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1 Introduction

The black hole information paradox [1] has been recognized as one of the major mysteries
whose resolution may lead us to a full understanding of quantum gravity. Recent progress
in the gravitational path integral indicates that the quantum extremal islands [2–4] emerge
from the replica wormhole saddles [5, 6], and the fine-grained entropy of the Hawking
radiation should include contributions from islands. As a result, we anticipate that af-
ter the Page time [7, 8], information from the black hole interior will begin to leak out
into Hawking radiation, as predicted by a unitary quantum theory. The island formula
has been successfully applied to various scenarios [9–23], outside its original context in
AdS/CFT [24–26].
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Although the ultimate goal is to understand black hole evaporation and islands in
general dimensions, generic higher-dimensional models are known to be intricate due to
the lack of conformal symmetry. Dimensional reduction has been shown to be a successful
strategy, particularly with the introduction of the dilaton gravity models. In fact, most
recent studies in understanding the gravitational path integral and island formula have
focused on (1+1)-dimensional dilaton gravity, such as the Jackiw-Teitelboim (JT) [5, 6, 27]
and the Callan-Giddings-Harvey-Strominger (CGHS) [12] models. These models admit
higher-dimensional interpretation. For example, JT gravity [28, 29] can be viewed as a
dimensional reduction in the near-horizon limit of near-extremal Reissner-Nordström black
hole where the spacetime factorizes into AdS2 × S2. CGHS [30], on the other hand, comes
from a four-dimensional near-extremal magnetically charged dilaton black hole in the string
frame. It becomes an exactly solvable model for (1 + 1)-dimensional asymptotically flat
dilaton gravity theory by including a local counterterm in the one-loop action known as
the Russo-Susskind-Thorlacius (RST) term [31]. These models are constructed with the
nice property of exact solvability, but it is not clear that they are generic or represent black
holes in our universe.

Furthermore, the gravitational sector typically has a higher-dimensional origin, whereas
the matter sector does not. This is because we generally do not apply dimensional reduc-
tion to the matter theory. It is preferable to study minimally coupled scalar matter field
f in two dimensions for its simplicity

Smatter = − 1
4π

∫
d2x
√
−g(∇f)2. (1.1)

In this case, one could properly account for the back-reaction problem by following the
prescription of Christensen-Fulling [32]. That is, we first adopt the (1 + 1)-dimensional
conformal anomaly

〈T 〉 = ~
24πR, (1.2)

which gives the trace of the stress tensor. Note that this is a universal and geometrical
result of the matter theory, which is state-independent. The remaining components can be
derived by integrating the (1 + 1)-dimensional conservation law

∇a〈Tab〉 = 0. (1.3)

One can also construct a unique one-loop action that reproduces the conformal anomaly
by functionally integrating the following defining equation

− 2√
−g

gab
δΓP
δgab

≡ 〈T 〉, (1.4)

where the final product is known as the non-local Polyakov action [33]

ΓP = − ~
96π

∫
d2x
√
−gR�−1R. (1.5)

It is also clear that conformal anomaly results from the one-loop action where there is
a non-vanishing trace due to broken conformal symmetry. In fact, the variation of the
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Polyakov action yields a quantum stress tensor consistent with the one constructed from
the conservation law, beyond the trace. This is of course a special feature of the minimally
coupled theory.

Due to the limitation, we instead focus on a more general yet simple model. As
previously stated, the gravitational sector has a clear higher-dimensional origin; however,
the same does not hold true for classical matter theory and one-loop action. A more
physical scenario is to consider (3 + 1)-dimensional Einstein gravity coupled with a scalar
matter field, with a spherical dimensional reduction to (1+1) dimensions. Focusing on the
matter theory, we start with the matter action that is minimally coupled in four dimensions

S
(4)
matter = − 1

8π

∫
d4x

√
−g(4)(∇f)2, (1.6)

upon spherical dimensional reduction to two dimensions

Smatter = −1
2

∫
d2x
√
−ge−2φ(∇f)2, (1.7)

becomes non-minimally coupled with the dilaton φ. The matter action has a four-
dimensional origin, and it is important to note that the connection is not limited to four
dimensions, but to general dimensions where similar dimensional reduction can be per-
formed.1 This model, which was first considered in [36], is the simplest possible extension
of the general spherical reduction gravity.

We expect the theory to capture the s-wave sector of generic higher-dimensional mod-
els. In addition, there are new features associated with this model that make it worth
studying. The conformal anomaly and the corresponding one-loop theory are deformed
due to the presence of dilaton coupling to the matter. As we will see shortly, an important
Weyl-invariant ambiguity will arise in the one-loop action.

To study the back-reaction problem and the corresponding quantum extremal islands,
we need to solve the semi-classical Einstein equations sourced by the quantum stress tensor.
An expression of the quantum stress tensor should be obtained from the one-loop theory.
In fact, various methods for finding a consistent one-loop action had been considered. To
name a few, using auxiliary fields for the one-loop action to solve the appropriate boundary
conditions [37–40], the effective action formalism based on perturbative heat kernel [34–
36, 41–44], canonical quantization by solving the field equations [45, 46], and a generalized
transformation law for the normal-ordered stress tensor [47].

For such a simple model, the surprising thing is that the results from these approaches
are incompatible, and may even lead to unphysical predictions. Examples include un-
tamable logarithmic divergence in the stress tensor at the horizon from heat kernel and
canonical quantization; while using the auxiliary fields, one encounters thermal equilibrium
in a thermal bath of negative energy, or black hole anti-evaporation, where the black hole
is absorbing energy instead of evaporating. Different approaches have their advantages,
but also suffer different weaknesses. Obtaining a self-consistent one-loop theory becomes a

1For a general connection between D-dimensional Einstein gravity with dimensionally reduced models,
see [34, 35].
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significant problem that hinders progress, and it is one of the main reasons the model has
been overlooked for a while.

With lessons from previous studies, we will impose a few reasonable assumptions on the
theory to obtain unique, regular, and physical quantum stress tensors. We first impose the
dilaton-deformed conformal anomaly, and it allows us to fix the one-loop action up to Weyl-
invariant terms as these terms do not contribute to the trace. Contrary to the minimal
model, the anomaly equation and the conservation law fail to determine all the components
of the stress tensor in a unique way due to dilaton coupled scalar matter. Therefore, the
Weyl-invariant terms pose an ambiguity in the one-loop action, and it is the ambiguity
that partially motivates the study of a consistent one-loop theory in the literature.

A crucial observation is that these Weyl-invariant terms are state-dependent. A general
consequence in two dimensions is that we can decompose the covariant one-loop action into
two non-covariant parts, where we can isolate the contribution of the conformal anomaly
and absorb any Weyl-invariant terms into state-dependent quantities. It suggests that we
can elevate the problem of state choice to the choice of effective action, where we shall
construct minimal candidates of the Weyl-invariant terms for the purpose of describing
the states of physical interest. To achieve this, we introduce on-shell equivalent auxiliary
fields to the model and solve the corresponding constraint equations. It turns out that
by imposing boundary conditions associated with different quantum states, we are able to
find a one-parameter family of actions that produces a unique quantum stress tensor for
each state.

The quantum states we have considered include the Boulware state [48] describing vac-
uum polarization exterior to a static black hole; the Hartle-Hawking state [49, 50], describ-
ing a black hole in thermal equilibrium; and the |in〉 state [51–54] describing a black hole
formed from gravitational collapse where at late times it gives rise to the Unruh state [55]
for an evaporating black hole. For the first time in the non-minimal dilaton gravity model,
unique and completely regular stress tensors could be obtained for these physical states.
The near-horizon and asymptotic behaviors are in accordance with the s-wave approxi-
mation from four dimensions. However, different states impose different constraints on
the possible Weyl-invariant terms, leading to different physical interpretations. To exam-
ine the effect, we solve the back-reaction geometry under semi-classical Einstein equations.
Straightforward application of the island prescription indicates a unitary Page curve, which
is expected from a consistent study of the one-loop theory.

The plan of this paper is as follows. In section 2, we give a precise definition of the
non-minimal dilaton gravity model and show how the Weyl-invariant ambiguity arises in
the one-loop action. We briefly discuss the earlier studies in the literature before moving on
to our resolution, which is based on a universal splitting property of the effective action. In
section 3, we apply the formalism we have developed to the construction of effective theories
of physical quantum states, including the Boulware, Hartle-Hawking and Unruh states. In
section 4, we study the back-reaction and island problems in the eternal and evaporating
black hole scenarios. In section 5, we summarize our findings and discuss a few subtitles
relevant to the model. In appendix. A, we discuss the implication of general covariance and
the splitting property we used in section 2.3. We derive a generalized Virasoro anomaly
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that is crucial in interpreting our results. In appendix. B, we perform a non-perturbative
analysis for the back-reaction problem associated with the Boulware state, where we show
that the back-reaction leads to a no-horizon geometry that resembles a static quantum
star. Appendix. C and appendix. D are devoted to the details of the island calculations.

2 A non-minimal dilaton gravity model

2.1 Dimensional reduction and the one-loop theory

In this subsection, we introduce the non-minimal dilaton gravity model. Consider the
(3 + 1)-dimensional Einstein-Hilbert action coupled with a scalar matter field f

S(4) = 1
16πG(4)

N

∫
d4x

√
−g(4)R(4) − 1

8π

∫
d4x

√
−g(4)(∇f)2, (2.1)

where we use a superscript (4) to denote the (3 + 1)-dimensional quantities. Here G(4)
N

represents the Newton’s constant, g(4)
µν (µ, ν = 0, 1, 2, 3) is the metric, and R(4) is the Ricci

scalar. Under spherical dimensional reduction with the following ansatz

ds2
(4) = gabdx

adxb + λ−2e−2φdΩ2, (2.2)

where a, b = 0, 1 and the metric gab will only depend on x0,1. We omit any superscripts
for the (1 + 1)-dimensional quantities. Here, a dilaton field φ is introduced for the radial
coordinate r = λ−1e−φ. By expressing our (3 + 1)-dimensional theory using the (1 + 1)-
dimensional quantities, we arrive at the following action

S = 1
4GN

∫
d2x
√
−g[e−2φ(R+ 2(∇φ)2) + 2λ2]− 1

2

∫
d2x
√
−ge−2φ(∇f)2, (2.3)

where GN = λ2G
(4)
N and note that λ2 term plays the role of a cosmological constant.

From now on we set λ = 1 for simplicity. We can generalize to N massless scalar fields
by including a factor of N in the matter sector, but we only focus on the case of a single
dilaton field where there is no kinetic term associated with the dilaton. A review on general
dilaton gravity in two dimensions can be found in [56].

Now, both the gravity and the matter sectors have clear four-dimensional origins. In
order to study the back-reaction problem, we need to construct a one-loop effective action
for this model, and we expect new ingredients involving the dilaton field.

Let us start with the anomaly equation. The conformal anomaly associated with this
matter theory had been derived as [36, 57–63]

〈T 〉 = ~
24π (R− 6(∇φ)2 + 6�φ), (2.4)

where we can see explicitly new terms involving the dilaton φ compared with (1.2). We will
simply call (2.4) the dilaton-deformed conformal anomaly, as the dilaton is not quantized,
but is treated as an external field. Following a similar procedure as in the Polyakov
action (1.4), we can obtain a one-loop action via the functional integral

− 2√
−g

gab
δΓeff
δgab

= 〈T 〉 = ~
24π (R− 6(∇φ)2 + 6�φ). (2.5)
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We can obtain the anomaly induced effective action Γanom [38] as a particular solution
to (2.5), where

Γanom = − ~
96π

∫
d2x
√
−g(R�−1R− 12(∇φ)2�−1R+ 12φR), (2.6)

where the first term corresponds to the Polyakov action (1.5). Being a particular solution,
we may always add Weyl-invariant terms that would not affect the defining equation (2.5)

Γeff = Γanom + Weyl-invariant terms, (2.7)

where we refer Γeff as the full one-loop effective action. Unlike the case of the Polyakov
action, Γanom does not have all the information about the quantum stress tensor. This is
because the quantum conservation law is also modified to be

∇a〈Tab〉 −
1√
−g
〈δΓeff
δφ
〉∇bφ = 0, (2.8)

which comes from the dimensional reduction of the four-dimensional conservation law
∇a〈T (4)

ab 〉 = 0. Due to an unfixed degree of freedom, the Weyl-invariant ambiguity in-
dicates that a more well-defined procedure is required for the one-loop action.

2.2 Challenges in constructing the one-loop effective action

The Weyl-invariant ambiguity and more generally on how to obtain the correct one-loop
theory had been intensively investigated. So far, none of them lead to satisfactory results
for Hawking evaporation. Let us briefly discuss the pros and cons of early approaches in
the literature, as they addressed important aspects of the problem.

Local Effective Action with Auxiliary Fields. Given the non-local terms in Γanom,
one can find a local expression for the action by introducing two auxiliary fields. For
examples, in [37, 39, 40] (see also [38]), the authors introduced

�ψ = R, �χ = (∇φ)2. (2.9)

One can express the action in terms of these auxiliary fields, and the new action is on-shell
equivalent to Γanom. With the action in local form, one can obtain the quantum stress
tensor 〈Tab〉 by varying the effective action, and the state dependence will be encoded in
the boundary conditions associated with the auxiliary fields. By taking the Schwarzschild
metric as the background, the solutions of ψ and χ will involve integration constants that
encode such state dependence.

However, the treatment can lead to unphysical results associated with different quan-
tum states of black hole spacetime. For example, in the Hartle-Hawking state |H〉 [49] de-
scribing a black hole in thermal equilibrium, the thermal bath is of negative energy [37, 39]

〈H|Tuu|H〉 = 〈H|Tvv|H〉 →
~

768πM2 (1− 6), (2.10)
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where we explicitly keep the −6 factor, as it comes from the non-local dilaton term in (2.6).
Or similarly the |in〉 state describing evaporation of a black hole formed by gravitational
collapse of a null shock wave [52, 53]. In this case, the black hole is anti-evaporating [39, 40]

〈in|Tuu|in〉 →
~

768πM2 (1− 6), (2.11)

asymptotically.2 At late times, the |in〉 state reproduces the usual Unruh state |U〉 [55],
where the same anti-evaporation is found [39]. This means that the black hole is in fact ab-
sorbing energy from the vacuum. The results are not only unphysical, but also in violation
of the weak energy condition in the asymptotic region [39, 43].

A possibility is that such negative energy occurs because the spherical dimensional
reduction only takes the s-wave mode into account. This argument, however, falls short
because it does not explain why some models produce positive flux when using only the
s-wave sector [40]. Furthermore, the inclusion of the angular modes should only change
the flux’s numerical factors rather than its sign. This interpretation also ignores the non-
local dilaton term, which is the source of the flux’s negative component and is extremely
sensitive to the boundary condition. At least, we expect the result to be corresponding to
the flux dimensionally reduced from four dimensions. In four dimensions, we do expect a
positive asymptotic flux.3

We should stress that the above conclusion comes from the fact that only Γanom is
used as the input and the Weyl-invariant ambiguity in (2.7) is neglected. The ambiguity,
however, is suggesting that we do not have the complete effective theory. Including more
Weyl-invariant terms is a logical solution to this issue, as demonstrated in [36]. The output
is to remove the −6 factor coming from the non-local dilaton term. But as detailed by [38],
it is an ad hoc approach that suffers other physical inconsistencies. For example, the theory
does not satisfy Wald’s axioms [64].

Effective Action from Covariant Perturbation Theory. The Schwinger-DeWitt
expansion of the heat kernel is a standard technique for studying the one-loop action [65]
(see also [66, 67]). In this formalism, we consider the effective action W [gµν ] via the
Euclidean path integral

eiW [gµν ] =
∫
DφeiS[φ;gµν ], (2.12)

where we temporarily take φ to represent the set of all matter fields and Dφ the covari-
ant measure of the functional integration. The effective action of gravity admits a loop
expansion in powers of ~.

W [gµν ] = Svac[gµν ] + ~Γ1-loop + · · · . (2.13)
2On the other hand, according to [38], one has the usual negative ingoing flux near the horizon r → 2M

〈in|Tvv|in〉 →
−~

768πM2 ,

which makes the interpretation even more unfeasible.
3Nevertheless, the authors in [37, 40] treated the negative flux as a feature of the model and computed

the back-reacted geometry for the Hartle-Hawking and Unruh states.
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For generic metric and potential V (x) associated with a differential operator F (∇, V ) that
depends on the theory, we define a heat kernel with a proper time parameter τ

K(τ |x, y) = eτF (∇,V )δ(x, y), (2.14)

and then the one-loop action can be rewritten as

Γ1-loop = 1
2

∫ ∞
0

dτ

τ
TrK(τ), TrK(τ) =

∫
dxK(τ |x, x), (2.15)

where the one-loop action is generally non-local (with generic positions x and y in (2.14)),
as is evident from the structure of Γanom.

Under some mild assumptions about the quantum fields, we can assume there is an
asymptotic curvature expansion in small τ for the heat kernel. This local Schwinger-
DeWitt expansion in curvatures allows us to analyze the UV divergences of the theory. As
a consequence, the conformal anomaly is a robust result coming from regularization in the
UV, and it is regularization scheme independent.

However, we also need to mention the limits of the Schwinger-DeWitt expansion. It
contains local covariant expressions with increasing powers of metric derivatives, where the
general expressions are not available. In general, there is no way to compute the quantum
effective action completely, because the expansion contains an infinite series in curvature
tensor and its derivatives, which indicates an infinite amount of non-local insertions. There
were early attempts that investigated various ways to resum the heat kernel expansion.
However, it is a subtle issue and none of the approaches are satisfactory (see [68] for
a review).

The expansion also does not allow us to evaluate the finite part of the one-loop action
as it requires a direct integration of the full τ -range. Additionally, we are interested in
studying non-local terms and IR divergences that may arise from the upper-limit of τ .

Covariant perturbation theory [69–73] was developed as a powerful tool to approach
these issues. The objective is to study the late-time asymptotic expansion of the heat kernel.
This method corresponds to an infinite resummation of all possible terms with the potential
and arbitrary derivatives acting on it. By finding an expansion in the infrared τ →∞, one
can successfully reproduce the Polyakov action (1.5) from covariant perturbation [70, 73]
for the minimal model. Note that the method requires V (x) to be sufficiently small, which
is a reflection of its perturbative nature.

The authors in [43] considered covariant perturbation up to second-order in curva-
tures for the non-minimal dilaton gravity model (2.3). The correct asymptotic flux of
the s-wave contribution and the conformal anomaly (2.4) are successfully reproduced from
this method. However, an unavoidable logarithmic divergence in the stress tensor of Unruh
state at the horizon occurs,4 and it persists when back-reaction is included. The divergence
may be attributed to the IR divergent structure found using the covariant perturbation,

4There are several early efforts in deriving an effective action for the non-minimal dilaton gravity model
based on heat kernel [34–36, 41, 42]. Especially in [34, 35], a similar logarithmic divergent structure at the
horizon was discovered. However, in [42], instead of expanding in curvatures, one can expand in orders of
dilaton, where the divergence does not occur.
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and it indeed implies the effective action is intrinsically divergent. The issue is not yet
fully understood as IR convergence is only guaranteed for d ≥ 3 in the covariant perturba-
tion theory [70].

In order to determine whether the IR divergence is generic and whether it can be
controlled, the authors further computed the effective action up to third-order in cur-
vatures [44]. However, they discovered that the IR divergence persists in the third-order
covariant perturbation. This led them to hypothesize that the IR divergences would appear
in all orders. Note that the second-order divergence can be eliminated by renormalizing
the theory with a counterterm, which is a coupling to an external field. However, it is
unclear whether this can always be achieved if there is IR divergence at each order. Never-
theless, with some simplifying assumptions, the authors asserted that the renormalization
can remove the IR divergences to all orders with a resummation based on the third-order
structure. This is not conclusive, as whether the divergence is generic remains an open
question. Also, as pointed out by the authors, the counterterm is not conformally invariant
and may lead to other contributions to the conformal anomaly.

To recap, due to the perturbative nature, no complete closed form could be obtained for
the effective action unless a well-defined resummation method is found. It is an open ques-
tion whether the divergences can be resolved via some other non-perturbative improvement
for calculating the heat kernel, such as the formalism developed in [74–76].

Canonical Quantization. It is conceivable that the problem lies in the perturbative
scheme of action formalism. Another standard method is based on canonical quantization,
where it starts by finding a complete set of solutions associated with the dilaton cou-
pled equation of motion. Approximate analytic expressions of 〈Tab〉 for the Boulware and
Hartle-Hawking states can be obtained by the point-splitting regularization and a WKB
approximation of the normal modes. For details, we refer to [45] (see also [46] for an action
formalism). A similar logarithmic divergent behavior at the horizon was discovered. The
authors attributed this divergence as an artifact of the WKB approximation, which should
not be applicable to some near-horizon low-frequency modes. One can hence argue that
the stress tensor for the Hartle-Hawking state is regular at the horizon. Unfortunately,
the applicability of the canonical quantization approach is still limited as the calculations
of the normal modes are rather involved. There is no analytical expression that interpo-
lates between the regular near-horizon behavior and the approximate WKB result far from
the horizon.

Furthermore, although the results are consistent with the conformal anomaly, the
asymptotic stress tensor does not correspond to the s-wave approximation. Hence it is not
in agreement with the action formalism from covariant perturbation. This fact may have
something to do with the dimensional reduction anomaly [77–79], which states that the
quantization procedure does not commute with dimensional reduction. To be more precise,
the s-wave contribution to the renormalized stress tensor of the four-dimensional theory
does not coincide with the renormalized stress tensor of the two-dimensional reduced theory.
The reason behind this is that the sum over the higher angular modes will in general be
divergent, although each of them is finite. Therefore, the higher dimensional theory would
require more counterterms and counterterms of different types [56].
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In light of these unsatisfactory results, the remainder of the paper seeks to address the
non-minimal dilaton gravity model appropriately and come up with a consistent solution for
the stress tensors describing physical quantum states. In the next subsection, we will further
elaborate the role of the Weyl-invariant ambiguity, which is essential to our resolution.

2.3 Universal spliting of Γeff and the role of Weyl ambiguity

In previous subsections, we have described how the anomaly equation (2.4) determines the
action up to a Weyl-invariant term, namely

Γeff = Γanom + ΓW , (2.16)

and how this fact leads to an ambiguity in the effective action and several related problems
in achieving a workable form of the stress tensors. Now we present a resolution toward
deriving unique, regular, and physical stress tensors for the non-minimal dilaton gravity
model. This is based on a universal way of splitting the effective action into a local part
and a Weyl-invariant part [54, 80–82] that holds generally in two dimensions. That is

Γeff = Γloc + ΓW , (2.17)

where ΓW is a generally non-local Weyl-invariant action in metric and any potential matter
contents. On the other hand, Γloc is a local action that captures the geometrical contribu-
tion to the stress tensor, especially the conformal anomaly.

We shall elaborate on the roles played by the two parts of the action in the following.
We start by commenting on certain features and indications of (2.17):

• Γloc is always local despite Γeff being non-local in general. This indicates that the
effect of non-locality can all be attributed to the Weyl-invariant part ΓW .

• The stress tensor defined by Γloc captures the dilaton-deformed conformal
anomaly (2.4). This means if we define

〈T geo
ab 〉 = −2√

−g
δΓloc
δgab

, (2.18)

then the trace is given by

〈T geo〉 = ~
24π

(
R− 6 (∇φ)2 + 6�φ

)
. (2.19)

Here the superscript “geo” means that the contribution to the stress tensor comes
from the geometry of the background together with the dilaton profile. In other
words, the saddle breaks the Weyl invariance of the theory, leading to a non-vanishing
stress tensor that sources the back-reaction.

• There is a canonical expression for Γloc in terms of the local quantities consisting of
the metric and dilaton field given by

Γloc = ~
96π

∫
d2x

(√
−g log

√
−g� log

√
−g

+ log
√
−g

(
2R− 12 (∇φ)2 + 12�φ

))
.

(2.20)
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• The above choice of Γloc is universal and state-independent.5 We expect that any
Γeff which serves as the solution to the anomaly equation (2.4) would produce the
same Γloc.

The essence of the splitting is to find a universal part of the effective action that
captures the conformal anomaly. Let us first comment on the universality of Γloc and then
verify that it satisfies the properties mentioned above.

Since Γloc captures the anomaly, this means the difference between Γeff and Γloc is
Weyl-invariant. Therefore, we can write

Γeff (gab, ψ) = ΓW (gab, ψ) + Γloc (gab, ψ) , (2.21)

where gab is the metric and ψ represents generic field content excluding gab. Note that
the above equation holds for off-shell configurations of gab as well, by plugging in a Weyl-
invariant combination √−g−1gab we find

Γeff
(√
−g−1

gab, ψ
)

= ΓW (gab, ψ) + Γloc
(√
−g−1

gab, ψ
)
, (2.22)

where we have used the fact that ΓW is Weyl-invariant. Note that Γeff
(√
−g−1gab, ψ

)
as

a functional of the metric is already invariant under Weyl transformation, which means it
should be equal to the Weyl-invariant part of itself. This indicates

Γloc
(√
−g−1

gab, ψ
)

= 0. (2.23)

Combined with equation (2.21), we find the expression for Γloc in terms of Γeff

Γloc (gab, ψ) = Γeff (gab, ψ)− Γeff
(√

g−1gab, ψ
)
. (2.24)

Note that the canonical Γloc in (2.20) already satisfies (2.23). In fact, it vanishes for any
metric configurations with a unit determinant.

Note that (2.24) gives a concrete construction for Γloc if one knows the form of Γeff .
The above derivation for Γloc has not specified any matter content ψ in Γeff , which means
it is applicable for arbitrary field content with the corresponding conformal anomaly. To
illustrate this point, we start with a concrete and sufficient example

Γ′eff = Γχ1 + Γχ2 + Γφ,

Γχ1 = ~
∫ √
−g

(1
2 (∇χ1)2 + χ1

(
λ1R+ λ2 (∇φ)2

))
,

Γχ2 = ~
∫ √
−g

(
−1

2 (∇χ2)2 + χ2
(
µ1R+ µ2 (∇φ)2

))
,

Γφ = ~
8π

∫ √
−gφR,

(2.25)

where χ1 and χ2 are local fields with appropriate boundary conditions, φ is the dilaton
field, and (λi, µi) (i = 1, 2) are arbitrary coupling constants. The new action in terms

5Here the state dependence means the definition of the vacuum state from where Γeff describes the local
excitations. By claiming that Γloc is state-independent, we mean the form of (2.20) as a functional of metric
and dilaton field does not depend on the choice of vacuum.
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of the auxiliary fields is on-shell equivalent to the original one. It is straightforward to
verify that

Γχ1 (gab, χ1)− Γχ1

(√
−g−1

gab, χ1
)

= −~
∫ √
−g
(
λ2

1
2 log

√
−g� log

√
−g

+ λ1
(
λ1R+ λ2(∇φ)2

)
log
√
−g
)
, (2.26)

Γφ (gab, φ)− Γφ
(√
−g−1

gab, φ
)

= − ~
8π

∫ √
−gφ� log

√
−g. (2.27)

The corresponding Γloc is then given by

Γ′eff (gab, ψ)− Γ′eff

(√
−g−1

gab, ψ
)

= ~
2

[ ∫ √
−g

(
λ2

1 − µ2
1

)
log
√
−g� log

√
−g

+
∫ √
−g log

√
−g

(
λ2

1 − µ2
1

)
R

+
√
−g log

√
−g

(
(λ1λ2 − µ1µ2) (∇φ)2 + 1

8π�φ
)]

.

(2.28)

The coupling constants (λ1, λ2) and (µ1, µ2) are not completely independent. They are
constrained by the requirement that Γ′eff satisfies the anomaly equation. Working out the
trace of stress tensor for Γ′eff , we find the constraints on the parameters are precisely

λ2
1 − µ2

1 = 1
48π , λ1λ2 − µ1µ2 = − 1

8π . (2.29)

Therefore, we see that (2.28) indeed produces the canonical Γloc. Note that there are still
free parameters in the family of the theory. They produce the same Γloc and differ only by
a Weyl-invariant term.

Now let us take a closer look at the stress tensor defined by Γloc

〈T geo
ab 〉 = −2√

−g
δΓloc
δgab

. (2.30)

In a conformal gauge with ds2 = −e2ρdx+dx−, this yields the following components of the
stress tensor

〈T geo
+−〉 = − ~

12π∂+∂−ρ+ ~
4π (−∂+φ∂−φ+ ∂+∂−φ) , (2.31)

〈T geo
±±〉 = ~

12π
(
∂2
±ρ− (∂±ρ)2

)
+ ~

2π
(
ρ (∂±φ)2 + ∂±ρ∂±φ

)
. (2.32)

By expanding in component value of (x+, x−), (2.31) precisely reproduces the dilaton-
deformed conformal anomaly (2.4). While for (2.32), we show in appendix. A that the
first term corresponds to a Schwarzian derivative, and the second term can be viewed as a
deformed part of the transformation law in the presence of dilaton. One may also notice
that the above result is not invariant under a constant shift of ρ, which should not cause
any actual physical effect. We leave the detailed discussion on how to resolve this ambiguity
to appendix A.
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If one requires general covariance to be maintained in the effective action Γeff and in
particular the existence of a covariant quantum stress tensor 〈Tab〉, then there must be a
way to incorporate the difference between 〈Tab〉 and the normal-ordered part 〈: Tab :〉. The
latter is not covariant in general because the normal-ordering breaks the general covariance
by subtracting divergent parts in a specific coordinate. Indeed, the breaking is captured
by 〈T geo

ab 〉. In appendix. A, we show explicitly that the combination

〈Tab〉 = 〈: Tab :〉+ 〈T geo
ab 〉, (2.33)

is covariant and unaffected by the value that one assigns with the normal-ordered part in
any specific coordinate.

Given that 〈T geo
ab 〉 is completely determined by the universal part Γloc, the normal-

ordered part can only come from ΓW , which was previously viewed as an ambiguity in
solving the anomaly equation. This makes sense because the normal-ordered part of stress
tensor encodes the definition of the state, and can not be fixed by the state-independent
anomaly.6 For instance, in Minkowski vacuum one requires 〈: Tab :〉 = 0. Therefore, instead
of interpreting ΓW as an ambiguity, we can now view it as an alternative definition of the
state, and is incorporated into the specification of the effective action Γeff .7 In the next
section, we shall explore the construction of Γeff for various states and show how it produces
a covariant stress tensor compatible with the definition of the state.

3 Effective theories for physical quantum states

As an application of the formalism developed in section 2.3, we construct the one-loop
effective theories for physical quantum states. An important lesson drawn from the role of
the Weyl-invariant ambiguity is that, the ambiguity is associated with the state-dependent
part 〈: Tab :〉 that requires knowledge beyond the geometrical conformal anomaly. We
adopt the viewpoint that 〈: Tab :〉 is part of the definition of the theory, which should be
determined by physical requirements.

Furthermore, from the discussion in section 2.2, we believe the following conditions
must be satisfied:

• The state-independent dilaton-deformed conformal anomaly:8 from the defining
equation

− 2√
−g

gab
δΓeff
δgab

= 〈T 〉 = ~
24π (R− 6(∇φ)2 + 6�φ). (3.1)

6Note that if we are not restricting to the s-wave approximation, even the trace of the stress tensor itself
can be state-dependent. This implies we no longer have the canonical choice for Γloc. See, however, a critique
for exploiting the state dependence of the four-dimensional effective action [83] for different scenarios.

7This includes specifying the field contents and interactions in Γeff , together with suitable boundary
conditions that leads to correct asymptotic behavior of the quantum stress tensor.

8A remark is that in the CGHS model, to get semi-classical exact solutions, the RST local term is added
to the one-loop action by hand

ΓRST = − ~
48π

∫
d2x
√
−gφR.

For the island computation in asymptotically flat spacetime based on this model, see [10–12]. Note that
the RST term is not the only choice, for example, one can have a different local term such as the Bose-
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This allows to fix the one-loop action up to Weyl-invariant terms

Γanom = − ~
96π

∫
d2x
√
−g
(
R�−1R− 12(∇φ)2�−1R+ 12φR

)
, (3.2)

Γeff = Γanom + Weyl-invariant terms. (3.3)

• Dilaton-deformed conservation law for the quantum stress tensor:

∇a〈Tab〉 −
1√
−g
〈δΓeff
δφ
〉∇bφ = 0. (3.4)

This equation comes from the dimensional reduction of the four-dimensional con-
servation law ∇µ〈T (4)

µν 〉 = 0. It is a consequence of general covariance that is true
in any dimension for any dilaton gravity theory whose effective action is of the form
Γeff = Γeff[gab, φ] [38, 43]. Hence we do not need to impose it by hand once a covariant
effective action is at hand [67].

• Boundary conditions associated with the state: we impose appropriate boundary
conditions associated with Boulware, Hartle-Hawking, and |in〉 states. It typically
involves requiring the quantum stress tensor to be regular asymptotically or at
the horizon.

• The quantum stress tensor must exhibit near-horizon and asymptotic behaviors that
are consistent with s-wave approximation from four dimensions.

We will be explicit about the final two conditions in the following subsections. We will see
that by imposing these physical conditions, one can fix the one-loop theory uniquely and
determine completely regular stress tensors associated with different quantum states.

3.1 Building the effective theory for Boulware state

In this subsection, we consider the simple vacuum state annihilated by operators using plane
wave modes associated with the Eddington-Finkelstein coordinates (u, v). The quantum
state is called the Boulware state |B〉 [48], and is considered to be describing the vacuum
polarization of the spacetime outside a static black hole. The Boulware vacuum is simple
in a sense that it reduces to the conventional Minkowski vacuum when the mass M → 0.

Parker-Peleg term [84, 85]

ΓBPP = ~
24π

∫
d2x
√
−g[(∇φ)2 − φR].

In fact, there are several other proposals for recovering the solvability [86–88]. See also [15, 16, 19] for
island computations based on some of these models. These additional terms would change the conformal
anomaly, but we would like to take the conformal anomaly as one of the first principles.
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Following section 2.3, the starting point is to consider the one-loop theory constructed
from the following actions with auxiliary fields χ1 and χ2

Γχ1 = ~
∫
d2x
√
−g
[1

2(∇χ1)2 + χ1(λ1R+ λ2(∇φ)2)
]
, (3.5)

Γχ2 = ~
∫
d2x
√
−g
[
− 1

2(∇χ2)2 + χ2(µ1R+ µ2(∇φ)2)
]
, (3.6)

Γφ = − ~
8π

∫ √
−gφR. (3.7)

The introduction of the auxiliary fields should be perceived as merely a consistent method
of dealing with the non-local feature of the effective action. Some comments about this
setup are in order:

• The effective action with auxiliary fields should be understood as on-shell equivalent
to the full effective action describing the Boulware state. The state dependence will
be encoded in the solutions of the equations of motion for the auxiliary fields on a
background with the appropriate choice of boundary conditions. Hence, the coeffi-
cients (λi, µi) and any integrations constants that might arise are to be determined
by the physical constraints associated with the Boulware state.

• Note that other candidate terms could exist as long as they do not contribute to
the anomaly equation. There is no a priori reason to say the state dependence is
encoded in a single type or fixed types of terms off-shell. However, we are attempt-
ing to construct minimal candidates of possible Weyl-invariant terms. As we have
demonstrated in section 2.3, it is sufficient that by solving the constraints, we will
get a one-parameter family of effective action with λ2.

The quantum stress tensors associated with the auxiliary fields χ1, χ2 and the dilaton
φ are given by

−2√
−g

δΓχ1

δgab
= 〈T (χ1)

ab 〉 = ~
[
−∇aχ1∇bχ1 + 1

2gab(∇χ1)2 + 2λ1(∇a∇bχ1 − gab�χ1)

−2λ2χ1

(
∇aφ∇bφ−

1
2gab(∇φ)2

)]
, (3.8)

−2√
−g

δΓχ2

δgab
= 〈T (χ2)

ab 〉 = ~
[
∇aχ2∇bχ2 −

1
2gab(∇χ2)2 + 2µ1(∇a∇bχ2 − gab�χ2)

−2µ2χ2

(
∇aφ∇bφ−

1
2gab(∇φ)2

)]
, (3.9)

−2√
−g

δΓφ
δgab

= 〈T (φ)
ab 〉 = − ~

4π (∇a∇bφ− gab�φ). (3.10)

The full quantum stress tensor under consideration is the sum of the three terms

〈Tab〉 = 〈T (χ1)
ab 〉+ 〈T (χ2)

ab 〉+ 〈T (φ)
ab 〉. (3.11)

We will also have to solve equations of motion for the auxiliary fields χ1 and χ2 given by

�χ1 = (λ1R+ λ2(∇φ)2), (3.12)
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�χ2 = −(µ1R+ µ2(∇φ)2), (3.13)

with the classical background in the Eddington-Finkelstein coordinates

ds2 = −
(

1− r0
r

)
dudv (3.14)

where we have set r0 = 2M . We can express the equations of motion as

�χ1 =
(
λ1 −

λ2
2

) 8r0
r3 + 4λ2

r2 , (3.15)

�χ2 = −
(
µ1 −

µ2
2

) 8r0
r3 −

4µ2
r2 . (3.16)

The solutions are then given by

χ1 = − λ1 log
(

1− r0
r

)
− λ2

2

[
log

(
r

r0
− 1

)
+ log

(
r

r0

)]
+ C1

[
r

r0
+ log

(
r

r0
− 1

)]
+ C2, (3.17)

χ2 = µ1 log
(

1− r0
r

)
+ µ2

2

[
log

(
r

r0
− 1

)
+ log

(
r

r0

)]
+ C3

[
r

r0
+ log

(
r

r0
− 1

)]
+ C4, (3.18)

with four integration constants Ci, (i = 1 ∼ 4) that parametrizes the zero modes of
the d’Alembertian. These constants are also to be determined by the physical con-
ditions imposed in the theory. Note that the dilaton is given by φ = − ln r from
dimensional reduction.

Following a similar discussion in section 2.3, in order to restore Γanom, the following
requirements must be satisfied

λ2
1 − µ2

1 = − 1
48π , λ1λ2 − µ1µ2 = 1

8π , λ2
2 − µ2

2 = 0. (3.19)

The last constraint requires that there is no additional Weyl-invariant term (∇φ)2 1
� (∇φ)2

in the action. The set of constraints (3.19) allows us to express the stress tensor (3.11) in
terms of only λ2 by the following two sets of solutions{

λ1 = 1
16πλ2

− λ2
12 , µ1 = −1

16πλ2
− λ2

12 , λ2 = µ2

}
, (3.20)

or {
λ1 = 1

16πλ2
− λ2

12 , µ1 = 1
16πλ2

+ λ2
12 , λ2 = −µ2

}
. (3.21)

Let us examine whether Γanom is sufficient to reproduce the correct physics associated with
the Boulware state.

The Boulware state is required to reduce to the Minkowski vacuum as M → 0.
This imposes

lim
M→0
〈B|Tuu|B〉 = lim

M→0
〈B|Tvv|B〉 = 0, lim

M→0
〈B|Tuv|B〉 = 0. (3.22)
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If we use the first set of solution (3.20), we get

lim
M→0
〈B|Tuu|B〉 = lim

M→0
〈B|Tvv|B〉 = C2

1 − C2
3 + 2(C2 + C4)λ2

r2 = 0, (3.23)

which implies C1 = ±C3 and C2 = −C4; if we use the second set of solution (3.21), we get

lim
M→0
〈B|Tuu|B〉 = lim

M→0
〈B|Tvv|B〉 = C2

1 − C2
3 + 2(C2 − C4)λ2

r2 = 0, (3.24)

which implies C1 = ±C3 and C2 = C4. Note that limM→0〈B|Tuv|B〉 imposes no constraint
on the parameters, which is expected as 〈Tuv〉 must reproduce the anomaly equation (2.4).

Hence, we find that there is a unique solution to the theory corresponding to the state,
which fixes the Weyl-invariant ambiguity sourced by λ2. The components of the stress
tensor in this case read

〈B|Tuu|B〉 = 〈B|Tvv|B〉 = ~
24π

(3r2
0

8r4 −
r0
2r3

)
+ ~

16π
(r − r0)2 ln

(
1− r0

r

)
r4 , (3.25)

〈B|Tuv|B〉 = ~r0
24πr3

(
1− r0

r

)
. (3.26)

Note that these results are in agreement with [38], which is expected as the authors were also
adopting Γanom. One can immediately verify that the stress tensor vanishes at asymptotic
infinity r →∞, which is also a physical property of the Boulware state such that it should
always reduce to the Minkowski vacuum asymptotically. An interesting observation is that
the first piece in the 〈B|Tuu|B〉 or 〈B|Tvv|B〉 is exactly the stress tensor one would get
had we chosen the minimal model (1.1) in the matter sector; thus the second piece can be
viewed as originating from the non-minimal dilaton coupling (1.7). Note that 〈B|Tuv|B〉
indeed agrees with the anomaly equation (2.4).

By transforming to local regular coordinates such as the Kruskal coordinates (U, V ),
the stress tensor of the Boulware state is divergent at the horizon. This is a generic feature
in the Boulware state. The interpretation is that the physical portion of the Schwarzschild
black hole that the Boulware state is describing does not contain the horizon. However, for
an intriguing back-reaction calculation that alters such an interpretation for the Boulware
state, we refer to Apppendix. B.

The self-consistent analysis above implies that we do not need to add any additional
Weyl-invariant terms to describe the Boulware state. It indicates Γanom is the natural
action that incorporates the state and does not suffer the Weyl-invariant ambiguity as
described in section 2.2.

However, what if we want to do so? If it is possible to include additional Weyl-invariant
terms to describe the Boulware state, then the results we found seem to be non-unique. A
simple consistency check is to relax the final constraint in (3.19) to be some constant L

λ2
2 − µ2

2 = L. (3.27)

By imposing again the physical conditions in (3.22) with this new constraint, a straightfor-
ward calculation shows that the constant must be zero. This enforces our initial condition,
which confirms the uniqueness of our discovery.
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However, as we commented earlier, there could be terms that do not contribute to the
anomaly equation (see, for example, [36] with terms arising from the heat kernel expansion)
that can still capture Boulware-like states. But by incorporating these terms, we will
encounter other issues as discussed in [38], such as the violation of Wald’s axioms. We will
return to the implication for 〈: Tab :〉 in our approach and Wald’s axioms in section 5.

3.2 Building the effective theory for Hartle-Hawking state

The next physical scenario we want to consider is an eternal black hole where it stays in
thermal equilibrium with the environment. An equal amount of radiation from past null
infinity balances the thermal radiation emitted from the black hole. The quantum state
corresponds to the Hartle-Hawking state |H〉 [49, 50], which is annihilated by operators
defined with respect to the plane wave modes using the Kruskal-type coordinates (U, V ).
This case is worth studying as we will be able to demonstrate how our formalism in sec-
tion 2.3 works and how additional Weyl-invariant terms would explicitly appear. We will
also be able to see whether issues mentioned in section 2.2, such as thermal equilibrium
with a negative energy bath or logarithmic divergence, would occur.

Following a similar construction as in section 3.1, we consider the same effective actions
with two auxiliary fields χ1 and χ2, where the solutions for χ1 and χ2 again given by (3.17)
and (3.18). We then examine the conditions for the Hartle-Hawking state. Here we impose
the following physical conditions:

• Regularity conditions: regularity in both the future and past horizons can be achieved
by imposing

lim
r→r0

|〈H|Tuu|H〉|(
1− r0

r

)2 = lim
r→r0

|〈H|Tvv|H〉|(
1− r0

r

)2 <∞, lim
r→r0

|〈H|Tuv|H〉|(
1− r0

r

) <∞. (3.28)

Note that these are the same conditions as the regularity conditions discussed in
appendix. A for the Boulware state.

• Asymptotic behaviors: for the thermal equilibrium with a thermal bath, we expect
a balanced radiation and incoming flux asymptotically

lim
r→∞
〈H|Tuu|H〉 = lim

r→∞
〈H|Tvv|H〉 = ~

192πr2
0
. (3.29)

We take the value given by the s-wave result from four dimensions. We will only
need the asymptotic value to fix the stress tensor completely, even though the full
four-dimensional answer is unknown.

Can we use solely the Γanom to capture the Hartle-Hawking state? That is, we require
no additional Weyl-invariant terms to appear, then we just have the same constraints as
in (3.19). The answer turns out to be no. The solutions in (3.20) or (3.21) are incompatible
with the two conditions (3.28) and (3.29). This means that we should relax the final
constraint in (3.19) to be with some constant L

λ2
2 − µ2

2 = L. (3.30)
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Without loss of generality, we can set λ1 = 0 in (3.19) and solve (µ1, µ2, λ2). We have four
roots from (3.19) combined with (3.30){

µ1 = − 1
4
√

3π
, µ2 =

√
3

4π , λ2 = ∓
√
L+ 3

4π

}
, (3.31)

and {
µ1 = 1

4
√

3π
, µ2 = −

√
3

4π , λ2 = ∓
√
L+ 3

4π

}
. (3.32)

We substitute each of the four roots into either the 〈H|Tuu|H〉 or 〈H|Tvv|H〉 by expanding
around the horizon r = r0 + x. With the regularity conditions (3.28), we require terms
proportional to 1

x and ln xmust vanish under x→ 0. This procedure will give two constraint
equations for each of the four roots. In combination of the asymptotic behaviors (3.29)
that gives the following constraint for the four roots

1
4(C2

3 − C2
1 ) = ~

192πr2
0
. (3.33)

All these roots lead to a unique choice of L being

L = − 1
2π . (3.34)

With this choice, we can immediately write down the one-loop effective action for the
Hartle-Hawking state as

ΓHH =− ~
96π

∫
d2x
√
−g
(
R�−1R− 12(∇φ)2�−1R+ 12φR

+ 24(∇φ)2�−1(∇φ)2
) (3.35)

which differs with Γanom by an additional Weyl-invariant term (∇φ)2 1
�(∇φ)2.

Let us continue to solve the remaining constraints. For the choice (3.31), we have{
C1 = 0, C3 = − 1

4
√

3πr0

}
or
{
C1 = ∓ 1

4
√
πr0

, C3 = − 1
2
√

3πr0

}
, (3.36)

their predicted 〈H|Tuu|H〉 or 〈H|Tvv|H〉 will be the same once we set C2 = 0. For (3.32),
we have {

C1 = 0, C3 = 1
4
√

3πr0

}
or
{
C1 = ∓ 1

4
√
πr0

, C3 = 1
2
√

3πr0

}
, (3.37)

again, 〈H|Tuu|H〉 or 〈H|Tvv|H〉 will be the same as we set C2 = 0. On the other hand,
when comparing between the two cases (3.36) and (3.37), we have C4 = 0. Therefore,
we have the following unique quantum stress tensor corresponding to the Hartle-Hawking
state compatible with (3.28) and (3.29)

〈H|Tuu|H〉 = 〈H|Tvv|H〉 = ~
192πr2

0

(
1− r0

r

)2[
1 + 2r0

r
+ 9r2

0
r2

(
1− 4 ln r

`

)]
, (3.38)

〈H|Tuv|H〉 = ~r0
24πr3

(
1− r0

r

)
, (3.39)
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Figure 1. Gravitational collapse with a null shockwave at v = v0. The in region with v < v0 is
given by a flat spacetime; while the out region is given by a back-reacted black hole geometry. The
two spacetimes are junctioned at v = v0.

where ` is an arbitrary length scale that we may set ` = r0. We can clearly see that
the stress tensor is regular, and no logarithmic divergence at the horizon like the ones
predicted in [43–46] is observed. Again, the uv-component is in agreement with the anomaly
equation (2.4).

As we have pointed out in section 3.1, since the constant L is not zero, the physical
spectrum of the effective action (3.35) does not contain the Boulware state.

3.3 Gravitational collapse and |in〉 state

Now we consider the case of an evaporating black hole in the non-minimal dilaton grav-
ity model. We expect more dynamics to enter into the calculations of an evaporating
black hole. In particular, we are interested in understanding whether the same problems,
such as the anti-evaporation or logarithmic divergence at the horizon we mentioned in
section 2.2, occur.

We start from the construction of the |in〉 vacuum state that corresponds to a dy-
namical black hole formed from the gravitational collapse of a spherical null shell [52–54]
(see also [51] for a time-like shell). The |in〉 state is defined such that it corresponds to
the Minkowski vacuum on past null infinity. This vacuum state corresponds to the Unruh
state |U〉 [55] in the late-time limit, which is annihilated by the operators defined by plane
waves with respect to (U, v).

This case is more tricky as we need to construct the geometry and the stress ten-
sor more carefully due to its dynamical nature. Let us follow a similar construction as
in [52, 53] by considering the gravitational collapse of a spherical null shell with the back-
reaction geometry.
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Consider a null shockwave at v = v0 that forms the black hole. In the “in” region
v < v0, the spacetime is flat (see figure 1)

ds2
in = −duindv. (3.40)

For v > v0, the “out” geometry is a “back-reacted” black hole geometry

ds2
out = −F (r, v)e2εϕ(r,v)duoutdv, (3.41)

where
F (r, v) = 1− r0

r
+ εm(r, v)

r
. (3.42)

Note that both the functions m(r, v) and ϕ(r, v) are generally time-dependent. With this
metric ansatz, we have the following nice tortoise coordinate

dr∗

dr
= F−1(r, v)e−εϕ(r,v), (3.43)

where r∗ is also generally time-dependent. Note that duout = dv − 2dr∗, which allows us
to transform the metric into the following ingoing Vaidya form, which is describing the
geometry outside the ingoing null shell

ds2 = −F (r, v)e2εϕ(r,v)dv2 + 2eεϕ(r,v)dvdr. (3.44)

We will always write the radius of the back-reacted event horizon as rH . Now we consider
the junction condition at v = v0. Requiring the metric on the shockwave to be continuous
on both sides implies

r(uin, v0) = r(uout, v0), (3.45)

where
r(uin, v0) = v0 − uin

2 , r∗(uout, v0) = v0 − uout
2 . (3.46)

We can solve the following relation approximately

uout ≈
uin + (2κrH − 1)v0

2κrH
− 1
κ

ln
(
v0 − uin − 2rH

2rH

)
. (3.47)

Now we solve uin as
uin = v0 − 2rH − 2rHW [e−1+κv0−κuout ], (3.48)

where W (x) is the Lambert W function. At late times uout →∞

uin ' v0 − 2rH − 2rHe−κuout ≈ vH + U, (3.49)

where vH = v0−2rH . Here the second equality is also an approximation as U ≡ − 1
κe
−κuout .

We are taking their difference to be of O(ε) since κ ≈ 1
2r0 + O( ε

r0
) and rH = r0 + O(ε).

A final remark is that (uin, v) covers the entire spacetime, while (uout, v) does not cover
the black hole region. The vacuum state |in〉 is therefore defined to be annihilated by the
annihilation operators defined with respect to the modes (uin, v). As we can see from (3.49),
at late times, it is captured by U . We take the Unruh state |U〉 to be defined with respect
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to (U, v). The Unruh state can be understood as the quantum state that describes the
gravitational collapse in the late-time near-horizon limit.

Now we focus on finding the regular stress tensor associated with the Unruh state |U〉
for the non-minimal dilaton gravity model. We will demonstrate that the covariant stress
tensor can be obtained by a Weyl transformation from (uout, v) to (uin, v) without assuming
any a priori knowledge about ΓW . In a general local conformal gauge ds2 = −e2ρdx+dx−,
the stress tensors associated with Γloc and ΓW can be written in the form

〈T geo
±±〉 = − ~

12π [(∂±ρ)2 − ∂2
±ρ] + ~

2π [∂±ρ∂±φ+ ρ(∂±φ)2]. (3.50)

〈TW±±〉 = 〈Ψ| : T±± : |Ψ〉. (3.51)

The two terms are non-covariant if considered separately, but the sum of these two pieces
must form a covariant stress tensor, see appendix. A.

As we have stressed in the beginning, the normal-ordered piece is determined by phys-
ical conditions associated with the quantum state. We will see that by imposing the
following vanishing normal-ordering part of the stress tensor for |in〉 state

〈in| : Tuinuin : |in〉 = 0, 〈in| : Tvv : |in〉 = 0, (3.52)

which means we only need to take into account 〈in|T geo
uinuin |in〉 in the covariant stress tensor

〈in|Tuinuin |in〉, and similarly for the vv component, we will be able to derive a workable
form of stress tensor for the Unruh state |U〉.

Let us be explicit, the coordinate uin is related to uout ≡ u via the following junction
condition to leading order in ε from (3.47)

u = uin − 2r0 ln
(
v0 − uin − 2r0

2r0

)
, (3.53)

and the conformal factor ρ′ is related to ρ defined in (u, v) through

ds2 = −e2ρdudv = −e2ρu′duindv = −e2ρ′duindv, (3.54)

with ρ′ = ρ + 1
2 ln u′ and u′ = du/duin. Hence the uu component of (3.50) is transformed

to be

〈in|Tuinuin |in〉 ≡ 〈in|T (1)
uinuin |in〉+ 〈in|T (2)

uinuin |in〉

= − ~
12π [(∂uinρ

′)2 − ∂2
uinρ

′] + ~
2π [∂uinρ

′∂uinφ+ ρ′(∂uinφ)2]. (3.55)

Let us analyze the two pieces separately. For the first term with

〈in|T (1)
uinuin |in〉 = − ~

12π [(∂uinρ
′)2 − ∂2

uinρ
′], (3.56)

let us work out

∂uinρ
′ = ∂uinρ+ u′′

2u′ , ∂2
uinρ

′ = ∂2
uinρ+ u′′′

2u′ −
u′′2

u′2
. (3.57)
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Then we can organize the equation into the following form

− ~
12π [(∂uinρ

′)2 − ∂2
uinρ

′] = − ~
12π

[
(∂uinρ)2 − ∂2

uinρ+ ∂uinρ
u′′

u′

]
+ ~

24π{u, uin}, (3.58)

where we notice the second piece is the Schwarzian derivative with {u, uin} = u′′′

u′ −
3u′′2
2u′2 .

We can explicitly evaluate (3.58) by plugging the background values (omitting O(ε)
pieces) of the conformal factor ρ and the junction condition (3.47)

ρ = 1
2 ln

(
1− r0

r

)
, u = uin − 2r0 ln

(
v0 − uin − 2r0

2r0

)
, (3.59)

and the result is given by

− ~
12π [(∂uinρ

′)2 − ∂2
uinρ

′] =− ~
12π

[
(∂uinρ)2 − ∂2

uinρ+ ∂uinρ
u′′

u′

]
+ ~

24π{u, uin}

=− ~
12π

(
− 3r2

0
16r4 + r0

4r3

) (uin − v0)2

(4M + uin − v0)2

− ~
24π

6r2
0 + 4r0(uin − v0)

(uin − v0)2(2r0 + uin − v0)2 ,

(3.60)

where the last line is the explicit evaluation of the Schwarzian term. Let us apply a
coordinate transformation back to the coordinate u in the out region and look at the
uu-component

〈in|T (1)
uu |in〉 = duin

du

duin
du
〈in|T (1)

uinuin |in〉

= (uin − v0)2

(4M + uin − v0)2 〈in|T
(1)
uinuin |in〉

= ~
24π

(3r2
0

8r4 −
r0
2r3

)
− ~

24π{uin, u},

(3.61)

where for the Schwarzian term, we have applied the following inverse transformation law

{u, uin} = −{uin, u}
(
du

duin

)2
. (3.62)

We can see clearly the first term in (3.61) captures the stress tensor of the Boulware
state had we used the minimal model (1.1), as we commented in section 3.1. Hence the
expression (3.61) is indeed the correct covariant stress tensor for the |in〉 state in the
minimal model related by a Schwarzian derivative [52–54].

Similarly, for the second term in (3.55) with

〈in|T (2)
uinuin |in〉 = ~

2π [∂uinρ
′∂uinφ+ ρ′(∂uinφ)2], (3.63)

since the dilaton φ is still given by φ = − ln r in the out region, we work out

∂uinφ = 1
2r

(
1− r0

r

)
uin − v0

2r0 + uin − v0
. (3.64)
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After some algebra, we have
~

2π [∂uinρ
′∂uinφ+ ρ′(∂uinφ)2] = ~

2π

[
r0
2r

(
1− r0

r

)
+ (uin − v0)2

((
− r0

8r3

)(
1− r0

r

)
+ 1

8r2

(
1− r0

r

)2
ln
{(

1− r0
r

)(
uin − v0

2r0 + uin − v0

)})
]/

(2r0 + uin − v0)2. (3.65)

Again, we perform a coordinate transformation back to the uu-component

〈in|T (2)
uu |in〉 = duin

du

duin
du
〈in|T (2)

uinuin |in〉

= ~
2π

[
− r0

8r3

(
1− r0

r

)
+ r0

2r

(
1− r0

r

) 1
(uin − v0)2

+ 1
8r2

(
1− r0

r

)2
ln
{(

1− r0
r

)(
uin − v0

2r0 + uin − v0

)}]
.

(3.66)

This is the new result that corresponds to the non-minimal dilaton coupling. The full
covariant stress tensor for the |in〉 state can be written as

〈Tuu〉 = 〈in|T (1)
uu |in〉+ 〈in|T (2)

uu |in〉

= ~
24π

(3r2
0

8r4 −
r0
2r3

)
− ~

24π{uin, u}

+ ~
2π

[
− r0

8r3

(
1− r0

r

)
+ r0

2r

(
1− r0

r

) 1
(uin − v0)2

+ 1
8r2

(
1− r0

r

)2
ln
{(

1− r0
r

)(
uin − v0

2r0 + uin − v0

)}]
,

〈Tvv〉 = ~
24π

(15r2
0

8r4 −
2r0
r3

)
+ ~

16π
(r − r0)2 ln

(
1− r0

r

)
r4

+ ~
16πr2

(
1− r0

r

)2
ln
(

uin − v0
2r0 + uin − v0

)
,

〈Tuv〉 = ~r0
24πr3

(
1− r0

r

)
,

(3.67)

where the vv component is derived by following exactly the same procedure as the uu
component, while with ∂vρ′ = ∂vρ. The uv component again corresponds to the dilaton-
deformed conformal anomaly.

To examine whether the covariant stress tensor we obtained makes sense, let us perform
a few sanity checks that should be satisfied by the |in〉 state. Now we consider whether
the following boundary conditions for the |in〉 state can be satisfied

• At early times where we take uin ∼ u→ −∞, 〈Tuu〉 and 〈Tvv〉 should reproduce the
Boulware-type terms. This is because the |in〉 state is defined such that it reduces to
the Minkowski vacuum on past null infinity. This can be easily verified as

lim
uin→−∞

〈Tuu〉 = lim
uin→−∞

〈Tvv〉 = ~
24π

(15r2
0

8r4 −
2r0
r3

)
+ ~

16π
(r − r0)2 ln

(
1− r0

r

)
r4 , (3.68)
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which actually does not coincide with (3.25). The reason has to do with the fact
that we implicitly assumed 〈B| : Tab : |B〉 6= 0 in our calculation leading to (3.25),
we will address this issue in section 5. Note that this corresponds to pure vacuum
polarization, which goes to zero asymptotically.

• Regularity conditions at the future horizon. Since in our configuration, there is no
past horizon, we only require the following conditions to hold

lim
r→r0

|〈in|Tuu|in〉|(
1− r0

r

)2 <∞, lim
r→r0

|〈in|Tuv|in〉|(
1− r0

r

) <∞, lim
r→r0

|〈in|Tvv|in〉| <∞.

(3.69)
These are clearly satisfied with (3.67).

• At late times (u→∞), from (3.49)

uin ' v0 − 2rH − 2rHe−κu ≈ v0 − 2rH , (3.70)

we require

〈in|Tuu|in〉 →
~

192πr2
0

as r →∞, (3.71)

〈in|Tvv|in〉 →
−~

192πr2
0

as r → r0 (3.72)

The condition on 〈in|Tuu|in〉 represents the positive outgoing flux of Hawking radia-
tion at future null infinity, where the value should be given again by the s-wave result
from four dimensions. This is clearly satisfied since the contribution from the dilaton
part in 〈in|T (2)

uu |in〉 vanishes.

The condition on 〈in|Tvv|in〉 comes from the fact that there must be a negative
influx of energy that makes the black hole shrink while compensating for the positive
outgoing flux. This condition is also satisfied as 〈in|Tvv|in〉 is not affected by the
dilaton contribution.

We should emphasize that our analytic results in (3.67) naturally lead to (3.71)
and (3.72), which corresponds to the s-wave approximation for a minimally coupled
matter theory in two dimensions. However, in the dilaton-coupled matter theory, one
does expect to get the following result with a grey-body factor even in s-wave

〈in|Tuu|in〉 →
~

2π

∫ ∞
0

wdw

e4πr0w − 1Γw,l=0, (3.73)

where the s-wave grey-body factor Γw,l=0 comes from the transmission coefficient
of the corresponding potential barrier of the matter theory. It is only when we take
Γw,l=0 = 1 by ignoring the backscattering effect that we recover (3.71) asymptotically.
A similar statement also applies to (3.72). Therefore, our expressions in (3.67) can
be considered as a useful approximation that captures the high-frequency limit where
the backscattering is negligible.

– 25 –



J
H
E
P
1
0
(
2
0
2
3
)
0
9
4

4 The back-reaction geometry and quantum extremal islands

Having presented a self-consistent method to treat the non-minimal dilaton gravity model,
this section is devoted to the back-reaction and island problems of this model. We will
consider the case of eternal and evaporating black holes, corresponding to the Hartle-
Hawking and Unruh states, respectively. The goal is to show that one can successfully
reproduce the Page curve of black hole evaporation, which was unavailable until we have
a consistent one-loop theory.

4.1 Setup of the back-reaction problem and island formula

We consider the generic (1+1)-dimensional dilaton gravity model dimensionally reduced
from (3+1)-dimensional Einstein-Hilbert action with a single massless scalar matter field, as
presented in section 2.1. For clarity, let us reproduce the classical action of our theory here

Scl = Sgrav + Smatter (4.1)

= 1
4GN

∫
d2x
√
−g[e−2φ(R+ 2(∇φ)2) + 2]− 1

2

∫
d2x
√
−ge−2φ(∇f)2. (4.2)

The classical equations of motion for the metric gab, the dilaton φ, and the scalar field f
are given respectively by

e−2φ{2∇a∇bφ− 2∇aφ∇bφ+ gab[3(∇φ)2 − 2�φ]} − gab = 2GNT (g)
ab , (4.3)

e−2φ
[
(∇φ)2 −�φ− R

2

]
= −GN

δSmatter
δφ

, (4.4)

e−2φ(�f − 2∇aφ∇af) = 0, (4.5)

and the classical stress tensor is given by

T
(g)
ab = −2√

−g
δSmatter
δgab

= e−2φ
[
∇af∇bf −

1
2gab(∇f)2

]
. (4.6)

Since the model is not exactly solvable, we take the Schwarzschild metric as the background
solution for the following perturbative back-reaction problem.

We consider the quantum back-reaction problem by adopting a unitless perturbative
parameter ε in orders of GN~/`2, where ` is some length scale of the quantum fields that
we omit by setting it to unity. Specifically, we define ε = GN~

24π . We then solve the semi-
classical Einstein equations perturbatively with the back-reaction on top of the background
solution. We take the classical stress tensor Tab to be vanishing outside the classical radius
r0 = 2M . The stress tensor for r > r0 is given by 〈Tab〉, which comes from the one-loop
effective action as

〈Tab〉 = −2√
−g

δΓeff
δgab

. (4.7)

Thus, we will be able to solve the back-reacted geometry consistently up to O(ε).
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Figure 2. We begin with a pure vacuum state on the Cauchy slice I∪B∪R, and by complementarity
property, we have Smatter(I ∪ R) = Smatter(B). In this figure, we take I to represent the island
region, where ∂I is a quantum extremal surface. A cut-off surface is taken to be the boundary of
the radiation region A = ∂R.

Once we have the back-reacted geometry, we apply the quantum extremal surface
prescription [89] that leads to the so-called island formula [2–4]

Sgen(R) = minI
{
extI

[Area(∂I)
4GN

+ Smatter(I ∪R)
]}
. (4.8)

For an intuitive discussion on how the island formula is derived and how it leads to a unitary
Page curve [7, 8] once the quantum extremal island is found, we refer to the review [90].
The island formula can be viewed as the correct prescription that computes the fine-grained
entropy of Hawking radiation, and was derived from the replica wormhole saddles using
techniques of Euclidean path integral in the context of JT gravity [5, 6].

The entropy is given by extremizing a generalized entropy-like functional over the
islands I followed by minimization over all extrema. Note that the area term here refers
to the boundary of the island region ∂I. As should be obvious from the context, we will
slightly abuse the term “island” as referring to ∂I. The Smatter(I ∪ R) term should be
understood as the semi-classical entanglement entropy of the quantum fields with support
on the combined radiation and the island systems I ∪ R. We should emphasize that we
are not assuming that such an extremal surface could always be found in the non-minimal
dilaton gravity model, instead we will show it is the case.

In practice, we need to compute Smatter(I ∪ R) in a curved background. We assume
that I ∪ B ∪ R is a Cauchy slice in figure 2 where we have a pure vacuum state. By the
complementarity property, we have

Smatter(I ∪R) = Smatter(B), (4.9)

then we can adopt the single interval entropy formula that can significantly simplify the
calculation. Given the metric ds2 = −e2ρ(x+,x−)dx+dx− with conformal factor ρ(x+, x−),
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and let us take the cut-off surface to be A = ∂R in figure 2, the general formula that works
in the curved background for a single interval is given by [91]

Smatter(B) = c

12 ln (x+(A)− x+(I))2(x−(A)− x−(I))2

δ4e−2ρAe−2ρI
, (4.10)

and similarly a formula for two disjoint intervals as (C.9). Note that δ is the UV cut-off
and we treat the central charge c as a constant here. For the Hartle-Hawking and Unruh
states we are going to consider in the next two subsections, we detail the calculations
involving this formula in appendix. C and appendix. D. We will discuss the applicability of
this formula in section 5 for our construction. For now, we take (4.10) to be approximately
true in our model.

4.2 Eternal black hole scenario

We start from the quantum stress tensor for the Hartle-Hawking state in section 3.2 from
the one-loop theory and solve the back-reacted geometry to O(ε). Consider the metric
ansatz with two functions m(r) and ϕ(r)

ds2 = −F (r)e2εϕ(r)dt2 + dr2

F (r) , (4.11)

where we define
F (r) ≡ 1− r0

r
+ εm(r)

r
= F0(r) + εm(r)

r
. (4.12)

With the Kruskal-type coordinates (U, V ) defined as

U ≡ −1
κ
e−κu, V ≡ 1

κ
eκv, (4.13)

then
ds2 = −F (r)e2εϕ(r)−2κr∗dUdV = −e2ρ(U,V )dUdV, (4.14)

with
ρ(U, V ) = 1

2 ln h+ εϕ− κr∗. (4.15)

Note that the (u, v) are the Eddington-Finkelstein coordinates with

u ≡ t− r∗, v ≡ t+ r∗, (4.16)

where the tortoise coordinate r∗ is defined as

r∗ =
∫ ∞
r

1
F (r′)eεϕ(r′)dr

′. (4.17)

In this case, the quantum corrected horizon position rH is determined by solving grr(rH) =
0, which is given by

rH = r0 − εm(r0) +O(ε2). (4.18)

The surface gravity κ at the horizon can be calculated from κ2 = −1
2∇

aχb∇aχb|H where
χa is the Killing vector for the stationary metric. Therefore

κ = 1
2r0

[
1 + ε

(
ϕ(r0) +m′(r0) + m(r0)

r0

)]
+O(ε2). (4.19)
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The remaining task is to solve the functions m(r) and ϕ(r) to O(ε) and determine
the geometry.

With the metric ansatz (4.11), we have the following back-reaction equations

−εF0(r)m′(r) = 2GN 〈Ttt〉, (4.20)

2εrF0(r)ϕ′(r) = 2GN
(
F0(r)〈Trr〉+ 〈Ttt〉

F0(r)

)
. (4.21)

Starting from the regular stress tensor for the Hartle-Hawking state in section 3.2, we can
transform to (t, r) coordinates by

〈Trr〉 = ∂xa

∂r

∂xb

∂r
〈Tab〉

= ~
96πr2

0

[
1 + 2r0

r
+ 9r2

0
r2

(
1− 4 ln r

r0

)]
− ~r0

12πr3

(
1− r0

r

)−1
, (4.22)

〈Ttt〉 = ∂xa

∂t

∂xb

∂t
〈Tab〉

= ~
96πr2

0

(
1− r0

r

)2[
1 + 2r0

r
+ 9r2

0
r2

(
1− 4 ln r

r0

)]
+ ~r0

12πr3

(
1− r0

r

)
. (4.23)

By substituting into the back-reaction equations, we get the following solutions for m(r)
and ϕ(r)

m(r) = − 1
2r2

0

[
r + r0 ln r

r0
+ r2

0
r

(
2 + 9 ln r

r0

)
− r3

0
r2

(7
4 + 9

2 ln r

r0

)]
+ C1, (4.24)

ϕ(r) = 1
2r2

0

[
ln r

r0
− 2r0

r
− r2

0
r2

(9
4 −

9
2 ln r

r0

)]
+ C2. (4.25)

Now we need to determine the integration constants C1 and C2. Note that both functions
behave regularly at the horizon under r → r0. However, both functions diverge asymptot-
ically as r →∞, which indicates the theory is not asymptotically flat. Note that it is not
a problem for the function m(r), because it is m(r)

r that appears in the metric and

lim
r→∞

m(r)
r

= finite. (4.26)

Although there is no bearing for further analysis, we can still determine C1 and C2 by
a cut-off. Let us introduce a cut-off at r → L and fix the integration constants by the
following conditions

lim
L→∞

( lim
r→L

m(r)) = 0, lim
L→∞

( lim
r→L

ϕ(r)) = 0, (4.27)

which allows us to set

C1 = 1
2r2

0

(
L+ r0 ln L

r0

)
, C2 = − 1

2r2
0

ln L

r0
. (4.28)
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Therefore, we have the following quantum-corrected horizon position and surface gravity
to O(ε) as

rH ≈ r0 − εm(r0) = r0 + ε

2r0

(5
4 −

L

r0
− ln L

r0

)
, (4.29)

κ ≈ 1
2r0

[
1 + ε

(
ϕ(r0) +m′(r0) + m(r0)

r0

)]

= 1
2r0

[
1− ε

2r2
0

(27
2 −

L

r0

)]
. (4.30)

Given the back-reaction geometry, the island computation is straightforward, we refer
to appendix. C for a self-contained treatment. Here we briefly recap the major results.

We consider the no-island and island phases at late times. Without island, we can see
clearly that Smatter grows monotonically with time

Smatter '
1
3κt+ const, (4.31)

which is a general result in agreement with Hawking’s prediction [1, 92].
With island, we instead need to apply the Smatter formula with two disjoint intervals

as (C.9). By extremizing Sgen, we have the following equation

[
a+ 2ερ′ (a)

]
F (a)eεϕ(a) = 4ε κ

eκ(b∗−a∗) − 1
, (4.32)

where b∗ represents the cut-off surface and we take the island position a to be outside the
horizon with [93]

a = rH + x, x� rH . (4.33)

In appendix. C, we have considered two cases for eκa
∗ on the right hand side

of (4.32), where

• The leading order piece of eκa∗ is an O(1) constant, which means that the island
position is at a small fixed location away from the horizon. The leading correction
from x is then O(ε)

x = 2ε
(rH + 2ερ′|H)[eκ(b∗−a∗) − 1]

≈ 2ε
r0[eκ(b∗−a∗) − 1]

+O(ε2). (4.34)

• The leading order piece of eκa∗ is O(x), which means the island is extremely close to
the horizon and they are nearly identical. The leading correction from x is then O(ε2)

x = 1
rH

(
2ε
rH

)2
e1−2κb∗+εα(rH)[

1 + 2ε
rH

(
ρ′|H − 1

rH
e1−2κb∗+εα(rH)

)]2
≈ 4ε2

r3
h

e1−2κb∗ +O(ε3). (4.35)
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These two cases indeed are different as we can see from Sgen

Sgen(a) = Sgen(rH) + S′gen(rH)x+O(x2)

≈ Sgen(rH) + 4πrH
GN~

x. (4.36)

If x ∼ O(ε), the correction can be O(1) in ε. However, the correction is essentially negligible
if x ∼ O(ε2). Therefore, if we keep only up to the O (1) terms of the entropy, we can
approximately think of the island location as the position of the back-reacted horizon. In
either scenario, the fine-grained entropy at late times is given by

SFG = min
{
Sgen,no-island, Sgen,island

}
= min

{1
3κt, Sgen(a)

}
. (4.37)

Hence the Page time can be determined approximately to be the transition time where
1
3κtP ≈ Sgen(a) =⇒ tP = 3κSgen(a). (4.38)

Note that quantities such as rH and κ are given by the back-reacted geometry of the
non-minimal dilaton gravity model.

4.3 Evaporating black hole scenario

Having obtained a consistent stress tensor for the |in〉 state in section 3.3, we consider
the back-reaction problem by adopting the following perturbative ingoing Vaidya metric
describing the geometry outside an ingoing null shell as in (3.44)

ds2 = −F (r, v)e2εϕ(r,v)dv2 + 2eεϕ(r,v)dvdr, (4.39)

where
F (r, v) = 1− r0

r
+ εm(r, v)

r
. (4.40)

As we have noted, we take the time dependence to be in the functions m(r, v) and ϕ(r, v),
which is at O(ε). This is consistent with our understanding of quantum back-reaction
where the stress tensor is time-dependent at the one-loop order, and it also corresponds to
the case where the evaporation is quasi-static.

The equations of motion for this metric up to O(ε) are given by

ε∂rϕ(r) = GN 〈Trr〉
r

, (4.41)

ε∂rm(r, v) = 2GN 〈Trv〉 (4.42)

ε∂vm(r, v) = −2GN [F0(r)〈Trv〉+ 〈Tvv〉] (4.43)

With the full covariant stress tensor corresponding to the |in〉 state in section 3.3, we
perform a coordinate transformation with v = v, u = v − 2r∗. Then

〈Trr〉 = 4
(

r

r − 2M

)2
〈Tuu〉,

〈Trv〉 = −2r
r − 2M (〈Tuu〉+ 〈Tuv〉),

〈Tvv〉 = 〈Tuu〉+ 2〈Tuv〉+ 〈Tvv〉.

(4.44)
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We should emphasize that the stress tensor for the |in〉 state describing the evaporation of
the black hole is valid for v > v0.

However, it is difficult to work with a time-dependent stress tensor. Therefore, we will
consider the problem at late times and near-horizon regime, corresponding to the Unruh
state |U〉. This is achieved as we have noted around (3.49), uin is related to the Kruskal U .
Additionally, we expect the stress tensor to be regular near the horizon, and for simplicity,
we take the near-horizon expansion r = r0 + x by expanding in x. We have the following
back-reaction equations

ε∂rϕ(r) = 3ε
r3

0

[
3− e2− v

r0 − 4e1− v
2r0 + v

r0

]
+O(εx), (4.45)

ε∂rm(r, v) = −4ε
r2

0
+O(εx), (4.46)

ε∂vm(r, v) = ε

4r2
0

+O(εx). (4.47)

By omitting higher-order terms, we have the following solutions

ϕ(r, v) = 9r
r3

0
− 3r
r3

0
e

2− v
r0 − 12r

r3
0
e

1− v
2r0 + 3rv

r4
0

+ C1, (4.48)

m(r, v) = −4r
r2

0
+ v

4r2
0

+ C2. (4.49)

Now we determine C1 and C2 by requiring the following relations to hold at some cut-off
surface at v = L while L→∞

lim
L→∞

(
lim
v→L

m(r, v)
)

= 0, lim
L→∞

( lim
v→L

ϕ(r, v)) = 0 (4.50)

then
C1 = −3rL

r4
0
, C2 = − L

4r2
0
. (4.51)

We present the island computation given the back-reacted geometry at hand. We find the
no-island case is similar to the Hartle-Hawking case, while there is a slight difference in the
island location, which is given by

ra = rHa −
εc (2 + κa (va − vb))
κarHa (va − vb)

+O
(
ε2
)
. (4.52)

We refer to appendix. D for a self-contained treatment and the notations used here. Now
we comment on some interesting features of the result. Unlike the Hartle-Hawking state,
the endpoint of the island can either locate inside or outside of the horizon, depending on
the absolute value of κa(va − vb). Since κ−1

a can be effectively viewed as the horizon scale,
this quantity is essentially the ratio of the (casual) length of the extremal surface to the
horizon scale. With va − vb < 0, we find that if κa |va − vb| > 2 the island is located inside
the horizon, whereas if κa |va − vb| < 2, it extends beyond the horizon. Note that when
the ratio is significantly large, the location of the island is similar to that in the Hartle
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Hawking state. This can be understood as the difference in back-reaction between the two
states being less important when the extremal surface is large.

One may notice that there is no explicit dependence in time derivatives of either rH
or κ. This indicates that the effect of back-reaction can all be absorbed to quantum
corrections of κ and rH . Hence, the formula (4.52) is applicable whenever we are given the
back-reacted surface gravity and horizon radius.

On the other hand, when the length scale of the surface is comparable to the Planck
scale |va − vb| ' ε1/2, the island extends significantly outside the horizon. However, it is
a regime where the formula (4.52) is no longer reliable as it is indicating a breakdown of
perturbation in ε.

5 Discussion

This paper begins with a simple physical model of (3 + 1)-dimensional Einstein gravity
plus minimally coupled massless scalar matter. Through spherical dimensional reduction
to (1 + 1) dimensions, the new ingredient is that the dilaton field is non-minimally coupled
with the scalar field. The model captures the s-wave sector of its higher-dimensional cousin.
Despite its simplicity, a regular and consistent stress tensor was previously inaccessible,
partially due to the issue of Weyl-invariant ambiguity in the effective action. In response
to the issue, we motivate the study with several reasonable assumptions on the one-loop
action, including the dilaton-deformed conformal anomaly, conservation law, and boundary
conditions associated with the state. From a universal splitting property we discussed in
section 2.3, the Weyl-invariant ambiguity in the one-loop action corresponds to the state-
dependent part of the stress tensor; hence we can introduce on-shell equivalent auxiliary
fields to the model and require that the resulting theory reproduces the same conformal
anomaly. By constructing minimal candidates of Weyl-invariant terms with the auxiliary
fields, we derived a one-parameter family of self-consistent one-loop actions with unique and
well-behaved stress tensors corresponding to the Boulware, Hartle-Hawking, and Unruh
states. Their near-horizon and asymptotic behaviors are in accordance with the s-wave
approximation from four dimensions.

As an application, we study the back-reaction problem under the semi-classical Ein-
stein equations for the three quantum states describing different physical scenarios. Given
the unique and regular stress tensors, we are able to determine the one-loop geometry
without suffering any issues encountered in the literature summarized in section 2.2. A
straightforward application of the island formula indicates a unitary Page curve in each
case, as expected from a consistent study of the one-loop theory.

We comment on the implications and relevant subtitles from our construction of the
non-minimal dilaton gravity model:

• Implications of one-loop effective theories: as we noted in section 3, we have
found that different states enforce different conditions on the potential Weyl-invariant
terms. For instance, Boulware state requires the absence of the Weyl-invariant term∫

d2x
√
−g(∇φ)2�−1(∇φ)2, (5.1)
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while the Hartle-Hawking state cannot be captured without this term. In the case of
Unruh state, we need that the normal-ordered part to be zero.

As we have shown in section 2.3, the Weyl-invariant terms can be identified with the
normal-ordered stress tensor that is state-dependent. It is crucial that we do not
assume the normal-ordered part has to be zero, instead it is determined by physi-
cal conditions. We believe that local excitations that do not change the boundary
conditions should also be captured by the same one-loop theory.

Our formalism does not rule out the possibility of describing these physical states
by including more Weyl-invariant terms. However, our construction only assumes
minimal candidate terms, which is consistent with Occam’s razor. We will also com-
ment on Wald’s axioms later that were used to invalidate the inclusion of additional
Weyl-invariant terms [38].

For other types of dilaton gravity theories with different anomaly equations (2.4), we
expect that the Weyl-invariant ambiguity should generically appear and can be fixed
with similar construction established in this work.

From a Wilsonian renormalization group perspective, our model serves as a low en-
ergy effective theory that captures the conformal anomaly (2.4). However, the exact
UV theory can be quite different from the low energy theory and one should not
take the extrapolation too seriously, especially in view of the dimensional reduction
anomaly [77–79].9

• Bridging the gaps between our results and the existing approaches: we have
presented a brief overview of approaches in tackling this model in section 2.2. A few
things are noteworthy. First of all, these approaches lead to unphysical stress tensors
such as anti-evaporation or logarithmic divergence at the horizon. Second, the stress
tensors obtained from these methods are in conflict with one another. Lastly, our
construction in this paper differs from these approaches in terms of the regular and
physical stress tensors that are predicted.

Now we understand why the first approach in section 2.2 with local auxiliary fields
fails. Since by adopting only Γanom, one missed other possible terms arising from
the Weyl-invariant ambiguity (2.7). However, our approach has no implications for
the other two approaches, especially given the dimensional reduction anomaly [77–
79]. On the other hand, the other two approaches have inherent issues with their
formulations. It is possible to obtain the same regular and physical stress tensors by
modifying these approaches accordingly,10 but how to bridge the gaps seems to be
highly non-trivial.

9We have assumed that the non-minimal dilaton gravity model should reproduce the s-wave contribution
of the four-dimensional model. As we mentioned in section 2.2, this is not guaranteed due to the dimensional
reduction anomaly.

10For example, one could consider non-perturbative improvement for calculating the heat kernel beyond
the covariant perturbation method, such as the formalism developed in [74–76]. It would be interesting to
see whether one could obtain the one-loop effective action compatible with ours based on the new formalism.
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• A generalized Virasoro anomaly: an approach that we did not discuss in sec-
tion 2.2 to address this model was based on an anomalous transformation law for
the normal-ordered quantum stress tensor derived in [47]. We have independently
demonstrated in appendix. A that covariance is maintained by adding to the normal-
ordered stress tensor a geometrical part 〈T geo

ab 〉.
Virasoro anomaly in two dimensions is referring to the fact that by performing the
conformal transformation x± → y±(x±), the normal-ordered stress tensor 〈: T±± :〉
would break general covariance and pick up a Schwarzian derivative

〈: Ty±y± :〉 =
(
dx±

dy±

)2
〈: Tx±x± :〉 − 1

24π{x
±(y±), y±}. (5.2)

The result holds for a free massless scalar field. For a more general theory with two-
dimensional conformal invariance, we can multiply the Schwarzian term by a central
charge c corresponding to the particular theory.
However, things have changed for the non-minimal dilaton gravity model (2.3). We
do not expect the theory to follow the transformation law dictated in (5.2). Following
standard OPE analysis with point-splitting regularization, it turns out that we have
additional terms depending on the derivatives of the dilaton φ [47] (see also a self-
contained derivation in appendix. A)

〈: Ty±y± :〉 =
(
dx±

dy±

)2
〈: Tx±x± :〉 − 1

24π{x
±(y±), y±}

− 1
4π

[
d2x±

dy±2

(
dx±

dy±

)−1 ∂φ

∂y±
+ ln

(
dx+

dy+
dx−

dy−

)(
∂φ

∂y±

)2]
, (5.3)

which can be viewed as a generalization of the Virasoro-type anomaly. Note that the
conformal symmetry can be recovered whenever ∂±φ→ 0.
We can see clearly that (5.3) breaks general covariance, and the motivation in [47] is
to further impose the conservation law. The authors in [47] started by assuming the
following conservation law

∂∓〈: T±± :〉+ ∂±φ〈
δΓ
δφ
〉 = 0, (5.4)

for the normal-ordered stress tensor. If 〈: T±± :〉 transforms according to (5.3) and
we assume there is an associated transformation for 〈 δΓδφ 〉, then (5.4) is compatible
with (5.3) only if

�φ = (∇φ)2, (5.5)

which may not hold in general. If the above relation is not true, then (5.4) must be
modified to be

∂∓〈: T±± :〉+ ∂±〈T+−〉+ ∂±φ〈
δΓ
δφ
〉 = 0, (5.6)

where there is an extra trace term to be

〈T+−〉 = − 1
4π (∂+φ∂−φ− ∂+∂−φ), (5.7)
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which is consistent with the anomaly equation (2.4) in flat spacetime. For general
curved background, we may enforce general covariance with the quantum conser-
vation law (3.4). It turns out that one could obtain the covariant stress tensor in
agreement with (2.4) as well as the one obtained from Γloc, which is apparent from
our discussion in appendix. A.
We shall compare the difference of stress tensor following for Boulware state from [47]
and our results in section 3.1. According to [47], the ±±-components of the covariant
stress tensor is given by

〈Ψ|T±±|Ψ〉= 〈Ψ| :T±± : |Ψ〉− ~
12π [(∂±ρ)2−∂2

±ρ]+ ~
2π [∂±ρ∂±φ+ρ(∂±φ)2]. (5.8)

We notice that the last two pieces are in agreement with the variation of Γloc in
section 2.3. The authors considered the case with 〈B| : T±± : |B〉 = 0, which yields

〈B|Tuu|B〉= 〈B|Tvv|B〉=
~

24π

(15M2

2r4 −
4M
r3

)
+ ~

16π
(r−2M)2 ln

(
1− 2M

r

)
r4 . (5.9)

It is clearly different from our (3.25), but does agree with our (3.68). We have
checked that one cannot use an effective action by fine-tuning the parameters we had
in section 3.1 to generate the same stress tensor as in (5.9).
The difference lies in the assumption of 〈B| : T±± : |B〉. In our approach, we do not
assume a priori that 〈B| : T±± : |B〉 = 0. Instead, we determine it by the physical
requirements of the Boulware state. However, it is evident that (5.9) is also consistent
with the boundary conditions we imposed in section 3.1. Hence (5.9) is physical, at
least under the criteria we discussed in section 3.1.
The difference between (3.25) and (5.9) is given by the following on-shell value in the
Schwarzshcild background

~
24π

(6M2

r4 − 3M
r3

)
. (5.10)

As we have noted in section 2.3, the normal-ordered part is given by ΓW where it
involves the Weyl-invariant ambiguity. This means that when evaluated on-shell in
the Boulware state under our construction in section 3.1, we have implicitly imposed

〈B| : T±± : |B〉 = − ~
24π

(6M2

r4 − 3M
r3

)
, (5.11)

to cancel the piece (5.10). Note that a similar difference should also appear in δΓW
δφ .

Presumably, there is no way to judge which approach for the Boulware state is more
reasonable according to the criteria in section 3.1. Our findings, however, can be un-
derstood as an alternative state that satisfies all boundary conditions for the Boulware
state. In addition, as we have demonstrated in section 3.1, our results are the di-
rect consequence of Γanom such that we do not require any additional Weyl-invariant
terms. As a result, general covariance is automatically encoded in our approach.
Further supports come from the fact that our results are in agreement with [38, 39].
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Despite the approach used in [47] being successful in describing the Boulware state
with the correct boundary values,11 the difficulty lies in finding workable forms of
stress tensors for the Hartle-Hawking and Unruh states beyond only the asymptotic
and near-horizon values [47].
Similarly, we could work out the implicit assumptions made in 〈H| : Tab : |H〉 for the
Hartle-Hawking state by subtracting the state-independent geometrical contributions
from (3.38), according to (5.8)

〈H| : T±± : |H〉 = 〈H|T±±|H〉 − 〈T geo
±±〉

= ~
192πr4r2

0

{
r4 + 6r2r2

0 − 6r4
0

−12(r − r0)2r2
0

[
3 ln r

r0
+ ln

(
1− r0

r

)]}
. (5.12)

From the discussion so far, we also want to comment on Wald’s axioms that were
used to argue against including Weyl-invariant terms [38]. Wald’s axioms [64] are
conditions that a reasonable four-dimensional quantum stress tensor should satisfy.
These conditions include the conformal anomaly, conservation law, and the fact that
semi-classical Einstein equations vanish for the Minkowski vacuum where 〈T (4)

µν 〉 =
〈: T (4)

µν :〉=0. Applying to our two-dimensional model, the first two conditions are
clearly satisfied. Whether our model satisfies the third condition is slightly more
tricky, where we have (5.11), under the Minkowski limit, (5.11) vanishes and we do
get back to the Minkowski vacuum.

• On the applicability of the island formula: we need to discuss the applicability
of Smatter that we used in (4.10) for the island formula. The origin of the formula is
that for general free field in four-dimensional flat spacetime, we have [95, 96]

Smatter = −κcArea
L2 , (5.13)

where for massless field κ becomes a constant.12 It reduces to the entropy formula
for two-dimensional free massless fields in flat spacetime [97, 98]

Smatter = c

3 ln (d(∂I,A)), (5.14)

under dimensional reduction where we can use the s-wave approximation for a dis-
tance much larger than the correlation length of the massive modes. Note that
d(∂I,A) is the distance between ∂I and A. Under Weyl transformation, it gives the
formula in general curved space as in (4.10).

11Note that a non-perturbative back-reaction analysis similar to our appendix. B based on the stress
tensor for the Boulware state derived in [47] was already carried out in [94]. Again, it results in the absence
of horizon structure.

12We can also take this formula to be approximately true in curved space when the distance between
∂I and A is small compared to the length scale of the curvature. For applications of this in the island
computation, see [13, 14, 17].
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Therefore, Smatter is in general state-dependent, and (4.10) is applicable in curved
spacetime under the choice where we set the state-dependent normal-ordered part
of the stress tensor 〈: Tab :〉 = 0. If it is not zero, there shall be an additional
state-dependent piece appearing in (4.10). This additional piece may follow what is
dictated in the new Virasoro anomaly that we commented.

Our matter sector comes from the dimensional reduction of a four-dimensional free
massless scalar field, where in flat spacetime we do have 〈: Tab :〉 = 0 such that (5.14)
holds. However, if we do not require that the normal-ordered stress tensor for quan-
tum states in a curved background is zero, the matter entropy formula may acquire an
additional piece that remains to be determined under our construction. We have as-
sumed that (4.10) holds approximately true in our model as we believe the additional
piece should not alter our conclusion for the unitarity of the Page curve.

Even if we can bypass the above issue, there are still other open questions. A more
fundamental debate was raised in [99, 100], where it is argued that the fine-grained
entropy should be a constant since there is no diffeomorphism-invariant way to split
a radiation subregion. The entropy calculation in the main text can then be un-
derstood as certain coarse-grained entropy from that point of view. The argument
applies to our case but is not crucial since our central point is to show that with
consistent one-loop actions for physical states, we can always apply the island for-
mula to the corresponding back-reacted geometry. Also, we can explore the extremal
black hole solutions in the non-minimal dilaton gravity and how the island formula
is applied [101, 102]. Furthermore, it is interesting to see whether we can derive the
island formula (4.8) similar to the replica wormhole calculation in JT gravity [5, 6]
(see also [12] for a case in CGHS model) for the non-minimal dilaton gravity model.

There are also a few fascinating future directions that are worth pointing out regarding
the non-minimal dilaton gravity model. To name a few:

• Generalizations of dilaton coupled theory: the non-trivial ingredient in the
model is the dilaton coupling in the matter sector. This can be generalized to more
general gravity and matter sectors coupled with dilaton that may have physical origins
from higher dimensions. It would be interesting to see whether exactly solvable
models could arise in these scenarios, and whether similar Weyl-invariant ambiguities
can be resolved in a consistent way.

• Connections/Implications for holography: we were working in asymptotically
flat spacetime. However, it would be interesting to solve this type of dilaton cou-
pling in the context of AdS/CFT. A particularly inspiring scenario is JT gravity
in NAdS2/NCFT1 [103–105] (See also the review [106]), where N means “nearly” as
the boundary conformal symmetry is broken by the dilaton. By coupling our matter
sector with JT gravity, an immediate consequence is that the variation of the dila-
ton does not necessarily enforce a local AdS2 geometry. Instead, it depends on the
matter content.
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Therefore, a more careful analysis of the configuration space of classical solutions, as
well as the possibility of obtaining a solution with an asymptotic AdS boundary, is
required. Intuitively, we need to impose suitable boundary conditions for the dilaton
coupled matter theory consistent with asymptotic AdS boundary conditions. It is also
interesting to explore such non-minimal matter coupling along the line of braneworld
construction [107, 108].

Furthermore, in view of (5.3) regarding a new Virasoro anomaly, it would be inter-
esting to see how it enters into the analysis of the boundary theory of JT gravity
coupled with the non-minimal matter.

• Implications for non-perturbative effects: the analysis with JT gravity has
recently uncovered new structures involving spacetime wormholes, where JT gravity
under non-perturbative genus expansion is shown to be dual to a double-scaled matrix
integral [109]. The analysis was mainly carried out in pure JT gravity or JT gravity
with a minimally-coupled massive scalar field [110, 111]. It would be interesting to
see whether a similar study can be carried over to the case of dilaton coupling in the
matter sector.
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A Implication of general covariance in quantum stress tensor

We have argued that for a well-defined back-reaction problem, we need the expectation
value of stress tensor 〈Tab〉 to transform covariantly under coordinate transformations.
While it is clear that the covariance is manifest once Γeff is covariant and 〈Tab〉 is defined
as a functional variation with respect to the metric, the point here is that in general one
does not know the concrete form of effective action. In addition, the non-local nature of
the effective action for gravity theory (as shown in (2.6)) makes it hard to verify that the
general covariance still holds true at the quantum level.

In addition, it is shown in section. 2.3 that there is a universal splitting of the effective
action such that a local but non-covariant part Γloc captures the geometrical contribution
to 〈T geo

ab 〉. As we shall see in the following, such a stress tensor is not covariant as it
corresponds to a specific gauge that fixes part of the diffeomorphism. Since covariance is
a desirable property, the general expectation is that we can establish covariance by adding
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the normal-ordered part. We shall elaborate on this point here by working out the detailed
transformation law for both parts of the stress tensor, and then show that the combination
is indeed covariant.

Let us look at Γloc (2.20), which is given by

Γloc = ~
96π

∫ √
−g

(
log
√
−g� log

√
−g + log

√
−g

(
2R− 12 (∇φ)2 + 12�φ

))
, (A.1)

we define the geometrical part of the stress tensor 〈T geo
ab 〉 by funcitonal derivative of Γloc

with respect to the metric
〈T geo
ab 〉 = −2√

−g
δΓloc
δgab

, (A.2)

with some algebra, one can decompose the stress tensor into three parts

〈T geo
ab 〉 = 〈T (g)

ab 〉+ 〈T (φ)
ab 〉+ 〈T tr〉gab, (A.3)

where

〈T (g)
ab 〉 = ~

48π

(
∇a log

√
−g∇b log

√
−g − 1

2gab
(
∇ log

√
−g
)2)

+ ~
24π

(
∇a∇b log

√
−g − 1

2gab� log
√
−g
)
,

〈T (φ)
ab 〉 = ~

4π

(
∇(a log

√
−g∇b)φ−

1
2gabg

cd∇c log
√
−g∇dφ

)
+ ~

4π log
√
−g

(
∇aφ∇bφ−

1
2gab (∇φ)2

)
,

〈T tr〉 = ~
48π

(
R− 6 (∇φ)2 + 6�φ

)
,

(A.4)

where we have split the stress tensor into pure gravity, dilaton, and trace parts. The above
stress tensor is not covariant due to the manifest dependence on √−g; however, it remains
local, and every term in it follows certain transformation rules under diffeomorphism.
Therefore, one should expect that the stress tensor itself follows certain transformation
rule under diffeomorphism as well, and we are particularly interested in the deviation from
the covariant transformation.

We will choose the conformal gauge ds2 = −e2ρdudv in the following discussion. For
simplicity, let us look at the uu-component, which is evaluated as

〈T geo
uu 〉 = ~

12π
(
∂2
uρ− (∂uρ)2 + 6∂uρ∂uφ+ 6ρ (∂uφ)2

)
. (A.5)

There is an issue in the value of log√−g we used in the evaluation of the stress tensor
component, resulting from the non-covariance under diffeomorphism. We used log√−g =
2ρ instead of 2ρ + log 2. We emphasize that this can be viewed as part of the definition
of the state that one associates with the stress tensor components, in the same sense
described in section 2.3. Namely, the ambiguity of shifting ρ by a constant can be viewed
as a contribution to the stress tensor from the following Weyl-invariant term of the action

Γct = λ~
8π

∫ √
−g (∇φ)2 , (A.6)
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where λ is chosen to cancel the constant part in ρ to the stress tensor, and Γct is the
counterterm that is added to cancel the ambiguity in ρ. According to section 2.3, we know
Γct belongs to ΓW and therefore the stress tensor given by Γct actually contribute to the
normal-ordered part 〈: Tab :〉. By demanding log√−g = 2ρ in the stress tensor, we are
actually imposing the condition that 〈: Tab :〉 vanishes for Minkowski vacuum, where ρ is
a constant. In conclusion, adding Γct to cancel the constant shift of ρ in the stress tensor
amounts to setting the zero-point energy for the theory.

Now let us consider how 〈T geo
uu 〉 transforms in the transformation u → U = U (u).

This is a residual gauge symmetry to the conformal gauge that we chose, and under the
transformation we find

ds2 = −e2ρdudv = −e2ρ̃dUdv, (A.7)

where in the new coordinate, the conformal factor becomes

2ρ̃ = 2ρ+ log u′. (A.8)

By separating the covariant and non-covariant parts in 〈T geo
uu 〉 under the transformation, it

is easy to verify that

−
(
∂2
U ρ̃
)

+ (∂U ρ̃)2 = u′2
(
−∂2

uρ+ (∂uρ)2
)
− 1

2{u, U}, (A.9)

∂U ρ̃∂Uφ+ ρ̃ (∂Uφ)2 = u′2
(
∂uρ∂uφ+ ρ (∂uφ)2

)
+ 1

2

(
log u′ (∂Uφ)2 + u′′

u′
∂Uφ

)
, (A.10)

where we have defined u′ = du/dU . Plugging back to the component value (A.5), we get

〈T geo
UU 〉 = u′2〈T geo

uu 〉+ ~
24π{u, U}+ ~

4π

(
log u′ (∂Uφ)2 + u′′

u′
∂Uφ

)
. (A.11)

Note that apart from the covariant term, the non-covariant part consists of a Schwarzian
derivative resulting from the change of the conformal factor ρ together with a dilatonic
part resulting from the coupling between the dilaton field φ and ρ. The non-covariant part
remains local.

Now to see how covariance of 〈Tab〉 is maintained at the quantum level, we need to
work out the transformation law for 〈: Tab :〉. In the following, we will give a brief quantum
mechanical derivation in agreement with [47] by assuming the correct OPE relation of
matter fields.

The matter part of the classical action in our setup is

Sm = −1
2

∫ √
−ge−2φ (∇f)2 , (A.12)

where the equation of motion in conformal gauge can be written as

∂v
(
e−2φ∂uf

)
+ ∂u

(
e−2φ∂uf

)
= 0. (A.13)
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This can be used to derive the following Ward identity

0 = δα〈f (x1)〉 = δα

(∫
Dff (x1) eiSm/~+...

)
= α (x1) + −i

~

∫
d2x∂uα〈e2φ∂vf (x) f (x1)〉+ −i

~

∫
d2∂vα〈e2φ∂uf (x) f (x1)〉

= α (x1) + −i
~

∫
d2x

(
∂u
(
α〈e2φ∂vf (x) f (x1)

)
+ α

(
〈e2φ∂uf (x) f (x1)〉

))
,

(A.14)

from which we deduce the following OPE relation of the matter fields

e−2φ(x1)f (x) f (x1) ' 1
4π log |x− x1|2 + reg. (A.15)

Up to regular part we can actually apply the following symmetric OPE

f (x) f (x1) ' 1
4πe

φ(x)+φ(x1) log |x− x1|2 + reg, (A.16)

and define the normal-ordered part of the stress tensor as an operator following the point-
splitting regularization, which subtracts the divergence in the OPE

〈: Tuu (x1) :〉 ≡ lim
x2→x1

e−φ(x1)−φ(x2) (∂u∂u′ (f (x1) f (x2)− 〈f (x1) f (x2)〉)) . (A.17)

Now we are ready to consider the corresponding transformation law. Under the trans-
formation x → X(x), where x = (u, v) and X = (U, V ) = (U(u), V (v)), we find the
normal-ordered part transforms as

〈: TUU (X1) :〉 = u′21 〈: Tuu (x1) :〉+ lim
x2→x1

e−φ(x1)−φ(x2)u′ (x1)u′ (x2) ∂u1∂u2〈f (x1) f (x2)〉

− lim
x2→x1

e−φ(X1)−φ(X2)∂U1∂U2〈f (U1) f (U2)〉. (A.18)

The non-covariant part results from the subtraction of the singular part in the OPE. Now
by expanding U2 −U1 as power series in u2 − u1, and then take the limit u2 → u1, we find
the non-covariant part in 〈: Tuu :〉

〈: TUU (X) :〉 = u′2〈: Tuu (x) :〉 − ~
24π{u, U} −

~
4π

(
u′′1
u′1
∂U1φ+ log |u′1|2 (∂Uφ)2

)
, (A.19)

which precisely cancels the one in 〈T geo
UU 〉. A similar analysis holds exactly for the V V -

component.
Therefore, if we define the total expectation value of the stress tensor to be the sum of

〈T geo
ab 〉 and the normal-ordered part 〈: Tab :〉, then clearly general covariance is maintained.

B A non-perturbative analysis of back-reaction from vacuum
polarization

In this appendix, we study the back-reaction problem from the stress tensor we derived
for Boulware state in section 3.1. Conventional understanding about the Boulware state
is that it is unphysical due to the divergence of the stress tensor in the free-falling frame,
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which can be easily seen in the Kruskal coordinates due to the diverging blue-shift factor
du
dU ∝

1
r−r0 at the horizon [32]. That is, regularity at both the future and past horizons

imposes the following conditions

lim
r→r0

|〈B|Tuu|B〉|(
1− r0

r

)2 = lim
r→r0

|〈B|Tvv|B〉|(
1− r0

r

)2 <∞, lim
r→r0

|〈B|Tuv|B〉|(
1− r0

r

) <∞. (B.1)

We can see clearly that even by considering the non-minimal dilaton coupled matter, the
stress tensor we derived in (3.25) does not obey these conditions. Hence, the view that the
Boulware state is describing the exterior spacetime with r > r0 seems well justified. That
is, the physical portion of the state should not contain the horizon.

However, recent studies [94, 112, 113] based on a non-perturbative analysis indicates
that the Boulware state is no longer unphysical once we include back-reaction, and it should
be the correct state if we are looking at black hole formed from gravitational collapse (the
scenario was first considered in [114, 115], see also [116, 117]). In fact, there are a number
of compelling reasons to examine this question more closely by taking into account the
back-reaction of these vacuum polarization modes:

• Boulware state can be defined via a natural boundary condition, namely the vanishing
Hawking flux in the asymptotic boundary. In this context, the boundary fluctuations
are small, and the gravitational effect is localized in the bulk. The effective action
is suitable in the scenario where the back-reaction problem and the definition of the
state do not depend significantly on UV physics.

• The main reason that the Boulware state is thought to be unphysical is the diver-
gence of the stress tensor at the horizon in the classical black hole background. The
divergence persists perturbatively in G~ in the back-reaction sourced by the quantum
stress tensor. This argument is used to exclude the horizon as a physical portion of
the Boulware state.
However, the above claim is circular in the sense that it assumes the existence of a
horizon that persists in the back-reacted geometry. In fact, as demonstrated in [94,
112, 113], depending on the fine structure of the stress tensor, the back-reacted
geometry might create structures without a horizon while still leading to a well-
defined state.

• In other words, the divergence of the stress tensor at the horizon can be alternatively
viewed as a breakdown of the perturbative analysis in G~. This implies that we need a
more careful non-perturbative analysis at the horizon scale. We further demonstrate
that as one goes deeper into the bulk, the back-reaction will become more important
and the geometry deviates from a vacuum black hole to a static quantum star sourced
by the stress tensor. The resulting geometry is well-defined with no singularity,
and can be viewed as a quantum state of the theory defined by the corresponding
(asymptotic) boundary conditions.

• In terms of the gravitational path integral, this means the true saddle that we are
considering with vanishing Hawking flux might not be the classical saddle that we
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assumed to have a horizon. The saddle point is modified by the quantum effects since
the back-reaction makes a significant difference in the geometry of the saddle. We
should move to the correct saddle by including the quantum corrections.

To begin with, let us assume the following ansatz for the back-reacted geometry

ds2 = −F (r)e2εϕ(r)dt2 + dr2

F (r)

= F (r)e2εϕ(r)
(
− dt2 + dr2

F (r)e2εϕ(r)

)
= F (r)e2εϕ(r)(−dt2 + dr∗2).

(B.2)

where
F (r) = 1− r0

r
+ εm(r)

r
≡ F0(r) + εm(r)

r
, (B.3)

with ε = GN~
24π . We have also defined the tortoise coordinate r∗

r∗ ≡
∫ 1
F (r)eεϕdr. (B.4)

Now we introduce the Eddington-Finkelstein coordinates

u = t− r∗, v = t+ r∗. (B.5)

We have
ds2 = −F (r)e2εϕ(r)dudv. (B.6)

While the ansatz for the metric already implies the effect of back-reaction sourced by ε is
small, we shall see concretely in the following how contradiction from the back-reaction
equations arises and the assumption about the existence of a horizon fails when we go
nearer to the would-be horizon.

With the metric ansatz, the semi-classical Einstein equations sourced by the quantum
stress tensor read

−εF0(r)m′(r) = 2GN 〈Ttt〉, (B.7)

2εrF0(r)ϕ′(r) = 2GN
(
F0(r)〈Trr〉+ 〈Ttt〉

F0(r)

)
. (B.8)

Starting from the stress tensors we derived in (3.25) and (3.26), we work out

〈Trr〉 = ~
12π

(
1− r0

r

)−2
[

3r2
0

8r4 −
r0
2r3

]
+ ~

8πr2 ln
(

1− r0
r

)

− ~r0
12πr3

(
1− r0

r

)−1
,

(B.9)

〈Ttt〉 = ~
12π

[
3r2

0
8r4 −

r0
2r3

]
+ ~

8π

(
1− r0

r

)2 1
r2 ln

(
1− r0

r

)
+ ~r0

12πr3

(
1− r0

r

)
.

(B.10)
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We then find that there is already an inconsistency in the equation of motion: when r = r0,
the l.h.s. of the first equation in (B.7) vanishes, while 〈Ttt〉 does not, this means m′ (r) has
to be divergent in r = r0. Indeed, by solving the solutions for the functions m(r) and
ϕ(r), one can explicitly check the two functions blow up at the horizon, and we expect
such behavior to persist beyond one-loop order. This is due to the fact that the back-
reaction is strong and the ansatz (B.2) that is perturbative in ε is no longer applicable in
the near-horizon regime.

In other words, (B.2) assumes that we get a smooth geometry with a horizon when
we turn off the back-reaction in the ε→ 0 limit. However, since the stress tensor becomes
divergent in the near-horizon regime, where the quantum fluctuation can no longer be
viewed as a small perturbation, we expect a dramatic change in the near-horizon structure.
Therefore, we need to analyze the near-horizon geometry starting from a generic ansatz
that works for arbitrary two-dimensional geometry.

In the following, we shall apply the ansatz

ds2 = −C(r)dt2 + C(r)
H2(r)dr

2

= −e2ρ(r)dudv,
(B.11)

where we will express everything in terms of a generic conformal factor ρ(r). In the
following, we discuss the conditions for the existence of a horizon when back-reaction
is included. We have C (r) = e2ρ(r), and suppose the horizon exists and is specified by
r = rH , which leads to the fact that

C (rH) = 0, ρ (rH) = −∞, ρ′ (rH) =∞. (B.12)

This is essentially the reason why the perturbative analysis in ε breaks down: when we
work in the regime where

(
ερ′2

)
' O (1), it can no longer be viewed as perturbation around

classical geometry, instead, it changes the “classical background” significantly. Therefore,
we solve the semi-classical Einstein equation sourced by 〈Tab〉 in the following

e−2φ{2∇a∇bφ− 2∇aφ∇bφ+ gab[3(∇φ)2 − 2�φ]} − gab = 2GN 〈Tab〉 . (B.13)

The tt-component gives

e2ρ − 2rH(r)H ′(r) +H2(r)
(
2rρ′(r)− 1

)
= 2ε

[
H(r)
r

H ′(r)
(
rρ′(r) + 6

)
+ H2(r)

r2

(
r2ρ′′(r)− r2ρ2(r)

−6rρ′(r) + 6ρ(r)− 6
)]
,

(B.14)

while the rr-component gives

1− e2ρ(r)

H2(r) + 2rρ′(r) = 2ε
[6ρ(r)
r2 − 6ρ′(r)

r
− ρ′2(r)

]
. (B.15)
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From (B.15) we can solve H (r) in terms of ρ (r) as

H(r) = ± eρ(r)r√
D(r)

, (B.16)

where we have introduced

D(r) = r2 + 2r3ρ′(r) + 2ε
(
r2ρ′2(r) + 6rρ′(r)− 6ρ(r)

)
. (B.17)

Substituting either the positive or negative root of H (r) back into (B.14), and eliminating
some overall factors, we find the equation of motion in terms of ρ(r)

0 = 144ε2ρ2(r)− 12rερ(r)
[
ρ′(r)

(
3r2 + 17ε+ 3rερ′(r)

)
− rερ′′(r)

]
+ r2

[
6ε+ 2ρ′(r)

(
r2 + 6ε+ rερ′(r)

) (
r + ρ′(r)

(
r2 + 6ε+ rερ′(r)

))
+
(
r4 + 11r2ε+ 36ε2 + rε

(
r2 + 6ε

)
ρ′(r)

)
ρ′′(r)

]
.

(B.18)

This differential equation is extremely complicated and cannot be solved exactly. However,
the method of dominant balance suffices for us to analyze the dominant solutions in different
regimes.

As a consistency check, let us first assume the existence of a horizon at r = rH , and
work in the regime where ε−1/2 ' ρ′2 ' ρ′′. We are still in the perturbative framework in
terms of ε and we can omit terms that are higher order in ε, that is

2r5ρ′ + 2r6ρ′2 + r6ρ′′ +O(ε) = 0. (B.19)

The solution can therefore be chosen as

2ρ(r) = ln
(

1− rH
r

)
+ const, (B.20)

which reproduces the Schwarzschild form. The scale rH that appears in the above solution
can be defined in the asymptotic boundary as the ADM mass of the whole spacetime.
However, the naïve solution above breaks down as we get nearer to rH , such that ρ′′, ρ′2 �
ε−1. In this case, the following two terms dominate

2r4ε2ρ′4 + r5ερ′ρ′′ + · · · = 0, (B.21)

where terms in the dots are with fewer derivatives in ρ. We find then in this case ρ caps
off in a very sharp region, with

ρ (r) = rH
2

√
π

ε
Erfi

(√
ln (r/rH)

)
, (B.22)

where rH is an integration constant where we have defined it to be the position where
ρ (rH) = 0. Namely, at r = rH the geometry actually caps off and forms a smooth cone.
There is no horizon at all, and the physical portion of spacetime only contains the part
r ≥ rH .
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Figure 3. A plot of the numerical solution of (B.18) (blue), Schwarzschild black hole solution (B.20)
(green) and near rH solution (B.22) (red). We have set ε = 0.01, rH = 0.1 and the constant in (B.20)
to be 4.95. It is clear that the numerical solution matches (B.22) in a narrow near rH regime very
well, which justifies our approximation. It asymptotes to a Schwarzschild black hole when the scale
r is significantly larger than ε(1/2).

We further comment that for the aforementioned analysis to work, we should keep r

very close to rH such that
r − rH
rH

� ε

r2
H

. (B.23)

Within this small region, the back-reaction of the Boulware modes is so strong that the
geometry deviates significantly from the one with a horizon. Instead, it forms a static and
spherically symmetric quantum star and ends at a definite value r = rH of the radius. We
interpret the point with r = rH as the center of the star, which is similar to the origin of
the polar coordinates. In this way, we do not need to impose extra boundary conditions
there. We present a numerical verification of the claim in figure 3 and figure 4 below.13

Now let us imagine the journey of an infalling observer starting at spatial infinity.
When r � rH , she feels to be in the vacuum state exterior to a black hole. Then as she
moves deeper and closer to rH , but with r − rH � ε1/2, the quantum fluctuation becomes
significant, which locates at what she thinks to be the putative horizon. She would not
encounter anything unusual and will reach the other side of the star if she manages to
survive and pass through r = rH .

We end this section by commenting on the fact that the Einstein tensor for the solution
discussed here satisfies Gtt = Grr = O(1) + O(

√
r − rH) near r ' rH . This means the

prescribed solution and the definition of the Boulware state do not require Planck scale

13Earlier works such as [94] described the resulting geometry as a wormhole-like structure with rH being
the effective radius of the throat. This scenario is related to our discussion by identifying the two sides of
a wormhole together with the asymptotic boundary.
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Figure 4. The left graph zooms into the regime where the numerical solution deviates from the two
approximate solutions. It is a regime deep inside the bulk but still away from rH . The geometry
suffers from the back-reaction sourced by the stress tensor of quantum matter and fails to form
a horizon. The right graph zooms into the regime near rH , where the stress tensor component is
significant compared with the curvature. We see in this case the numerical solution matches the
near rH solution (B.22) well.

physics and is consistent with the low-energy effective dynamics of gravity specified by the
semi-classical Einstein equations.

C Island computation in the Hartle-Hawking state

In this appendix, we detail the computation of the Page curve following the island pre-
scription for the fine-grained entropy, namely

Sgen(R) = minI
{
extI

[Area(∂I)
4GN

+ Smatter(I ∪R)
]}
. (C.1)

We will first consider the no-island case where we shall reproduce Hawking’s prediction
on a monotonically increasing entropy. Note that in this case, the area term is absent,
therefore we identify the matter entropy part as our fine-grained entropy, which is given by

Smatter = 1
12 ln (VR − VL)2 (UR − UL)2

δ4e−2ρRe−2ρL
. (C.2)

Here we denote L/R as the left/right asymptotically flat region of spacetime. We define the
coordinates on the cut-off surface to be (t, b∗). δ is the UV cut-off. Plugging the definition
of the coordinates

VR = 1
κ
eκ(t+b∗), UR = −1

κ
e−κ(t−b∗),

VL = −1
κ
eκ(−t+b∗), UL = 1

κ
e−κ(−t−b∗).

(C.3)

where the conformal factor is the same in both regions as b is the same, hence we know
ρL = ρR. We find

Smatter (t) = 1
6 ln 4F (b) cosh2(κt)

(κδ)2e−2εϕ(b) . (C.4)
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Figure 5. The Penrose diagrams of the two-sided black hole. The left and right asymptotically flat
regions are denoted as L and R. We take the states associated with the Hawking radiation to be
represented by R where the cut-off surfaces are written simply as b. Similarly, for the island region
I and the associated quantum extremal surfaces ∂I = a. By complementarity, the calculation of
the matter entropy involves two disjoint intervals B on the two sides.

We regularize the UV divergence by demanding that initially the entropy is zero, namely
Smattter (0) = 0, and this fixes

δ2 = 4F (b)e2εϕ(b)

κ2 . (C.5)

Putting the definition of δ back into the formula, we get

Smatter = 1
3 ln (cosh (κt)) . (C.6)

At early times of the evaporation, namely κt� 1, the entropy behaves as

Smatter '
1
6 (κt)2 , (C.7)

while the more interesting case is at late times when κt� 1, we find

Smatter '
1
3κt+ const. (C.8)

The fine-grained entropy of the radiation increases monotonically in time, which is in agree-
ment with Hawking’s original calculation corresponding to the no-island case. The above
result is general for the two-dimensional dilaton gravity model, with the only difference
being that now we have a quantum corrected κ. We shall see in the following how the
island prescription restores unitarity.

With island, we need to consider the entropy formula for two disjoint intervals with
(See figure 5)

Smatter = 1
6 ln d2

12d
2
23d

2
14d

2
34

δ4d2
24d

2
13e
−ρ1e−ρ2e−ρ3e−ρ4

, (C.9)

where d2
ij = (Vi − Vj)(Ui − Uj). Suppose the position of the island is given by (t′, a∗) on

the right patch (and similarly (−t′, a∗) on the left patch), we will be able to find the exact
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position by varying with respect to a∗. Now we have the following relations

VRb = 1
κ
eκ(t+b∗), URb = −1

κ
e−κ(t−b∗), (C.10)

VLb = −1
κ
eκ(−t+b∗), ULb = 1

κ
e−κ(−t−b∗), (C.11)

VRa = 1
κ
eκ(t+a∗), URa = −1

κ
e−κ(t−a∗), (C.12)

VLa = −1
κ
eκ(−t′+a∗), ULa = 1

κ
e−κ(−t′−a∗). (C.13)

By using the fact that at late times t ' t′

d2
23d

2
14

d2
24d

2
13
→ 1, d12 = d34, ρ1 = ρ4, ρ2 = ρ3, (C.14)

the matter entropy term becomes

Smatter = 1
3 (ρa + ρb) + 2

3 ln
(
eκb
∗ − eκa∗

)
− 2

3 ln κδ. (C.15)

Adding to the area term (with a factor of 2 because we have two asymptotically flat regions),
we write the fine-grained entropy as

Sgen = 2πa2

GN~
+ 1

3 (ρa + ρb) + 2
3 ln

(
eκb
∗ − eκa∗

)
− 2

3 ln κδ. (C.16)

We extremize the entropy with respect to a∗

∂a∗Sgen = 4πa
GN~

da

da∗
+ 1

3
dρ(a)
da

da

da∗
− 2

3
κ

eκ(b∗−a∗) − 1
= 0. (C.17)

By definition, we know da/da∗ = F (a) eεϕ(a), and by noting that ε = GN~
24π , we get

[
a+ 2ερ′ (a)

]
F (a)eεϕ(a) = 4ε κ

eκ(b∗−a∗) − 1
. (C.18)

In the case of an eternal black hole, we expect to find the quantum extremal surface to be
near but outside the horizon [93]. Without loss of generality, we consider the near-horizon
expansion where we take the island position to be

a = rH + x, x� rH . (C.19)

The expansion on the l.h.s. of (C.18) becomes

l.h.s. '
(
rH + 2εdρ

dr

∣∣∣∣
H

)(
dF

dr
eεϕ(rH)

)∣∣∣∣
H

x = 2κx(rH + 2ερ′|H), (C.20)

by dropping terms with F (rH) = 0. We have also used the definition of the surface gravity
where (dhdr eεϕ(r))|H = 2κ. For the r.h.s. of (C.18), we consider the cut-off surface to be
far away from the horizon, hence only a∗ = r∗(a) is relevant in the expansion. Note that
r∗(rH)→ −∞, we have the following two choices for eκa∗
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• The leading order piece of eκa∗ is an O(1) constant, which means that the island
position is at a small fixed location away from the horizon. In this case, we do not
need to expand on the r.h.s. of (C.18) and we expect the correction coming from x

is O(ε). This can be verified by substituting (C.20) into (C.18)

x = 2ε
(rH + 2ερ′|H)[eκ(b∗−a∗) − 1]

≈ 2ε
r0[eκ(b∗−a∗) − 1]

+O(ε2). (C.21)

• The leading order piece of eκa∗ is O(x), which means the island is extremely close to
the horizon and they are nearly identical. In this case, the correction coming from x

will be of O(ε2), in agreement with [13, 14, 18]. Let us consider the expansion

e2κa∗ ≈ e2κr∗(rH) + 2κ
(
e2κr∗ dr

∗

dr

)∣∣∣∣
H

x (C.22)

= 2κxe1+εα(rH) e
−εϕ(rH)

rHh′(rH) = x

rH
e1+εα(rH). (C.23)

Note that we have used the following near-horizon expansion for r∗(r) [18]

r∗(r) ≈ 1
2κ

[
r

rH
+ ln

(
r

rH
− 1

)
+ εα(r)

]
, (C.24)

where α(r) denotes the terms that do not diverge at the horizon. We can work out this
relation easily by considering the near-horizon expansion of the tortoise coordinate

r∗ ≡
∫
e−εϕ(r)

h(r) dr

≈
∫

e−εϕ(rH) − e−εϕ(rH)(r − rH)εϕ′(rH) + · · ·
h(rH) + h′(rH)(r − rH) + 1

2h
′′(rH)(r − rH)2 + · · ·

dr

= 1
2κ

∫ 1
r − rH

[1− (r − rH)εϕ′(rH) + · · ·
1 + 1

2
h′′(rH)
h′(rH) (r − rH) + · · ·

]
dr

= 1
2κ

∫ [ 1
r − rH

−
(1

2
h′′

h′
+ εϕ′

)∣∣∣∣
H

+ ε

2

(
h′′

h′
ϕ′
)∣∣∣∣
H

(r − rH)
]
dr

= 1
2κ

[
ln
(
r

rH
− 1

)
− 1

2
h′′(rH)
h′(rH) r − εϕ

′(rH)r

+ ε

2
h′′(rH)
h′(rH) ϕ

′(rH)
(
r2

2 − rrH
)

+ C

]
, (C.25)

where we have used h(rH) = 0 and 2κ = h′(rH)eεϕ(rH). With the following relation

− 1
2
h′′(rH)
h′(rH) r ≈

r

rH
− εrrH

2r0
m′′(rH), (C.26)

we confirm (C.24). Hence the r.h.s. of (C.18) can be expanded as

r.h.s. ≈ 4εκe−κb∗eκa∗(1 + e−κb
∗
eκa
∗) (C.27)

= 4εκ
[√

x

rH
e

1
2 (1+εα(rH))−κb∗ + x

rH
e1+εα(rH)−2κb∗

]
. (C.28)
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We solve for x as

x = 1
rH

(
2ε
rH

)2
e1−2κb∗+εα(rH)[

1 + 2ε
rH

(
ρ′|H − 1

rH
e1−2κb∗+εα(rH)

)]2
≈ 4ε2

r3
h

e1−2κb∗ +O(ε3). (C.29)

Note that x is positive in both cases, which means the island is indeed outside the horizon.
This confirms our initial assumption. We then conclude this section by comparing the
entropy in the no-island and island phases. We have in the island case the Sgen being

Sgen(a) = Sgen(rH) + S′gen(rH)x+O(x2)

≈ Sgen(rH) + 4πrH
GN~

x, (C.30)

where

Sgen(rH) = 2πr2
H

GN~
+ 1

3(ρH + ρb) + 2
3 ln e

κb∗

κδ
(C.31)

= 2
[
πr2

H

GH~
+ 1

12 ln e4κb∗

(κδ)4e−2ρHe−2ρb

]
. (C.32)

We can see from (C.30) that if x ∼ O(ε), the correction can be O(1) in ε = GN~
24π . If

x ∼ O(ε2), the correction is essentially negligible. Therefore, if we keep only up to the O (1)
terms of the entropy, we can approximately think of the island located at the position of
the back-reacted horizon. In either case, the fine-grained entropy at late times is given by

SFG = min
{1

3κt, Sgen(a)
}
. (C.33)

The Page time is then the transition time where

1
3κtP ≈ Sgen(a) =⇒ tP = 3κSgen(a). (C.34)

D Island computation in the Unruh state

Similarly, we compute the island position where the generalized entropy is given by

Sgen = πr2
a

G
+ Smatter, (D.1)

and Smatter can be written in (U, v) coordinate as

Smatter = c

6 log (Ua − Ub) (va − vb) + c

12 (κava + εϕa + κbvb + εϕb) + const, (D.2)

where in the following, we will denote ra = r(va), rHa = rH (va) , κa = κ (va, rHa), and
similarly for b. Here a corresponds to ∂I, and b is the cut-off surface. It is necessary to
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specify the concrete surface gravity at a and b because now we are not in a stationary case,
and it is likely that for general extremal island configuration that va 6= vb.

We are mainly interested in the late-time configuration of the island, and the endpoint
of it is expected to be in the near-horizon regime [2], where the following approximation
is applicable

r (v) = rH (v)− Ueκv + 1
κ
r′H +O

(
ε2
)
. (D.3)

The physical meaning of U coordinate is the relative deviation for a radial in-falling null
geodesic from the horizon, and κ is the surface gravity at rH . The above equation (D.3)
should be understood to work perturbatively in ε, where the horizon position rH and
surface gravity κ should all be viewed as functions of ε. Therefore we expect that the time
derivatives of rH and κ should belong to O(ε), and (D.3) is exact only up to O(ε).

Now we start by extremizing the generalized entropy

∂Sgen
∂va

= ra
12ε

(
r′Ha − κaUaeκava

)
+ c

6
1

va − vb
+ c

12κa +O (ε) = 0,

∂Sgen
∂Ua

= ra
12ε (−eκava) + c

6
1

Ua − Ub
+O (ε) = 0,

(D.4)

where we only keep terms up to O (1) in ε, and used the fact that r′Ha, κ′a ' O (ε), where
the prime denotes the derivative with respect to v. Combining the two equations we find
a useful relation between Ua and Ub

Ua = Ub
rar
′
Ha (va − vb) + cε (2 + κa (va − vb))

rar′Ha (va − vb) + cε (2− κa (va − vb))
. (D.5)

Since the leading order of the fraction above is O(1) in ε, the equation indicates that Ua
and Ub are at the same order in ε. Plugging (D.5) back into the extremal equation (D.4)
of Sgen, we find the solution of Ua reads

Ua = εce−κava (2 + κa (va − vb))
κarHa (va − vb)

+ r′Ha
κa

e−κava +O
(
ε2
)
, (D.6)

and the result is manifestly at O (ε), which is consistent with the near-horizon approxima-
tion (D.3).

Notice that we have assumed that the endpoint of the cut-off surface b = (Ub, vb)
locates outside the horizon. Let us verify this by plugging Ua in (D.6) back into (D.5),
which gives

Ub = εce−κava (2− κa (va − vb))
κarHa (va − vb)

+ r′Ha
κa

e−κava +O
(
ε2
)
,

rb = rHb −
εc (2− κa (va − vb))
κarHa (va − vb)

eκbvb−κava

+
(
r′Hb
κb
− r′Ha

κa
eκbvb−κava

)
+O

(
ε2
)
.

(D.7)

where we have used the definition (D.3) in deriving the radial position of b. For an evapo-
rating black hole with a shrinking horizon, one always has r′H < 0 and κ′ > 0. Then it is
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clear to deduce from (D.7) that the endpoint of the cut-off surface is outside the horizon
as long as va − vb < 0. The condition va − vb < 0 is imposed because a timelike surface is
not included in the extremization procedure. The fact that b is always outside the horizon
is consistent with our setup.

Finally, let us discuss the location of the island by considering the difference ra − rHa
with Ua given by (D.6), The result is

ra = rHa −
εc (2 + κa (va − vb))
κarHa (va − vb)

+O
(
ε2
)
. (D.8)

An interesting point of the result is that there is no explicit dependence on the kinematics
of the horizon. That is, terms with explicit dependence on time derivative of rH all cancel
among themselves. The contribution from back-reaction can all be absorbed into quantum
corrections of the surface gravity κa. This implies that we do not need to specify a concrete
form of evolution of the horizon when analyzing the position of the island. One can easily
deduce from (D.8) that for |va− vb| > 2/κa, then ra < rHa where the island sits inside the
horizon, and for |va − vb| < 2/κa, it extends outside the horizon.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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