocycle
has two other basic properties not shared by the indices: first of all, it obeys X1(ρ) = 1,
and secondly it is defined multiplicatively. In contrast, the index ZO(ρ) is not trivial, and
moreover the Higgs branch expression for a lens index mixes sums and products.

However, the factorization of a lens index is uniform over the Higgs branch vacua α,
since the relative phase (the anomaly polynomial) does not depend on α. Taken together,
this suggests a natural candidate 1-cocycle [45]:45

Ẑα
g (ρ) ≡

Zα
f (ρ)

Zα
O(g−1ρ) , f = gO , (4.21)

where Zα
f (ρ) is the summand in the expression (3.7) for the index Zf (ρ). This ratio clearly

satisfies the first property, and we will see that it also fits into a multiplicative structure.
As such, this object defines a 1-cocycle for the free group of generators of G. Before turning
to the G relations, we first show that the 1-cocycle evaluated on the generators can be
expressed in terms of ZS23O and ZO.

Using the first result (4.19) for f = O, h ∈ H general and h̃ = 1, we have:

Zα
hO(hρ) = Zα

O(ρ) ⇒ Ẑα
h (ρ) = 1 . (4.22)

We thus find for all generators in H:

Ẑα
Tij

(ρ) = 1 , j ̸= 2 , Ẑα
ti
(ρ) = 1 , i ̸= 2 , (4.23)

and similarly for their inverses. This establishes a similar claim in [45] rigorously. It follows
that (4.14) is trivially satisfied for elements in H. We now compute Ẑα

(·) for the remaining
generators Ti2 and t2, again making use of (4.19). For example, since T−1

32 O = T−1
23 S23O T23

and T23 ∈ H (see (3.95)), we find:

Ẑα
T−1

32
(ρ) ∼= Ẑα

S23(T23ρ) , (4.24)

where we have made use of the second result listed above for the S2 × T 2 index:

Zα
O(hρ) ∼= Zα

O(ρ) , h ∈ H . (4.25)

Similarly, since T−1
12 O = S13 T

−1
32 O S−1

13 we find:

Ẑα
T−1

12
(ρ) ∼= Ẑα

S23(T23S
−1
13 ρ) , (4.26)

where we have again made use of (4.25). So far, we have evaluated Ẑα
(·) on T−1

12 and T−1
32 .

For now, we only consider relations involving these inverses, and later show that Ẑα
(·) on

45We label Ẑα
g (ρ) by g because it will turn out that the dependence on the orientation reversed moduli

drops out.
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T12 and T32 correctly reflects (4.14). Finally, the index associated to t2 is an S2 × T 2 index
with an additional unit of magnetic flux for the flavor symmetry associated to t2.46 We
simply write out the definition in this case:

Ẑα
t2(ρ) =

Zα
t2O(ρ)
Zα
O(ρ)

, (4.27)

where we recall that the second result above holds for both numerator and denominator.
Having expressed the candidate 1-cocycle on all generators of G, we now turn to check that
it satisfies the basic relations of G.

Basic relations (a). Due to (4.23), all relations that only involve Tij , ti ∈ H are trivially
satisfied. In particular, the relation associated to S4

13 = 1 is satisfied. The relations
S4
12 = S4

23 = 1 follow from the former as long as the first and second line of (4.17) are
satisfied as well. Therefore, the non-trivial relations to be checked are the first two relations
in (4.17) and the relations in (4.18) that involve at least one element in {T−1

12 , T
−1
32 , t2}.

Basic relations (b). We now turn to the relations that involve one element in
{T−1

12 , T
−1
32 , t2}. For the SL(3,Z) part of these relations, we have to check:

T−1
32 T31 = T31T

−1
32 , T−1

12 T13 = T13T
−1
12 ,

T−1
32 T21 = T−1

31 T21T
−1
32 , T−1

12 T23 = T−1
13 T23T

−1
12 .

(4.28)

Plugging in the expressions (4.23), (4.24) and (4.26), it follows that Ẑ(·) satisfies these
relations as long as:

Ẑα
S23(T21ρ) ∼= Ẑα

S23(ρ) ,
Ẑα

S23(T31ρ) ∼= Ẑα
S23(ρ) .

(4.29)

Since ρ̃ = OS−1
23 T21ρ = T31OS−1

23 ρ on the left hand side of the first line, and similarly on
the second line but with T21 ↔ T31, we recognize this action as a large diffeomorphism on
the Hopf surface M(1,0)(ρ̂) under which τ̂ → τ̂ + 1 and σ̂ → σ̂ + 1, respectively, described
in (2.34). By the second result listed above, it follows that the relations (4.28) are indeed
satisfied by Ẑα

(·).
The relations that only involve t2 and elements in H have the structure t2h = h′t2 for

h, h′ ∈ H. These relations are also satisfied by the second result listed above, which implies
that Ẑα

t2(ρ) is invariant under the action of H up to a phase. Furthermore, the relations
that involve T−1

i2 and t1,3, but not t2, are yet again satisfied due the second result. In this
case, it follows from periodicity of Zα

S23O(ρ) under z → z + 1.

Basic relations (c). We continue with the relations involving more than one element in
{T−1

12 , T
−1
32 , t2}. For the SL(3,Z) part of the relations, we need to check:

T13T
−1
32 = T−1

12 T
−1
32 T13 , T31T

−1
12 = T−1

32 T
−1
12 T31 , T−1

32 T
−1
12 = T−1

12 T
−1
32 . (4.30)

46We suppress the superscript t
(a)
i with a = 1, . . . , r and r the rank of the flavor symmetry for nota-

tional convenience.
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Let us first note that, since Ẑα
T13

(ρ) = Ẑα
T31

(ρ) = 1, the third relation follows from the first
two as long as Ẑα

(·) satisfies in addition:

T13T
−1
32 = T31T

−1
12 . (4.31)

One easily checks that this relation is implied by (4.29). Therefore, we can focus on the
first two relations in (4.30). The first relation requires us to show that:

Ẑα
T13(ρ)Ẑ

α
T−1

32
(T−1

13 ρ) ∼= Ẑα
T−1

12
(ρ)Ẑα

T−1
32

(T12ρ)Ẑα
T13(T32T12ρ) . (4.32)

Note that in this case we have not plugged in (4.23), (4.24), and (4.26), which turns out to
be convenient. In order to prove this relation, we need the third result listed above. More
specifically, consider the modular factorization of both Zα

TijO(ρ) and Zα
O(ρ) as parametrized

by STijO and SO respectively. Let (h, h̃) ∈ STijO ∩ SO, which is non-empty for all Tij .47

For such a pair (h, h̃), it follows that:

Ẑα
Tij

(ρ) =
Zα

TijO(ρ)
Zα
O(T

−1
ij ρ)

∼=
Bα

h (ρ)
Bα

h (T
−1
ij ρ)

. (4.33)

We thus see that the factorization of Zα
TijO(ρ) and Zα

O(ρ) into a common set of holomorphic
blocks corresponds to a trivialization of Ẑα

Tij
(ρ) (cf. (4.16)), as first suggested in [45]. This

observation allows us to prove that Ẑα
(·) satisfies any relation that involves elements g whose

solution sets Sf have a non-empty intersection.
For the relation (4.32), one may observe that the relevant Tij are all elements of

FS = SL(2,Z)23 ⋉ Z2 ⊂ SL(3,Z) defined in section 3.5. It follows from the discussion there
that the relevant Zα

TijO(ρ) and Zα
O(ρ) can be factorized in terms of the holomorphic block

Bα
S(ρ). By the above, we find that Ẑα

g (ρ) for g ∈ FS can be written as:

Ẑα
g (ρ) ∼=

Bα
S(ρ)

Bα
S(g−1ρ) . (4.34)

Therefore, the relation (4.32) is trivially satisfied, as one easily verifies by plugging in (4.34).
Notice in particular that:

Ẑα
T13(ρ) ∼=

Bα
S(ρ)

Bα
S(T

−1
13 ρ)

= Bα(S13ρ)
Bα(T31S13ρ)

= 1 , (4.35)

where in the last equation we have made use of periodicity of the holomorphic blocks (see,
e.g., section 3.2.1). This is indeed consistent with (4.23).

Let us apply the same strategy to the second relation in (4.30). The relation we have
to prove reads:

Ẑα
T31(ρ)Ẑ

α
T−1

12
(T−1

31 ρ) ∼= Ẑα
T−1

32
(ρ)Ẑα

T−1
12

(T32ρ)Ẑα
T31(T12T32ρ) . (4.36)

47This follows for example from the fact that the generators of F and FS , defined in section 3.5, together
comprise all the Tij .
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In this case, all elements involved belong to F = SL(2,Z)12 ⋉ Z2. The indices associated
to this subgroup can all be factorized in terms of Bα(ρ), as again discussed in section 3.5.
Thus, for any g ∈ F we have:

Ẑα
g (ρ) ∼=

Bα(ρ)
Bα(g−1ρ) . (4.37)

For the same reason as above, it follows that also (4.36) is satisfied.
The remaining relations are given by:

T−1
12 t2 = t2T

−1
12 , T−1

32 t2 = t2T
−1
32 ,

T−1
12 t1 = t1t

−1
2 T−1

12 , T−1
32 t3 = t3t

−1
2 T−1

32 .
(4.38)

Recall that Zt2O(ρ) can be factorized in terms of pairs (h, h) ∈ SL(2,Z)13 ⊂ SO (see the
comment below (3.90)). On the other hand, one can make use of the relation between Sf ′

and Sf (3.87) for f ′ = hfh̃−1 to determine the sets St1O and St3O in terms of SO. One
finds that the relevant intersections are non-empty:

(S13, S13) ∈ ST32O ∩ St2O ∩ St3O ∩ SO ,
(1,1) ∈ ST12O ∩ St2O ∩ St1O ∩ SO .

(4.39)

This shows that there exist a trivializations for each of the relations in (4.38), and conse-
quently they are satisfied by Ẑα

(·).
Let us briefly pause to note that if there were a global trivialization, i.e., a function

Bα
h (ρ) such that all generators of G are trivialized, we could have proven all relations in

one go. However, as we have explained in section 3.5, the maximal subset of SL(3,Z) that
can be factorized into a common set of holomorphic blocks is isomorphic to SL(2,Z)⋉ Z2.
Two indices that can never be simultaneously trivialized, for example, are Ẑα

T13
(ρ) and

Ẑα
T31

(ρ). A relation that involves both elements, such as S4
13 = 1, has to be proven with an

alternative method, as we have used in point (a). We will comment in more detail about
the absence of a global trivialization below.

Basic relation (d). To conclude that Ẑα
(·) descends to a 1-cocycle for G, we still need to

show that Ẑα
(·) for T−1

12 and T12 correctly reflects (4.14), and similarly for T−1
32 and t2. To

start, let us note that the orientation reversing symmetry of the Hopf surface, as described
in (2.31), naively seems to imply:

ZgO(ρ)
?= Zg−1O(g−1ρ) . (4.40)

However, an equation of this sort would not lead to the desired relation (4.14). To see what
goes wrong, we first note that the solution sets for T−1

i2 and Ti2 with i = 1, 3 are identical:

ST−1
i2 O = STi2O . (4.41)

It follows that any function Bα
h (ρ) that trivializes Ẑα

T−1
i2

(ρ) can also be used to trivialize
Ẑα

Ti2
(ρ). For example, we can use Bα

S(ρ) to trivialize Ẑα
Ti2

. One immediately observes:

Ẑα
Ti2(ρ) ∼=

Bα
S(ρ)

Bα
S(T

−1
i2 ρ)

∼=
1

Ẑα
T−1

i2
(T−1

i2 ρ)
. (4.42)
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Comparing with (4.14), this is indeed the right behaviour for inverses. This argument also
applies to the relation between Ẑα

t2 and Ẑα
t−1
2

. As a consequence, there is no simple relation
such as the one suggested in (4.40). We expect this to be related to the fact that orientation
reversal changes the preserved supersymmetry algebra.

Conclusion. This concludes our proof of the statement that Ẑα
(·) is a 1-cocycle for G. In

particular, it follows that it satisfies the defining 1-cocycle condition:

Ẑα
g1g2(ρ) ∼= Ẑα

g1(ρ)Ẑ
α
g2(g

−1
1 ρ) , g1,2 ∈ G , (4.43)

where the equality holds up to a phase in C2(G,M). An explicit description of this phase is
in terms of the anomaly polynomial of the theory (see, e.g., section 3.6). For consistency
of (4.43), this phase should really by thought of as a class in H2(G,M), and in particular
should satisfy the 2-cocycle condition (4.15). For the free chiral multiplet, or rather a single
elliptic Γ function, this was shown in [43]. A quick way to argue that it holds more generally
for N = 1 gauge theories is as follows. First, note that the vortex contributions to a lens
index are automatically factorized (cf. (3.7)). This implies that its contribution to Ẑα

g (ρ) is
cohomologically trivial [45]:

Ẑα
g (ρ) =

Zα
gO(ρ)

Zα
O(g−1ρ) =

Zα
gO,1-loop(ρ)

Zα
O,1-loop(g−1ρ)

Zα
v (ρ)

Zα
v (g−1ρ) , (4.44)

where we have plugged in (3.7). As such, this contribution drops out of the 1-cocycle
condition, and in particular does not contribute to the phase. Since Zα

1-loop, gO(ρ) consists
of a product of elliptic Γ functions, and the cohomology groups are defined multiplicatively,
it follows that also the phase for a general gauge theory satisfies the 2-cocycle condition. It
would be interesting to verify this more explicitly.

Non-triviality of the class. We have seen that not all elements in G are simultaneously
trivializable. This implies, by definition, that Ẑα

(·) defines a non-trivial class in H1(G, N/M).
The underlying physical reason follows from the connection between trivialization and
holomorphic block factorization.

To see this, recall from section 3.5 that only indices associated to a maximal subset
of SL(3,Z), isomorphic to SL(2,Z) ⋉ Z2, admit a factorization in terms of a given pair
of holomorphic blocks. Physically, this follows from the condition that the factorization
of a given index is only compatible with a pair of holomorphic blocks, labeled by (h, h̃),
when the embedding of the time circle into the Heegaard splitting is fixed by the gluing
transformation f ′. Furthermore, recall that Ẑα

g (ρ) can only be trivialized in terms of a
function Bα

h (ρ) if both Zf (ρ) and ZO(ρ) admit a factorization in terms of a common pair
of holomorphic blocks. This constrains h̃ = OhO, since only the subgroups Fh ⊂ SL(3,Z),
defined in (3.118), contain the identity element. Therefore, Fh for any h ∈ H is a maximal
subgroup of SL(3,Z) on which Ẑα

g (ρ) can be trivialized, and the trivializing function is
Bα

h (ρ). This implies, by definition, that Ẑα
g (ρ) is non-trivial in cohomology.

We can extend this statement to maximal subgroups of G. Since we have seen that
Zt2,3O(ρ) also admit a factorization in terms of Bα

S(ρ), it follows that:

FS ≡ SL(2,Z)23 ⋉ Z2+2r , with Z2+2r = ⟨T12 , T13 , t(a)2 , t
(a)
3 ⟩ , (4.45)
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is a maximal subgroup of G which can be trivialized in terms of Bα
S(ρ). Similarly, Ẑα

g (ρ)
can be trivialized in terms of Bα(ρ) for g ∈ F with:

F ≡ SL(2,Z)12 ⋉ Z2+2r , with Z2+2r = ⟨T31 , T32 , t(a)1 , t
(a)
2 ⟩ . (4.46)

In general, a trivialization of Ẑα
g (ρ) for g ∈ Fh ≡ h−1Fh is in terms of the function Bα

h (ρ).
Finally, indices associated to H ⊂ G can never be simultaneously trivialized.

4.3 Cohomological perspective on modular factorization

In this section, we provide a cohomological perspective on modular factorization.
We recall from section 3.5 that hfh̃−1O ∈ F for any gluing transformation f and

(h, h̃) ∈ Sf . Let us write out this fact more explicitly for f = g(p,q)O as in (2.14). Using
the explicit pair (h, h̃) ∈ Sf in (3.83), we have:48

h g(p,q) h̃
−1
O = S23 h

′ S−1
23 , h̃O ≡ O h̃O , (h, h̃) ∈ Sf , (4.47)

with h′ ∈ H given by:

h′ =

 α 0 −γ
kl̃α− k̃(l − pb̃) 1 kp

−β 0 δ

 . (4.48)

Here, α, β, γ, and δ refer to the combinations of parameters defined in (3.73) and satisfy
αδ− βγ = 1. One easily checks that the right hand side of (4.47) is indeed an element of F .

Using the 1-cocycle condition (4.43), we can evaluate Ẑα
(·) on both sides of (4.47) to find:

Ẑα
hgh̃−1

O
(ρ) ∼=

Ẑα
S23

(ρ)
Ẑα

S23
(h̃O g−1 h−1ρ)

, (h, h̃) ∈ Sf , (4.49)

where we have made use of the fact that Ẑα
S−1

23
(ρ) = 1/Ẑα

S23
(S23ρ) and Ẑα

h (ρ) = 1 for h ∈ H.
This is an interesting expression for two main reasons. First of all, the equation takes on
the form of a trivialization. Note that the trivialization is now in terms of the function
Ẑα

S23
(ρ). Since the group element hgh̃−1

O ∈ F , it could also be trivialized in terms of Bα(ρ)
(see the comment above (4.46)). This is not too surprising. Indeed, let us plug in both
numerator and denominator of (4.49) with (4.44):

Ẑα
hgh̃−1

O
(ρ) ∼=

Zα
S23O,1-loop(ρ)

Zα
S23O,1-loop(h̃O g−1 h−1ρ)

Zα
v (ρ)

Zα
v (h̃O g−1 h−1ρ)

, (4.50)

where we have made use of (4.47) and the fact that both Zα
O,1-loop(ρ) and Zα

v (ρ) are
invariant, up to a phase, under the action ρ → hρ for h ∈ H. The right hand side now
reflects essentially the trivialization in terms of Bα(ρ) (see, e.g., section 3.2.2).49

48This relation generalizes the relations studied in [45, 47], associated to order 3 elements in SL(3,Z) for
g(1,0) = S23.

49The word essentially refers to the additional shift in the z argument in the expression for Bα(ρ). This
shift produces relative θ functions in both numerator and denominator, which can be checked to cancel (up
to a phase).
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A second observation is that we can further rewrite the equation as:

Ẑα
g (ρ) ∼=

Ẑα
S23

(hρ)
Ẑα

S23
(h̃Og−1ρ)

, (h, h̃) ∈ Sf , (4.51)

where we have used (4.43) and the fact that Ẑα
h = 1 for h ∈ H. This equation can be viewed

as the analogue of modular factorization for Ẑα
(·). We conclude that the modular factorization

of lens indices follows, in the cohomological language, from the SL(3,Z) relation (4.47).
This generalizes the Y 3 = 1 relation of [45] and its relation to the original holomorphic
block factorization of [49], as mentioned in section 1.

5 Application: general lens space index

In this section, we show how the 1-cocycle condition (4.43) leads to an expression for the
general lens index I(p,q)(ρ̂) in terms of the S3 × S1 and S2 × T 2 indices. We then evaluate
the formula for the free chiral multiplet, and perform two consistency checks.

5.1 A general formula

In section 2.1, we discussed the Heegaard splitting of a general lens space L(p, q). In order
to compute the index using the 1-cocyle condition, we first decompose the associated gluing
element g(p,q) ∈ SL(2,Z)23 into the generators S23 and T23. This was called a continued
fraction expansion in [82], and is given by:

∆t ≡ g(p,q) = S23

t∏
i=1

(
T−ei
23 S23

)
, ei ≥ 2 . (5.1)

Let us explain this decomposition in some detail. First, define a truncated product ∆i:

∆i = S23

i∏
j=1

(
T
−ej

23 S23
)
=

 1 0 0
0 −si −ri

0 −pi −qi

 , (5.2)

where the matrix entries of ∆i are defined in terms of ej . We also define ∆0 ≡ S23 for later
convenience. The recurrence relation ∆i = ∆i−1T

−ei
23 S23 can be written in terms of the

matrix entries as:
pi = eipi−1 − pi−2 , qi = pi−1 ,

si = eisi−1 − si−2 , ri = si−1 ,

p0 = 1 , p1 = e1 , s0 = 0 , s1 = 1 .
(5.3)

Let us also define negatively indexed parameters consistent with the initial conditions:

p−1 = 0, s−1 = −1 . (5.4)

The first line in (5.3) implies that the solutions obey:

pi

qi
= [ei, ei−1, . . . , e1]− ≡ ei −

1
ei−1 − 1

···− 1
e1

, (5.5)
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which is known as the Hirzebruch-Jung continued fraction expansion. This expansion is
unique for ej ≥ 2 [82]. Similarly:

−si

pi
= [0, e1, . . . , ei]− . (5.6)

Note that the continued fraction expansions imply that 1 ≤ si, qi < pi. For any coprime
pair (p, q) defining a lens space L(p, q) with 1 ≤ q < p, there exists a t such that [82]:

g(p,q) = ∆t , with pt = p , qt = q , st = s , rt = r . (5.7)

This establishes the claim in (5.1). Geometrically, the ei parametrize a −p/q surgery on
the unknot in S3, which provides an alternative construction of L(p, q) [82–85].

We can now write a formula for the L(p, q)× S1 index of a general gauge theory:

I(p,q)(ρ̂) ≡ Zg(p,q)O(ρ) =
∑

α

Zα
O(g−1

(p,q) ρ)Ẑα
g(p,q)

(ρ)

=
∑

α

Zα
O(g−1

(p,q)ρ)
t∏

i=0
Ẑα

S23(S23∆
−1
i ρ) ,

(5.8)

where we assume a Higgs branch expression for the index and have used the definition (4.21)
of Ẑα

g (ρ) to rewrite the summand. In the second line, we have used the 1-cocycle con-
dition (4.43) and the fact that Ẑα

T23
(ρ) = 1. Furthermore, the moduli ρ̂ are related to

ρ through the usual relation (2.29). We thus see that the 1-cocycle condition leads to a
concrete formula for the lens index in terms of the superconformal and S2 × T 2 indices,
apparently avoiding difficulties with a direct definition of the lens index for q > 1.50 We also
note that the formula is structurally similar to a proposed formula for the L(p, q) partition
function of three-dimensional N = 2 theories [87].

5.2 Consistency checks for the chiral multiplet

We now evaluate (5.8) explicitly for the free chiral multiplet and perform a number of
consistency checks on the result. For simplicity of notation, we focus on vanishing R-charge.
Using the indices collected in appendix C we find:

Zg(p,q)O(ρ) =
t−1∏
i=0

Γ(z + pi−1τ − si−1σ; piτ − siσ , pi−1τ − si−1σ)

× Γ(z; ptτ − stσ , pt−1τ − st−1σ)

= Γ(z; τ, σ)
t∏

i=1
Γ(z + piτ − siσ; piτ − siσ , pi−1τ − si−1σ) ,

(5.9)

where we have made use of the shift property of the elliptic Γ function to absorb ZO(ρ)
either in the last or the first ẐS23(ρ) in the product. Also note that p−1 and s−1 were defined
in (5.4). We will perform two types of consistency checks on this formula. First, we check
that it is invariant under the symmetries of the Hopf surface, as described in section 2.2.
Secondly, we will show that it can be factorized into holomorphic blocks consistent with
modular factorization.

50See a appendix C.2 for a direct definition when q = 1 and also [55, 86].
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5.2.1 Invariance under symmetries Hopf surface

We implement the symmetries of the Hopf surface through an action on its Heegaard
splitting, as discussed at the end of section 2.3. First of all, the index is obviously invariant
under τ → τ + 1, σ → σ + 1 and z → z + 1 due to the periodicity of the elliptic Γ function.
This implies that it is invariant under all the symmetries in (2.34). In addition, it should
be invariant under:

τ → τ + σ , s→ s+ p , r → r + q ,

τ̃ → τ̃ + σ̃ , q → q + p , r → r + s ,
(5.10)

where we recall ρ̃ = Og−1
(p,q)ρ. We only have to check the first line, since invariance under

the second line is automatic. Note that si + pi satisfies the same recurrence relation as si

and leads to s′t = st + pt and r′t = rt + qt. The transformation in (5.10) thus shifts all si and
ri by si → si + pi and ri → ri + qi. Combined with τ → τ +σ, we see that the combinations
piτ − siσ are invariant for all i, and therefore the index is invariant too. Finally, the most
non-trivial transformation to check is:

ρ ↔ ρ̃ , q ↔ s . (5.11)

Recall that the transformation on the moduli is implemented on ρ̂ through the exchange
τ̂ ↔ σ̂. Let us denote the transformed lens data as:

s′t = qt, q′t = st, p′t = pt . (5.12)

It follows that the continued fraction expansions (5.5) for the primed lens data are given in
terms of the ei for i = 1, · · · , t by:

e′i = et−i+1 ⇒ p′i
q′i

= [et−i+1, . . . , et]− , −s
′
i

p′i
= [0, et, . . . , et−i+1]− . (5.13)

To prove invariance, we need to show that:

Zg(p,q)O(ρ) = Zg(p,s)O(ρ̃) . (5.14)

Recall from section 2.3 that:

(τ, σ) = (τ̂ − sσ̂, pσ̂) , (τ̃ , σ̃) = (σ̂ − qτ̂ , pτ̂) . (5.15)

Plugging in the left and right hand side of (5.14) with the explicit expressions (5.9) in the
first and second line, respectively, and writing (ρ, ρ̃) in terms of ρ̂ as in (5.15), one finds
the invariance if:

p′i−1 = st pt−i − pt st−i, qt p
′
i−1 − pt s

′
i−1 = pt−i . (5.16)

We can prove these equations as follows. First, note that both expressions on the left hand
side satisfy the recurrence relations (5.3) with respect to e′i, whereas the right hand sides
satisfy them with respect to et−i+1. Since e′i = et−i+1, this is consistent. Furthermore, the
initial conditions in (5.3) and (5.4) on p−1,0 and s−1,0 are correctly reproduced by the left
hand sides, as one may verify by evaluating both equations for i = t and i = t+ 1. This
proves (5.16), and therefore the invariance (5.14).
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5.2.2 Modular factorization of general lens index

In section 3.6, we have shown that the modular properties of the elliptic Γ function lead to
the modular factorization of the S3×S1, L(p, 1)×S1 and S2×T 2 index. In this section, we
generalize this result to the L(p, q)× S1 index in the context of the free chiral multiplet.51

Let us first collect the modular property involving t + 3 elliptic Γ functions from
appendix D.3, where t is the length of the continued fraction expansion of p/q (cf. (5.5)).
This generalizes the t = 0 (q = 0) and t = 1 (q = 1) modular properties used in section 3.6.
The relevant formula is given by:(

t−1∏
i=0

Γ(z + pi−1τ − si−1σ; piτ − siσ , pi−1τ − si−1σ)
)
Γ(z; ptτ − stσ , pt−1τ − st−1σ)

= e
−iπP̃ m

g(p,q)
(z,τ,σ)Γ

(
z

mσ+n1
; τ−c(k1σ+l1)

mσ+n1
, k1σ+l1

mσ+n1

)
(5.17)

× Γ
(

z
m(pτ−sσ)+ñt+1

; qτ−rσ−nt+1(k̃t+1(pτ−sσ)+l̃t+1)
m(pτ−sσ)+ñt+1

, k̃t+1(pτ−sσ)+l̃t+1
m(pτ−sσ)+ñt+1

)
,

where k1n1 − l1m = 1, k̃t+1ñt+1 − l̃t+1m = 1 and:

nt+1 = qc− rn1 , ñt+1 = −sn1 + pc . (5.18)

In addition, the phase polynomial is given by:

P̃m
g(p,q)

(ρ) = 1
mp

Q

(
mz,

m(pτ − sσ) + ñt+1
p

,
mσ + n1

p

)
+ δP̃m

g(p,q)
(ρ)

δP̃m
g(p,q)

(ρ) = (ηt + 3)p− 3
6p z − (p2 − 1)(pτ − sσ + σ)

12p2 + fm;(p,q) ,

(5.19)

where we let m denote the various modular parameters and fm,(p,q) is a constant. The
constant ηt is the continued fraction representation of the Dedekind sum s(s, p):

ηt =
q + s

p
− 3t+

t∑
i=1

ei = 12s(s, p) . (5.20)

The appearance of the Dedekind sum in the context of L(p, q) is not too surprising. In
particular, if two lens spaces L(p, q) and L(p, q′) are related to each other by an orientation
preserving diffeomorphism, then the Dedekind sums s(q, p) and s(q′, p) are equal, namely,
(q − q′)(qq′ − 1) ≡ 0 mod p. Note that the converse does not hold [88].

Setting (n1, k1, l1) ≡ (n, k, l) and (ñt+1, k̃t+1, l̃t+1) ≡ (ñ, k̃, l̃), one easily checks that the
modular property (5.17) can be written as:

Zg(p,q)O(ρ) = e
−iπP m

g(p,q)
(ρ)
Bh(ρ)Bh̃(Og

−1
(p,q)ρ)

= e
−iπP̃ m

g(p,q)
(ρ)
Ch(ρ)Ch̃(Og

−1
(p,q)ρ) ,

(5.21)

51Given this result, the extension to general N = 1 gauge theories follows along the same lines as discussed
in section 3.6.3.
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where now (h, h̃) ∈ Sg(p,q)O was given in (3.83), and the holomorphic blocks B(ρ) and C(ρ)
were given in (3.122). The relative phase can again be interpreted in terms of the anomaly
polynomial of the theory. As in section 3.2.1, we find that the phase can be written in
terms of:

Pg(p,q) (z; τ, σ) = 1
pQ(z, pτ−sσ

p , σ
p ) +

(ηt+3)p−3
12p (2z + 1)− p2−1

12p2 (pτ − sσ + σ) , (5.22)

as follows:

Pm
g(p,q)

(z, τ, σ) = 1
m
Pg(p,q)(mz;mτ + c,mσ + n) + const ,

P̃m
g(p,q)

(z, τ, σ) = 1
m
Pg(p,q)(mz + 1;mτ + c,mσ + n) + const .

(5.23)

We have not found a general formula for the constants in (5.23), although for any fixed set
of integers m we can compute it (see appendix D.3).

Let us introduce the following parametrization of the anomalies:

P(p,q)(Z⃗; x̂i) ≡
1

3px̂1x̂2x̂3

(
kabcZaZbZc + 3kabRZaZbX + 3kaRRZaX

2 − kaZaX̃
(p,q)

+kRRRX
3 − kRXX̃

(p,1)
)
, (5.24)

where X is given in terms of the x̂i as in the case of the L(p, 1)× S1 (cf. (3.42)), and we
use a modified definition for X̃:

X̃(p,q) = 1
4(x̂

2
1 + x̂22 + x̂23 − 2(pηt + 3p− 3)x̂2x̂3) . (5.25)

One may verify that again the phase polynomial correctly captures the anomalies for a free
chiral with R = 0 (cf. (3.44)) by noting that:

Pg(p,q)(
Z+x1

x1
, x2

x1
, x3

x1
; 0) = P(p,q)(Z⃗, x̂i) + const. (5.26)

where we view xi as functions of x̂i according to (5.15), and have not obtained an analytic
formula for the constant. We stress that the form of P(p,q)(Z⃗; x̂i) is not preserved under
the shift Za → Za + X for q > 1. It is therefore not entirely clear how to reinstate a
non-vanishing R-charge consistent with the anomaly polynomial. We hope to come back to
a better understanding of this point in future work.

In conclusion, we see that a general L(p, q)× S1 index can be factorized in terms of
a family of holomorphic blocks that are consistent with modular factorization. We view
this as an additional consistency check of our proposed formula for the general L(p, q)× S1

index (5.8).

6 Summary and future directions

In this work, we have argued that a subset Sf ⊂ H ×H of the ambiguities in the Heegaard
splitting of a (secondary) Hopf surface of toplogy L(p, q)× S1 leads to a modular family
of factorization properties for the lens indices of four-dimensional N = 1 gauge theories,
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provided the index of the theory has a Higgs branch expression. We proved the claim
for the free chiral multiplet and SQED with a non-zero FI parameter, and indicated how
those proofs can be extended to more general gauge theories. Furthermore, we have shown
that Sf can be geometrically characterized as capturing all embeddings of the time circle
into the Heegaard splitting such that the associated gluing transformation fixes this circle.
The embedding is labeled by two large diffeomorphisms (h, h̃), which also label the pair of
holomorphic blocks compatible with the factorization:

I(p,q)(ρ̂) = e−iπPm
f (ρ)∑

α

Bα
h (ρ)Bα

h̃
(f−1ρ) , (h, h̃) ∈ Sf ⊂ H ×H . (6.1)

That there exists a modular family of such embeddings can be understood from the fact
that there is a T 2 ⊂ D2 × T 2, and the fact that a general (secondary) Hopf surface
admits a Heegaard splitting already in terms of an SL(2,Z) ⊂ SL(3,Z) subset of gluing
transformations. In this family, h̃ is completely determined by h and h ∈ H itself cannot be
completely arbitrary. For example, if the topology of the lens space L(p, q) has |q| > 1 or if
h takes non-trivial value in the Z2 part of H , h is constrained to take value in a congruence
subgroup Γ0(q + ap) ⊂ SL(2,Z) ⊂ H for a ∈ Z, as discussed in detail in section 3.3. An
interesting subcase is the SL(2,Z) family of holomorphic blocks into which L(p,±1)× S1

indices can be factorized for any p, generalizing the factorization of such indices in terms
Bα

S(ρ) originally discovered in [49].
The proof of modular factorization involves modular properties of the elliptic Γ function

and the q-θ function, which are the building blocks of any N = 1 gauge theory index.
Because of the non-renormalization of indices, the statement also applies to the IR SCFTs
obtained from (supersymmetric) RG flows.52

These results provide a clear physical basis to systematically prove that the normalized
part of the collection of lens indices Ẑα

g (ρ) obeys a 1-cocycle condition associated to the
group G = SL(3,Z)⋉ Z3r, as first proposed in [45]. In particular, the non-triviality of the
cohomology class of Ẑα

g (ρ) in H1(G, N/M) is explained by the fact only a subset of indices,
associated to an SL(2,Z) ⋉ Z2(1+r) ⊂ G, can be simultaneously factorized in terms of a
common holomorphic block.

Finally, as an application of the 1-cocycle condition, we derived a formula for the
L(p, q)× S1 index, generalizing [55, 56].

There are many interesting directions for future research. First of all, the analysis in
this paper was originally motivated by its applications to the black holes in the gravitational
dual. A number of questions in this direction deserve further study:

• As mentioned in the introduction, the modular properties of elliptic Γ functions can be
used to compute asymptotic, Cardy-like limits of indices. In an upcoming work [90],
we apply modular factorization in the context of the N = 4 theory to study a family
of such Cardy-like limits, which is parametrized by the right coset Γ′

∞ × Γ′
∞\Sf . The

interpretation of this coset on the gravitational side will also be discussed there.
52It has been suggested by Razamat on various occasions that any N = 1 SCFT could be reached by such

flows (see, e.g., [89] and references therein).
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• Apart from the superconformal index, we can also study Cardy-like limits of more gen-
eral lens indices. It would be interesting to understand the gravitational interpretation,
in particular the existence of supersymmetric black lenses in AdS.53

• The fact that Sf can be expressed in terms of modular groups makes it tempting
to compare the situation to AdS3/CFT2 and the associated Farey tail expansion of
the elliptic genus [3, 4]. However, modular factorization of lens indices Zf (ρ) follows
from a combined action ρ → hρ and f → hfh̃−1 for (h, h̃) ∈ Sf . It is not clear to us
whether this more general type of covariance can lead to Farey tail-like formulas for
the index.

• The holographic duals of the original holomorphic blocks were dubbed gravitational
blocks [97] and have played a role in a number of follow-ups [98–100]. Our work predicts
a modular family of these gravitational blocks in AdS5, and it will be interesting to
see if this sheds light on the previous point.

There are also implications of this work within the context of SCFTs:

• The Schur limit of the superconformal index of N = 2 SCFTs is known to have
modular properties [101], which can be explained in terms of the underlying chiral
algebras [102–106]. We expect that the Schur limit of modular factorization provides
a geometric explanation for the modular properties of the Schur index.

• The fact that the elliptic genus of a CFT2 is a Jacobi form has a clear interpretation
(see, e.g., [81]). We would like to have a similarly transparent physical argument for
the relevance of degree 1 automorphic forms in the context of lens indices. Part of the
argument certainly includes modular factorization, but the fact that the normalized
part of a lens index, Ẑα

g (ρ), plays a crucial role obscures the argument because
physically this is a somewhat unnatural object. More recent mathematical work [52]
adopts the language of gerbes and stacks to investigate the elliptic Γ function, which
could potentially be relevant as well.

• Finally, we would like to have a physical interpretation of the constant f(m,n,ñ)
appearing in the phase polynomials studied in section 3.6. The case ñ = n, where
the constant reduces to a Dedekind sum s(n,m), was studied in [37] from a different
perspective.

We hope to report on these topics in future work.
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A Definitions and properties of special functions

In this appendix we collect definitions and mathematical properties of the q-θ function and
the elliptic Γ function.

A.1 The q-θ function

The q-θ function θ(z; τ) is defined as:

θ(z; τ) = exp
(
−

∞∑
m=1

xm + x−mqm

m(1− qm)

)
=

∞∏
n=0

(1− xqn)(1− x−1qn+1) , (A.1)

where q = e2πiτ and x = e2πiz. The elliptic and extension properties of the θ(z; τ) function
are given by:

θ(z +mτ + n; τ) = (−x)−mq−
m(m−1)

2 θ(z; τ) , (A.2)
θ(−z; τ) = θ(z + τ ; τ) , θ(z;−τ)θ(z; τ) = −x . (A.3)

In addition, the q-θ function satisfies a multiplication formula:

θ(z; τ) =
m−1∏
j=0

θ(z + jτ,mτ) . (A.4)

Finally, it also satisfies a modular property under SL(2,Z) transformation:

θ

(
z

mτ + n
; kτ + l

mτ + n

)
= eiπBm

2 (z;τ)θ(z; τ) , m = (m,n) , (A.5)

where the phase is given by [52]:

Bm
2 (z; τ) = mz2

mτ+n + z
(

1
mτ+n − 1

)
+ 1

6

(
τ + 1

m(mτ+n)

)
+ n

6m − 1
2 − 2s(n,m) , (A.6)

and the Dedekind sum is defined below. We also define B2(z, τ) ≡ B
(1,0)
2 (z, τ). One can

check that:
Bm

2 (z, τ) = 1
mB2(mz,mτ + n) + 2σ1(n, 1;m) , (A.7)

where σ1(n, 1;m) is the Fourier-Dedekind sum defined as [107]:

σ1(n, 1;m) = 1
m

m−1∑
µ=1

ξµ

(ξnµ − 1)(ξµ − 1) , ξ = e
2πi
m (A.8)
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A.2 Dedekind sum and its generalizations

Dedekind sum. The ordinary Dedekind sum is defined for two coprime integers (n,m)
as follows:

s(n,m) = 1
4m

m−1∑
µ=1

cot πµ
m

cot πnµ
m

= −σ1(n, 1;m) + 1−m

4m . (A.9)

Let the Hirzebruch-Jung continued fraction expansion of m/n be given by [et; . . . , e1]−,
see (5.5). The Dedekind sum can alternatively be written as [108–110]:

s(n,m) = n+ n′

12m − t

4 + 1
12

t∑
i=1

ei , (A.10)

where n′n ≡ 1mod m and 0 < n′ < m. One of its best known properties is the reciprocal
relation:

s(n,m) + s(m,n) = −1
4 + 1

12

(
m

n
+ n

m
+ 1
mn

)
. (A.11)

See also the lectures [111].

Generalized Dedekind sum. There are various kinds of generalizations of the Dedekind
sum [107, 111–113]. One such generalization takes the following form:

σt(n1, n2 · · · , nr;m) = 1
m

∑
ξm=1 ̸=ξ

ξt

(ξn1 − 1) · · · (ξnr − 1) (A.12)

It generalizes the object σ1(n, 1;m), which is related to the Dedekind sum as in (A.9). As
we will see in appendix D, σ1(n1, n2, 1;m) will play a role in modular properties of the
elliptic Γ function.

A.3 The elliptic Γ function

The elliptic Γ function is defined as follows [43]:

Γ(z; τ, σ) = exp
( ∞∑

ℓ=1

xℓ − (x−1pq)ℓ

ℓ(1− pℓ)(1− qℓ)

)
=

∞∏
m,n=0

1− x−1pm+1qn+1

1− xpmqn
, (A.13)

where q = e2πiτ , p = e2πiσ, and x = e2πiz. Note that the formulae are convergent for
Im(τ) > 0, Im(σ) > 0 and 0 < Im(z) < Im(τ) + Im(σ). The following basic properties
follow from the definition:

Γ(z; τ, σ) = Γ(z;σ, τ) ,

Γ(z + 1; τ, σ) = Γ(z; τ + 1, σ) = Γ(z; τ, σ + 1) = Γ(z; τ, σ)

Γ(z; τ, σ) = 1
Γ(τ + σ − z; τ, σ) .

(A.14)

The elliptic Γ function also satisfies the shift property:

Γ(z + τ ; τ, σ) = θ(z;σ)Γ(z; τ, σ) ,
Γ(z + σ; τ, σ) = θ(z; τ)Γ(z; τ, σ) ,

(A.15)
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where θ(z; τ) was defined above. The Γ function satisfies a reflection property:

Γ(z; τ, σ)Γ(−z; τ, σ) = 1
θ(z;σ)θ(−z; τ) . (A.16)

In addition, it can be extended to τ, σ ∈ C \ R as follows [43]:

Γ(z;−τ, σ) = 1
Γ(z + τ ; τ, σ) = Γ(σ − z; τ, σ)

Γ(z; τ,−σ) = 1
Γ(z + σ; τ, σ) = Γ(τ − z; τ, σ) .

(A.17)

Two interesting relations involving three elliptic Γ functions are

Γ(z; τ, σ) = Γ(z; τ − σ, σ)Γ(z;σ − τ, τ) (A.18)

and
Γ(z; τ, σ) = e−iπQ(z;τ,σ)Γ

(
z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;

σ
τ ,−

1
τ

)
. (A.19)

The function Q(z; τ, σ) is defined as:

Q(z; τ, σ) = z3

3τσ − τ + σ − 1
2τσ z2 + τ2 + σ2 + 3τσ − 3τ − 3σ + 1

6τσ z

+ (τ + σ − 1)(τ−1 + σ−1 − 1)
12 .

(A.20)

B Hopf surfaces and their Heegaard splitting

In this appendix, we review how the manifolds D2 × T 2, S2 × T 2, S3 × S1, and finally
L(p, q)×S1 can be endowed with complex structure moduli. For each of the closed manifolds,
we also indicate their Heegaard splitting including a mapping of the complex structure
moduli. We employ the notation introduced in section 2.2.

B.1 D2 × T 2

Consider a metric on D2 × C in terms of complex coordinates (z, z̄) and (w, w̄):54

ds2 = 4 dz dz̄
(1 + |z|2)2 + dw dw̄ , (B.1)

where we take the disc to lie within |z| ≤ 1. We can now obtain a complex manifold of
topology D2 × T 2 through the following quotient:

(z, w) ∼ (e2πiαz, w + 2π) , (z, w) ∼ (e2πiβz, w + 2πσ) . (B.2)

Here, σ ∈ H is the standard complex structure parameter of the T 2, and α and β represent
two real parameters. Note that the metric (B.1) descends to the quotient. The resulting

54The following discussion is based on [59, 60].
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manifold can be viewed as a disc fibration over the torus. It will also be useful to write the
metric in terms of real coordinates:

z = tan θ2e
i(ϕ+αx+βy) , z̄ = tan θ2e

−i(ϕ+αx+βy) ,

w = x+ σy , w̄ = x+ σ̄y .
(B.3)

Here, θ ∈ [0, π
2 ] and the other coordinates ϕ, x and y are identified modulo 2π. In these

coordinates, the metric takes the form of a torus fibration over the disc:

ds2 = dθ2 + sin2 θ(dϕ+ αdx+ βdy)2 + (dx+Re(σ)dy)2 + Im(σ)2dy2 . (B.4)

In section 2.1, we described how the group of large diffeomorphisms H of D2 × T 2 acts on
the cycles (λ′, µ, λ). The same group reemerges through an action on (α, β;σ) that keeps the
identifications (B.2) invariant [59]. Its action is generated by the following transformations:

(α, β;σ) → (α, β + α;σ + 1) , (α, β;σ) → (β,−α;− 1
σ ) ,

(α, β;σ) → (α+ 1, β;σ) , (α, β;σ) → (α, β + 1;σ) , (B.5)

where the first line covers the SL(2,Z) part of H, and the second line the Z2 part.
In addition to large diffeomorphisms, there may also be large gauge transformations

associated to global symmetries of the theory in question. Accordingly, we can introduce
complex background holonomies z⃗ = (za):

za = z(x)a σ̂ − z(y)a , (B.6)

where z(x)a and z
(y)
a represent the holonomies of the gauge field along the cycles of T 2, and

a = 1, . . . , r for the Cartan components of a background gauge field of a rank r global
symmetry. Geometrically, the holonomies z⃗ parametrize a rank r complex vector bundle
over D2 × T 2. This yields a Z2r group of large gauge transformations:

za → za + 1 , za → za + σ . (B.7)

It will be convenient to also combine the parameters α and β into a single complex
parameter [57, 59, 60]:

τ ≡ ασ − β . (B.8)

As introduced in section 2.2, we combine the above moduli into:

ρ ≡ (z⃗; τ, σ) =
(

Z⃗
x1
; x2

x1
, x3

x1

)
. (B.9)

In terms of ρ, one can check that the action (B.5) turns into the action of H ⊂ G
described in (2.24).
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B.2 S2 × T 2

Complex manifolds of topology S2×T 2 can also be obtained from the metric (B.1) by simply
allowing z ∈ C. Indeed, the (z, z̄) part of this metric is then nothing but the Fubini-Study
metric on S2. Similar to before, we impose the identifications:

(z, w) ∼ (e2πiα̂z, w + 2π) , (z, w) ∼ (e2πiβ̂z, w + 2πσ̂) , (B.10)

where we use hats to distinguish the parameters of the closed manifold with those of D2×T 2.
This leads to a manifold of topology S2×T 2 parametrized by two complex structure moduli
(τ̂ , σ̂) with τ̂ = α̂σ̂ − β̂ [57, 59]. Including holonomies for the global symmetries as in (B.6),
we write the combined set of moduli as: ρ̂ = (ẑa; τ̂ , σ̂). We employ the notation (2.16) to
write this manifold, including the complex vector bundle, as M(0,−1)(ρ̂). The combined
group of large diffeomorphisms and gauge transformations is again a copy of H, and it acts
in an identical fashion on ρ̂ as in the case of D2 × T 2.

The relation between the moduli ρ̂ and the D2 × T 2 moduli ρ and ρ̃ associated to the
Heegaard splitting is as follows. By construction, the geometry of M(0,−1)(ρ̂) is equivalent
to the D2 × T 2 geometry for |z| ≤ 1. Therefore, the complex structure moduli of the first
D2 × T 2 in (2.27) map trivially onto those of M(0,−1)(ρ̂):

(za; τ, σ) = (ẑa; τ̂ , σ̂) . (B.11)

To describe S2 × T 2 around z = ∞ instead, we transform coordinates via z′ = 1/z. It
follows that the moduli of the second D2 × T 2 geometry are given by:

(z̃a; τ̃ , σ̃) = (ẑa;−τ̂ , σ̂) . (B.12)

Note that the moduli are correctly related through the gluing condition (2.28): ρ̃ = Oρ.
We may thus write the Heegaard splitting of M(0,−1)(ρ̂) as:

M(0,−1)(ρ̂) ∼=MO(ρ,Oρ) , ρ̂ = ρ , (B.13)

where we use the notation (2.27).

B.3 S3 × S1

We now consider the manifold S3 × S1, which can be viewed as the special case of the lens
space geometries for (p, q) = (1, 0). The standard way to endow this manifold with complex
structure moduli is to view it as the (primary) Hopf surface (see, e.g., [57] and references
therein). The Hopf surface is defined as a quotient of C2 \ {(0, 0)} by the Z-action:

(z1, z2) ∼ (p̂z1, q̂z2) , 0 < |p̂| ≤ |q̂| < 1 , (B.14)

with p̂ = e2πiσ̂ and q̂ = e2πiτ̂ .55 To see that the Hopf surface is diffeomorphic to S3 × S1,
consider the following parametrization of z1,2:

z1 = p̂x cos
(
θ

2

)
eiϕ1 , z2 = q̂x sin

(
θ

2

)
eiϕ2 . (B.15)

55The complex parameters p̂ and q̂ are not to be confused with the integers p and q defining the lens
space L(p, q).
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Here, x ∼ x+ 1 ensures the identification (B.14), 0 ≤ θ ≤ π, and ϕ1,2 are identified modulo
2π. Parametrized in this way, it is easy to see that:∣∣∣∣ z1p̂x

∣∣∣∣2 + ∣∣∣∣ z2q̂x

∣∣∣∣2 = 1 . (B.16)

For fixed x, this represents a (squashed) S3. Given that the left hand side is a monotonic
function of x and since x ∼ x+ 1, one establishes the diffeomorphism with S3 × S1. Note
that this parametrization reflects the picture of S3 as a torus fibration over an interval
where the ϕ1 cycle shrinks at θ = π and the ϕ2 cycle shrinks at θ = 0.

We also introduce (real) holonomies z⃗ along S1 associated to global symmetries,
parametrizing a real vector bundle over S3 × S1. Together, we capture the moduli by
ρ̂ = (ẑa; τ̂ , σ̂). Note the following symmetries of the Hopf surface:

ẑa → ẑa + 1 , τ̂ → τ̂ + 1 , σ̂ → σ̂ + 1 , τ̂ ↔ σ̂ . (B.17)

We now turn to the Heegaard splitting of the Hopf surface. To this end, let us first write
down a Hermitian metric on C2 \ {(0, 0)} [57]:

ds2 = Im(τ̂)
Im(σ̂)

dz1dz̄1
|p̂|2x

+ Im(σ̂)
Im(τ̂)

dz2dz̄2
|q̂|2x

. (B.18)

This metric is constructed such that it is invariant under the identifications (B.14), and
thus reduces to a metric on the Hopf surface. For comparison with the D2 × T 2 geometries,
it will be convenient to change coordinates via [59]:

z = z2

z
Im(τ̂)
Im(σ̂)
1

, w = i log z1 . (B.19)

These coordinates cover z1 ≠ 0, which is a coordinate patch with topology D2 × T 2. For
Im(τ̂) = Im(σ̂), one may verify that the metric (B.18) becomes the D2 × T 2 metric (B.1).
We will however keep τ̂ and σ̂ general. In particular, we then note that the identification
(z1, z2) = (e2πiz1, e

2πiz2) and the Hopf surface identifications (B.14) in terms of the (z, w)
coordinates become:

(z, w) ∼ (e2πiαz, w + 2π) , (z, w) ∼ (e2πiβz, w + 2πσ̂) , (B.20)

with τ̂ = ασ̂ − β. In other words, in a neighbourhood around z2 = 0 the Hopf surface
becomes a D2 × T 2 geometry with complex structure moduli (τ, σ) that map trivially
onto (τ̂ , σ̂):

(za; τ, σ) = (ẑa; τ̂ , σ̂) . (B.21)

Since ẑa parametrizes real holonomies, for consistency one has to set u(a)x = 0 for za

(see (B.6)). The description around z1 = 0 is analogous. In this case, we change coordinates
according to:

z′ = z1

z
Im(σ̂)
Im(τ̂)
2

, w′ = i log z2 . (B.22)
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In these coordinates, the identifications become:

(z′, w′) ∼ (e2πiα′
z′, w′ + 2π) , (z′, w′) ∼ (e2πiβ′

z′, w′ + 2πτ̂) , (B.23)

with σ̂ = α′τ̂ − β′. Thus, around z1 = 0 we find that the Hopf surface becomes a D2 × T 2

geometry with moduli:
(z̃a; τ̃ , σ̃) = (ẑa; σ̂, τ̂) . (B.24)

Note that these moduli are correctly related through the gluing condition ρ̃ = OS−1
23 ρ,

where we recall that f = S23O leads to S3 × S1 (see section 2.1). We can thus write the
Heegaard splitting of the Hopf surface as:

M(1,0)(ρ̂) ∼=MS23O(ρ,OS−1
23 ρ) , ρ̂ = ρ . (B.25)

B.4 L(p, q) × S1

Finally, let us discuss the general lens space geometries L(p, q)× S1. These geometries are
endowed with complex structure moduli by simply performing the lens quotient on the
primary Hopf surface [57]:

(z1, z2) ∼
(
e

2πiq
p z1, e

−2πi
p z2

)
⇔ (z1, z2) ∼

(
e

2πi
p z1, e

− 2πis
p z2

)
, (B.26)

where both q and s are identified mod p and qs = 1mod p.56 This geometry is also known
as a secondary Hopf surface. Similarly to S3 × S1, it can be parametrized by complex
coordinates z1,2 as follows:

z1 = p̂x cos
(
θ

2

)
e

i
pϕ1+qϕ2

p z2 = q̂x sin
(
θ

2

)
e
−i

ϕ2
p , (B.27)

with x ∼ x+ 1, 0 ≤ θ ≤ π, ϕ1,2 ∼ ϕ1,2 + 2π. Note that these coordinates, for fixed x, make
manifest the description of L(p, q) as a torus fibration with a (1, 0) cycle shrinking at θ = 0
and a (q, p) cycle shrinking at θ = π. Equivalently, we can introduce ϕ′1 = pϕ1 + qϕ2 and
ϕ′2 = sϕ1 + rϕ2 with qs− pr = 1, such that:

z1 = p̂x cos
(
θ

2

)
e

i
ϕ′

1
p z2 = q̂x sin

(
θ

2

)
e

i
pϕ′

2−sϕ′
1

p . (B.28)

The symmetries of a general secondary Hopf surface were captured in section 2.2 and we
will not repeat them here.

The Heegaard splitting can be made manifest similar to the S3×S1 case. In particular,
in a neighbourhood around z2 = 0 we define:

z = z2

z
Im(τ̂)
Im(σ̂)
1

, w = ip log z1 . (B.29)

This neighbourhood has the topology of D2 × T 2. The new coordinates allow us to read off
the complex structure moduli associated to the solid torus from the identifications for the
lens space (B.26) and the Hopf surface (B.14), which in these coordinates read:

(z, w) ∼ (e2πiαz, w + 2π) , (z, w) ∼ (e2πiβz, w + 2πσ) , (B.30)
56Note that the second description reflects the diffeomorphism L(p, q) ∼= L(p, s) described in section 2.1.
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where (α, β) are defined through τ = ασ − β and:

τ = τ̂ + sσ̂ , σ = pσ̂ . (B.31)

The holonomies for the global symmetries map trivially, za = ẑa, as long as one puts u(a)x = 0
in the former. Therefore, the D2 × T 2 moduli ρ map to linear combinations of the Hopf
surface moduli ρ̂.57

To describe the neighbourhood around z1 = 0, we instead change coordinates through:

z′ = z1

z
Im(σ̂)
Im(τ̂)
2

, w′ = ip log z2 , (B.32)

in which case the identifications become:

(z, w) ∼ (e2πiα′
z, w + 2π) , (z, w) ∼ (e2πiβ′

z, w + 2πσ̃) , (B.33)

with (α′, β′) defined through τ̃ = α′σ̃ − β′ and:

τ̃ = σ̂ + qτ̂ , σ̃ = pτ̂ . (B.34)

The relation between the solid tori moduli ρ and ρ̃ is given by:

ρ̃ = Og−1ρ , g =

1 0 0
0 −s −r
0 −p −q

 ∈ SL(2,Z)23 , (B.35)

reflecting the gluing condition (2.28). We summarize the Heegaard splitting of the secondary
Hopf surface as follows:

M(p,q)(ρ̂) ∼=Mf (ρ, f−1ρ) , (B.36)

where ρ̂ is related to ρ through (B.31).

C Lens indices for general gauge theories

In this appendix, we collect the known contour integral formulae for the superconformal
index I(1,0)(ρ̂) [11, 44, 114], the lens space index I(p,1)(ρ̂) [55, 56, 86, 115] and the S2 × T 2

index I(0,−1)(ρ̂) [59, 67, 116–118] of general N = 1 gauge theories.

C.1 Superconformal index

In this section, we loosely follow the recent review [119], and write explicit indices in the
conventions of [44].

The N = 1 superconformal algebra contains 4 complex super(conformal) charges
{Qα, S

α, Q̃α̇, S̃
α̇}, where Sα = Q†

α and S̃α̇ = (Q̃α̇)†. Here, α, α̇ = ± represent the SU(2)1,2
rotation symmetry indices, whose Cartan generators we will denote by j1,2. Furthermore,
the algebra contains a U(1)r R-symmetry whose generator we denote by r. We will define

57Note that the expressions of (τ, σ) in terms of the Hopf moduli (τ̂ , σ̂) correspond to the invariant
combinations under the fractional shifts in (2.18).
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the index with respect to the supercharge Q ≡ Q−, which has charges j1 = −1
2 , j2 = 0 and

r = −1. Its anti-commutator with Q† gives:

δ ≡ 2{Q,Q†} = ∆− 2j1 + 3
2r . (C.1)

The superconformal index can be defined with respect to charges in the commutant of Q in
the superconformal algebra:

I(1,0)(ρ̂) = trH(−1)F p̂j1+j2− r
2 q̂j1−j2− r

2 x̂qa
a e

−βδ , (C.2)

where qa are generators of the Cartan subalgebra of the global symmetry and ρ̂ ≡ (ẑa; τ̂ , σ̂)
is shorthand for the chemical potentials, which are related to the fugacities through

p̂ = e2πiσ̂ , q̂ = e2πiτ̂ , x̂a = e2πiẑa . (C.3)

Furthermore, H is the Hilbert space of the theory quantized on S3. Due to the insertion
of (−1)F , with F the fermion number operator, the index localizes on HBPS, the quarter
BPS Hilbert space corresponding to the vanishing locus of δ. Therefore, the index is
independent of β, and in fact any continuous deformation of the theory that preserves Q.
This implies that, for example, one may compute the index of a gauge theory at weak
Yang-Mills coupling.

The definition of the superconformal index employs the superconformal R-symmetry
U(1)r. However, if the theory has a global symmetry, we can define the index with respect
to a shifted R-symmetry, under which the fields can have arbitrary R-charge. The basic
building blocks of a gauge theory index are the indices of a free chiral and vector multiplet.
In the case of a free chiral multiplet, there is a U(1) flavor symmetry, under which the
elementary fields can be taken to have unit charge. Upon redefining the associated fugacity
x̂ as x̂→ (p̂q̂) r

2−
R
2 x̂, the index of a chiral multiplet with arbitrary charge R-charge R can

be written in terms of the elliptic Γ function as:

IR
(1,0)(ρ̂) = Γ

(
ẑ + R

2 (τ̂ + σ̂); τ̂ , σ̂
)
. (C.4)

For a free vector multiplet, one has instead:

IV
(1,0)(ρ̂) =

1
(1− v−1)Γ(−u; τ̂ , σ̂) . (C.5)

Here, u is a chemical potential for the U(1) Cartan component of the gauge symmetry
and v = e2πiu.

For a general gauge theory with gauge group G, the index can now be written as:

I(1,0)(ρ̂) =
1

|W |

∮ r∏
i=1

dvi

2πivi
∆G(u⃗) IVG

(1,0)(u⃗; τ̂ , σ̂)
∏

i

IRi

(1,0)(u⃗, z⃗; τ̂ , σ̂) , (C.6)

where the contour is taken as the unit circle in the complex vi-plane, and the integral over
the gauge fugacities associated to the Cartan torus of G ensures projection onto gauge
invariant states. The Vandermonde determinant ∆(u⃗) and IVG

(1,0)(ρ̂) combine together into:

∆G(u⃗) IVG

(1,0)(u⃗; τ̂ , σ̂) = κr
∏
α ̸=0

Γ(α(u⃗) + τ̂ + σ̂; τ̂ , σ̂) , (C.7)
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where κ ≡ (p̂; p̂)∞(q̂; q̂)∞ represents the contribution of modes associated to the Cartan
torus of the gauge group, r is the rank of G, the product runs over the (non-zero) roots of
G and we used the extension property of the elliptic Γ function (A.16). Furthermore, let ρ
and ρ′ be the weight vectors of the gauge group and flavor symmetry representation of the
chiral multiplet with R-charge Ri. Then IRi

(1,0)(u⃗, z⃗; τ̂ , σ̂) is defined as:

IRi

(1,0)(u⃗, z⃗; τ̂ , σ̂) =
∏
ρ,ρ′

Γ(ρ(u⃗) + ρ′(z⃗) + Ri
2 (τ̂ + σ̂); τ̂ , σ̂) . (C.8)

C.2 Lens index

In this section, we review how the index on a lens space L(p, 1) is computed.
As discussed in section 2.1, L(p, 1) is a quotient of S3 (2.2). For a free chiral multiplet

of R-charge R, one obtains the lens index from the ordinary index by projecting onto the
invariant states. This projection can be implemented, while preserving supersymmetry,
through the inclusion of a fugacity e

2πij2
p into the trace (C.2).58 Its effect is to project

onto only states with multiples of p derivatives ∂pm,pn
+± (see [11] for our conventions). The

resulting expression for the index is given by:

IR
(p,1)(ρ̂) = Γ

(
ẑ + R

2 (τ̂ + σ̂) + pσ̂; τ̂ + σ̂, pσ̂
)
Γ
(
ẑ + R

2 (τ̂ + σ̂); τ̂ + σ̂, pτ̂
)
. (C.9)

In addition, we can add a holonomy for the U(1) flavor symmetry along the non-contractible
cycle of the lens space. Such holonomies are labeled by an integer m = 0, . . . , p−1. Inclusion
of this holonomy instead projects onto (single particle) states with j2 ±mmod p, where
± depends on the charge of the state under the global symmetry. The expression for the
index becomes:

IR
(p,1)(ρ̂;m) = IR

0 (ρ̂;m)Γ
(
ẑ + R

2 (τ̂ + σ̂) + (p+m)σ̂; τ̂ + σ̂, pσ̂
)

× Γ
(
ẑ + R

2 (τ̂ + σ̂)−mτ̂ ; τ̂ + σ̂, pτ̂
)
,

(C.10)

where IR
0 (ρ̂;m) represents a “vacuum energy” contribution and will not play an important

role for us. We refer to [56, eq. (2.11)] for the explicit expression. The lens index for a free
vector multiplet can be parametrized by:

IV
(p,1)(ρ̂;m) = (1− v−1)−δm,0IV

0 (ρ̂;m)
Γ (−u+ (p+m)τ̂ ; τ̂ + σ̂, pτ̂) Γ (−u−mσ̂; τ̂ + σ̂, pσ̂) , (C.11)

where again IV
0 (ρ̂;m) represents a vacuum energy contribution, and we similarly allow for

a (gauge) holonomy around the non-contractible lens cycle.
For a general gauge theory with gauge group G, the expression for the full index includes

a sum over all possible gauge holonomies along the non-contractible cycle of the lens space.
This gives rise to the following expression for the index:

I(p,1)(ρ̂) =
∑
(mi)

I(p,1)(ρ̂;mi) , (C.12)

58A quotient where the phases have the same sign would instead by generated by j1. Since j1 does not
commute with Q, the associated index cannot be defined with respect to Q. Instead, one would need to
define (an equivalent) index with respect to, e.g., Q′ ≡ Q+.
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where mi = 0, . . . , p− 1 for i = 1, . . . , rG labels the homology class of the gauge holonomy
for the Cartan torus of the gauge group with rank rG. The inclusion of such holonomies
breaks the gauge symmetry to the commutant of {e2πim1/p, . . . , e2πimr/p}. Therefore, each
index I(p,1)(ρ̂;mi) for fixed (mi) along the Hopf fiber takes the following form:

I(p,1)(ρ̂;mi) =
1

|Wmi |

∮ r∏
i=1

dvi

2πivi
∆(u⃗;mi) IV

(p,1)(u⃗; τ̂ , σ̂;mi)
∏

i

IRi

(p,1)(u⃗, z⃗; τ̂ , σ̂;mi) . (C.13)

The functions ∆(u⃗;mi), IV
(p,1)(u⃗; τ̂ , σ̂) and IRi

(p,1)(u⃗, z⃗; τ̂ , σ̂;mi) are defined similarly as in the
case of the superconformal index, but now with respect to the unbroken gauge group and
in terms of IV

(p,1) and IR
(p,1).

C.3 S2 × T 2 index

In this section, we review the computation of the S2 × T 2 index.
To preserve supersymmetry on the S2 × T 2 background, it is necessary to turn on a

single unit of R-symmetry flux through the S2. This means that the R-charges of the fields
have to be quantized as integers. The S2 × T 2 index can then be defined as (cf. (C.2)):

I = trH,ga(−1)F p̂L0 q̂J3xqa
a , (C.14)

where now H is the Hilbert space on S2 × S1, and ga indicate fluxes for the gauge fields
coupled global symmetries labeled by the qa. The fugacities p̂ = e2πiσ̂, q̂ = e2πiτ̂ and
xa = e2πiẑa , where σ̂ parametrizes the complex structure of the T 2 and τ̂ = ασ̂ − β

parametrizes the twists of S2 over the T 2 and za = z
(x)
a σ̂ − z

(y)
a captures holonomies for

the global symmetry along the T 2 cycles (see section 2.2). Furthermore, J3 and L0 are the
Cartan generators of rotations on S2 × S1, respectively.

The S2 × T 2 index for a free chiral multiplet depends on the shifted R-charge R ≡
R+q0g−1, where q0 is the charge and g is the flux for the U(1) flavor symmetry. Note that R
is also quantized as an integer. The twisted reduction of a four-dimensional chiral multiplet
S2 yields R two-dimensional (0, 2) Fermi multiplets for R > 0, |R| two-dimensional (0, 2)
chiral multiplets for R < 0 and is trivial for R = 0. The S2 × T 2 index reduces then to the
computation of the elliptic genus for these two-dimensional theories. Explicitly, they are
given by:

IR
(0,−1),g(ρ̂) =

p̂
R
12 x̂−

R
2
∏ |R|−1

2
m=− |R|−1

2
θ(ẑ +mτ̂ ; σ̂)sgn(R) , for R ̸= 0

1 , for R = 0 .
(C.15)

Here, θ(ẑ; σ̂) is given by the q-theta function defined in appendix A.1. In particular, the
q-θ function obeys modular properties under the group SL(2,Z)⋉ Z2.

The four-dimensional vector multiplet for gauge group G reduces to a single two-
dimensional (0, 2) vector multiplet, whose elliptic genus is given by:

IV
(0,−1)(ρ̂) =

(
p̂

1
12 y−

1
2
)dim(G)−r

η(σ̂)2r
∏
α ̸=0

θ(α(u⃗) + |α(m⃗)|τ̂ ; σ̂) , (C.16)
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where η(σ̂) is the Dedekind η function and r is the rank of G. Furthermore, m⃗ comprises
the gauge fluxes associated to the Cartan torus of the gauge group.

For a general gauge theory, the index takes a similar form as the lens index dis-
cussed above:

I(0,−1)(ρ̂) =
∑
(mi)

∮
J.K.

r∏
i=1

dvi

2πivi
IV
(0,−1)(u⃗; τ̂ , σ̂;mi)

∏
i

IR
(0,−1),mi

(u⃗, z⃗; τ̂ , σ̂;mi) , (C.17)

however in this case the contour is given by the Jeffrey-Kirwan prescription (see, e.g., [118],
for an explicit description of the contour for a general gauge theory). Moreover, the sum
over (mi) is over gauge fluxes for the Cartan torus of the gauge group, and the integrand is
with respect to the unbroken gauge symmetry, i.e., the commutant of {mi} in G. Note that
all the fluxes ga for the flavor symmetry have been taken to be vanishing.

D Modular properties of the elliptic Γ function

The purpose of this appendix is to derive properties of the elliptic Γ function that we will
use in section 3.6 to provide evidence for the modular factorization of lens indices. Before
we start, let us collect some relevant formulae. We will make use of the multiplication
formula [120]:

Γ(z; τ, σ) =
m−1,m̃−1∏

i,j=0
Γ(z + iσ + jτ ; m̃τ,mσ) , (D.1)

and the standard modular property of the elliptic Γ function [43]:

Γ(z; τ, σ) = e−iπQ(z;τ,σ)Γ
(

z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;

σ
τ ,−

1
τ

)
, (D.2)

where Q(z; τ, σ) is a cubic polynomial in z, given in appendix A. This property can also be
written as:

Γ(z + σ; τ, σ) = e−iπQ(z+σ;τ,σ)
Γ
(

z
σ ;

τ
σ ,−

1
σ

)
Γ
(

z
τ ;−

σ
τ ,−

1
τ

) . (D.3)

D.1 Three elliptic Γ functions

In this appendix, we derive the most general modular property involving three elliptic Γ
functions, of which (D.2) is a special case. This property will be useful when describing the
factorization of the superconformal indices ZS23O(ρ). The formula we derive has appeared
implicitly before in [52]. Our strategy is to first replace the elliptic Γ function using the
multiplication formula (D.1). Then, on each factor in the resulting product, we apply (D.2).
Finally, we use the multiplication formula again, but in the opposite direction, to rewrite
the products in terms of two Γ functions.

The first step yields:

Γ(z; τ, σ) =
m−1,m̃−1∏

i,j=0
Γ(z + iσ + jτ + k(i,j); m̃τ + ñ,mσ + n) , (D.4)
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where the integers n, ñ ∈ Z and k(i,j) ∈ Z can be added due to the periodicity of the elliptic
Γ function in all its arguments. We now apply (D.2) to find:

Γ(z; τ, σ) = e−iπQm(z;τ,σ)
m−1,m̃−1∏

i,j=0
Γ
(

z+iσ+jτ+k(i,j)
mσ+n ; m̃τ+ñ

mσ+n ,−
1

mσ+n

)
× Γ

(
z+iσ+jτ+k(i,j)

m̃τ+ñ ; mσ+n
m̃τ+ñ ,−

1
m̃τ+ñ

)
,

(D.5)

where:

Qm(z; τ, σ) =
m−1,m̃−1∑

i,j=0
Q(z + iσ + jτ + k(i,j); m̃τ + ñ,mσ + n) , (D.6)

and m captures the integers m, m̃ and n, ñ.
The final step is the trickiest, which asks us to reduce the products on the right hand

side of (D.5) to two single elliptic Γ functions by using the multiplication formula in the
opposite direction. To make progress, let us first disregard the shifts in the z variable,
and consider whether the second and third arguments can be written as multiples of m, m̃
respectively. For the third argument of either elliptic Γ function, this can be achieved in
general if and only if:

gcd(m,n) = gcd(m̃, ñ) = 1 , (D.7)

in which case we can use periodicity in the third argument to write:

− 1
mσ + n

= m
kσ + l

mσ + n
mod 1 , (D.8)

where kn − lm = 1 and similarly for − 1
m̃τ+ñ . However, to extract a factor of m̃ in the

second argument of the first elliptic Γ functions in (D.5), we must demand that m̃ = m

because of the coprime condition (D.7). In this case, we have:

mτ + ñ

mσ + n
= m

τ − ñ(kσ + l)
mσ + n

mod 1 . (D.9)

And similarly for mσ+n
mτ+ñ in the second argument of the second elliptic Γ functions in (D.5).

The above implies that we can use the multiplication formula to write:

Γ
(

z
mσ+n ;

τ−ñ(kσ+l)
mσ+n , kσ+l

mσ+n

)
=

m−1∏
i,j=0

Γ
(

z+i(kσ+l)+j(τ−ñ(kσ+l))+d(i,j)(mσ+n)
mσ+n ; mτ+ñ

mσ+n ,−
1

mσ+n

)
,

(D.10)

where d(i,j) can be an arbitrary integer for each pair (i, j). Similarly, we have:

Γ
(

z
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ

)
=

m−1∏
i,j=0

Γ
(

z+i(k̃τ+l̃)+j(σ−n(k̃τ+l̃))+e(i,j)(mτ+ñ)
mτ+ñ ; mσ+n

mτ+ñ ,−
1

mτ+ñ

)
,

(D.11)

where again e(i,j) can be an arbitrary integer for each pair (i, j).
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To finish the computation, we need to show that shifts in z in the previous two formulae
are equivalent to the shifts of z in (D.5). We are thus led to the definitions:

ı̃ = k(i− ñj) +md(i,j) , ȷ̃ = j , k̃(ı̃,ȷ̃) = l(i− ñj) + nd(i,j) , (D.12)

and:

ı̂ = j , ȷ̂ = k̃(i− nj) +me(i,j) , k̂(ı̂,ȷ̂) = l̃(i− nj) + ñe(i,j) . (D.13)

We will first show that ı̃ and ȷ̂ run for fixed j over all values in {0, . . . ,m− 1} as i runs over
the same set for appropriate choices of d(i,j) and e(i,j), respectively. This allows us to relabel
(̃ı, ȷ̃) → (i, j), and similarly (̂ı, ȷ̂) → (i, j). We then show that k̃(i,j) = k̂(i,j). Choosing k(i,j)
in (D.5) equal to k̃(i,j) will lead to our desired result.

First, let us ignore the constant −kñj in the expression for ı̃. Then it is clear that d(i,j)
can be chosen to bring ki into the domain {0, . . . ,m− 1} for all i. Since k is coprime with
m, it is guaranteed that for each i there is a unique ı̃. The ignored term −kñj represents a
constant shift and therefore does not alter the conclusion. The argument is identical for ȷ̂.
Thus, the first part of the claim follows.

To show k̃(i,j) = k̂(i,j) we note that:

mk̃(ı̃,ȷ̃) = −i+ ı̃n+ ȷ̃ñ ,

mk̂(ı̂,ȷ̂) = −i+ ı̂n+ ȷ̂ñ .
(D.14)

Clearly, upon relabeling it follows that the constants are equal. The actual value of k(i,j)
we have to choose is given by the integral solution to these equations. Since 0 ≤ a < m the
solution is given by:

k(i,j) =
⌊
in+ jñ

m

⌋
, (D.15)

where the floor function is defined as:⌊
p

q

⌋
= r where p = qr + s, 0 ≤ s < q . (D.16)

Collecting all the results above, we find:

Γ(z;τ,σ)= e−iπQm(z;τ,σ)Γ
(

z
mσ+n ;

τ−ñ(kσ+l)
mσ+n , kσ+l

mσ+n

)
Γ
(

z
mτ+ñ ;

σ−n(k̃τ+l̃)
mτ+ñ , k̃τ+l̃

mτ+ñ

)
,

(D.17)

where:

Qm(z; τ, σ) =
m−1∑
i,j=0

Q

(
z + iσ + jτ +

⌊
in+ jñ

m

⌋
;mτ + ñ,mσ + n

)
. (D.18)

Let us end this section by simplifying the expression for the phase Qm(z; τ, σ). This
summation can be simplified to:

Qm(z; τ, σ) = 1
mQ(mz;mτ + ñ,mσ + n) + fm , (D.19)
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where m = (m,n, ñ) and fm can be proved to be the generalized Dedekind sum defined in
appendix A.2:

fm = 2σ1(n, ñ, 1;m) . (D.20)

To obtain (D.20), we first derive the following expression for fm by subtracting (D.19)
from (D.18):

fm = − 1
4m +

m−1∑
i,j=0

(2i−m)(2j −m)
4m3

(
m− 2(in+ jñ) + 2m

⌊
in+ jñ

m

⌋)
. (D.21)

The summation involving the quotient functions can be simplified by making use of identities
of quotient functions [121]:

m−1∑
j=0

⌊
jn

m
+ x

⌋
= ⌊mx⌋+ 1

2(m− 1)(n− 1) , x ∈ R . (D.22)

The identity (D.22) can simplify (D.21), except for the term:

S(n, ñ;m) =
m−1∑
i,j=0

ij

⌊
in+ jñ

m

⌋
. (D.23)

This quantity was introduced in [122], and it was shown in [123] that the S(n, ñ;m) and
σ1(n, ñ, 1;m) are related by:

S(n, ñ;m) = 1
12m(2m− 1)(m− 1)2(n+ ñ)− 1

8m(m− 1)3 −m2σ1(n, ñ, 1;m) , (D.24)

where σ1(n, ñ, 1;m) is a generalized Dedekind sum defined in (A.12). Using (D.24) to
simplify the summation and combining with other terms summed up by the identity (D.22),
we then get (D.20).

Finally, when n = ñ, the expression for S(n, ñ;m) simplifies:

S(n, n;m) =
2m−2∑

l=0

l∑
i=0

i(l − i)
⌊
ln

m

⌋
, l = i+ j (D.25)

The sum over i is independent of quotient functions so it can be summed as polynomials,
while the sum over l is known to be the alternative form of Dedekind sum s(n,m) [111]. Thus
this confirms that σ1(n, n, 1;m) is of the form of Dedekind sum, up to rational functions of
m, as written in (3.127).

D.2 Four elliptic Γ functions

In this appendix, we derive a general modular property involving four elliptic Γ functions.
In particular, two of these Γ functions are taken in the following specific form:

Γ (z + σ; τ, σ) Γ (z; pτ − σ, τ) . (D.26)

Indeed, this is precisely the expression for the L(p, 1)× S1 index of the free chiral multiplet
with vanishing R-charge. The property to be derived will be useful when describing the
factorization of the indices Zg(p,1)O(ρ).

– 75 –



J
H
E
P
1
0
(
2
0
2
3
)
1
0
5

To derive the modular property, we employ a similar strategy as in appendix D.1.
In particular, we first replace both elliptic Γ functions in (D.26) using the multiplication
formula (D.1). We then apply (D.3) on the product associated to the first factor and (D.2)
on the second, giving a total of four products of Γ functions. The new step in this case
is to show that a cancellation occurs between two products out of the four. Finally, the
remaining two products of Γ functions will be simplified using the multiplication formula
again, but in the opposite way, to eventually arrive at an expression involving a total of
four elliptic Γ functions.

Let us start with the first Γ function in (D.26). Before we plug in the multiplication
formula, we note that the first elliptic Γ function has a shift in its z argument. To use
the methods of appendix D.1 in this case, it will be convenient to first replace this Γ
function using:

Γ(z + σ; τ, σ) = 1
Γ(z; τ,−σ) . (D.27)

The multiplication formula then yields:

Γ (z + σ; τ, σ) =
m−1∏
i,j=0

1
Γ(z − iσ + jτ + k

(1)
(i,j);mτ + n1,−mσ − ñ1)

, (D.28)

where similarly to appendix D.1 we allow for general integers n1, ñ1 and k(1)(i,j). In particular,
we stress that at this point there are no coprime constraints on m and n1, ñ1. Note that we
have already anticipated m̃ = m in the multiplication formula, which is required for the
same reasons as in appendix D.1. For the second Γ function, we similarly have:

Γ (z; pτ − σ, τ)

=
m−1∏
i,j=0

Γ(z + iτ + j(pτ − σ) + k
(2)
(i,j);m(pτ − σ) + ñ2,mτ + n2) .

(D.29)

Again, we allow for general integers n2, ñ2 and k(2)(i,j). Also for this Γ function, we anticipate
m̃ = m. In addition, we anticipate that the m parameter here is the same as in (D.28).
Indeed, for our purposes this is a necessary requirement. To avoid unnecessary clutter, we
put them equal already at this point.

We now apply (D.3) to all the factors on the right hand side of (D.28). We then find:

Γ (z + σ; τ, σ) = eiπQ
(1)
m (z;τ,σ)

m−1∏
i,j=0

Γ
(

z−iσ+jτ+k
(1)
(i,j)

mσ+n1
; mτ+ñ1

mσ+n1
,− 1

mσ+n1

)

Γ
(

z−iσ+jτ+k
(1)
(i,j)

mτ+ñ1
;−mσ+n1

mτ+ñ1
,− 1

mτ+ñ1

) , (D.30)

where we have used Γ(−z;−τ,−σ) = 1/Γ(z; τ, σ). For the second product of Γ func-
tions (D.29), we apply (D.2):

Γ (z; pτ − σ, τ) = e−iπQ
(2)
m (z;τ,σ)

m−1∏
i,j=0

Γ
(

z+iτ+j(pτ−σ)+k
(2)
(i,j)

mτ+n2
; m(pτ−σ)+ñ2

mτ+n2
,− 1

mτ+n2

)

× Γ
(

z+iτ+j(pτ−σ)+k
(2)
(i,j)

m(pτ−σ)+ñ2
; mτ+n2

m(pτ−σ)+ñ2
,− 1

m(pτ−σ)+ñ2

)
.

(D.31)
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The associated phases are given respectively by:

Q
(1)
m (z; τ, σ) =

m−1∑
i,j=0

Q(z − iσ + jτ + k
(1)
(i,j);mτ + ñ1,−mσ − n1) (D.32)

Q
(2)
m (z; τ, σ) =

m−1∑
i,j=0

Q(z + iτ + j(pτ − σ) + k
(2)
(i,j);m(pτ − σ) + ñ2,mτ + n2) ,

respectively. As mentioned above, we are looking to cancel two products of elliptic Γ
functions, such that the remaining two products will eventually lead to the two holomorphic
blocks. Clearly, the candidates for cancellation are the Γ functions in the denominator
of (D.30) and the Γ functions in the first line of (D.31). The cancellation occurs when all
arguments between these pairs of Γ functions agree. This implies the following constraints:

n2 = ñ1 , ñ2 = pñ1 − n1 , (D.33)

and in addition:
k
(1)
(i,j) = k

(2)
(ı̃,ȷ̃) + d(ı̃,ȷ̃)ñ1 , d(ı̃,ȷ̃) =

j − ı̃− ȷ̃p

m
, (D.34)

where 0 ≤ i, j < m and 0 ≤ ı̃, ȷ̃ < m, ȷ̃ = i and j is the (unique) integer such that d(ı̃,ȷ̃) is
an integer.

We now proceed to reduce the two remaining products of Γ functions to two single Γ
functions, following the steps in appendix D.1. For the product remaining in (D.30), we
have to enforce the constraint gcd(m,n1) = 1 for the same reasons as in appendix D.1. To
match with the notation in section 3.3, we define c ≡ ñ1 and parametrize c as c = bm− an1.
We then repeat the analysis of appendix D.1, keeping in mind a few sign differences. One
finds that for:

k
(1)
(i,j) =

⌊−in1 + jc

m

⌋
, (D.35)

the product reduces to a single Γ function:
m−1∏
i,j=0

Γ
(

z−iσ+jτ+k
(1)
(i,j)

mσ+n1
; mτ+ñ1

mσ+n1
,− 1

mσ+n1

)
= Γ

(
z

mσ+n1
; τ−c(k1σ+l1)

mσ+n1
, k1σ+l1

mσ+n1

)
, (D.36)

where k1n1 −ml1 = 1.
One can similarly work out the reduction of the remaining product in (D.31). Now,

one has to require gcd(m, ñ2) = 1. As in section 3.3, since ñ2 = −n1 + pc, we find that
this constraint implies that m has to be both coprime with n1 and −1 + ap. In addition, it
follows from the analysis in appendix D.1 that we have to take:

k
(2)
(i,j) =

⌊
in2 + jñ2

m

⌋
=
⌊
ic+ j(−n1 + pc)

m

⌋
. (D.37)

Note that the explicit expressions for k(1)(i,j) and k(2)(i,j) are consistent with the constraint (D.34).
We can thus consistently reduce the second product as well to find:

m−1∏
i,j=0

Γ
(

z+iτ+j(pτ−σ)+k
(2)
(i,j)

m(pτ−σ)+ñ2
; mτ+n2

m(pτ−σ)+ñ2
,− 1

m(pτ−σ)+ñ2

)

= Γ
(

z
m(pτ−σ)+ñ2

; τ−c(k̃2(pτ−σ)+l̃2)
m(pτ−σ)+ñ2

, k̃2(pτ−σ)+l̃2
m(pτ−σ)+ñ2

)
,

(D.38)
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where k̃2ñ2 −ml̃2 = 1. Combining the above, we finally have:

Γ (z + σ; τ, σ) Γ (z; pτ − σ, τ) = e−iπQmp (z;τ,σ)Γ
(

z
mσ+n1

; τ−c(k1σ+l1)
mσ+n1

, k1σ+l1
mσ+n1

)
× Γ

(
z

m(pτ−σ)+ñ2
; τ−c(k̃2(pτ−σ)+l̃2)

m(pτ−σ)+ñ2
, k̃2(pτ−σ)+l̃2

m(pτ−σ)+ñ2

)
,

(D.39)

where mp = (m,n1, c; p) and:

Qmp(z; τ, σ) = −
m−1∑
i,j=0

[
Q
(
z − iσ + jτ +

⌊−in1+jc
m

⌋
;mτ + c,−mσ − n1

)
−Q

(
z + iτ + j(pτ − σ) +

⌊ ic+j(−n1+pc)
m

⌋
;m(pτ − σ)− n1 + pc,mτ + c

) ]
.

(D.40)

Similarly to appendix D.1, this polynomial simplifies significantly. In particular, we have:

Qmp(z; τ, σ) = 1
mpQ

(
mz, m(pτ−σ)+pc−n1

p , mσ+n1
p

)
+ p2−1

12p (2z − τ) + fmp , (D.41)

where we have not been able to find an explicit formula for fmp .

D.3 t + 3 elliptic Γ functions

In this appendix, we derive the most general modular property that involves t+ 3 elliptic Γ
functions. The integer t refers to the length of the continued fraction expansion of p/q. On
the left hand side of our modular property, we have:
(

t−1∏
i=0

Γ(z + pi−1τ − si−1σ; piτ − siσ , pi−1τ − si−1σ)
)
Γ(z; ptτ−stσ , pt−1τ−st−1σ) , (D.42)

corresponding to the L(p, q)× S1 index of the free chiral multiplet in section 5.2.
We employ exactly the same strategy as in appendix D.2. In particular, we make the

replacement (D.30) for i = 0, · · · , t− 1:

Γ(z + pi−1τ − si−1σ ; piτ − siσ , pi−1τ − si−1σ) =

eiπQ
(i+1)
m (z,τ,σ)×

m−1∏
a,b=0

Γ
( z−a(pi−1τ−si−1σ)+b(piτ−siσ)+c

(i+1)
(a,b)

m(pi−1τ−si−1σ)+ni+1
; m(piτ−siσ)+ñi+1

m(pi−1τ−si−1σ)+ni+1
, −1

m(pi−1τ−si−1σ)+ni+1

)
Γ
( z−a(pi−1τ−si−1σ)+b(piτ−siσ)+c

(i+1)
(a,b)

m(piτ−siσ)+ñi+1
;−m(pi−1τ−si−1σ)+ni+1

m(piτ−siσ)+ñi+1
, −1

m(piτ−siσ)+ñi+1

) ,

(D.43)

and the phase is defined similarly as Q(1)
m (z; τ, σ) in (D.32). For now, the data ni, ñi are

unconstrained integers, but we have anticipated that m is the same for each factor. Instead,
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we apply (D.31) for the tth factor:

Γ(z; ptτ − stσ , pt−1τ − st−1σ) = (D.44)

e−iπQ
(t+1)
m (z;τ,σ)

×
m−1∏
a,b=0

Γ
(

z+a(pt−1τ−st−1σ)+b(ptτ−stσ)+c
(t+1)
(a,b)

m(pt−1τ−st−1σ)+nt+1
; m(ptτ−stσ)+ñt+1

m(pt−1τ−st−1σ)+nt+1
,− 1

m(pt−1τ−st−1σ)+nt+1

)

× Γ
(

z+a(pt−1τ−st−1σ)+b(ptτ−stσ)+c
(t+1)
(a,b)

m(ptτ−stσ)+ñt+1
; m(pt−1τ−st−1σ)+nt+1

m(ptτ−stσ)+ñt+1
,− 1

m(ptτ−stσ)+ñt+1

)
.

Similar comments for the parameters hold here, except that the phase is defined similarly
to Q(2)

m (z; τ, σ) in (D.32). Cancellation of the ith Γ function in the denominator with the
(i+ 1)th in the numerator requires:

ni+1 = ñi, ñi+1 = eini+1 − ni , (D.45)

where we have used the recurrence relations (5.3):

pi = eipi−1 − pi−2 , si = eisi−1 − si−2 , qi = pi−1 , si = ri−1 . (D.46)

Plugging in the first recurrence relation into the second, we can solve for ñi explicitly. We
have:

ñi = −si−1n1 + pi−1c , (D.47)

where n1 and c are free integers. In addition, cancellation requires:

c
(i)
(a,b) = c

(i+1)
(ã,b̃) + d

(i)
(a,b̃)ñi , d

(i)
(ã,b̃) =

b− ãsi − b̃pi

m
, (D.48)

where 0 ≤ a, b < m and 0 ≤ ã, b̃ < m, b̃ = a and b is the (unique) integer such that d(ã,b̃) is an
integer. In this case, all cancellations occur and we are left with the final step to reduce the
products of the remaining Γ functions into a single one, by making use of the multiplication
formula in the opposite direction. This happens when gcd(m,n1) = gcd(m, ñt+1) = 1 and
in addition:

c
(i)
(a,b) =

⌊
−ani+1+bñi+1

m

⌋
, i = 1, . . . , t , c

(t+1)
(a,b) =

⌊
ant+1+bñt+1

m

⌋
, (D.49)

which can be checked to satisfy (D.48). All in all, we find the following result:(
t−1∏
i=0

Γ(z + pi−1τ − si−1σ; piτ − siσ , pi−1τ − si−1σ)
)
Γ(z; ptτ − stσ , pt−1τ − st−1σ)

= e
−iπP̃ m

g(p,q)
(z,τ,σ)Γ

(
z

mσ+n1
; τ−c(k1σ+l1)

mσ+n1
, k1σ+l1

mσ+n1

)
(D.50)

× Γ
(

z
m(pτ−sσ)+ñt+1

; qτ−rσ−nt+1(k̃t+1(pτ−sσ)+l̃t+1)
m(pτ−sσ)+ñt+1

, k̃t+1(pτ−sσ)+l̃t+1
m(pτ−sσ)+ñt+1

)
,

where we have used p ≡ pt, q ≡ qt = pt−1, s ≡ st, and r ≡ rt = st−1. Furthermore,
k1n1 − l1m = 1, k̃t+1ñt+1 − l̃t+1m = 1 and finally:

nt+1 = qc− rn1 , ñt+1 = −sn1 + pc , (D.51)
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where we have used (D.46) and (D.47). Furthermore, the phase polynomial is given by:

P̃m
g(p,q)

(z, τ, σ) = −
(

t−1∑
i=0

Q
(i+1)
m (z, τ, σ)

)
+Q

(t+1)
m (z, τ, σ) , (D.52)

Q
(i+1)
m (z, τ, σ) =

m−1∑
a,b=0

Q
(
z − a(pi−1τ − si−1σ) + b(piτ − siσ) +

⌊
−ani+1+bñi+1

m

⌋
,

m(piτ − siσ) + ñi+1,−m(pi−1τ − si−1σ)− ni+1
)
,

Q
(t+1)
m (z, τ, σ) =

m−1∑
a,b=0

Q
(
z + a(pt−1τ − st−1σ) + b(ptτ − stσ) +

⌊
ant+1+bñt+1

m

⌋
,

m(ptτ − stσ) + ñt+1,m(pt−1τ − st−1σ) + nt+1
)
.

The phase polynomial can be further simplified. As we have shown in appendix D.1, the
summation over a, b in Q

(i)
m results in a single Q-polynomial plus a constant (cf. (D.19)).

This yields:

P̃m
g(p,q)

(z, τ, σ) =
[

t−1∑
i=0

1
m
Q
(
mz +m(pi−1τ − si−1σ) + ni+1,

m(piτ − siσ) + ñi+1 ,m(pi−1τ − si−1σ) + ni+1
)]

(D.53)

+ 1
m
Q(mz,m(ptτ − stσ) + ñt+1,m(pt−1τ − st−1σ) + nt+1) + const .

We have not been able to determine a general formula for the constant, but for any specific
set of values of the parameters it can be determined by subtracting (D.52) from (D.53).

Finally, we can simplify the summation over i = 0, . . . , t. In order to accomplish the
summation, we notice the following two facts:

1
[m(piτ−siσ)+ñi+1][m(pi−1τ−si−1σ)+ni+1] =

1
mσ+n1

(
pi

m(piτ−siσ)+ñi+1
− pi−1

m(pi−1τ−si−1σ)+ni+1

)
m(piτ−siσ)+ñi+1

m(pi−1τ−si−1σ)+ni+1
+m(pi−1τ−si−1σ)+ni+1

m(piτ−siσ)+ñi+1
= ei+

(
m(pi−1τ−si−1σ)+ni+1

m(piτ−siσ)+ñi+1
−m(pi−2τ−si−2σ)+ñi−1

m(pi−1τ−si−1σ)+ni+1

)
,

(D.54)

where we have made use of the recurrence relation (D.46) and the fact that qisi − piri = 1.
These relations make the summation over these terms telescopic and computable due to the
recursive relation (D.45). As a result, only the boundary terms (i = 0, t) in the summation
contribute, resulting in the phase polynomial:

P̃m
g(p,q)

(ρ) = 1
mpt

Q

(
mz,

m(ptτ − stσ) + ñt+1
pt

,
mσ + n1

pt

)
+ δP̃m

g(p,q)
(ρ)

δP̃m
g(p,q)

(ρ) = (ηt + 3)pt − 3
6pt

z − (p2t − 1)(ptτ − stσ + σ)
12p2t

+ const .
(D.55)

The constant term in δP̃m
g(p,q)

are the sum of a few generalized Dedekind sums of the form
σ1(n1, n2, 1;m).
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