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1 Introduction

Supersymmetric gauge theories with eight supercharges have played a prominent role
in understanding non-perturbative physics in the strongly coupled regime. One of the
most remarkable achievements in this area can be traced back to the 1990s when Seiberg
and Witten studied the quantum vacuum structures of 4d N = 2 gauge theories [1, 2].
They discovered that the quantum vacua are solely captured by an algebraic curve, and
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the low-energy effective theory is described by a holomorphic function. The curve and
the holomorphic function are now known as the Seiberg-Witten curve (SW-curve) and
prepotential, respectively. The low-energy BPS spectra, with both perturbative and
instanton contributions, of the theories in the far infrared, are encoded in the periods of
the SW-curves. Later on, another breakthrough was provided in [3] where the Seiberg-
Witten prepotential can be presented by a two-parameter generalization known as Nekrasov
partition function, from which the corresponding SW-curve can be re-derived in a thermal
dynamical limit and proven in [4–6]. In this framework, the curve is also interpreted as the
phase space of a codimension-two surface defect of the theory. Along this line, it has been
realized that the SW-curve can be quantized by setting one of the deformation parameters
to zero in the Nekrasov partition function [7]. The quantum curve thus turns out to be
an operator that annihilates the expectation value of the codimension-two defect operator.
The above 4d story can be further extended to 5d and 6d superconformal field theories
(SCFTs) living on R4 × S1 and R4 ×T2 respectively. The algebraic curves are thereby lifted
to hyperbolic and elliptic ones. The elliptic quantum curves are particularly interesting to
study to understand the moduli space of various 6d SCFTs compactified on a torus, and
thus shed new light on their properties.

On the other hand, it has been shown that nontrivial interacting superconformal field
theories (SCFTs) can exist only in spacetimes with a maximum of six dimensions [8]. As a
result, 6d SCFTs can be regarded as the mother theories of all supersymmetric quantum field
theories (QFTs) in lower dimensions that arise from compactification on various manifolds.
For instance, the classification of 5d theories has been explored by compactifying them on a
circle [9–18]. In recent years, significant progress has been made in classifying 6d N = (1, 0)
SCFTs from F-theory compactified on elliptic fibered Calabi-Yau threefolds [19–21]. From
this vast landscape of 6d SCFTs, one can further compactify them to lower dimensional
supersymmetric QFTs and investigate many intriguing non-perturbative properties therein.
A particularly interesting example is the compactifications of 6d N = (2, 0) SCFTs on
Riemann surfaces punctured by codimension two defects, resulting in a wide range of
4d N = 2 theories known as class S theories and their dualities [22–24]. More recently,
the construction is generalized to 6d N = (1, 0) down to 4d N = 1 [25–44], and novel
connections have been established between elliptic quantum difference equations and surface
defects introduced in the 4d theories in terms of their superconformal index [25, 41, 45–47].
Meanwhile, in the context of 6d N = (1, 0) or their corresponding KK theories, it has been
realized that, in the case of rank one 6d theories on the tensor branch with trivial gauge
groups, the elliptic quantum difference equations studied in the 4d setup are precisely the
elliptic quantum SW-curves of the corresponding 6d theories, and the surface defects in 4d
also become a class of important codimension four observables, the Wilson surface defects,
that serve the eigenvalues of the quantum curves [48–50]. Furthermore, the elliptic quantum
curves remarkably bridge another interesting field of mathematical physics, the elliptic
integrable systems, where the quantum curves are identified there as the spectral curves of the
associated integrable systems. Therefore, it naturally motivates us to develop a systematic
approach to study 6d SW-curves from the supersymmetric defects and their partition
functions, and also understand their intriguing connections to the elliptic quantum systems.
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In this paper, we will continue our exploration on 6d Seiberg-Witten curves by investi-
gating the codimension two and four supersymmetric defects and their partition functions
on the tensor branch. We focus on the 6d D-type minimal conformal matters (CM), which
describe the low-energy dynamics of a single M5-brane probing DN+4-type singularity.
These theories are a direct generalization of the E-string theory, as studied in [50]. It also
can be realized as a Sp(N) gauge theory with 2N +8 fundamental flavors on a -1 curve in the
framework of F-theory, where the E-string can be regarded as a “Sp(0)” theory. Therefore
one can Higgs a Sp(N) theory all the way downwards to the E-string, as well as inserting
half-BPS codimension two and four defects in the same fashion of [49–51]. Using the
techniques of localization, one can study the vacua moduli of the 6d theories and compute
their instanton string partition functions in presence of various defects in the Nekrasov’s
Ωϵ1,2-background. In a further Nekrasov-Shatashvili limit ϵ2 → 0, one can establish the
quantum SW-curve, for the D-type minimal CM, that acts on the codimension two defect
partition function served as a wave function Ψinst(x; ϵ1) and generate the codimension four
defect partition function χinst(x; ϵ1) as the eigenvalue of the curve:

Dinst Ψinst(x; ϵ1) = χinst(x; ϵ1)Ψinst(x; ϵ1) , (1.1)

with

Dinst ≡ Y + q2

ϑ1(2x)ϑ1(2x + ϵ1)2ϑ1(2x + 2ϵ1)

∏2N+8
f=1 ϑ1

(
x ± mf + ϵ1

2
)∏N

i=1 ϑ1(x ± αi)ϑ1(x ± αi + ϵ1)
· Y −1 ,

where Y is the difference operator satisfying Y · X = Y · ex = e−ϵ1X · Y . The quantum
curve, or say the difference operator, can be Higgs down to the E-string one. In the classical
limit ϵ1 → 0, it also returns back to the classical SW-curve studied in [52]. Therefore Dinst
is proposed as a quantization of the classical 6d Seiberg-Witten curve for D-type minimal
conformal matters.

In the case of E-string theory, it has been found that its quantum curve can be
remarkably identified as the Hamiltonian of the van Diejen integrable system. Specifically, it
has been shown that the 1-instanton contribution of the Wilson surface defect corresponds
to the 4-theta external potential in the van Diejen operator. Consequently, one would also
expect a relation between the quantum curve of a generic 6d Sp(N) theory and certain
integrable systems. Indeed, in the paper, we will establish a connection between the Sp(N)
quantum curve and a class of elliptic Gainier systems that has been investigated recently
in the integrability community. On the other hand, it is also worth mentioning that the
van Diejen operator and its generalizations have been also studied in the analysis of surface
defects in various 4d N = 1 theories from the compactifications of 6d Sp(N) onto Riemann
surfaces [41, 46, 47]. It would be very interesting to understand if these difference operators
can be introduced in the context of a pure 6d setup, and correspond to what kind of
codimension two and four defects.

Another interesting application of the 6d quantum curve is that one can study its
different deformations under various limits of its parameters. From the physics perspective,
these deformations correspond to triggering RG flows from the 6d SCFTs to a hierarchy of
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5d theories. As a result, one obtains a series of quantum curves, as we dubbed “quantum
curve cascades”, associated with the flowed 5d theories. In the case at hand, when the
6d Sp(N − 1) theory is compactified on a circle, we arrive at the 5d Kaluza-Klein (KK)
theory, which can be effectively described by 5d N = 1 Sp(N) with (2N + 6) fundamental
flavors. By integrating the masses of flavors, the theory can flow to theories with fewer
fundamental flavors. Along this line of flows, we obtain quantum curves for all 5d N = 1
Sp(N) + Nf F theories with Nf ≤ 2N + 5 in section 4. Especially, by properly tuning these
mass parameters, various quantum curves of 5d N = 1 non-Lagrangian theories can be
achieved. We use the example of P2 ∪ F6 [53] to illustrate this point in the subsection 4.6.
In addition, all of the curves serve the quantum version of the classical curves derived from
the brane diagrams for 5d Sp(N) theories in [54, 55].

The paper is organized as follows. In section 2, we will introduce the 6d Sp(N) theory
and its codimension two and four surface defects. Using its brane setups, we compute the
codimension two and four defect partition functions and establish the Sp(N) quantum curve
from them. In section 3, we show that the Sp(N) curve can be identified to an elliptic
Gairnier system. In section 4, we derive the 5d quantum curves for Sp(N) + Nf F theories,
with Nf ≤ (2N +5), the explicit expressions can be found in (4.8), (4.12), (4.14) and (4.17).
Last, appendix A summarizes the definition of theta functions. Appendix B and C collect
the 2-instanton results for partition functions with codimension two and four surface defects
in 6d Sp(N) theory, and Wilson loop expectation values in various 5d Sp(N + 1) theories
with different flavors, respectively.

2 D-type minimal conformal matters

In this section, we will derive the elliptic difference operator which quantizes the Seiberg-
Witten curve of the D-type minimal conformal matters. In the same fashion as [49–51], we
will first discuss how to introduce codimension two and four defects under Ω-background
and compute the partition functions with defects. In the Nekrasov-Shatashivili limit, we
will show how the partition functions with the insertion of codimension two and four
defects are related via a linear elliptic difference equation where the associated elliptic
difference operator gives the quantum Seiberg-Witten curve. The derivation of the quantum
Seiberg-witten curve is a straightforward generalization of [50]. We verify it from direct
instanton computation up to 2-instanton order. Throughout this paper, we will use Z6d

k to
denote the string partition function without defects, while using Z

6d/4d
k (Z6d/2d

k ) to denote
the string partition function with codimension two (codimension four) defects.

2.1 Set-ups

The 6d D-type minimal conformal matters can be obtained by using a single M5-brane to
probe DN singularity. The resulting theories are Sp(N) gauge theories with 2N + 8 flavors
on their tensor branches. They also admit various brane realizations, e.g. D6/O6+-D8-NS5
studied in [56], or D6-D8/O8−-NS5 branes systems in [57]. In accordance with the E-string
theory case [50], we will use the latter one, see figure 1, in type IIA string theory, to
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· · · x6

x7,8,9

NS5

2N D6

k D2

4N + 16 half-D8+O8−

(a)

IIA T2 R4
ϵ1,ϵ2

0 1 2 3 4 5 6 7 8 9
NS5 • • • • • •
D6 • • • • • • •

D8/O8− • • • • • • • • •
D2 • • •

(b)

Figure 1. Type IIA brane setup comprised of D6-D8-NS5 branes in the presence of an orientifold
8-plane leads to a 6d N = (1, 0) Sp(N) gauge theory with 2N + 8 fundamental flavors and one
tensor multiplet. The case with N = 0 is the E-string theory. The addition of D2 branes captures
the dynamics of the self-dual strings.

construct the 6d D-type minimal conformal matters. It also turns out to be important for
the purpose of the ADHM construction in later sections.

One can Higgs a pair of hypermultiplets from Sp(N + 1) down to Sp(N) gauge theory
with 2N +8 flavors. In the brane setup, Higgsing hypermultiplets implies that the D8 brane
and its mirror are moved to infinity. When a D8 brane passes through the NS5 branes,
emergent D6 branes are attached between the D8 and NS5 branes due to the Hanany-Witten
transition. The D6 brane segments on the left and right-hand side of the NS5 brane can
rejoin with each other to form a whole single D6 brane. This D6 brane will be also lifted
away when the D8 brane and its mirror move to infinity, see below,

· · ·
NS5

2N + 2 D6

4N + 20 half-D8+O8−

· · ·
NS5

2N + 2 D6

D8 4N + 16 half-D8+O8−

· · ·
NS5

2N D6

4N + 16 half-D8+O8−D8

,

where the blue line denotes the to-be-moved D6 branes.

Perturbative partition function. For a Sp(N) gauge theory with 2N + 8 hypers

Hm
α = (Y m

α , (Ỹ α
m)†) , with α = 1, . . . , N and m = 1, . . . , 2N + 8 , (2.1)

the U(2N +8) global symmetry is enhanced to SO(4N +16) due to the pseudo-real property
of Sp(N). Since U(2N + 8) ⊂ SO(4N + 16), one can group the meson operators into three
types of representations with respect to U(2N + 8), i.e.

Mmn ≡ JαβY m
α Y n

β , M̃mn ≡ JαβỸ α
mỸ β

n and Nm
n ≡ Y m

α Ỹ α
n , (2.2)

where Jαβ is the anti-symmetric tensor of Sp(N). The operators M, M̃ and N correspond
to the anti-symmetric, complex conjugate anti-symmetric, and adjoint representations of
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U(2N + 8), respectively. Together these three U(2N + 8) representations form the adjoint
representation of SO(4N + 16). Their fugacities are labeled as

Mij : q1q2e−mi−mj , M̃ij : q1q2emi+mj , Nm
n : q1q2e−mi+mj . (2.3)

Therefore, from the field content of the minimal DN conformal matters, one can spell out
their perturbative contributions to the partition function,

Zpert =Zclass PE

− 1 + q1q2
(1− q1)(1− q2)(1− p)

×

 N∑
i<j

(
AiAj + AiA

−1
j +

(
(AiAj)−1 + A−1

i Aj

)
p
)
+

N∑
i=1

(
A2

i + A−2
i p

)
+

√
q1q2

(1− q1)(1− q2)(1− p)

N∑
i=1

(Ai + A−1
i p)

2N+8∑
f=1

(
Mf + M−1

f

) , (2.4)

where PE is the plethystic exponential defined in appendix A, q1,2 = eϵ1,2 , Ai = eαi and
Mf = emf , are the fugacities of Ωϵ1,2-background, Sp(N) gauge multiplet, and hyper
multiplets respectively, p = e2πiτ with τ as the moduli parameter of T2, and all other
terms independent on Ai, e.g. the contribution from tensor multiplet, have been dropped.
In eq. (2.4), we also have applied a flop transition to reverse some of A−1

i → Ai that
corresponds to assigning 1

2 -BPS boundary conditions when compactifying the 6d theory
on S1 to 5d [50]. In addition, the classical contribution to the prepotential, denoted by
Zclass = exp

(
1

ϵ1ϵ2
Fclass

)
, can be computed from the Green-Schwarz term and one-loop

contributions from vector- and hyper-mulplets, which is given by

Fclass =
1
6

N∑
i<j

(αi ± αj)3 + 1
6

N∑
i=1

(2αi)3

− 1
12

N∑
i=1

2N+8∑
j=1

(αi ± mj)3 +
(

ϕ0 +
τ

2

)( N∑
i=1

α2
i −

1
2

2N+8∑
i=1

m2
i

)
+ · · · . (2.5)

The “· · · ” part is irrelevant to our discussion, so we do not list it here. One can check the
Higgsing procedure that was diagrammatically discussed before. The perturbative partition
function of a Sp(N) theory can be obtained via Higgsing from a Sp(N + 1) one. More
concretely, consider the mesonic operator M2N+9,2N+10 in eq. (2.3), with fugacity

M2N+9,2N+10 : q1q2e−m2N+9−m2N+10 = q1q2
M2N+9M2N+10

. (2.6)

The Higgsing is triggered by assigning a non-zero VEV to M as

⟨M⟩ = 1 . (2.7)

It can be achieved by imposing

AN+1 = M , M2N+9 = M
√

q1q2 , M2N+10 =
√

q1q2
M

. (2.8)
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Using the above Higgsing equation, and a further subtraction of the contribution from
Goldstone bosons

ZG.B. = PE

 √
q1q2

(1− q1)(1− q2)(1− p)(M + M−1p)
2N+8∑
f=1

(Mf + M−1
f )

 , (2.9)

one can find the perturbative partition function (2.4) of Sp(N) from Sp(N + 1).

Instanton partition function. On the other hand, from the brane configuration figure 1,
one can also study the instanton string corrections to the Sp(N) partition function, where
the instanton strings are realized in terms of the D2-branes denoted as the red lines. The
world-volume theory on a stack of k D2 branes furnishes the k-th instanton string ADHM
construction [56, 57] in terms of 2d N = (0, 4) O(k) gauge theories with matter contents
and interactions specified by the following quiver diagram

O(k)

Sp(N)

SO(2Nf )sym
with Nf = 2N + 8, (2.10)

where the solid/dashed lines denote 2d hypermultiplets/Fermi multiplets, respectively.
The k-th instanton string correction to the 6d partition function can be computed in

terms of the elliptic genera of the 2d world-volume gauge theories [58, 59].

Z6d
k =

∑
a

1
|Wa|(2πi)r

∮ k∏
i=1

(
2πη2dui

ϑ1(2ϵ+)
iη

) ∏
e∈root

ϑ1(e(u))ϑ1(2ϵ+ + e(u))
−η2

×
∏

ρ∈sym

−η2

ϑ1(ϵ1,2 + ρ(u))
∏

ρ∈fund

 N∏
i=1

2N+8∏
f=1

ϑ1(mf + ρ(u))
η8ϑ1(ϵ+ + ρ(u)± αi)

 , (2.11)

where u, α, and m’s are the fugacities of the 2d gauge, hyper and fermi multiplets respectively,
and we also denote ϵ± ≡ 1

2(ϵ1 ± ϵ2). Here we use a to label disconnected sectors of O(k)
flat connections and Wa is the Weyl group [57]. For illustration, we list here the elliptic
genera of O(2k) in the sector of trivial flat connection,

Z6d
2k, cont. =

∫ k∏
i=1

duiZ
6d
k (u) ≡ 1

2kk!

∫ k∏
i=1

dui

(
η3ϑ1(2ϵ+)

ϑ1(ϵ1)ϑ1(ϵ2)

)k

×
k∏

i=1

−η2

ϑ1(±2ui + ϵ1,2)
∏

1≤i<j≤k

ϑ1(±ui ± uj)ϑ1(±ui ± uj + 2ϵ+)
ϑ1(±ui ± uj + ϵ1)ϑ1(±ui ± uj + ϵ2)

×
k∏

i=1

 1
η8

N∏
j=1

1
ϑ1(±αj ± ui + ϵ+)

2N+8∏
l=1

ϑ1(±ui + ml)

 , (2.12)

where 2kk! is the order of the Weyl group of O(2k). One can check again that, using the
Higgsing eq. (2.8), the contributions in eq. (2.12) from 6d gauge and hyper multiplets give

k∏
i=1

ϑ1(±ui + m2N+10)ϑ1(±ui + m2N+9)
ϑ1(±αN ± ui + ϵ+)

= 1 , (2.13)
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implying that the instanton string contribution for Sp(N + 1) theory can be Higgsed to the
Sp(N) one for continuous sector. It is also true for other discrete sectors that we will not
present here for brevity. The instanton string corrections to the 6d partition function are
obtained by summing up all these k-th elliptic genera,

Z6d
inst = 1 +

∞∑
k=1

qk Z6d
k = 1 +

∞∑
k=1

qk
(
Z6d

k, dis. + Z6d
k, cont.

)
, (2.14)

where q = eϕ0 with ϕ0 being the tensor multiplet fugacity.
Here for later use, we write down the result of the instanton partition function up to

2-instanton. One important but subtle point is that, the contributions in the integrands,
say eq. (2.11) for example, are in fact from real bosons or fermions in the 2d ADHM
construction. Therefore each of them only contributes to a “square root” of ϑ1 function,
see more details in [50, 57]. Accordingly, the “ϑ1” function therein would be appropriately
understood as the product of two “square root” of ϑ1. It turns out to be important when
one evaluates the instanton partition functions for the gauge fugacities “u” taking values of
discrete holonomies of O(k), that we should have

ϑ1(u + z) ≡
√

ϑ1(u + z)ϑ1(−u + z) , for u ∈
{
0,

1
2 ,

τ + 1
2 ,

τ

2

}
, (2.15)

where the variable “z” stands for flavor fugacities, Coulomb moduli and so on.
With these preparations, the 1-instanton partition function is given by summing over 4

discrete holonomies of O(1) ≃ Z2,

Z6d
1 = − 1

2η6ϑ1(ϵ1,2)

4∑
a=1

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa(±αi + ϵ+)
. (2.16)

For the 2-instanton computation, notice that there is a continuous one and 6 discrete
holonomies respect to O(2). We sum over all these contributions and have

Z6d
2 = 1

2Z6d
2, cont. +

1
4

4∑
a=2

Z6d
2(a), dis. , (2.17)

with

Z6d
2, cont. =

1
2η12ϑ1(ϵ1,2)ϑ1(2ϵ1)ϑ1(ϵ2 − ϵ1)

4∑
a=1

( ∏2N+8
f=1 ϑa(mf ± ϵ1/2)∏N

i=1 ϑa(±αi + ϵ+ ± ϵ1/2)
+ (ϵ1 ↔ ϵ2)

)

+
N∑

i=1

(
1

η12ϑ1(ϵ1,2)ϑ1(2αi)ϑ1(2ϵ+ − 2αi)ϑ1(2αi − ϵ1,2)ϑ1(−2αi + 2ϵ+ + ϵ1,2)

×
∏2N+8

f=1 ϑ1(αi ± mf − ϵ+)∏N
j ̸=i ϑ1(αi ± αj)ϑ1(αi ± αj − 2ϵ+)

+ (αi → −αi)
)

, (2.18)

and

Z6d
2(a),dis. =

ϑa(0)ϑa(2ϵ+)
η12ϑ1(ϵ1,2)2 ϑa(ϵ1,2)

( ∏2N+8
f=1 ϑ1(mf )ϑa(mf )∏N

i=1 ϑ1(±αi+ϵ+)ϑa(±αi+ϵ+)
+

2∏
i=1

∏2N+8
f=1 ϑσi(a)(mf )∏N

i=1 ϑσi(a)(±αi+ϵ+)

)
,

(2.19)

where σ = (234) is a permutation.
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Overall, the full 6d Sp(N) partition function can be obtained by collecting both
perturbative and instanton pieces together

Z
Sp(N)
6d = Zpert · Zinst . (2.20)

2.2 Codimension two defect partition function

Now we introduce a codimension two surface defect into the 6d Sp(N) theory. It can be
done by turning on a spacetime dependent VEV to the meson operator of the to-be-Higgsed
hypers in the Sp(N + 1) theory. In the brane picture, one can interpret it as a D4 brane
stretching between the NS5 and the moved D6 branes,

· · ·
NS5

2N + 2 D6

4N + 20 half-D8+O8−

· · ·
NS5

2N + 2 D6

D8 4N + 16 half-D8+O8−

· · ·
NS5

2N D6

4N + 16 half-D8+O8−D8

,

where the red line denotes a D4 brane along directions of x1,2,3,4,7,8. When the D6 brane
goes to infinity, the D4 brane becomes immobilized and serves as a codimension two defect.

At the level of the partition function, the perturbative and instanton partition functions
will both receive modifications. In the Sp(N + 1) theory, we can now assign the following
fugacities,

AN+1 : Mq2 , M2N+9 : Mq2
√

q1q2 , M2N+10 :
√

q1q2
M

, (2.21)

or in exponents

αN+1 = −x + ϵ2 , m2N+9 = −x + ϵ+ + ϵ2 and m2N+10 = x + ϵ+ , (2.22)

where we have introduced the defect parameter X = ex such that M = X−1. It follows
that the VEV of the meson M2N+9,2N+10 in eq. (2.6) has fugacity〈

M2N+9,2N+10
〉
= q−1

2 = e−ϵ2 , (2.23)

which implies that it takes non-zero angular momentum with respect to the Ω-background
parameter ϵ2. We thus have introduced a vortex-like codimension-two defect localized on
the space of x4,5. In the rest of this subsection, we will use eq. (2.22) to compute the
partition function in presence of a codimension two defect.

2.2.1 Perturbative contribution

We now compute the perturbative partition function with a codimension two defect under
the Nekrasov-Shatashvili limit, i.e. ϵ2 → 0 or equivalently q2 → 1. Utilizing a similar
method described in [50] as well as eq. (2.22) to (2.4), we subtract it from ZG.B. and taking
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q2 → 1, we end up with the codimension two defect partition function of the Sp(N) theory

Z
6d/4d
pert (x)

Z
6d/4d
class (x)

= PE

 X−2 − pqX2

(1− q)(1− p) +
N∑

i=1

X−1Ai − pqXA−1
i

(1− q)(1− p)

−
N∑

i=1

qXAi − pX−1A−1
i

(1− q)(1− p) −
2N+8∑
f=1

q
1
2
(
X−1Mf − XM−1

f p
)

(1− q)(1− p)


=

N∏
i=1

2N+8∏
f=1

Γp,q(X−2)Γp,q(X−1Ai)
Γp,q(qXAi)Γp,q(q

1
2 X−1Mf )

, (2.24)

where X = ex is the defect parameter and Γp,q(z) is the elliptic gamma function

Γp,q(z) = PE
[

z − pq/z

(1− q)(1− p)

]
. (2.25)

Hereafter we will write q to refer to q1.
Similarly, we can find the classical contributions to the codim two partition functions is

Z
6d/4d
class (x) = exp

−x

2 + x

ϵ1

 N∑
i=1

αi −
1
2

2N+8∑
f=1

mf + ϕ0 +
τ

2

+ N + 2
2ϵ1

x2

 . (2.26)

2.2.2 Instanton corrections

For the instanton contribution, once again from eq. (2.22), we have

Z4d
k, cont.(x) ≡

k∏
i=1

ϑ1(±ui + m2N+10)ϑ1(±ui + m2N+9)
ϑ1(±αN ± ui + ϵ+)

=
k∏

i=1

ϑ1(±ui + x + ϵ+)
ϑ1(±ui + x + ϵ−)

, (2.27)

in eq. (2.12), where we have shifted x → x − ϵ2
2 . Therefore we have

Z
6d/4d
2k, cont. =

1
2kk!

∫ k∏
i=1

dui

(
η3ϑ1(2ϵ+)

ϑ1(ϵ1)ϑ1(ϵ2)

)k

×
k∏

i=1

−η2

ϑ1(±2ui + ϵ1,2)
∏

1≤i<j≤k

ϑ1(±ui ± uj)ϑ1(±ui ± uj + 2ϵ+)
ϑ1(±ui ± uj + ϵ1)ϑ1(±ui ± uj + ϵ2)

×
k∏

i=1

 N∏
j=1

η4

ϑ1(±αj ± ui + ϵ+)

2N+8∏
l=1

ϑ1(±ui + ml)
−η2

 k∏
i=1

ϑ1(±ui + x + ϵ+)
ϑ1(±ui + x + ϵ−)

=
∫ k∏

i=1
dui Z6d

k (u)Z4d
k, cont.(u, x) , (2.28)

for the continuous sector of the instanton partition function with codim two defects. The
computation is similar for the discontinuous sectors too. Practically, one has to be careful
with the choices of poles in the integrand in presence of the defect contribution, e.g.
Z4d

k, cont.(x). Instead, we will directly calculate the JK-residues for the Sp(N + 1) partition
function without defects, and apply eq. (2.22) to the result therein. Once we obtain the
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defect partition function Z
6d/4d
inst (x; ϵ1, ϵ2), we define the normalized defect partition function

Ψinst(x; ϵ1), when taking the NS-limit, as

Ψinst(x; ϵ1) ≡ lim
ϵ2→0

Z
6d/4d
inst (x; ϵ1, ϵ2)
Z6d

inst(ϵ1, ϵ2)
. (2.29)

One will find that Ψinst(x; ϵ1) serves the wave function of the Sp(N) quantum curve in later
sections.

To have a better sense of the instanton partition function with codim two defects,
we here spell out Ψinst(x; ϵ1)’s one and two-instanton order results. We first compute the
refined defect partition function, and then take the NS-limit. For 1-instanton, one can
directly apply eq. (2.22) to eq. (2.16) and (2.17), and have

Z
6d/4d
1 = − 1

2η6ϑ1(ϵ1,2)
∑

a

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa(±αi + ϵ+)
ϑa(x + ϵ+)
ϑa(x + ϵ−)

. (2.30)

The two-instanton results have been put in appendix B.
Now we take the NS-limit to compute the normalized partition function with a codim

two defect. From eq. (2.29), up to 2-instanton order, we have

Ψinst(x; ϵ1) ≡ 1 + qΨ1(x; ϵ1) + q2 Ψ2(x; ϵ1), (2.31)

where

Ψ1(x; ϵ1) = lim
ϵ2→0

(
Z

6d/4d
1 − Z6d

1

)
, (2.32)

Ψ2(x; ϵ1) = lim
ϵ2→0

(
Z

6d/4d
2 − Z6d

2 − Z6d
1

(
Z

6d/4d
1 − Z6d

1

))
. (2.33)

Explicitly, we have the one-instanton result

Ψ1(x; ϵ1) = − 1
2η6ϑ1(ϵ1)ϑ′

1(0)
∑

a

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa(±αi + ϵ1
2 )

ϑ′
a

(
x + ϵ1

2
)

ϑa
(
x + ϵ1

2
) , (2.34)

and Ψ2(x; ϵ1) can be found in appendix B.

2.3 Wilson surface defect

In this subsection, we will discuss another important non-local supersymmetric observable,
the Wilson surface defect as a codimension four defect in the 6d Sp(N) theory. One can
introduce the codim four defects via a double Higgsing procedure from Sp(N + 2) down to
Sp(N) [50, 60], as we will proceed below.

In eq. (2.3), one may choose the operator M2N+9,2N+10 and M̃2N+11,2N+12 to Higgs
the Sp(N + 2) theory. One assigns them to spacetime dependent VEVs as eq. (2.23) with
fugacities [〈

M2N+9,2N+10
〉]

=
[〈
M̃2N+11,2N+12

〉]
= q−1

2 ≡ e−ϵ2 . (2.35)
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We thus have the following fugacities,

AN+1 = Mq2 , M2N+9 = Mq2
√

q1q2 , M2N+10 =
√

q1q2
M

,

AN+2 = M ′

q2
, M2N+11 = 1

√
q1q2M ′ , M2N+12 = M ′

q2
√

q1q2
, (2.36)

where we have used

M ≡ e−µ and M ′ ≡ e−ν , (2.37)

to parametrize the two codim two defects. To uniquely determine the Wilson surface defect,
one needs to further require

µ + ϵ1 = ν − ϵ1 ≡ x, (2.38)

where x is the fugacity of the Wilson defect. In terms of exponents, we have the following
double Higgsing equation

αN+1 = −x + 2ϵ+ , m2N+9 = −x + 3ϵ+ , m2N+10 = x + ϵ+ − ϵ1,

αN+2 = −x − 2ϵ+ , m2N+11 = x − ϵ+ + ϵ1 , m2N+12 = −x − 3ϵ+ . (2.39)

The double Higgsing can also be illustrated from a brane picture that the two codim
two defects sitting on the NS5 brane can also be with each other. They then are free
to move away, and there is an additional D2 brane stretching between the leaving D4
and NS5 branes. The D2 brane is terminated on another D4 brane spanning x0,1,7,8,9,
denoted as D4′. Pulling the D4′ brane back will annihilate the D2 brane, and finally the
NS5-D6-D8/O8−-D4′ brane configuration gives the 6d/2d coupled system,

· · ·
NS5 2N D6

4N + 16 half-D82D8
/O8−

· · ·
NS5

D2

2N D6

4N + 16 half-D8D4
/O8−

· · ·
NS5

D2

2N D6

4N + 16 half-D8

D4′

/O8−

· · ·
NS5 2N D6

4N + 16 half-D8

D4′

/O8−

Instanton corrections. Applying eq. (2.39) to eq. (2.12), we have an additional term
inserted in the instanton partition function,

Z2d
k, cont.(x) ≡

k∏
i=1

ϑ1(±ui + x ± ϵ−)
ϑ1(±ui + x ± ϵ+)

, (2.40)

regarded as the contribution from the Wilson surface defect. Therefore for the continuous
sector, we have

W
O(2k)
2k, cont.(x) =

∫ k∏
i=1

dui Z6d
k (u)Z2d

k, cont.(u, x) . (2.41)
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We will write down the Wilson surface defect up to 2-instanton. Applying eq. (2.39)
to (2.16) and (2.17), we obtain the one-instanton contribution

W
6d/2d
1 (x; ϵ1, ϵ2) = − 1

2η6ϑ1(ϵ1,2)
∑

a

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa(±αi + ϵ+)
ϑa(x ± ϵ−)
ϑa(x ± ϵ+)

. (2.42)

The two-instanton contribution W
6d/2d
2 (x; ϵ1, ϵ2) can be found in appendix B.

Putting together the full-instanton contributions, we will get the Wilson surface defect
W

6d/2d
inst (x; ϵ1, ϵ2). After taking NS-limit, we also define the normalized Wilson surface

defect as

χinst(x; ϵ1) := lim
ϵ2→0

W
6d/2d
inst (x; ϵ1, ϵ2)
Z6d

inst(ϵ1, ϵ2)
= 1 + qχ1(x; ϵ1) + q2χ2(x; ϵ1) +O(q3) . (2.43)

In particular, the one-instanton contribution is given by

χ1(x; ϵ1) = lim
ϵ2→0

(
W

6d/2d
1 − Z6d

1

)
= − 1

2η6ϑ1(ϵ1)ϑ′
1(0)

4∑
a=1

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa
(
±αi + ϵ1

2
)ϑ∆

a (x) , (2.44)

where ϑ∆
a (x) is defined as (A.6). The two-instanton contribution χ2(x; ϵ1) is given in

appendix B.

2.3.1 Perturbative contribution and poles in Wilson surface defect

In the first part of this subsection, we write down the perturbative part of the Wilson
surface defect partition function.

Wpert = q−1
N∏

i=1

ϑ1(x ± αi)
(iη)2 = q−1

N∏
i=1

θ1(x ± αi) , (2.45)

where the factor q−1 comes from the Green-Schwarz contribution of Sp(N + 2) theory
with the tuning of parameters in the double Higgsing equation (2.39). The second part
in (2.45) comes from open string degrees of freedom between the D4′-D6 branes. Recall
that the Wilson surface and the gauge multiplets are introduced by the D4′ and D6 branes
respectively in the 6d Sp(N) theory. The 2d fermions of the D4′-D6 combine with bosons
of the D2-D6 and fermions of the D2-NS5-D6 form the N = (0, 4) invariant superpotential
in the 2d GLSM [61].

In the rest of this subsection, we examine the pole structures of the Wilson surface
defect,

χ(x; ϵ1) ≡ Wpert(x; ϵ1)χinst(x; ϵ1). (2.46)

Firstly it is worth distinguishing the difference between the Wilson surface expectation
values and the Wilson surface defect we have computed. This point is easily appreciated
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when one compactifies the 6d theory onto a circle and reduces it to a 5d KK theory. In
this picture, all 6d tensors and gauge moduli turn out to be 5d gauge moduli. Therefore
we can equivalently compute the 5d Wilson loop expectations with respect to these gauge
multiplets. The 5d Wilson loop expectations are independent of the defect parameter “x”,
but rather some (q-deformed) characters with respect to the gauge groups. On the other
hand, the Wilson surface defect, or the Wilson loop defect in the 5d perspective, is indeed
x-dependent, and thus has to be regarded as a generating function of the Wilson surface
expectations, i.e.

χ(x; ϵ1) =
∑

n

Wn(ϵ1) · ϑ[n](x) , (2.47)

where Wn(ϵ1) is the q-deformed Wilson surface expectations, and ϑ[n](x) are some basis in
terms of elliptic theta functions with a certain degree.

In [51], for the 6d SO(N) gauge theory, the above decomposition has been checked to
hold up to three-instanton orders. However, for the Sp(N) theory, one subtlety occurs here.
A Coulomb parameter independent part of the one-instanton correction contains nontrivial
poles over the defect parameter x, which should be regarded as a part of the quantum
curve. Such phenomenon happens for E-string theory when we focus on a trivial gauge
group Sp(0), the one-instanton correction has been identified as the 4-theta potential of the
van Diejen integrable system [50]. Therefore, in the Sp(N) theory, after the subtraction of
the x singular part V(x; ϵ1, mi) from the one-instanton partition function, the remaining
holomorphic part shall again have the structure (2.47), that is

χ(x; ϵ1) = V(x) +
∑

n

Wn(ϵ1) · ϑ[n](x) . (2.48)

We expect that Wn(ϵ1) is the expectation value of the Wilson surface operator, which can
be alternatively calculated in the 5d KK theory as the Wilson loop expectation value. A
detail discussion about the decomposition (2.48) can be found in section 2.4

We further want to remark that, in the E-string and M-string case, the Wilson surface
depends only on the Coulomb parameter coming from the tensor multiplet, for there is no
gauge multiplet in the 6d theory, and the 2d fermions raised between D4′-D6 should be
decoupled in the IR. In contrast, for the 6d theories dressed with gauge multiplets, the 2d
fermions from D4′-D6 turn out to be important. In practice, they remove all poles of defect
parameter raised from the gauge fugacities in the Wilson surface defect.

2.4 Sp(N) quantum curve

Since the two important ingredients, the codim two and four defects, have been computed,
we are ready to write down the Sp(N) quantum curve to connect them. The quantum
curve of the simplest Sp(0) theory, or say the E-string, has been derived in [50] from a path
integral approach. It implies that, under the NS-limit, the E-string curve is dominated
only by the continuous sector of its 2d O(k) elliptic genera. One can perform a similar
path integral analysis for the general Sp(N) case, from which we propose their quantized
Seiberg-Witten curve for the instanton part:

DinstΨinst(x; ϵ1) = χinst(x; ϵ1)Ψinst(x; ϵ1) , (2.49)
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with

Dinst ≡ Y + q2

η12ϑ1(2x)ϑ1(2x + ϵ1)2ϑ1(2x + 2ϵ1)

∏2N+8
f=1 ϑ1

(
x ± mf + ϵ1

2
)∏N

i=1 ϑ1(x ± αi)ϑ1(x ± αi + ϵ1)
· Y −1 ,

(2.50)

where Y is the difference operator satisfying

Y X = Y ex = e−ϵ1XY , (2.51)

i.e. it shifts x to x− ϵ1. Obviously, the Sp(N) curve includes the E-string curve as a special
case with N = 0.

We can recast eq. (2.49) as

χinst(x; ϵ1) =
DinstΨinst(x; ϵ1)

Ψinst(x; ϵ1)
, (2.52)

then one can use eq. (2.34), (B.8), (2.44) and (B.9) to honestly check the curve (2.49) is
satisfied up to the 2-instanton order.

Now we collect the perturbative contributions to the quantum curve. From eq. (2.24)
and (2.26), perturbative partition function spells as

Ψpert(x) ≡ Z
6d/4d
pert (x) = Z

6d/4d
class (x)

N∏
i=1

2N+8∏
f=1

Γp,q(X−2)Γp,q(X−1Ai)
Γp,q(qXAi)Γp,q(q

1
2 X−1Mf )

, (2.53)

with

Z
6d/4d
class (x) = exp

−x

2 + x

ϵ1

 N∑
i=1

αi −
1
2

2N+8∑
f=1

mf + ϕ0 +
τ

2

+ N + 2
2ϵ1

x2

 . (2.54)

Acting the shift operator Y , one can find

Y Z
6d/4d
class (x) =

 q
N+3

2
∏2N+8

f=1 M
1
2

f

p
1
2 XN+2∏N

i=1 Ai

q−1

Z
6d/4d
class (x) , (2.55)

and

Y

 N∏
i=1

2N+8∏
f=1

Γp,q(X−2)Γp,q(X−1Ai)
Γp,q(pXAi)Γp,q(p

1
2 X−1Mf )


=

 N∏
i=1

2N+8∏
f=1

[
qX−2] [X−2] [AiX

±1][
q

1
2 Mf X−1

]
 N∏

i=1

2N+8∏
f=1

Γp,q(X−2)Γp,q(X−1Ai)
Γp,q(qXAi)Γp,q(q

1
2 X−1Mf )

, (2.56)

where we have defined the p-theta function

[X] ≡
∞∏

k=0
(1− Xpk)(1− X−1pk+1) = X

1
2 p−

1
12

ϑ1(x)
iη

, (2.57)
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and used the property of the elliptic Gamma function

Γp,q(pX) = [X]Γp,q(X) , or Γp,q(p−1X) = Γp,q(X)
[p−1X] . (2.58)

Therefore overall, combining eq. (2.55) and (2.56), and further using eq. (2.57), we arrive at

Y Ψpert(x) =
(
q−1 ϑ1(2x − ϵ1)ϑ1(2x)

∏N
i=1 ϑ1(±x + αi)

−η−6∏2N+8
f=1 ϑ1

(
x − mf − ϵ1

2
) )

Ψpert(x), (2.59)

or equivalently,

Y −1Ψpert(x) =
(
q

−η−6∏2N+8
f=1 ϑ1

(
x − mf + ϵ1

2
)

ϑ1(2x + ϵ1)ϑ1(2x + 2ϵ1)
∏N

i ϑ1(±(x + ϵ1) + αi)

)
Ψpert(x). (2.60)

Now we look at the full codimension two defect partition function

Ψ(x; ϵ1) ≡ Ψpert(x)Ψinst(x; ϵ1) . (2.61)

Assembling to the difference equation satisfied by the instanton piece (2.49), we have

DfullΨ(x; ϵ1) = χinst(x; ϵ1)Ψ(x; ϵ1), (2.62)

with

Dfull ≡ q
−η−6∏2N+8

f=1 ϑ1
(
x − mf − ϵ1

2
)

ϑ1(2x − ϵ1)ϑ1(2x)
∏N

i=1 ϑ1(±x + αi)
Y

+ q
−η−6∏2N+8

f=1 ϑ1
(
x + mf + ϵ1

2
)

ϑ1(2x)ϑ1(2x + ϵ1)
∏N

i=1 ϑ1(±x + αi)
Y −1 . (2.63)

Notice that, because both ϑa and η have modular weight 1
2 , the difference operator Dfull

thus has modular weight 0. For later convenience, we introduce weight 0 theta function

θa(x) ≡
ϑa(x)

iη
, (2.64)

to simplify our expressions. Recall further from eq. (2.45) that

Wpert(x) = q−1
N∏

i=1

ϑ1(x ± αi)
(iη)2 = q−1

N∏
i=1

θ1(x ± αi) . (2.65)

We therefore multiply the difference equation by Wpert(x), and rewrite it as1

DSp(N)Ψ(x) ≡
(
V (x)Y + V (−x)Y −1 + χ(x)

)
Ψ(x) = 0 , (2.66)

1We have re-defined the wave-function by an additional phase factor e
Nπi x

ϵ1 , so that e
−Nπi x

ϵ1 Y ·eNπi x
ϵ1 =

(−1)N , to absorb the unwanted factor (−1)N in DSp(N).
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where we have defined

V (x) ≡ Wpert(x) ·
(
q

−η−6∏2N+8
f=1 ϑ1

(
x − mf − ϵ1

2
)

ϑ1(2x − ϵ1)ϑ1(2x)
∏N

i=1 ϑ1(x ± αi)

)
=
∏2N+8

f=1 θ1
(
x − mf − ϵ1

2
)

θ1(2x)θ1(2x − ϵ1)
,

(2.67)

and

χ(x) = −Wpert × χinst(x; ϵ1)

= 1
2θ1(ϵ1)θ′1(0)

4∑
a=1

N∏
i=1

2N+8∏
f=1

θ1(x ± αi)θa(mf )
θa(±αi + ϵ1/2)

(
θ′a
(
x − ϵ1

2
)

θa
(
x − ϵ1

2
) − θ′a

(
x + ϵ1

2
)

θa
(
x + ϵ1

2
))+ E(x) ,

(2.68)

is the perturbative and one-instanton correction to the Wilson surface defect. E(x) is the
rest part of the Wilson surface defect. Note that we can express DSp(N) using ϑa instead of
θa if we multiply by an overall η2N+6.

We claim that χ(x) can be further rewritten into the following form

χ(x) = V(x) +
N∑

k=0
Wk(αi) vk(x), (2.69)

where vk(x) for k = 0, 1, · · · , N is a basis for the even holomorphic theta functions of degree
2N . Here V(x) is the singular part given by meromorphic theta functions in x of degree 2N

and it is independent of αi, and the rest of parts are regular with the coefficients Wk(αi)
giving the vacuum expectation values of Wilson surfaces.

For this purpose, we will use two sets of useful theta/elliptic function identities summa-
rized in appendix A. We can find2

V(x) = 1
2

4∑
b=1

∏2N+8
f=1 θb(mf )

∏N
i=0(−1)ei,b

θai (x)2

θci ( ϵ1
2 )2

θb(x ± ϵ1
2 )

, (2.70)

with

ei,b =

αa0,b, for i = 0,

βci,b, for i ̸= 0.
(2.71)

For the regular part, we can apply the identities (A.11) repeatedly until it can be expressed
as an expansion using a chosen basis, such as vk(x) = θa(x)2kθb(x)2N−2k, where a ̸= b.

In the following, we explicitly present the N = 1 case to illustrate the result. We will
simply write α1 as α. We will use the basis with v1(x) = θ1(x)2 and v2(x) = θ4(x)2. The
singular part is given by

V(x) =
4∑

b=1
(−1)δb,3

∏2N+8
f=1 θb(mf )

2θc( ϵ1
2 )2θc′( ϵ1

2 )2
θa(x)2θa′(x)2

θb(x ± ϵ1
2 )

=
∏2N+8

f=1 θ1(mf )
2θ4( ϵ1

2 )4
θ4(x)4

θ1(x ± ϵ1
2 )

+
4∑

b=2
(−1)δb,3

∏2N+8
f=1 θb(mf )
2θb( ϵ1

2 )4
θ1(x)4

θb(x ± ϵ1
2 )

, (2.72)

2The singular part of the E-string curve presented in [50] can be written in the same form if one does the
same operation here.
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where we made the choice such that a = a1 = 4, c = c1 = 4 for b = 1, and a = a1 = 1,
c = c1 = b for b ̸= 1.

We also have the one-instanton contribution

W1 = −
∏2N+8

f=1 θ1(mf )
θ4( ϵ1

2 )4
θ4(α)2

θ1(±α + ϵ1
2 )

θ′4( ϵ1
2 )θ4( ϵ1

2 )
3

θ1(ϵ)θ′1(0)θ4(0)2

+
4∑

b=2

∏2N+8
f=1 θb(mf )
2θb( ϵ1

2 )4

(
− 2

θ′b(
ϵ1
2 )θb( ϵ1

2 )
ϑ1(ϵ)θ′1(0)

− (−1)δb,3
θ1(α)2

θb(±α + ϵ1
2 )

+ 2 θ1(α)2

θb(±α + ϵ1
2 )

θ′b(
ϵ1
2 )θb( ϵ1

2 )θc( ϵ1
2 )

2

θ1(ϵ)θ′1(0)θ4(0)2

)
, (2.73)

W2 =
∏2N+8

f=1 θ1(mf )
2θ4( ϵ1

2 )4

(
−2

θ′4( ϵ1
2 )θ4( ϵ1

2 )
θ1(ϵ)θ′1(0)

+ θ4(α)2

θ1(±α + ϵ1
2 )

+ 2 θ4(α)2

θ1(±α + ϵ1
2 )

θ′4( ϵ1
2 )θ4( ϵ1

2 )θ1( ϵ1
2 )

2

θ1(ϵ)θ′1(0)θ4(0)2

)

−
4∑

b=2

∏2N+8
f=1 θb(mf )

θb( ϵ1
2 )4

θ1(α)2

θb(±α + ϵ1
2 )

θ′b(
ϵ1
2 )θb( ϵ1

2 )
3

θ1(ϵ)θ′1(0)θ4(0)2 , (2.74)

where the supercript c appered in W1 satisfies ωc = ωb + ω4 (mod Z+ τZ).

3 Sp(N) quantum curve as an elliptic Garnier system

3.1 Elliptic Garnier system

In the proceeding section, we obtained the elliptic difference equation (2.66) which quantizes
the Seiberg-Witten curves of the 4d KK theory that come from 6d D-type minimal conformal
theory on the torus. It is desirable to identify explicit integrable models whose phase spaces
describe the Coulomb branches of our theories. In case such integrable models admit Lax
representations, we can obtain the spectral curve as well as its quantization. Here the
quantized spectral curve will be the analog of Opers that appear in the Hitchin moduli
spaces [62]. In this paper, we claim that the underlying integrable models are given by the
elliptic Garnier systems which has been studied in the math literature [63, 64]. There are
two different Lax representations provided in these papers and their equivalence is not easy
to establish. As we will see, the quantum curve derived from the Lax presentation given in
Yamada’s paper matches exactly with ours, following the method in [65].

Now we follow [65] to rewrite the Lax equation of the elliptic Garnier system in the
formalism of quantum curves we derived in previous sections. Before proceeding, let us first
clarify the notations. The torus moduli parameter τ , Ω-background deformation ϵ1, defect
parameter x, and mass parameter mf in the context of Garnier models are given by

τ = −ia+ , ϵ1 = −2πa− , x = log z + π(a+ + a−) , mf = −2πγf , (3.1)
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or in exponential form

p ≡ e2πiτ = e−2πa+ , q ≡ eϵ1 = e−2πa− ,

z = e(x−π(a++a−)) = X
√

pq , Mf = emf = e−2πγf . (3.2)

In addition, we introduce the following function Rp(X) for convenience

Rp(X) ≡
∞∏

n=1
(1− Xpn− 1

2 )(1− X−1pn− 1
2 ) = [√pX] , (3.3)

where [ · ] is the p-theta function defined in eq. (2.57).

Shift part. Now we follow [65] to spell out the Lax equation in the Garnier models,

W−(z)y(z/q) + W+(z)y(qz)− R(z)y(z) = 0 , (3.4)

where

W−(z) ≡ A(k/z)B(z)F (qz)[k/q2z2],
W+(z) ≡ A(qz)B(k/z)F (z)[k/z2], (3.5)

with3

A(z) ≡
N+4∏
j=1

[z/aj ] , B(z) ≡
N+4∏
j=1

[z/bj ] , F (z) ≡ Cz
N+1∏
j=1

[z/λj ][k/zλj ]. (3.6)

We further follow the parametrizations in [65] that

ai = qMi , bi = qMN+4+i , k = pq2 , and λi = qνi , (3.7)

to rewrite the above equation in terms of Rp(X). Notice that

W−(z) =
N+4∏
j=1

Rp(XMjq−1/2)Rp(XM−1
N+1+jq−1/2)

× CQ1/2q3/2XRp(X2qQ1/2)
N+1∏
j=1

Rp(Xν±1
i q1/2),

W+(z) =
N+4∏
j=1

Rp(XM−1
j q1/2)Rp(XMN+1+jq1/2)

× CQ1/2q1/2XRp(X2q−1Q1/2)
N+1∏
j=1

Rp(Xν±1
i q−1/2) . (3.8)

3The “N” in A(z), B(z) and F (z) defined in [65] has been shifted to “N + 3” in according with the
Sp(N) curve.
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Now define an additional function

D(z) ≡ Cp−1q−1z3[k/z2][k/qz2][k/q2z2]
N+1∏
j=1

[z/λj ][k/qzλj ]

= Cp1/2q1/2X3Rp(X2q1/2)Rp(X2p±1q1/2)
N+1∏
j=1

Rp(Xνiq
1/2)Rp(Xν−1

i q−1/2) . (3.9)

Therefore we have

W−(z)
D(z) = qX−2

N+1∏
j=1

Rp(Xν−1
i q1/2)

Rp(Xν−1
i q−1/2)

×
∏N+4

j=1 Rp(XMjq−1/2)Rp(XM−1
N+4+jq−1/2)

Rp(X2p1/2)Rp(X2q−1p1/2)
,

W+(z)
D(z) = X−2

N+1∏
j=1

Rp(Xνiq
−1/2)

Rp(Xνiq1/2)
×
∏N+4

j=1 Rp(XM−1
j q1/2)Rp(XMN+4+jq1/2)

Rp(X2p1/2)Rp(X2qp1/2)
. (3.10)

Now we assign {νj} equal to the last N + 1 {Mj}, i.e.

νj = MN+7+j , for j = 1, . . . , N + 1 (3.11)

to cancel Rp(Xν−1
i q−1/2) with Rp(XM−1

N+7+i q−1/2) in W−(z)
D(z) , and Rp(Xνiq

1/2) with
Rp(XMN+7+i q1/2) in W+(z)

D(z) , and further shift

MN+7+j −→ qMN+7+j , for j = 1, . . . , N + 1 . (3.12)

Therefore we have

W−(z)
D(z) = qX−2

∏N+4
j=1 Rp(XMjq−1/2)Rp(XM−1

N+4+jq−1/2)
Rp(X2p1/2)Rp(X2q−1p1/2)

≡ qX−2Ṽ (x),

W+(z)
D(z) = X−2

∏N+4
j=1 Rp(XM−1

j q1/2)Rp(XMN+4+jq1/2)
Rp(X2p1/2)Rp(X2qp1/2)

= qX2
∏N+4

j=1 Rp(X−1Mjq−1/2)Rp(X−1M−1
N+4+jq−1/2)

Rp(X−2p1/2)Rp(X−2q−1p1/2)
= qX2Ṽ (−x) . (3.13)

where we have applied the even and quasi τ -periodic properties of Rp(x), i.e.

Rp(X−1) = Rp(X) , and Rp(Xp−1/2) = −XRp(Xp1/2) . (3.14)

With a similar transformation noticed in [65],

g(x) = Rq(Xq−1/2)Rq(Xq1/2)
N+4∏
j=1

Γp,q(XMjq1/2p1/2)
Γp,q(XM−1

j q1/2p1/2)
, (3.15)

one can show that

g(x)−1Y ·g(x)= q−1X2
N+4∏
j=1

[XM−1
j q−1/2p1/2]

[XMjq−1/2p1/2]
·Y = q−1X2

N+4∏
j=1

Rp(XM−1
j q−1/2)

Rp(XMjq−1/2)
·Y,

g(x)−1 ·Y −1 ·g(x)= q−1X−2
N+4∏
j=1

[XMjq1/2p1/2]
[XM−1

j q1/2p1/2]
·Y −1 = q−1X−2

N+4∏
j=1

Rp(XMjq1/2)
Rp(XM−1

j q1/2)
·Y −1,

(3.16)
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where the q-shift operator Y is defined as

Y : X −→ q−1X , or x −→ x − ϵ1 , (3.17)

and we also used the property of the elliptic Gamma function

Γp,q(qX) = [X] Γp,q(X) , or Γp,q(q−1X) = Γp,q(X)
[q−1X] . (3.18)

Therefore the shifted part of the Lax equation,

Dshift ≡
W−(z)
D(z) · Y + W+(z)

D(z) · Y −1 , (3.19)

in the Garnier models can be recast via the gauge transformation g(x) as

Dshift −→ g(x)−1 · Dshift · g(x) = VNRY(x) · Y + VNRY(−x) · Y −1 , (3.20)

with

VNRY(x) ≡
∏2N+8

j=1 Rp(XM−1
j q−1/2)

Rp(X2p1/2)Rp(X2q−1p1/2)
, (3.21)

where VNRY(x) generalizes the result in [65].

Additive part. Now we turn to the additive part of the difference operator in the Garnier
models,

Dadd ≡ −R(z)
D(z) . (3.22)

Since this piece is only a function, the previous gauge transformation g(x) keep it intact.
Notice that

R(z) = S1(z) + S2(z) + S3(z) , (3.23)

where

S1(z) ≡ U(z)F (qz)G(k/z)[k/q2z2]/G(z) ,

S2(z) ≡ U(k/qz)F (z)G(qz)[k/z2]/G(k/qz) ,

S3(z) ≡ −F (z)F (qz)F (z)[k/z2][k/qz2][k/q2z2]/G(z)G(k/qz) , (3.24)

with

G(z) ≡ z
N+2∏
j=1

[z/ξj ] , and
N+2∏

j

ξj = l , k2l2 = q
N+4∏
j=1

ajbj . (3.25)
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With these preparations, we rewrite Si(z) in terms of function Rp(x). First for S1(z), we
have

U(z) = A(z)B(z) =
2N+8∏
j=1

Rp(XM−1
j q−1/2) ,

F (qz) = Cqz
N+1∏
j=1

[qz/λj ][pq/zλj ] = Cp1/2q3/2X
N+1∏
j=1

Rp(Xν±1
j q1/2) ,

G(z) = z
N+2∏
j=1

[z/ξi] = p1/2q1/2X
N+2∏
j=1

Rp(Xα−1
j q−1/2) ,

G(k/z) = k/z
N+21∏
j=1

[k/zξi] = p1/2q3/2X−1
N+2∏
j=1

Rp(Xαjq−1/2) , (3.26)

where we have defined

ξj = qαj . (3.27)

Therefore

S1(z) = Cp1/2q5/2X−1Rp(X2qp1/2)
2N+8∏
j=1

Rp(XM−1
j q−1/2)

×
N+1∏
j=1

Rp(Xν±1
j q1/2)×

N+2∏
j=1

Rp(Xαjq−1/2)
Rp(Xα−1

j q−1/2)
, (3.28)

and

E(x) ≡ S1(z)
D(z) = q2X−4

N−2∏
j=1

Rp(Xν−1
j q1/2)

Rp(Xν−1
j q−1/2)

×
∏2N+2

j=1 Rp(XM−1
j q−1/2)

Rp(X2p1/2)Rp(X2q−1p1/2)

×
N−1∏
j=1

Rp(Xαjq−1/2)
Rp(Xα−1

j q−1/2)
. (3.29)

Similarly for S2(z), we have

U(k/qz) =
2N+8∏
j=1

Rp(XMjq1/2) ,

F (z) = Cp1/2q1/2X
N+1∏
j=1

Rp(Xν±1
j q−1/2) ,

G(qz) = p1/2q3/2X
N+2∏
j=1

Rp(Xα−1
j q1/2) ,

G(k/qz) = p1/2q1/2X−1
N+2∏
j=1

Rp(Xαjq1/2) . (3.30)
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Therefore

S2(z) = Cp1/2q3/2X3Rp(X2q−1p1/2)

×
2N+8∏
j=1

Rp(XMjq1/2)
N+1∏
j=1

Rp(Xν±1
j q−1/2)

N+2∏
j=1

Rp(Xα−1
j q1/2)

Rp(Xαjq1/2)
, (3.31)

and

S2(z)
D(z) = q

N+1∏
j=1

Rp(Xνjq−1/2)
Rp(Xνjq1/2) ×

∏2N+8
j=1 Rp(XMjq1/2)

Rp(X2p1/2)Rp(X2qp1/2)×
N+2∏
j=1

Rp(Xα−1
j q1/2)

Rp(Xαjq1/2)

= q2X4
N+1∏
j=1

Rp(X−1ν−1
j q1/2)

Rp(X−1ν−1
j q−1/2)

×
∏2N+8

j=1 Rp(X−1M−1
j q−1/2)

Rp(X−2p1/2)Rp(X−2q−1p1/2)×
N+2∏
j=1

Rp(X−1αjq−1/2)
Rp(X−1α−1

j q−1/2)

=E(−x) . (3.32)

At last, we spell out the third piece of R(z)/D(z),

Ve(x) ≡
S3(z)
D(z) = CCq

∏N+1
j=1 Rp(X±1MN+7+jq−1/2)Rp(X±1MN+7+jq−1/2)∏N+2

j=1 Rp(X±1αjq1/2)
. (3.33)

Now we turn to discuss the poles in E(x) + E(−x) + Ve(x). Recall (3.11) and (3.12),
we simplify E(x) as

E(x) = q2X−4
∏2N+8

j=1 Rp(XM−1
j q−1/2)

Rp(X2p1/2)Rp(X2q−1p1/2)
×

N+2∏
j=1

Rp(Xαjq−1/2)
Rp(Xα−1

j q−1/2)
. (3.34)

We are aiming to show E(x) is a theta function of degree 2N . Notice that

E(Xp−1/2)
E(Xp1/2)

= p4 X2N+8q−N−4∏2N+8
j=1 M−1

j

X8p2q−2 ×
N+2∏

j

α2
j = p2q−N−2X2N

∏N+2
j=1 α2

j∏2N+8
j=1 Mj

. (3.35)

Further using the constraint (3.25), we have

N+2∏
j=1

α2
j = q−2(N+2)l2 = p−2q−4q−2(N+2)q2N+9qN+1

2N+8∏
j=1

Mj = p−2qN+2
2N+8∏
j=1

Mj , (3.36)

where the additional qN+1 in the second equality is due to the shift of N +1 number of Mj ,
see (3.12). Therefore we have

E(Xp−1/2)
E(Xp1/2)

= X2N . (3.37)

Now we compute the residues of E(x) at poles at

xa = ϵ1
2 − ua , (3.38)
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where ua = {0, 1
2 , τ+1

2 , τ
2}.

ρ1 ≡ResE(x)|x=x1 =
∏2N+8

j=1 Rp(Mj)
4πiκ2Rp(qp1/2) =

∏2N+8
j=1 ϑ4(µj)

4πiκ2N+9ϑ4(ϵ1+ τ
2 ) ,

ρ2 ≡ResE(x)|x=x2 =
∏2N+8

j=1 Rp(−Mj)
4πiκ2Rp(qp1/2) =

∏2N+8
j=1 ϑ3(µj)

4πiκ2N+9ϑ4(ϵ1+ τ
2 ) ,

ρ3 ≡ResE(x)|x=x3 =−
p2∏2N+8

j=1 Rp(−Mjp1/2)
4πiκ2Rp(qp−1/2)

N+2∏
j=1

Rp(−αjp−1/2)
Rp(−αjp1/2) =

p−N/4qN/2∏2N+8
j=1 ϑ2(µj)

4πiκ2N+9ϑ4(ϵ1+τ/2) ,

ρ4 ≡ResE(x)|x=x4 =−
p2∏2N+8

j=1 Rp(Mjp1/2)
4πiκ2Rp(qp−1/2)

N+2∏
j=1

Rp(αjp−1/2)
Rp(αjp1/2) =

p−N/4qN/2∏2N+8
j=1 ϑ1(µj)

4πiκ2N+9ϑ4(ϵ1+τ/2) , (3.39)

where κ ≡
∏∞

n=1(1 − pn). Notice that the additional factor p−N/4qN/2 is due to the
quasi-perodicity (3.37). Similarly, for the residues of E(−x) at poles of

x = −xa = −ϵ1
2 + ua , (3.40)

we have

ResE(−x)|x=−xa = −ρa . (3.41)

It’s also worth mentioning that, for the poles in Rp(X2p±1/2) in E(±x), the residues are
canceled due to the evenness of E(x) + E(−x). There are also no poles in Ve(x) as argued
in [65].

3.2 Sp(N) quantum curves

Now we turn to discuss the Sp(N) quantum curves. We aim to show the equivalence of
the Sp(N) quantum curves and the Lax equation of the Garnier system (3.4) discussed in
previous section.

Additive part. We aim to identify the additive part in the Sp(N) quantum curves by
examining the residues of the singular part in the Sp(N) quantum curves and comparing
them with the residues of the additive part in the elliptic Garnier system. Recall that the
analogous additive part in the Sp(N) quantum curves is given by the singular part V(x) of
the whole codimension four defect partition function, which is a singular part of the product
of the perturbative contribution and the one-instanton correction to the normalized Wilson
surface defect. As a result, the residues of the singular part are contributed by the residues of

χ̃(x) = Wpert × qχ1 , (3.42)

where from eq. (2.45) and (2.44)

Wpert = q−1
N∏

i=1

ϑ1(x ± αi)
iη

,

χ1 = − 1
2η6ϑ1(ϵ1)ϑ′

1(0)
∑

a

∏2N+8
f=1 ϑa(mf )∏N

i=1 ϑa
(
±αi + ϵ1

2
)ϑ∆

a (x) . (3.43)

– 24 –



J
H
E
P
1
0
(
2
0
2
3
)
0
4
5

The product of the two parts is independent of the tensor fugacity q; thus, we will omit the
tensor fugacity in the following calculations, as long as doing so does not cause any confusion.
For further comparison to the Lax equation in the Garnier systems, we assign mf as

mf = µf + τ

2 . (3.44)

With this parametrization, we have

χ1 = −
(−1)N p−(N+4)/4∏2N+8

f=1 M
−1/2
f

2η6ϑ′
1(0)ϑ1(ϵ1)

4∑
a=1

∏2N+8
f=1 ϑσ(a)(µf )∏N

i=1 ϑa(±αi + ϵ1/2)
· ϑ∆

a (x)

=
(−1)N p−(N+6)/4q−1/2∏2N+8

f=1 M
−1/2
f

4πiκ9ϑ4(ϵ1 + τ/2)

4∑
a=1

∏2N+8
f=1 ϑσ(a)(µf )∏N

i=1 ϑa(±αi + ϵ1/2)
· ϑ∆

a (x) (3.45)

where σ = (14)(23) permuting the set {1, 2, 3, 4}. In addition, recall the perturbative piece

Wpert =
N∏

i=1

ϑ1(x ± αi)
iη

= (−1)N p−N/12

κ2N

N∏
i=1

ϑ1(x ± αi) . (3.46)

Overall, we have

χ̃(x) = C ×
∏N

i=1 ϑ1(x ± αi)
4πiκ2N+9ϑ4(ϵ1 + τ/2)

4∑
a=1

∏2N+8
f=1 ϑσ(a)(µf )∏N

i=1 ϑa(±αi + ϵ1/2)
· ϑ∆

a (x) , (3.47)

with the constant

C = p−(2N+9)/6q−1/2
2N+8∏
f=1

M
−1/2
f . (3.48)

Let us study the poles of χ(x) and the corresponding residues. Notice that all poles in χ(x)
are from the term ϑ∆

I (x), which are

xa = ϵ1
2 − ua , (3.49)

in the toric lattice. The residue of ϑ∆
a (x) is precisely

Resϑ∆
a (x)|x=±xb

= ±δab . (3.50)

Furthermore, the perturbative contribution Wpert is given by
∏N

i=1 ϑ1(x ± αi) in χ(x)

N∏
i=1

ϑ1(x ± αi)
∣∣∣
x=±x1

=
N∏

i=1
ϑ1(±αi + ϵ1/2) ,

N∏
i=1

ϑ1(x ± αi)
∣∣∣
x=±x2

=
N∏

i=1
ϑ2(±αi + ϵ1/2) ,

N∏
i=1

ϑ1(x ± αi)
∣∣∣
x=±x3

= p−N/4qN/2
N∏

i=1
ϑ3(±αi + ϵ1/2) ,

N∏
i=1

ϑ1(x ± αi)
∣∣∣
x=±x4

= (−1)N p−N/4qN/2
N∏

i=1
ϑ4(±αi + ϵ1/2) , (3.51)
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where there is an unwanted factor (−1)N in the last equation. It can be absorbed by shifting
N mass parameter µf → −µf and the odd property of ϑ1 in the instanton piece. With this
redefinition and applying (3.50) and (3.51), one can honestly find, beside the prefactor C, that

C−1 × Res χ̃(x)
∣∣∣
x=±xa

= ±ρa , (3.52)

where ρa are given by (3.39). Moreover the quasi-elliptic property of χ(x) is precisely

χ̃(x − τ/2)
χ̃(x + τ/2) = X2N . (3.53)

Therefore we claim that C−1χ̃(x) and E(x) + E(−x) + Ve(x) have same poles with same
residues.

Shift part. Now we come to the shift part of the Sp(N) quantum curve. Recall that the
shift part is given by eq. (2.66) with

V (x) =
2N+8∏
f=1

θ1(x − mf − ϵ1/2)
θ1(2x)θ1(2x − ϵ1)

= −(−1)N

η2N+6

2N+8∏
f=1

ϑ1(x − mf − ϵ1/2)
ϑ1(2x)ϑ1(2x − ϵ1)

. (3.54)

Applying (3.44) to V (x), one can recast it in terms of Rp(x) as

V (x) = C × q−(N+1)/2XN+2
∏2N+2

j=1 Rp(XM−1
j q−1/2)

Rp(X2p1/2)Rp(X2q−1p1/2)
= C × q−(N+2)/2XN+2 · VNRY(x) .

(3.55)

Similarly, for V (−x), we have

V (−x) = C × q−(N+2)/2X−(N+2) · VNRY(−x) . (3.56)

Notice in (3.15), the gauge transformation

f(x) = Rq(Xq−1/2)Rq(Xq1/2) (3.57)

satisfies

f(x)−1 · Y · f(x) = q−1X2 · Y ,

f(x)−1 · Y −1 · f(x) = q−1X−2 · Y −1 . (3.58)

We thus introduce a gauge transformation

h(x) = f(x)−(N+2)/2 , (3.59)

with the transformation property

h(x)−1 · Y · h(x) = q(N+2)/2X−(N+2) · Y ,

h(x)−1 · Y −1 · h(x) = q(N+2)/2XN+2 · Y −1 . (3.60)

Therefore, applying the above gauge transformation, and dividing the prefactor C in the
Sp(N) quantum curves (2.66), we succeed in showing that the Sp(N) quantum curves
coincide with the Lax equation (3.4) of the elliptic Garnier systems.
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4 RG flows to 5d

The circle compactification of 6d D-type minimal conformal matter is effectively described
by 5d KK theory with gauge group Sp(N) or SU(N + 1) plus (2N + 6) fundamental
flavors [15, 53, 66, 67]. We can integrate out the masses of the fundamental flavors to get
theories with a lower number of fundamental flavors. In this section, we focus on the flows
to 5d Sp(N) gauge theories. We take the limits of the 6d Sp(N − 1) curves and obtain the
curves for 5d Sp(N) theories with Nf < 2N + 6 fundamental flavors.

4.1 General cases

We begin with the KK theory Sp(N) + (2N + 6)F, where the corresponding 6d theory is
Sp(N − 1) + (2N + 6)F. As discussed in [57, 68, 69], we need to first turn on the holonomy
of the Wilson line along the compactified circle, which shift one of the mass parameter and
the tensor parameter ϕ0 by

m1 → m1 + 2πiτ, ϕ0 → ϕ0 + iπτ + m1 . (4.1)

Subsequently, the maps between Coulomb parameters can be deduced from the group
decomposition

Sp(N) → SU(2)× Sp(N − 1), (4.2)

such that the Sp(N − 1) describes the gauge group of the 6d theory on the tensor branch,
so we have the maps for the Coulomb parameters in the basis spanned by the fundamental
weights

ϕ0 → ϕ5d
1 , ϕj → ϕ5d

j+1 − ϕ5d
1 , j = 1, · · ·N − 1, (4.3)

and the (2N + 6) mass parameters become the mass parameters ml, l = 1, · · · , 2N + 6 in
the 5d description and the complex structure parameter 2πiτ becomes the 5d instanton
counting parameter m0. Further flow from Sp(N) with Nf flavors to Sp(N) with Nf − 1
flavors is amount to take the limit in the curve

m0 → m0 + mNf
, mNf

→ ∞. (4.4)

With all these maps in mind, we are now ready to write down the curves for the 5d KK
theories. (

V (x)Y + V (−x)Y −1 + χ(x)
)
Ψ(x) = 0 , (4.5)

which is, and should be, the same as the 6d curve (4.5). Now the 6d codimension-4 defect
partition function can also be realized as the combination of the Wilson loop expectation
values of 5d theory, where the representations of the Wilson loops can be read from the
leading term expansion in terms of Coulomb parameters.
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Sp(N) + (2N + 5)F. In this subsection, we derive the curve for 5d Sp(N) theory with
(2N + 5) fundamental flavors. Note that by using the Weyl symmetry of the affined D-type
flavor group,

m1 → m1 − 2πiτ, m2N+6 → m2N+6 − 2πiτ, (4.6)

the maps (4.1) and (4.4) can be alternatively written as

m2N+6 → −m0, mi → mi, i = 1, · · · 2N + 5,

ϕ0 → ϕ0 −
1
2m0, τ → ∞. (4.7)

We then derive the curve

Y +
∏2N+5

l=0 sh (x ± ml + ϵ1/2)
sh (2x + ϵ1 ± ϵ1)sh (2x + ϵ1)2 Y −1 + V0(x) = (−1)N−1e−

1
2 m0

N∑
j=1

(−1)j+1ch (2x)N−jHj ,

(4.8)

with V0(x) as a potential from the Coulomb independent part of one-instanton codimension-
four defect partition function,

V0(x) =− (−1)N

∏2N+5
l=0 ch (ml)

2 ch (x ± ϵ1/2) +
∏2N+5

l=0 sh (ml)
2 sh (x ± ϵ1/2) − ch (2x)N

2N+5∑
l=0

ch (2ml)

+ ch (ϵ1) ch (2x)N−1
(
ch (4x) + (N − 1) sh (ϵ1)2

)
, (4.9)

where sh (x) = e
x
2 − e−

x
2 , ch (x) = e

x
2 + e−

x
2 and

χj(x) =
e(j+1)x − e−(j+1)x

ex − e−x
, (4.10)

is the character of SU(2) with the highest weight j. Notice that Hj is the eigenvalue of
the Hamiltonian of the corresponding integrable system, which should be the NS limit of
the Wilson loop expectation value in the orbit of the j-th fundamental weight of the gauge
group Sp(N). In the study of topological string theory, the quantum curve coincides with
the quantum curve in the topological string B-model and the parameters Hi we defined
here are the most natural complex structure parameters in the B-model. We will have a
discussion for more details on this in section 4.2.

One important property of the quantum curve (4.8) is that if we absorb the factor
e−

1
2 m0 into the Hamiltonians, the curve has the manifest SO(4N + 12) global symmetry,

which is the enhanced global symmetry of Sp(N) + (2N + 5)F theory.

Sp(N) + (2N + 4)F. According to the map (4.4), we now take shift

m0 → m0 + m2N+5, (4.11)
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then the leading terms under the limit m2N+5 → ∞, give the quantum curve of Sp(N) +
(2N + 4)F

Y +
∏2N+4

l=1 sh(x±ml+ϵ1/2)
sh(2x+ϵ1±ϵ1)sh(2x+ϵ1)2 Y −1+V ′

0(x)= (−1)N−1e−
1
2 m0

N∑
j=1

(−1)j+1ch(2x)N−jHj ,

(4.12)

where

V ′
0(x) = −(−1)N

∏2N+4
l=1 ch (ml)

2 ch (x ± ϵ1/2) +
∏2N+4

l=1 sh (ml)
2 sh (x ± ϵ1/2) − ch (2x)Nch (m0). (4.13)

If we absorb the factor e−
1
2 m0 into the Hamiltonians, the curve (4.12) has the manifest

SO(4N + 8)× SU(2) global symmetry, which is the enhanced global symmetry of Sp(N) +
(2N + 4)F theory.

Sp(N) + Nf F, Nf ≤ 2N + 3. We can further take the massive limit of mass parameters
the curve for Sp(N) + Nf F with Nf ≤ 2N + 3 can be universally written as

Y +(−1)Nf
∏Nf

l=1 sh(x±ml+ϵ1/2)
sh(2x+ϵ1±ϵ1)sh(2x+ϵ1)2 Y −1+V ′′

0 (x)= (−1)N−1e−
1
2 m0

N∑
j=1

(−1)j+1ch(2x)N−jHj ,

(4.14)

where

V ′′
0 (x) = −(−1)N

∏Nf

l=1 ch (ml)
2 ch (x ± ϵ1/2) + (−1)Nf

∏Nf

l=1 sh (ml)
2 sh (x ± ϵ1/2) − e−

1
2 m0ch (2x)N . (4.15)

In particular, when Nf = 0, we obtain the curve for pure Sp(N)0 theory with theta angle
zero.

Sp(N)π. The curve for Sp(N)π can be obtained from the curve of Sp(N)+F by changing
the sign of the mass parameter

m1 → −m1, (4.16)

and then take the massive limit m1 → ∞. We can derive the curve as

Y + 1
sh(2x+ϵ1±ϵ1)sh(2x+ϵ1)2 Y −1+V ′′′

0 (x)= (−1)N−1e−
1
2 m0

N∑
j=1

(−1)j+1ch(2x)N−jHj ,

(4.17)

where

V ′′′
0 (x) = −(−1)N 1

2 ch (x ± ϵ1/2) +
δ

2 sh (x ± ϵ1/2) − e−
1
2 m0ch (2x)N , (4.18)

with δ = −1. Specifically, when δ = 1, the curve is the curve for Sp(N)0.
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4.2 Wilson loops and quantum periods

For a toric Calabi-Yau threefold, the corresponding quantum curve of a 5d N = 1 theory
is expected to be the quantum mirror curve in the B-model [70, 71], and the Wilson loop
expectation values are expected to be the complex structure parameters in B-model [72].
Following the strategy in [70], we can solve the quantum periods from the curve, afterward
compute the inverse series and compare with the Wilson loop calculations described in [73]
for Sp(N) theories as a check of the quantum curve. Similar check work for 5d SU(N) cases
has been done in [74]. For the Sp(N) gauge group, the corresponding Calabi-Yau threefold
is generally non-toric, and there is no direct B-model quantum mirror curve description
at this moment. Even though, we can still conjecture that our quantum curve derived
in the previous section describes the quantum mirror curve and the eigenvalues of the
Hamiltonians Hi are mapped to the B-model complex structure parameters zi via

Hj =
N∏

i=1
z
−C−1

ij

i , j = 1, · · ·N, (4.19)

and all other mass parameters mi>0 as additional independent complex structure parameters.
Here Cij is the Cartan matrix of the Sp(N) group and −Cij is the intersection matrix
between compact divisors and curves. In the definition (4.19), the Hj parameters are
complex structure parameters that dual to the compact divisors, so they generate the
Wilson loop of orbits instead of representations from “lowest” weights which comes from
the lowest degrees of the large Kähler parameter expansions of Hj . From the description
here, we can determine the expression on the right-hand side of (4.8) from the perturbative
contribution of the codimension four defect partition function, by reading the lowest degrees
in the large Kähler parameter expansions.

In the remaining part of this section, we will calculate the quantum periods for some
rank-one and rank-two models and compare them with the results from the Wilson loop
calculations.

4.3 Sp(1) + 7F

The quantum curve for Sp(1) + 7F theory can be read from (4.8) and under the redefinition
of Hamiltonians, we have

H1 = Y +
∏8

l=1 sh (x ± ml + ϵ1/2)
sh (2x + ϵ1 ± ϵ1)sh (2x + ϵ1)2 Y −1 + V0(x), (4.20)

where V0(x) can be read from (4.9), but in order to have an enhanced E8 global symmetry,
we shift one of the mass parameters by a phase

m8 → m8 + iπ. (4.21)

Such that

V0(x)=−
∏8

l=1 ch(ml)
2ch(x±ϵ1/2)−

∏8
l=1 sh(ml)

2sh(x±ϵ1/2)−ch(2x)
8∑

l=1
ch(2ml)+ch(ϵ1)ch(4x). (4.22)
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The curve has manifest SO(16) symmetry

mi → −mi, i = 1, · · · , 8, (4.23)

so that we can use SO(16) characters to rewrite the curve. Denota χi the character of
SO(16) whose highest weight is the i-th highest weight labeled in (4.24),

1 2 3 4 5 6

7

8

(4.24)

we have the replacements

8∏
l=1

sh (x ± ml + ϵ1/2) =
6∑

i=0
(−1)8−ich ((8− i)(2x + ϵ1))χi

+ ch (2x + ϵ1)(χ1 + χ3 + χ5 − χ7χ8) + χ2
7 + χ2

8 − 2(χ0 + χ2 + χ4 + χ6) (4.25)

and
8∏

l=1
ch (ml) = χ7 + χ8,

8∏
l=1

sh (ml) = χ7 − χ8,
8∑

l=1
ch (ml) = χ1, (4.26)

such that we verify that our quantum curve in the classical limit q → 1 agrees with the
classical Seiberg-Witten curve from brane diagrams in [54, 55]. See [75] for another quantum
curve approach from generalized toric diagrams. One can further compute the quantum
periods of the curve by using the method in [70] and we find that the eigenvalue of the
Hamiltonian has an enhanced E8 global symmetry

H1 = 1
Q

+
(
7 + q2 + q−2 + 3χ248 + (q + q−1)(3 + χ248) + χ3875

)
Q +O(Q2), (4.27)

where χdim is the character of E8 with dimension dim.

4.4 Sp(2)0

The quantum curve of Sp(2)0 theory is

Y + q2X4

(1− X2)(1− qX2)2(1− q2X2)Y −1 + q−
1
2 (1 + q)X2

(1− q−1X2)(1− qX2)
+ q−1

0 (X + X−1)2 = q−1
0 H1(X−1 + X)− q−1

0 H2,

(4.28)

where q0 = −e
1
2 m0 is the instanton counting parameter. There are two independent

A-periods, classically their independent components can be computed from the residues

Π1 = −ResX→0
log Y

X
, Π2 = −ResY →0

logX

Y
. (4.29)
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In topological string theory, the quantum curve is the quantized version of the mirror curve
in the B-model, where the moduli space is described by the complex structure parameters.
According to the description in [72], the complex structure parameters z1, z2, z3 naturally
connect to the Wilson loops of orbits rather than representations via the inverse of Cartan
matrix as

H1 = 1
z1
√

z2
, H2 = 1

z1z2
, q0 = z3, (4.30)

where

H1 = lim
ϵ2→0

W̃fund, H2 = lim
ϵ2→0

W̃Λ2 − 1. (4.31)

Around the small complex structures region zi ∼ 0, we can solve that

Π1 = log(z1z2z3) + z2 +
1
2(−4z1z2 + 3z2

2)−
2
3(9z1z2

2 − 5z3
2 + 3z1z2

2z3) + · · · , (4.32)

Π2 = 1
2 log z2 + (−z1 + z2) +

1
2(−3z2

1 − 4z1z2 + 3z2
2)

+ 1
3(−10z3

1 − 3z2
1z2 − 18z1z2

2 + 10z3
2 − 6z1z2

2z3) + · · · . (4.33)

Identify the periods as Coulomb parameters

eΠ1 = q0eα1+α2 , eΠ2 = e
1
2 α2 , (4.34)

we can test that the results agree with the Wilson loop expectation values calculated from
5d gauge theory in [73]. Quantum period calculation gives

Π1(q)= log(z1z2z3)+z2+
1
2(−4z1z2+3z2

2)+
(
−6z1z2

2+
10
3 z3

2−(q1/2+q−1/2)z1z2
2z3

)
+
(
35z4

2
4 −20z1z3

2+3z2
1z2

2+(q1/2+q−1/2)(z2
1z2

2z3−5z1z3
2z3)−(q3/2+q−3/2)z1z3

2z3

)
+· · · .

(4.35)

4.5 Sp(2)π

The quantum curve of Sp(2)π theory is

Y + q2X4

(1−X2)(1−qX2)2(1−q2X2)Y −1+ X(1+X2)
(1−q−1X2)(1−qX2)

−q−1
0 (X+X−1)2 =−q−1

0 H1(X−1+X)+q−1
0 H2,

(4.36)

where q0 = e
1
2 m0 is the instanton counting parameter.

Π1(q) = log(z1z2z3) + z2 +
1
2(−4z1z2 + 3z2

2) + z1z
3/2
2 z3 +

(
−6z1z2

2 + 10
3 z3

2

)
+ (q + 4 + q−1)4z1z

5/2
2 z3 +

(
35z4

2
4 − 20z1z3

2 + 3z2
1z2

2

)
+ · · · . (4.37)
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4.6 P2 ∪ F6

The theory P2 ∪ F6 is named in [53] as a non-Lagrangian theory that flows from the gauge
theory Sp(2)0. It has a geometric description that comes from the gluing of two del Pezzo
surfaces P2 and F6. By looking at the intersection numbers of the geometric description,
one can determine that by taking the limit

z2 → Λ z2, q0 → Λ−2, Λ → 0, (4.38)

in the B-model description of the Sp(2)0 theory, we can obtain the theory of P2 ∪F6. At the
level of curve, we also need to do the shift in coordinates X, Y with the scaling parameter
Λ to keep the dynamic information. In total, we have

z2 → Λ z2, q0 → Λ−2, Y → ΛY X → Λ
1
2 X, Λ → 0. (4.39)

By applying (4.39) to (4.28), we obtain the quantum curve of P2 ∪ F6 as

Y + q2X4

Y
+ q−

1
2 (1 + q)X2 + X−2 = H1X−1 − H2. (4.40)

The intersection matrix becomes

−C =
(
−2 1
2 −3

)
(4.41)

which leads to the identification of the complex structure parameters

H1 = z
− 3

4
1 z

− 1
4

2 , H2 = z
− 1

2
1 z

− 1
2

2 . (4.42)

By using the method described in the previous sections, we compute the quantum periods

Π1(q)= log(z1)+
(
√

qz2+
z2√

q
+2z1

)
+
(
−q2z2

2−
z2

2
q2 −

√
qz2z1−

z2z1√
q
− 7qz2

2
2 − 7z2

2
2q

+3z2
1−6z2

2

)
+
(

q9/2z3
2+3q7/2z3

2+12q5/2z3
2+

88
3 q3/2z3

2+
88z3

2
3q3/2 +

12z3
2

q5/2 + 3z3
2

q7/2

+ z3
2

q9/2 +3q2z1z2
2+

3z1z2
2

q2 +8qz1z2
2+48√qz3

2+
48z3

2√
q
+8z1z2

2
q

+20z3
1

3 +14z1z2
2

)
+· · · ,

Π2(q)= log(z2)+
(
−3√qz2−

3z2√
q
−2z1

)
+
(
3q2z2

2+
3z2

2
q2 +3√qz2z1+

3z2z1√
q

+21qz2
2

2 +21z2
2

2q

−3z2
1+18z2

2

)
+
(
−3q9/2z3

2−9q7/2z3
2−36q5/2z3

2−88q3/2z3
2−

88z3
2

q3/2 − 36z3
2

q5/2 − 9z3
2

q7/2

− 3z3
2

q9/2 −9q2z1z2
2−

9z1z2
2

q2 −24qz1z2
2−144√qz3

2−
144z3

2√
q

− 24z1z2
2

q
− 20z3

1
3 −42z1z2

2

)
+· · · ,

which give the quantum mirror maps to the Coulomb parameters.
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We in addition remark that one can similarly obtain the quantum curves of other
5d N = 1 non-Lagrangian theories so long as they sit in the higgsing trees of the Sp(N)
theories. We omit the computation for brevity.

4.7 Sp(2) + 9F

In the last example, we test the quantum curve of Sp(2) + 9F theory by computing one of
the quantum A-periods similar to previous cases and then compare it with the result from
Wilson loops and we find an exact agreement. Moreover, if we absorb the factor e−

1
2 m0 to

the Hamiltonians H1 = 1
z1

√
z2

and H2 = 1
z1z2

, then quantum period has manifest SO(20)
global symmetry

Π1(q) = log(z1z2) + z2 +
1
2(−4χ1z1z2 + 3z2

2) + z1z
3/2
2 (−χc + 2q3/2 + 2q−3/2)

+
(
((q1/2 + q−1/2)χs − 6χ1)z1z2

2 + 10
3 z3

2

)
+ · · · , (4.43)

where χ1, χs and χc are the SO(20) characters for fundamental, spinor and conjugate spinor
representations.

5 Conclusion

In this paper, we investigate the 6d D-type minimal conformal matter theory in the presence
of codimension two and four surface defects, also known as Wilson surface defects. These
two types of defects play important roles in the quantization of Seiberg-Witten curves of the
6d theory compactified on R4 × T2. Specifically, we demonstrate that the BPS instanton
partition function with the insertion of the codimension two defect acts as an eigenfunction
of the quantized Seiberg-Witten curve, while the Wilson surface defect acts as the eigenvalue
of the quantum curve. Our results extend previous findings on E-string theory, where the
quantum curve was identified as the van Diejen difference operator in the integrability
community [50]. Along this line, we show that the quantum curve of D-type minimal
conformal matter can be identified with a type of Elliptic Garnier system. Moreover, when
the 6d theory is compactified onto a circle, we obtain the corresponding 5d KK theory,
Sp(N) with 2N + 6 flavors. By taking the masses of flavors to infinity, we showed that
the 6d quantum curve can be deformed into a series of quantum curves associated with 5d
Sp(N) theory with matters Nf ≤ 2N + 5.

Our current work opens up several avenues for further research. Firstly, one can study
the SW-curves for A-type quiver theories that consist of single-node 6d SCFTs defined on −n

curves. One such example is the linear tensor chain, which is realized on −1 and −4 curves
and corresponds to the D-type conformal matters. The quantum curve of the SO(N) theory
on the −4 curve has already been obtained in [51]. Another interesting linear quiver is the
higher rank E-string theory and its generalizations [76]. One particularly interesting feature
of these quiver theories is that they can be Higgsed to various 6d SCFTs. Therefore, starting
with SW-curves of the quiver theories, we can investigate many interesting non-perturbative
data of the Higged theories as well as their own quantum curves. On the other hand, one
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can also compactify the quiver theories onto a circle and study their deformations to 5d
SCFTs and associated quantum curves as we have done in the note. We would thus be able
to obtain many “quantum curve cascades” from both Higgsings and deformations.

Another interesting direction is to systematically study the relations between the 6d
SW-curves and elliptic integrable systems. A series of investigations have demonstrated
that the quantum curves in several 6d SCFTs can be identified to various elliptic integrable
systems [48–51]. It is then natural to expect the correspondence held for generic cases.
For example, in the note, we have established the relation between quantum curves of
D-type minimal conformal matters and elliptic Garnier systems. A further generalization
could be the quantum curves of higher rank E-string and the BCN system. In addition,
for a quiver-like 6d SCFT, a notable distinction from the single-node ones is the much
richer varieties of codimension two and four defects that can be introduced. It would be
intriguing to understand how these surface defects could engineer the quantum curves and
their roles in the associated elliptic integrable systems. Moreover, we have also shown in
this note that the mass deformations of 6d quantum curves could result in a cascade of
quantum curves. Therefore an immediate interesting question raised is to interpret these
deformations also from the perspective of integrable systems. Such interpretation has been
investigated between various 4d Seiberg-Witten curves of SU(2)+Nf F and Argyres-Douglas
theories, and the isomonodromic deformations of linear differential systems [77]. It would be
fascinating to establish a similar correspondence between the deformations of 6d SW-curves
and their analogs in the field of elliptic integrable systems. That is another exciting topic
we hope to explore further in the future.
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A Useful identities

In this appendix, we collect some useful theta function identities used in the paper. We use
ϑi(z; τ) for i = 1, 2, 3, 4 to denote the Jaboci theta functions. In the elliptic genus, we also
use a useful variant of Jaboci theta functions denoted as

θi(z; τ) =
ϑi(z; τ)
iη(τ) , (A.1)

where η(τ) is the Dedekind eta function. For convenience, we often omit to indicate explicitly
the dependence on τ .

We also use the p-theta function

[X] =
∞∏

k=0
(1− pkX)(1− pk+1/X) = PE

[
X + p/X

(1− p)

]
= X

1
2 p−

1
12 θ1

(
x

2πi

)
, (A.2)

where we have used the multiplicative variables X = e2πix and p = e2πiτ , and PE is
plethystic exponential function defined as

PE[f(z)] = exp
( ∞∑

k=1

f(zk)
k

)
. (A.3)

[X] satisfies the functional relation

[X] ≡ Γp,q(qX)
Γp,q(X) , (A.4)

where Γp,q(X) the elliptic Gamma functions defined by

Γp,q(X) =
∞∏

i,j=0

1− pi+1qj+1/X

1− piqjX
= PE

[
X − pq/X

(1− p)(1− q)

]
. (A.5)

We use the shorthanded notation

ϑ∆
b (x) :=

ϑ′
b(x − ϵ1

2 )
ϑb(x − ϵ1

2 )
−

ϑ′
b(x + ϵ1

2 )
ϑb(x + ϵ1

2 )
. (A.6)

We derived two sets of identities for the theta functions of degree 2:

ϑ∆
b (x) = 1

ϑc( ϵ1
2 )2

(
(−1)αa,b

ϑ′
1(0)ϑ1(ϵ1)ϑa(x)2

ϑb(x ± ϵ1
2 )

− 2ϑ′
c

(
ϵ1
2

)
ϑc

(
ϵ1
2

))
, (A.7)

ϑ1(x ± α) = 1
ϑc( ϵ1

2 )2

(
(−1)βa,bϑa(x)2ϑb

(
ϵ1
2 ± α

)
+ (−1)γa,bϑa(α)2ϑb

(
x ± ϵ1

2

))
, (A.8)

where ωc = ωa + ωb (mod Z+ τZ) with a, b, c runs from 1 to 4, and

αa,b =

1, for(a,b)∈A,

0, otherwise,
βa,b =

1, for(a,b)∈B,

0, otherwise,
γa,b =

0, for(a,b)∈B∪C,

1, otherwise,

(A.9)
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with A = {(1, 3), (3, 4), (4, 3), (2, 4)}, B = {(3, 3), (2, 3), (3, 4), (2, 4)} and C = {(a, 1) |
a = 2, 3, 4}. For The cases with a ̸= b can be viewed as the quantum version of addition
formulae.

We also need to use the following addition formulae

ϑa(x ± ϵ1
2 ) = 1

ϑ4(0)2

(
ϑb

(
ϵ1
2

)2
ϑ1(x)2 − ϑa

(
ϵ1
2

)2
ϑ4(x)2

)
, (A.10)

where b satisfied ωb = ωa + ω4 (mod Z+ τZ).
The following identities can be used to express the square of any theta function in

terms of the squares of any two other theta functions

ϑ3(0)2ϑ3(x)2 = ϑ4(0)2ϑ4(x)2 + ϑ2(0)2ϑ2(x)2 ,

ϑ3(0)2ϑ4(x)2 = ϑ2(0)2ϑ1(x)2 + ϑ4(0)2ϑ3(x)2 ,

ϑ2(0)2ϑ4(x)2 = ϑ3(0)2ϑ1(x)2 + ϑ4(0)2ϑ2(x)2 ,

ϑ2(0)2ϑ3(x)2 = ϑ4(0)2ϑ1(x)2 + ϑ3(0)2ϑ2(x)2 . (A.11)

B Two-instanton results under NS-limit

In this appendix, we collect the two-instanton results in the presence of codimension two
and four defects. It will involve Ψ2(x; ϵ1) and χ2(x; ϵ1) which are defined as

Ψ2(x; ϵ1) = lim
ϵ2→0

(
Z

6d/4d
2 − Z6d

2 − Z6d
1

(
Z

6d/4d
1 − Z6d

1

))
,

χ2(x; ϵ1) = lim
ϵ2→0

(
Z

6d/2d
2 − Z6d

2 − Z6d
1

(
Z

6d/2d
1 − Z6d

1

))
, (B.1)

where the two-instanton partition function with a 4d defect Z4d-6d
2 is given by

Z
6d/4d
2 = 1

2Z
6d/4d
2, cont. +

1
4

4∑
a=2

Z
6d/4d
2(a), dis. , (B.2)

with

Z
6d/4d
2(a), dis. =

ϑa(0)ϑa(2ϵ+)
η12ϑ1(ϵ1,2)2ϑa(ϵ1,2)

( ∏2N+8
f=1 ϑ1(mf )ϑa(mf )∏N

i=1 ϑ1(±αi + ϵ+)ϑa(±αi + ϵ+)
ϑ1(x + ϵ+)ϑa(x + ϵ+)
ϑ1(x + ϵ−)ϑa(x + ϵ−)

+
2∏

i=1

∏2N+8
f=1 ϑσi(a)(mf )∏N

i=1 ϑσi(a)(±αi + ϵ+)
ϑσi(a)(x + ϵ+)
ϑi

σ(a)(x + ϵ−)

)
, (B.3)
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and

Z
6d/4d
2,cont. =

−1
2η12ϑ1(ϵ1,2)ϑ1(2ϵ1)ϑ1(2ϵ−)

4∑
a=1

( ∏2N+8
f=1 ϑa(mf ±ϵ1/2)∏N

i=1 ϑa(±αi+ϵ+±ϵ1/2)
ϑa(x+ϵ2/2)ϑa(x+ϵ1+ϵ2/2)
ϑa(x−ϵ2/2)ϑa(x+ϵ1−ϵ2/2)

)

+ 1
2η12ϑ1(ϵ1,2)ϑ1(2ϵ2)ϑ1(2ϵ−)

4∑
a=1

( ∏2N+8
f=1 ϑa(mf ±ϵ2/2)∏N

i=1 ϑa(±αi+ϵ+±ϵ2/2)
ϑa(x+ϵ2+ϵ1/2)
ϑa(x−ϵ2+ϵ1/2)

)

+
N∑

i=1

(
1

η12ϑ1(ϵ1,2)ϑ1(2αi)ϑ1(2ϵ+−2αi)ϑ1(2αi−ϵ1,2)ϑ1(−2αi+2ϵ++ϵ1,2)∏2N+8
f=1 ϑ1(αi±mf −ϵ+)∏N

j ̸=i ϑ1(αi±αj)ϑ1(αi±αj−2ϵ+)
ϑ1(αi+x)ϑ1(−αi+x+2ϵ+)

ϑ1(αi+x−ϵ2)ϑ1(−αi+x+ϵ1)
+(αi →−αi)

)

+ ϑ1(2ϵ+)
η12ϑ1(ϵ1)ϑ1(2x+2ϵ−)ϑ1(2x+2ϵ1−ϵ2)ϑ1(2x−ϵ2)ϑ1(2x+ϵ1−2ϵ2)∏2N+8

f=1 ϑ1(x±mf +ϵ−)∏N
i=1 ϑ1(2x±αi+ϵ1)ϑ1(2x±αi−ϵ2)

, (B.4)

and the two-instanton partition function with a 2d defect Z
6d/2d
2 is given by

Z
6d/2d
2 = 1

2Z
6d/2d
2, cont. +

1
4

4∑
a=2

Z
6d/2d
2(a), dis. , (B.5)

with

Z
6d/2d
2(a),dis. =

ϑa(0)ϑa(2ϵ+)
η12ϑ1(ϵ1,2)2ϑa(ϵ1,2)

( ∏2N+8
f=1 ϑ1(mf )ϑa(mf )∏N

i=1 ϑ1(±αi+ϵ+)ϑa(±αi+ϵ+)
ϑ1(x±ϵ−)ϑa(x±ϵ−)
ϑ1(x±ϵ+)ϑa(x±ϵ+)

+
∏2N+8

f=1 ϑσ(a)(mf )ϑσ2(a)(mf )∏N
i=1 ϑσ(a)(±αi+ϵ+)ϑσ2(a)(±αi+ϵ+)

ϑσ(a)(x±ϵ−)ϑσ2(a)(x±ϵ−)
ϑσ(a)(x±ϵ+)ϑσ2(a)(x±ϵ+)

)
, (B.6)

and

Z
6d/2d
2,cont. =

−1
2η12ϑ1(ϵ1,2)ϑ1(2ϵ1)ϑ1(2ϵ−)

×
4∑

a=1

( ∏2N+8
f=1 ϑa(mf ±ϵ1/2)∏N

i=1 ϑa(±αi+ϵ+±ϵ1/2)
ϑa(x±

(
ϵ1− ϵ2

2
)
)

ϑa(x±
(
ϵ1+ ϵ2

2
)
)+(ϵ1 ↔ ϵ2)

)

+
N∑

i=1

(
1

η12ϑ1(ϵ1,2)ϑ1(2αi)ϑ1(2ϵ+−2αi)ϑ1(2αi−ϵ1,2)ϑ1(−2αi+2ϵ++ϵ1,2)∏2N+8
f=1 ϑ1(αi±mf −ϵ+)∏N

j ̸=i ϑ1(αi±αj)ϑ1(αi±αj−2ϵ+)
ϑ1(αi±x−ϵ1,2)

ϑ1(αi±x)ϑ1(αi±x−2ϵ+)
+(αi →−αi)

)

+
(

1
η12ϑ1(2x)ϑ1(2x+2ϵ+)ϑ1(2x+2ϵ++ϵ1,2)

∏2N+8
f=1 ϑ1(x±mf +ϵ+)∏N

i=1 ϑ1(x±αi)ϑ1(x±αi+2ϵ+)

+(ϵ1,2 →−ϵ1,2)
)

. (B.7)

Putting the pieces together, we list the results below:

– 38 –



J
H
E
P
1
0
(
2
0
2
3
)
0
4
5

Ψ2 := Ψ2(x; ϵ1),

Ψ2 =
1

4η12ϑ′
1(0)ϑ1(±ϵ1)ϑ1(2ϵ1)

4∑
a=1

[
ϑ′

a(x+ϵ1)
ϑa(x+ϵ1)+

ϑ′
a(x)

ϑa(x)

] ∏2N+8
f=1 ϑa(mf ±ϵ1/2)∏N

i=1 ϑa(±αi)ϑa(±α1+ϵ1)

+ 1
8η12ϑ′

1(0)2ϑ1(ϵ1)2

4∑
a=1

ϑ′
a

(
x+ ϵ1

2

)2

ϑa

(
x+ ϵ1

2

)2 ·
∏2N+8

f=1 ϑa(mf )2∏N

i=1 ϑa(±αi+ ϵ1
2 )2

+ ϑ′
1(ϵ1)

4η12ϑ′
1(0)2ϑ1(ϵ1)3

4∑
a=1

ϑ′
a

(
x+ ϵ1

2

)
ϑa

(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑa(mf )2∏N

i=1 ϑa(±αi+ ϵ1
2 )2

+ 1
4η12ϑ′

1(0)2ϑ1(ϵ1)2

[
ϑ′

1
(
x+ ϵ1

2

)
ϑ′

2
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ1(mf )ϑ2(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ2(±αi+ ϵ1

2 )

+
ϑ′

1
(
x+ ϵ1

2

)
ϑ′

3
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ1(mf )ϑ3(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ3(±αi+ ϵ1

2 )

+
ϑ′

1
(
x+ ϵ1

2

)
ϑ′

4
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ1(mf )ϑ4(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

+
ϑ′

2
(
x+ ϵ1

2

)
ϑ′

3
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ2(mf )ϑ3(mf )∏N

i=1 ϑ2(±αi+ ϵ1
2 )ϑ3(±αi+ ϵ1

2 )

+
ϑ′

2
(
x+ ϵ1

2

)
ϑ′

4
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ2(mf )ϑ4(mf )∏N

i=1 ϑ2(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

+
ϑ′

3
(
x+ ϵ1

2

)
ϑ′

4
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

) · ∏2N+8
f=1 ϑ3(mf )ϑ4(mf )∏N

i=1 ϑ3(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

]

+ 1
4η12ϑ′

1(0)2ϑ1(ϵ1)2
ϑ′

2(ϵ1)
ϑ2(ϵ1)

[(
ϑ′

1
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)+ ϑ′
2
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ1(mf )ϑ2(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ2(±αi+ ϵ1

2 )

+
(

ϑ′
3
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

)+ ϑ′
4
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ3(mf )ϑ4(mf )∏N

i=1 ϑ3(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

]

+ 1
4η12ϑ′

1(0)2ϑ1(ϵ1)2
ϑ′

3(ϵ1)
ϑ3(ϵ1)

[(
ϑ′

1
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)+ ϑ′
3
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ1(mf )ϑ3(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ3(±αi+ ϵ1

2 )

+
(

ϑ′
2
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

)+ ϑ′
4
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ2(mf )ϑ4(mf )∏N

i=1 ϑ2(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

]

+ 1
4η12ϑ′

1(0)2ϑ1(ϵ1)2
ϑ′

4(ϵ1)
ϑ4(ϵ1)

[(
ϑ′

1
(
x+ ϵ1

2

)
ϑ1
(
x+ ϵ1

2

)+ ϑ′
4
(
x+ ϵ1

2

)
ϑ4
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ1(mf )ϑ4(mf )∏N

i=1 ϑ1(±αi+ ϵ1
2 )ϑ4(±αi+ ϵ1

2 )

+
(

ϑ′
2
(
x+ ϵ1

2

)
ϑ2
(
x+ ϵ1

2

)+ ϑ′
3
(
x+ ϵ1

2

)
ϑ3
(
x+ ϵ1

2

)) ∏2N+8
f=1 ϑ2(mf )ϑ3(mf )∏N

i=1 ϑ2(±αi+ ϵ1
2 )ϑ3(±αi+ ϵ1

2 )

]

+
N∑

i=1

(
1

2η12ϑ1(ϵ1)ϑ′
1(0)ϑ1(2αi)2ϑ1(2αi−ϵ1)3ϑ1(2αi−2ϵ1)

·
∏2N+8

l=1 ϑ1(αi±mf − ϵ1
2 )∏N

j ̸=i
ϑ1(αi±αj)ϑ1(αi±αj−2ϵ1)

·
(

ϑ′
1(x+αi)

ϑ1(x+αi)
+ ϑ′

1(x−αi+ϵ1)
ϑ1(x−αi+ϵ1)

))
+(αi →−αi)

+ 1
2η12ϑ1(2x+2ϵ1)ϑ1(2x+ϵ1)2ϑ1(2x) ·

∏2N+8
f=1 ϑ1(x±mf + ϵ1

2 )∏N

i=1 ϑ1(2x±αi+ϵ1)ϑ1(2x±αi)
. (B.8)
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χ2 := χ2(x; ϵ1),

χ2 = lim
ϵ2→0

(
W

6d/4d
2 −Z6d

2 −Z6d
1

(
W

6d/4d
1 −Z6d

1

))
= 1

4η12ϑ1(ϵ1)2ϑ1(2ϵ1)ϑ′
1(0)

4∑
a=1

∏2N+8
f=1 ϑa

(
mf ± ϵ1

2

)∏N

i
ϑa(±αi)ϑa(±αi+ϵ1)

·
(

ϑ′
a(x+ϵ1)

ϑa(x+ϵ1)−
ϑ′

a(x−ϵ1)
ϑa(x−ϵ1)

)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

1(ϵ1)
ϑ1(ϵ1) ·

4∑
a=1

∏2N+8
f=1 ϑ2

a(mf )∏N

i
ϑa

(
±αi+ ϵ1

2

)2 ·ϑ∆
a (x)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

2(ϵ1)
ϑ2(ϵ1) ·

∏2N+8
f=1 ϑ1(mf )ϑ2(mf )∏N

i=1 ϑ1
(
±αi+ ϵ1

2

)
ϑ2
(
±αi+ ϵ1

2

) ·(ϑ∆
1 (x)+ϑ∆

2 (x)
)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

2(ϵ1)
ϑ2(ϵ1) ·

∏2N+8
f=1 ϑ3(mf )ϑ4(mf )∏N

i=1 ϑ3
(
±αi+ ϵ1

2

)
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(
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2

) ·(ϑ∆
3 (x)+ϑ∆

4 (x)
)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

3(ϵ1)
ϑ3(ϵ1) ·

∏2N+8
f=1 ϑ1(mf )ϑ3(mf )∏N

i=1 ϑ1
(
±αi+ ϵ1

2

)
ϑ3
(
±αi+ ϵ1

2

) ·(ϑ∆
1 (x)+ϑ∆

3 (x)
)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

3(ϵ1)
ϑ3(ϵ1) ·

∏2N+8
f=1 ϑ2(mf )ϑ4(mf )∏N

i=1 ϑ2
(
±αi+ ϵ1

2

)
ϑ4
(
±αi+ ϵ1

2
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2 (x)+ϑ∆

4 (x)
)

+ 1
4η12ϑ1(ϵ1)2ϑ′

1(0)2
ϑ′

4(ϵ1)
ϑ4(ϵ1) ·

∏2N+8
f=1 ϑ1(mf )ϑ4(mf )∏N

i=1 ϑ1
(
±αi+ ϵ1

2

)
ϑ4
(
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2
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1 (x)+ϑ∆

4 (x)
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+ 1
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2

)
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2
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·
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2
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2
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+(ϵ1 →−ϵ1) . (B.9)

C Wilson loops of 5d Sp(N) theories

The Wilson loop expectation value of a 5d gauge theory with ADHM description can be
computed by inserting the equivariant Chern character [73, 78, 79]. For the Sp(N) case,
the k-instanton ADHM quantum mechanics is described by two discrete sectors O(k)± of
the dual group O(k). The partition function of Sp(N)θ + Nf F is

Z5d = 1 +
∞∑

k=1
qk

0Zk, Zk =


1
2(Z

+
k + Z−

k ), θ = 0,
(−1)k

2 (Z+
k − Z−

k ), θ = π,
(C.1)
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where q0 is the instanton counting parameter, Z±
k are the k-instanton partition functions of

the ± sectors. At the one-instanton level, we have

Z+
1 =

∏Nf

l=1 sh (ml)
sh (ϵ1)sh (ϵ2)

∏N
i=1 sh (±αi + ϵ+)

, Z−
1 =

∏Nf

l=1 ch (ml)
sh (ϵ1)sh (ϵ2)

∏N
i=1 ch (±αi + ϵ+)

,

(C.2)

where we have used the notation

sh (x) ≡ ex/2 − e−x/2, ch (x) ≡ ex/2 + e−x/2. (C.3)

Higher-instanton expressions can be found in [80, 81]. The partition function with the
insertion of the Wilson loop operator can be computed similarly,

WR =
∞∑

k=0
qkWk,R, Wk,R =


1
2(W

+
k,R + W−

k,R), θ = 0,

(−1)k

2 (W +
k,R − W−

k,R), θ = π.
(C.4)

where W±
k,R is computed by inserting the equivariant Chern character. In the fundamental

representation, we have

Ch±k,fund(e
α,eu;q1, q2;χ)=

N∑
i=1

(eαi+e−αi)−(1−q1)(1−q2)(q1q2)−1/2
n∑

I=1
(euI +e−uI ±χ),

(C.5)

where k = 2n + χ. Other representations can be generated from the tensor product of the
Chern character. For example, in the case of antisymmetric representation Λ2, we have

Ch±k,Λ2(eα, eu; q1, q2;χ) =
1
2
[
Ch±k,fund(e

α, eu; q1, q2;χ)2 − Ch±k,fund(e
2α, e2u; q2

1, q2
2;χ2)

]
.

(C.6)

Then at zero-instanton level, the Wilson loop expectation value is the character in the
representation R, and we have

W0,R = Ch+
0,R. (C.7)

At the one-instanton level,

W±
1,R = Ch±1,R · Z±

1 . (C.8)

The higher-instanton partition functions can be calculated similarly. Lastly, we defined the
normalized Wilson loop expectation value

W̃R(eα, eml , q; q1, q2) ≡
WR
Z5d

= W0,R + (W1,R − Z1 · W0,R)q0 +O(q2
0). (C.9)

Note that the ADHM quantum mechanic calculations generically only compute the
partition function and Wilson loop expectation values for Sp(N) + Nf F for Nf ≤ 2N + 4,4

higher number of fundamental flavors can be calculated using the method of the blowup
equations [82].

4However, the one-instanton calculation is correct for Nf = 2N + 5 and 2N + 6.
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