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1 Introduction

In the past decade, the groundbreaking detections of gravitational waves from binary black
hole mergers by LIGO and Virgo have opened up new avenues for testing general relativity
in the strong field regime [1]. During the ringdown phase of a black hole merger, the
emitted gravitational waves can be described by a superposition of quasinormal modes [2].
Extracting these quasinormal modes from the observed gravitational wave signals allows us
to determine the properties of the remnant black hole, e.g., its mass, charge, and angular
momentum, thus providing a promising tool to test the validity of the Kerr hypothesis [3, 4].
Furthermore, a significant breakthrough in the field of black hole observation was achieved
with the recent release of images of the supermassive black holes M87* and Sgr A* by the
Event Horizon Telescope (EHT) collaboration [5–16]. While the detections of gravitational
waves and the observed black hole images align well with the predictions of Kerr black holes,
it is worth noting that the limitations in observational resolution leave room for exploration
of alternative theories and black hole mimics.

The no-hair theorem asserts that black holes are characterized exclusively by their
mass, electric charge and angular momentum [17–19]. However, various models have
been formulated that give rise to hairy black holes endowed with additional degrees of
freedom, thereby serving as counterexamples to the no-hair theorem [20–29]. One prominent
counterexample is spontaneous scalarization, which typically occurs in models featuring
non-minimal couplings between scalar fields and other fields. These coupling terms serve as
sources that destabilize scalar-free black hole solutions and give rise to the formation of
scalarized hairy black holes.
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Initially explored in the context of scalar-tensor models for neutron stars, spontaneous
scalarization was found when scalar fields are coupled to the Ricci curvature [30]. It was
demonstrated that a coexistence region exists where scalar-free and scalarized neutron star
solutions compete energetically, with the scalarized solutions often exhibiting a preference.
Subsequently, it was discovered that spontaneous scalarization can also manifest in black
hole spacetime in scalar-tensor models, provided that black holes are coupled to non-linear
electrodynamics [31, 32] or surrounded by non-conformally invariant matter [33, 34]. More
recently, the phenomenon of spontaneous scalarization has been investigated in extended
Scalar-Tensor-Gauss-Bonnet (eSTGB) gravity [35–41]. In eSTGB models, the scalar field is
non-minimally coupled to the Gauss-Bonnet curvature correction in the gravitational sector,
which can induce the formation of spinning scalarized black holes [39, 40]. However, the
presence of non-linear curvature terms in the eSTGB models brings numerical challenges in
solving the evolution equations.

To gain a deeper understanding of the dynamical evolution leading to the formation of
scalarized black holes, a technically simpler class of models called Einstein-Maxwell-scalar
(EMS) models has been proposed [42]. These models incorporate non-minimal couplings
between the scalar and Maxwell fields, which introduce tachyonic instabilities capable of
triggering spontaneous scalarization. In [42], fully non-linear numerical simulations in
spherical symmetry demonstrated the evolution of Reissner-Nordström (RN) black holes
into scalarized RN black holes. Subsequent investigations of the EMS models have yielded
a wealth of research findings, e.g., different non-minimal coupling functions [43–45], massive
and self-interacting scalar fields [46, 47], horizonless reflecting stars [48], stability analysis
of scalarized black holes [49–53], higher dimensional scalar-tensor models [54], quasinormal
modes of scalarized black holes [55, 56], two U(1) fields [57], quasitopological electromag-
netism [58], topology and spacetime structure influences [59], scalarized black hole solutions
in the dS/AdS spacetime [60–64], and dynamical scalarization and descalarization [65–67].

Remarkably, scalarized RN black holes have been discovered to exhibit the presence
of multiple photon spheres outside the event horizon in specific parameter regimes [68].
Subsequent investigations have focused on the optical appearances of various phenomena in
the background of scalarized RN black holes, e.g., accretion disks [68, 69], luminous celestial
spheres [70] and infalling stars [71]. These studies have revealed that the existence of an
additional photon sphere significantly increases the flux of observed accretion disk images,
generates triple higher-order images of a luminous celestial sphere, and gives rise to an
additional cascade of flashes from an infalling star. Furthermore, the presence of multiple
photon spheres in a spacetime also suggests the existence of long-lived modes that may
render the spacetime unstable [72–76]. Specifically, it has been shown that the existence of
multiple photon spheres outside the event horizon can induce superradiance instabilities for
charged scalar perturbations [77]. For a more detailed analysis of black holes with multiple
photon spheres, we refer readers to the work [78].

Recently, it has been reported that tachyonic instabilities around Kerr-Newman (KN)
black holes can lead to unstable scalar perturbations in the EMS model, indicating the
existence of scalarized rotating black holes [79]. The aim of this paper is twofold: first,
to numerically construct scalarized rotating black hole solutions in the EMS model; and
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second, to investigate whether scalarized rotating black holes possess multiple light rings.
The rest of the paper is organized as follows. In section 2, we introduce the construction of
scalarized KN black holes in the EMS model and discuss light rings on the equatorial plane.
Subsequently, we present the numerical results for the scalarized black hole solutions and
their light ring structure in section 3. We conclude our main results and provide discussions
in section 4. We set G = c = 4πϵ0 = 1 throughout this paper.

2 Einstein-Maxwell-scalar model

In the EMS model, where a scalar field is non-minimally coupled to electromagnetism, the
background spacetime can become destabilized through a tachyonic instability, leading to
the phenomenon of spontaneous scalarization in black holes. The corresponding action is
described as

S = 1
16π

∫
d4x

√
−g [R − 2∂µϕ∂µϕ − f (ϕ) F µνFµν ] , (2.1)

where ϕ is the scalar field, Fµν = ∂µAν − ∂νAµ denotes the electromagnetic field strength
tensor, and Aµ represents the electromagnetic field. To accommodate scalar-free black hole
solutions with ϕ = 0, the coupling function f (ϕ) must satisfy f ′ (0) ≡ df (ϕ) /dϕ|ϕ=0 = 0.
In this paper, we focus on the specific exponential coupling function denoted as

f (ϕ) = eαϕ2
, (2.2)

where the coupling constant α > 0. It has been observed that this exponential coupling
function (2.2) has the capability to induce tachyonic instabilities in scalar perturbations,
ultimately resulting in spontaneous scalarization in non-rotating charged black holes [42, 43].
In this section, we present the numerical construction of scalarized KN black holes in the
EMS model and investigate null circular geodesics (i.e., light rings) within these scalarized
KN black holes.

2.1 Tachyonic instability

In the scalar-free background, represented by KN black holes, the scalar perturbation δϕ is
governed by the equation (

□− µ2
eff

)
δϕ = 0, (2.3)

where µ2
eff = αF µνFµν/2. In the Boyer-Linquist coordinates, the KN black hole can be

described by

ds2 = −
(
△− a2sin2θ

)
Σ

dt2 − 2asin2θ

(
r2 + a2 −△

)
Σ

dtdϕ

+
((

r2 + a2)2 −△a2sin2θ

Σ

)
sin2θdϕ2 + Σ

△
+ Σdθ2,

A = Qr
(
dt − asin2θdϕ

)
Σ

, (2.4)

where
Σ = r2 + a2r2 cos2 θ and △ = r2 − 2Mr + a2, (2.5)
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Figure 1. In the r sin θ/M − r cos θ/M plane, gray regions denote areas where µ2
eff > 0, while blue

regions indicate µ2
eff < 0. KN black holes are represented by the black regions. The left, middle, and

right panels correspond to a/M = 0.500, 0.700 and 0.866, respectively. As black hole spin increases,
the gray regions with positive µ2

eff gradually emerge and subsequently expand, demonstrating the
alleviation of tachyonic instabilities.

Q is the black hole charge, and a represents the ratio of black hole angular momentum J to
mass M (i.e., a ≡ J/M). Note that KN black holes become extremal when a2 = M2 − Q2.
Moreover, the effective mass square in eq. (2.3) can be expressed as

µ2
eff = −αQ2 (r4 − 6a2r2 cos2 θ + a4 cos4 θ

)
(r2 + a2 cos2 θ)4 . (2.6)

Notably, tachyonic instabilities arise in the presence of a negative effective mass square
µ2

eff < 0, which could induce scalarized black holes from the scalar-free background.
In figure 1, we exhibit the regions characterized by the sign of the effective mass square

µ2
eff in the r sin θ/M − r cos θ/M plane. These regions are displayed for a range of values of

a/M while maintaining Q/M = 0.5. Note that the corresponding extremal value of a/M

is 0.866. In addition, the r sin θ/M − r cos θ/M plane can be viewed as the vertical plane
aligned with the symmetry axis of black holes. The shaded gray areas within the plots
represent regions where µ2

eff > 0. These regions are absent when the black hole spin is
insufficiently large. Following their emergence, the gray regions expand as the parameter
a/M increases, suggesting that higher black hole spin alleviates tachyonic instabilities. As
a result, it raises the possibility that, under a sufficiently large black hole spin, spontaneous
scalarization within KN black holes may cease to occur. When restricted to the equatorial
plane, the effective mass square reduces to µ2

eff = −αQ2/r4, which coincides with the RN
black hole case [42, 63]. In the RN black hole background, it has demonstrated that the
tachyonic instabilities near the black hole event horizon can be strong enough to trigger
spontaneous scalarization. By analogy, we expect similar tachyonic instabilities to induce
scalarized KN black holes from the KN black hole background.

To investigate the onset of spontaneous scalarization in KN black holes, we need to
solve the linear perturbation equation (2.3) for zero-modes δϕ (r, θ). The presence of these
zero-modes often indicates the existence of scalarized black hole solutions. Specifically, the
zero-modes correspond to bifurcation points in the parameter space, marking the onset of
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scalarized KN black holes. In the latter part of this section, we will discuss the numerical
scheme employed to find the zero-modes δϕ (r, θ).

2.2 Rotating black hole solution

The equations of motion for the metric field gµν , the scalar field ϕ and the electromagnetic
field Aµ can be obtained by varying the action (2.1), yielding

Rµν − 1
2Rgµν = 2Tµν ,

□ϕ − α

2 ϕeαϕ2
F µνFµν = 0, (2.7)

∂µ

(√
−geαϕ2

F µν
)

= 0,

where the energy-momentum tensor Tµν is expressed as

Tµν = ∂µϕ∂νϕ − 1
2gµν (∂ϕ)2 + eαϕ2

(
FµρF ρ

ν − 1
4gµνFρσF ρσ

)
. (2.8)

Following [40, 80, 81], we consider stationary, axisymmetric and asymptotically-flat black
hole solutions with the generic ansatz

ds2 = −e2F0Ndt2 + e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ

(
dφ2 − W

r2 dt

)2
,

Aµdxµ =
(

At − Aφ
W

r2 sin θ

)
dt + Aφ sin θdφ and ϕ = ϕ (r, θ) , (2.9)

where N ≡ 1 − rH/r, and rH is the black hole horizon. Here, the metric functions F0, F1,
F2, W , At and Aφ are assumed to depend solely on the coordinates r and θ. By substituting
the ansatz (2.9) into eq. (2.7), we derive a set of nonlinear partial differential equations
for the metric functions. The solutions of the partial differential equations can describe
scalarized KN black holes with a nontrivial profile of the scalar field or KN black holes
with ϕ = 0.

In the stationary spacetime, two Killing vectors ∂t and ∂φ are present, and their
combination ξ = ∂t + ΩH∂φ, where ΩH is the angular velocity of the black hole horizon, is
both orthogonal to and null at the horizon. Consequently, the surface gravity κ is defined as
κ2 = − (∇µξν) (∇µξν) /2, and it is related to the Hawking temperature TH as given in [80]

TH = κ

2π
= 1

4πrH
eF0(rH ,θ)−F1(rH ,θ). (2.10)

In the EMS model, the black hole entropy is expressed as S = AH/4, where the area of the
horizon AH is given by

AH = 2πr2
H

∫ π

0
dθ sin θeF1(rH ,θ)+F2(rH ,θ). (2.11)

Various physical quantities, such as the black hole mass M , the black hole charge Q,
the black hole angular momentum J , the electrostatic potential Φ and the horizon angular
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velocity ΩH , can be determined by studying the asymptotic behavior of the metric functions
at the event horizon and spatial infinity [80, 81],

At|r=rH
∼ 0, W |r=rH

∼ r2
HΩH ,

At|r=∞ ∼ Φ − Q

r
, W |r=∞ ∼ 2J

r
, e2F0N

∣∣∣
r=∞

∼ 1 − 2M

r
. (2.12)

Moreover, these physical quantities are related by the Smarr relation [63, 80, 82]

M = 2THS + 2ΩHJ + ΦQ, (2.13)

which enables us to assess the accuracy of our numerical black hole solutions.

2.3 Light ring

Light rings are null circular geodesics in the black hole spacetime and plays a crucial role in
strong gravitational lensing and in the formation of black hole images. For simplicity, we
focus on light rings on the equatorial plane. On the equatorial plane, the motion of photons
is described by the Lagrangian

L = −e2F0Nṫ2

2 + e2F1

2N
ṙ2 + e2F2r2

2

(
ϕ̇ − W

r2 ṫ

)2
, (2.14)

where dots denote derivatives with respect to an affine parameter λ. The conserved energy
E and angular momentum L of photons, associated with the Killing vectors ∂t and ∂φ,
respectively, are expressed as

E =
(

e2F0N − e2F2 W 2

r2

)
ṫ + e2F2Wφ̇,

L = e2F2
(
r2ϕ̇ − Wṫ

)
. (2.15)

By substituting eq. (2.15) into eq. (2.14), the constancy of the Lagrangian L = 0 reduces to
the radial equation for photons,

ṙ2 + Veff = 0, (2.16)

where Veff ≤ 0 for null geodesics. Here, the effective potential is defined as

Veff = L2e−2F1N

[
e−2F2

r2 − e−2F0

N

(1
b
− W

r2

)2
]

, (2.17)

where b ≡ L/E is the impact parameter. Thus, for a photon with an impact parameter bc,
it would follow a circular orbit at r = rc if Veff (bc, rc) = 0 and ∂rVeff (bc, rc) = 0.

To facilitate further analysis, we can factorize the effective potential Veff as shown
in [83],

Veff = −L2e−2F1−2F0

(1
b
− H+

)(1
b
− H−

)
, (2.18)

where
H+ =

√
e2F0−2F2Nr2 + W

r2 , H− = −
√

e2F0−2F2Nr2 − W

r2 . (2.19)
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Notably, the two redefined effective potentials, H+ and H−, are independent of the impact
parameter and describe prograde and retrograde motion of photons on the equatorial
plane, respectively. For a null geodesic, the effective potentials H+ and H− must satisfy
H+ < b−1 or H− > b−1, where H+ ≥ H−. In particular, a null circular geodesic at r = rc

corresponds to a local extremum of H+ or H−, meaning ∂rH+ (rc) = 0 or ∂rH− (rc) = 0.
Moreover, ∂2

r H+ (rc) > 0 and ∂2
r H+ (rc) < 0 indicate stable and unstable prograde light

rings, respectively, while ∂2
r H− (rc) < 0 and ∂2

r H− (rc) > 0 correspond to stable and unstable
retrograde light rings, respectively. It is worth mentioning that in the static case with
W = 0, light rings can be solely determined by either H+ or H− since H+ = −H−.

2.4 Numerical scheme

In this paper, we utilize pseudospectral methods to numerically solve the linear partial
differential equation (2.3) for zero-modes δϕ (r, θ) and a set of coupled nonlinear partial
differential equations for scalarized KN black holes. Pseudospectral methods are a well-
established approach for solving partial differential equations [84]. They approximate the
exact solution by a finite linear combination of basis functions. Notably, as the number of
degrees-of-freedom increases, pseudospectral methods exhibit an exponential convergence
rate for well-behaved functions, in contrast to the linear or polynomial convergence of
finite difference or finite element methods. Recently, these pseudospectral methods have
demonstrated successful applications in searching for black hole solutions [82, 85, 86], as well
as computing black hole quasinormal modes [87–89]. For technical details of pseudospectral
methods in the context of black hole physics, interested readers can refer to [82].

For the numerical implementation, we introduce a new radial variable given by

x =

√
r2 − r2

H − rH√
r2 − r2

H + rH

, (2.20)

which allows us to map the event horizon and spatial infinity to x = −1 and x = 1,
respectively. By performing series expansions of the solutions at the event horizon, we
obtain the corresponding boundary conditions

∂xδϕ = ∂xF0 = ∂xF1 = ∂xF2 = ∂xϕ = ∂xAφ = At = W − ΩH = 0 at x = −1. (2.21)

Moreover, due to the flatness at the spatial infinity, we have

δϕ = F0 = F1 = F2 = ϕ = Aφ = At − Φ = W = 0 at x = 1. (2.22)

On the other hand, the regularity on the symmetric axis imposes the conditions

∂θδϕ = ∂θF0 = ∂θF1 = ∂θF2 = ∂θϕ = ∂θAφ = ∂θAt = ∂θW = 0 at θ = 0and π. (2.23)

Since all solutions are symmetric with respect to the equatorial plane, we can restrict the
analysis to the upper half domain with 0 ≤ θ ≤ π/2, and hence replace the θ = π boundary
condition in eq. (2.23) with

∂θδϕ = ∂θF0 = ∂θF1 = ∂θF2 = ∂θϕ = ∂θAφ = ∂θAt = ∂θW = 0 at θ = π/2. (2.24)
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Consequently, eqs. (2.21), (2.22), (2.23) and (2.24) serve as boundary conditions for solving
the partial differential equations. Additionally, the absence of conical singularities requires
F1 = F2 on the symmetric axis, which can be used to verify our numerical results as well as
the Smarr relation [40, 80].

With the compactified radial coordinate x, the functions of interest, which are collec-
tively denoted by F = {F0, F1, F2, W, At, Aφ, ϕ, δϕ}, can be decomposed into a
spectral expansion,

F (k) =
Nx−1∑
i=0

Nθ−1∑
j=0

α
(k)
ij Ti (x) cos (2jθ) . (2.25)

Here, Nx and Nθ represent the resolutions in the radial and angular coordinates, respectively,
Ti (x) is the Chebyshev polynomial, and α

(k)
ij are the spectral coefficients. As investigated

in [82], it has been noted that the spectral method for obtaining black hole solutions
demonstrates exponential convergence as the resolution is increased until reaching a roundoff
plateau. In this context, we have conducted tests on our numerical implementation at
various resolutions, and our results indeed confirm this exponential convergence. To ensure
numerical precision and efficiency, we set (Nx, Nθ) = (22, 5) and (Nx, Nθ) = (42, 8) for the
subsequent numerical computations of the zero-modes and the metric functions, respectively.
To determine α

(k)
ij , we substitute the spectral expansions (2.25) into the partial differential

equations and discretize the resulting equations at the Gauss-Chebyshev points. This process
reduces the partial differential equations of F to a finite system of algebraic equations of αij .
We then solve these algebraic equations for αij by a standard iterative Newton-Raphson
method, where the resulting linear system of equations is solved using the built-in command
LinearSolve in Mathematica.

3 Numerical results

In this section, we explore the domain of existence for scalarized KN black hole solutions
and conduct an analysis of the light ring structure. To facilitate our study, we introduce
dimensionless reduced quantities, q ≡ Q/M , χ ≡ a/M and aH ≡ AH/16πM2. In the pursuit
of scalarized KN black holes, we employ the Newton-Raphson algorithm to iteratively refine
our solutions until the corrections between two consecutive iterations fall below the threshold
of 10−10. Throughout our numerical implementation, we estimate the numerical accuracy
of these black hole solutions through two criteria: the absence of conical singularities
(i.e., F1 = F2) and adherence to the Smarr relation (2.13). Our results reveal that these
conditions hold true with a numerical error on the order of 10−10 when the scalarized KN
black hole solutions are sufficiently distant from the critical line. However, as we approach
the critical line, the solutions exhibit a numerical error on the order of 10−8.

3.1 Domain of existence

To determine the existence domain of scalarized KN black holes, we adopt a step-by-step
approach. Initially, we obtain scalarized black hole solutions along the extreme line of KN
black holes by iteratively using the solution from the previous step as the starting values
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Figure 2. Domain of existence for scalarized KN black holes in the q-χ plane, with α = 0.8 (left)
and α = 5 (right), depicted by the regions shaded in light blue. The domain of existence is bounded
by the bifurcation and critical lines. The blue dashed lines represent the bifurcation lines, indicating
the points where scalarized black holes emerge from KN black holes as zero modes. Meanwhile,
the red lines indicate critical configurations of scalarized black holes, characterized by a vanishing
horizon area while the mass and charge remain finite. Interestingly, as the black hole spin increases,
the bifurcation and critical lines approach each other and eventually converge at the critical point C,
illustrating the suppressive effect of rotation on scalarization. KN black holes are situated below the
extreme lines, marked by dashed gray lines, and coexist with scalarized black holes in the regions
lying between the bifurcation and extreme lines. The insets in the left and right panels depict
the reduced horizon area as a function of χ for q = 0.998 scalarized black holes with α = 0.8 and
q = 0.900 scalarized black holes with α = 5, respectively. These insets demonstrate that scalarized
black holes are entropically favored in the coexistence regions.

for Newton-Raphson computations at the current step. This procedure starts with the
scalarized RN black hole solution, where q = 1, and gradually leads to scalarized KN black
hole solutions on the extreme line. In each panel of figure 2, the extreme line is comprised of
approximately 100 discrete scalarized black hole solutions, serving as the initial solutions for
identifying the boundaries of the existence domain. Subsequently, we proceed by varying q

to compute scalarized black hole solutions along χ-constant lines until it becomes unfeasible
to find additional solutions. More precisely, we initiate this process with the scalarized
black hole solutions obtained from the extreme line, systematically scanning solutions with
a fixed χ until no further solutions are found within a q-step of 10−3. Consequently, the
χ-constant lines spanning between the boundaries consist of roughly 30 scalarized black
hole solutions.

In figure 2, the left and right panels present the existence domain of scalarized KN
black holes with α = 0.8 and α = 5, respectively, in the q-χ parameter space. The light blue
region represents the domain where scalarized black holes exist, and it is delimited by the
bifurcation line and the critical line. The bifurcation lines indicate the threshold where the
tachyonic instabilities near the event horizon of scalar-free black holes are strong enough
to trigger the formation of scalarized black holes. Remarkably, our numerical findings
demonstrate that the bifurcation lines coincide perfectly with the zero-mode lines in the
q-χ parameter space. This coincidence is expected since scalarized black hole solutions
originate from the bifurcation lines as zero modes. On the other hand, scalarized black hole
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solutions lying on the critical lines possess a vanishing horizon area, while the black hole
mass M and charge Q remain finite.

Figure 2 demonstrates the occurrence of spontaneous scalarization in the EMS model
for rotating black holes; however, it is suppressed for high spins. Notably, the bifurcation
and critical lines converge and terminate at the critical point C on the extreme line,
setting an upper limit on the spin of scalarized black holes. This observation suggests
that sufficiently large spin values mitigate tachyonic instabilities, thereby impeding the
initiation of spontaneous scalarizations. Moreover, a larger coupling constant α facilitates
the scalarization of KN black holes, leading to an expansion of the existence domain for
scalarized black holes.

Of particular interest is the coexistence region where scalarized and KN black holes
both exist, and this region is delimited by the bifurcation and extreme lines. The inset
in each panel displays that scalarized black holes consistently exhibit a greater reduced
area of the event horizon when compared to KN black holes. This compelling observation
suggests that within the coexistence region, scalarized black holes are entropically favored
over scalar-free black holes. Lastly, it is worth noting that scalarized black holes can be
overcharged in the parameter region lying between the extremal and critical lines.

3.2 Light ring structure

As discussed earlier, the maxima and minima of H+ correspond to unstable and stable
prograde light rings, respectively, while the maxima and minima of H− correspond to stable
and unstable retrograde light rings, respectively. To study the light ring structure on the
equatorial plane, we investigate the extrema of the effective potentials H+ and H− for
scalarized KN black holes. In the upper panel of figure 3, we present the light ring structure
for scalarized black holes with α = 0.8 in the q-χ plane, with a zoomed-in inset providing
more details. When χ = 0, the threshold points A with qA = 1.0463 and B with qB = 1.0492
determine the structure of light rings (or equivalently, photon spheres in the static case) for
scalarized RN black holes. The black lines in the left and right panels of figure 4 represent
the effective potentials of scalarized RN black holes at points A and B, respectively. At the
threshold point A, the effective potential H+ (H−) displays a maximum (minimum) and
an inflection point, which splits into a minimum (maximum) and an additional maximum
(minimum) for q > qA. Consequently, scalarized RN black holes with q > qA possess two
unstable and one stable light rings. On the other hand, at the threshold point B, there are
two potential peaks (well) of the effective potential H+ (H−) with the same height (depth).
For q > qB , the potential peak (well) at the inner light ring is higher (lower) than the one at
the outer ring, indicating that the inner light ring is visible to a distant observer, and thus
plays a significant role in determining the optical appearances of luminous matters [68–71].
Accordingly, light rings at the higher (lower) inner potential peak (well) of H+ (H−) are
referred to as visible inner light rings hereinafter.

As scalarized black holes acquire spin, a single threshold point transforms into two
threshold curves, each associated with prograde and retrograde light rings, respectively. In
figure 3, the resulting four threshold curves are as follows:
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Figure 3. Upper : scalarized black holes exhibit distinct light ring structures in various regions of
the q-χ plane. The boundaries separating these regions are represented by threshold curves, and the
corresponding effective potentials are illustrated in figure 4. Here, we set α = 0.8. Lower : the table
displays the number of unstable and stable light rings for scalarized black holes in the six regions as
shown in the upper panel. The table header “Visible Inner” indicates whether photons originating
from inner light rings can reach a distant observer.

• The I/II curve, represented by the solid gray line, exhibits a maximum and an inflection
point in H+. The left panel of figure 4 provides a typical example of the effective
potentials, depicted by the solid gray lines.

• The II/III curve, shown by the solid purple line, features a minimum and an inflection
point in H−. The left panel of figure 4 illustrates a typical example of the effective
potentials, denoted by the solid purple lines.

• The II1/II2 curve, denoted by the dashed gray line, has two potential peaks of H+ at
the same height. The right panel of figure 4 displays a typical example of the effective
potentials, represented by the dashed grays.

• The III2/III3 curve, indicated by the dashed purple line, involves two potential wells
of H− with the same depth. The right panel of figure 4 shows a typical example of
the effective potentials, depicted by the dashed purple lines.

As a consequence, the four threshold curves partition the domain of existence into
six regions, each corresponding to a distinct light ring structure, as depicted in the upper
panel of figure 3. The light ring properties in these six regions are presented in the lower
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Figure 4. The effective potentials as a function of x for scalarized black holes with α = 0.8 on the
threshold curves. The upper and lower branches of the effective potentials denotes the prograde
potential H+ and the retrograde potential H−, respectively. Left: the effective potentials are
displayed for the black hole with q = 1.0463 and χ = 0 at point A, the one with q = 1.0400 and
χ = 0.0202 on the I/II curve, and the one with q = 1.0475 and χ = 0.0038 on the II/III curve.
Inflection points are marked with colored dots, which transform into a maximum and a minimum as
q increases. Right: the effective potentials are shown for the black hole with q = 1.0492 and χ = 0 at
point B, the one with q = 1.0475 and χ = 0.0044 on the II1/II2 curve, and the one with q = 1.0500
and χ = 0.0021 on the III2/III3 curve. Unstable and stable light rings are represented by red and
blue dots, respectively. The potential peaks or wells at two unstable light rings possess identical
height or depth for H± at point B, H+ on the II1/II2 curve and H− on the III2/III3 curve.

table of figure 3. Additionally, we showcase the effective potentials of representative black
hole solutions in figure 5. Remarkably, our findings indicate that the number of unstable
light rings is always one greater than the number of stable ones, consistent with prior
observations in [90]. Intriguingly, for a given q, a sufficiently high spin can engender multiple
light rings, even from scalarized RN black holes with only one light ring. Lastly, it is worth
noting that prograde photons are more likely to possess multiple light rings compared to
retrograde photons.

4 Conclusions

This paper first presented our numerical construction of scalarized rotating black hole
solutions within the EMS model and explored the parameter regions in which these solutions
exist. The EMS model incorporates a non-minimal coupling between the scalar and
electromagnetic fields, leading to tachyonic instabilities that can trigger the formation of
scalarized KN black holes. Our findings demonstrated that the black hole spin tends to
inhibit the spontaneous scalarization of KN black holes, and scalarized KN black holes
cease to exist beyond a certain threshold spin. Later, we delved into the light ring structure
of scalarized KN black holes. We found that slowly-rotating scalarized black holes with a
small electric charge typically possess one unstable prograde and one unstable retrograde
light rings. However, as scalarized black holes spin faster, two unstable and one stable
prograde light rings can emerge. Additionally, for sufficiently large black hole charge, two
unstable and one stable retrograde light rings can also be observed.
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Figure 5. The effective potentials as a function of x for representative scalarized black hole solutions
with α = 0.8 in the regions characterized by distinct light ring structures. The upper and lower
branches of the effective potentials are denoted as the prograde potential H+ and the retrograde
potential H−, respectively. Red and blue dots represent unstable and stable light rings, respectively.

As previously investigated in [42], it has been established that there exists a critical
coupling constant α = 1/4, below which scalarized RN black holes cannot exist. Similarly,
our numerical computations have not yielded any scalarized KN black hole solutions for
values of α below 1/4. This result aligns with expectations, as the presence of black hole
spin has a suppressive effect on spontaneous scalarization in KN black holes.

Investigating the existence of scalarized black holes with negative coupling constants α

and understanding their formation from scalar-free black holes are promising avenues for
future research. Furthermore, this work has shed light on the intricate behavior of scalarized
rotating black holes within the EMS model. Future studies may explore the stability of
these solutions and investigate their observable signatures, taking advantage of the rich
light ring structure they exhibit. Such investigations will further enhance our understanding
of rotating black holes with multiple light rings and contribute to the broader field of black
hole physics.
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