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1 Introduction

It is well-known that entanglement entropy in scalar field theory in its ground state is
dominated by an area law. This peculiar feature resembles the famous property of black
hole entropy, giving rise to simple, but very fundamental, questions: can black hole entropy
be attributed to quantum entanglement? Can gravity be described as a statistical entropic
force, attributed to quantum statistics due to entanglement [1–3]? Such a description
of gravity is at least not contradictory to holographic duality. It has been shown that
Einstein’s equations in the bulk, or at least the linearized Einstein’s equations around the
pure AdS geometry, emerge as a holographic realization of the first law of entanglement
thermodynamics [4, 5], i.e. of the relation

δSEE = δ 〈Hmod〉 , (1.1)

which is a trivial identity for any quantum system, and, thus, in the context of the
holographic duality, trivially holds for the boundary theory.

The study of entanglement in scalar field theory was initiated long ago. In 1986,
Bombelli et al. argued that entanglement entropy in scalar field theory should obey an area
law [6]. The actual numerical calculation was performed a few years later by Srednicki [7],
who showed that entanglement entropy in free massless scalar field theory in its ground
state does obey an area law. For a review of entanglement entropy calculations in field
theory, the reader may consult [8–10]. A basic element of Srednicki’s calculation is the
discretization of the degrees of freedom of the scalar field theory on a lattice of spherical
shells. This discretization gives rise to a Hamiltonian of an infinite, but countable number
of degrees of freedom, i.e. a textbook quantum mechanics harmonic system. Srednicki’s
calculation is further based on two facts that apply to the specific ground state scenario:

1. The reduced density matrix can be calculated explicitly in coordinate representation
via the performance of Gaussian integrals, due to the fact that the ground state of a
harmonic system is a Gaussian state.

2. The reduced density matrix is also a Gaussian kernel in coordinate representation and
its eigenstates and eigenvalues can be found explicitly. They resemble the eigenstates
of an effective harmonic system, with as many degrees of freedom as those that have
not been traced out. However, this effective harmonic system does not lie in its ground
state, but in a mixed state. More specifically, each normal mode of the effective
system appears to lie in a thermal state. The reduced system is not strictly thermal,
as each mode is characterized by a distinct temperature.

Since the above hold specifically for the ground state of a harmonic system, the
generalization of Srednicki’s techniques to the study of entanglement in more general states
presents a high level of difficulty. However, both facts listed above still hold for a massive
field theory. In this case, the inverse of the mass can be used as a perturbative parameter to
bypass the numerical part of Srednicki’s calculation [11]. Interestingly, both facts are still
true in the case that the overall quantum harmonic system lies in a thermal state [12, 13].
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In such a case, the quantity that is proportional to the area of the entangling surface is not
the entanglement entropy, but rather the mutual information of the system. Finally, both
facts are also true when the harmonic system lies in a coherent state. It turns out that the
entanglement entropy in such a case is identical to that when the system lies in its ground
state [14]. Interestingly, the time evolution of the reduced density matrix is unitary and is
described by an effective quadratic Hamiltonian with explicit time-dependence [15].

An alternative method for the calculation of the entanglement entropy is based on the
correlation function matrix. In this approach the reduced density matrix is constructed
so as to reproduce the same correlation functions in subsystem under consideration as the
overall density matrix. This method is particularly powerful in free field theory, where all
correlation functions are determined by the two-point correlators. In the following, we shall
show that the method that we develop is equivalent to the method based on the correlation
function matrix.

In a seminal paper [16], Page showed that, in an arbitrary quantum state, the entangle-
ment entropy is close to maximal. The possible maximum is proportional to the number
of degrees of freedom of the smaller of the two subsystems. The proportionality constant
depends on the dimensionality of the Hilbert space of a single degree of freedom. This bound
has been connected to the Page curve obeyed by the entropy of black hole radiation [17].
In scalar field theory, the dimensionality of the Hilbert space of a local degree of freedom
is infinite, rendering the above bound also infinite. However, it is still proportional to the
number of degrees of freedom, implying that we should expect the entanglement entropy to
be proportional to the volume of the smaller subsystem, and not the area (see also [18]).
In this sense, the states of scalar field theory that have been investigated, namely the
ground state and coherent states, cannot be considered as arbitrary quantum states, but as
states with special entanglement characteristics. Therefore, it is worth investigating how
Page’s argument applies to more general quantum states of scalar field theory. Srednicki’s
method appears to be more easily generalizable to Gaussian states, indicating as a more
promising direction the study of the squeezed states. In a similar manner, random Gaussian
states have been studied in fermionic systems [19], and it was shown that indeed the mean
entanglement entropy approaches that of the Page curve.

In the case of the most general Gaussian state of the overall harmonic system, i.e.
a squeezed state, the first fact that facilitates Srednicki’s calculation still holds, namely
the reduced density matrix can be found explicitly via Gaussian integrals. However, as
we will discuss in what follows, the second fact does not apply, making the calculation
of entanglement entropy a more complicated task. This problem has been studied at a
more abstract level [20, 21]. In this work, we develop a method for the calculation of the
spectrum of the reduced density matrix, which is the direct generalization of Srednicki’s
method [7]. Our method is shown to be equivalent to the correlation matrix method. Then,
we apply this method to the system of free massless scalar field theory in 1+1 dimensions.
Furthermore, we study the dependence of entanglement entropy on squeezing.

The structure of the paper is as follows. In section 2 we review basic facts about
the coherent and squeezed states of the quantum harmonic oscillator. In section 3 we
study the special case of two coupled harmonic oscillators, which can be solved directly
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with Srednicki’s method, and study the dependence of entanglement on squeezing. In
section 4 we generalize Srednicki’s method to harmonic systems with an arbitrary number
of degrees of freedom lying in a squeezed state. In section 5 we develop an expansion for
the entanglement entropy for very squeezed states. In section 6 we apply our method to
free massless scalar field theory in 1+1 dimensions. In section 7 we discuss our results. In
order not to distract from the main part of the analysis, several secondary aspects, as well
as technical details of the calculations, have been relegated to a series of appendices, so
that they do not disturb the flow of the main text. Appendix A contains the quantitative
analysis, with all technical details, of how squeezing affects entanglement in the simple case
of the two oscillators. Appendix B presents an algebraic construction of the eigenstates of
the reduced density matrix. Appendix C discusses the special solvable case of a harmonic
system in a very specific squeezed state, which demonstrates technicalities of our method
and provides a consistency check of the expansion of section 5. In appendix D the validity
of our method is checked in a special example that can be solved in a different way, via
the extension of the entanglement entropy to the family of Rényi entanglement entropies.
In appendix E we demonstrate the equivalence of our method and the correlation matrix
method. In appendix F we develop an expansion for small squeezing parameters.

2 Gaussian Solutions of the simple quantum harmonic oscillator

In this section we define the basic terminology in relation to the Gaussian solutions of the
simple quantum harmonic oscillator and remind the reader of some basic properties that
they possess. The general Gaussian solutions are characterized as “squeezed” states. A
special subclass of those with enhanced properties are the so-called “coherent” states.

Let us consider the simple quantum harmonic oscillator with Hamiltonian

Ĥ = p̂2

2m + mω2x̂2

2 . (2.1)

The time-dependent Schrödinger equation

Ĥψ (t, x) = i~
∂ψ (t, x)

∂t
(2.2)

possesses several Gaussian solutions. The most well-known class of such solutions consists
of the so-called coherent states, whose wavefunction reads

Ψ (t, x) =
(
mω

π~

) 1
4

exp
[
−mω (x− x0 (t))2

2~ + i
p0 (t) (x− x0 (t))

~
− iϕc (t)

]
, (2.3)

where

x0 (t) = X0 cos [ω (t− t0)] , (2.4)

p0 (t) = −P0 sin [ω (t− t0)] , P0 = mωX0, (2.5)

ϕc (t) = 1
2ω (t− t0) + X0P0

4~ sin [2ω (t− t0)] + ϕ0. (2.6)

The coherent states possess several very interesting properties:
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1. The mean values of position and momentum follow a classical orbit. Namely

〈x̂〉 = x0 (t) = X0 cos [ω (t− t0)] , 〈p̂〉 = p0 (t) = −mωX0 sin [ω (t− t0)] . (2.7)

2. They are states of minimal and balanced uncertainty. Namely

∆x =
√

~
2mω, ∆p =

√
~mω

2 , ∆x∆p = ~
2 . (2.8)

3. The quadratic part of the exponent of the Gaussian wavefunction is real.

4. The ground state is the special case of coherent state with X0 = 0.

If the Schrödinger equation is solved with an initial condition identified with a Gaussian
state of minimal and balanced uncertainties for position and momentum, then its solution
is necessarily a coherent state. On the contrary, if it is solved with an initial condition
which is a Gaussian state that does not obey both these conditions, i.e. either it is not a
minimal uncertainty state, or the uncertainties of position and momentum are not balanced,
then its solution is a squeezed state. A squeezed state is still Gaussian at all times, like a
coherent state, but it is more general:

Ψ (t, x) =
(
mRe (w (t))

π~

) 1
4

exp
[
−mw (t) (x− x0 (t))2

2~ + i
p0 (t) (x− x0 (t))

~
− iϕs (t)

]
,

(2.9)
where

w (t) = ω
1− i sinh z cos [2ω (t− t0)]

cosh z + sinh z sin [2ω (t− t0)] , (2.10)

ϕs (t) = 1
2 arctan

tanh z
2 + tan [ω (t− t0)]

1 + tanh z
2 tan [ω (t− t0)] + X0P0

4~ sin [2ω (t− t0)] + ϕ0. (2.11)

The functions x0 (t) and p0 (t) are given by equations (2.4) and (2.5), as in the case of the
coherent states. The parameter z is called the squeezing parameter.

The squeezed states retain some, but not all, properties of the coherent states. Namely:

1. The mean position and momentum follow a classical orbit, exactly like in the case of
coherent states.

2. They are not minimal uncertainty states at all times. More specifically:

∆x∆p = ~
2

√
1 + sinh2 z cos2 [2ω (t− t0)]. (2.12)

It follows that they are minimal uncertainty states exactly four times during each
period of the corresponding classical harmonic oscillator, namely at times

tmin = t0 + T

8 + n
T

4 , n ∈ Z, (2.13)

where T is the period of the oscillator, i.e. T = 2π/ω. At these instants w, defined
in (2.10), is real.
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3. Even at the instants that the squeezed states are minimal uncertainty states, the
uncertainties of position and momentum are not balanced. In general

∆x =
√

~
2mRe (w) , ∆p =

√
~mRe (w)

2

√
1 +

( Im (w)
Re (w)

)2
, (2.14)

implying that, at the instants that the squeezed state is a minimal uncertainty state,
we have

∆xmin =
√

~
2mωe±z , ∆pmin =

√
~mωe±z

2 . (2.15)

4. The quadratic part of the exponent of the Gaussian wavefunction is not real.

5. The coherent states are special cases of squeezed states with z = 0.

Because of the properties of the coherent and squeezed states, one can conceive the
coherent states as the closest to classical states of the quantum harmonic oscillator, whereas
the squeezed states as the next to closest. For this reason, the study of entanglement in
systems lying in squeezed states presents a certain interest, since it reveals the behaviour of
the system in states which are not very close to classicality. For example, it is known that
the spectrum of the reduced density matrix for an arbitrary coherent state is identical to
that for the ground state. This does not hold for the squeezed states.

As we will discuss in what follows, the study of entanglement in squeezed states of the
overall system is much more difficult than the study of entanglement in coherent states,
because the quadratic part of the exponent of the Gaussian state is not real. Although this
fact does not complicate the explicit calculation of the reduced density matrix via the use
of Gaussian integrals, the calculation of its spectrum is much more involved.

3 The special case of two oscillators

Let us consider the case of two coupled oscillators. From now on for simplicity we use units
where ~ = 1. Without loss of generality we consider that the mass of each oscillator is
equal to one. Furthermore, for simplicity of the presentation of this toy case, we consider
identical self couplings of the two oscillators. The Hamiltonian of the system is

H = 1
2
[
p2

1 + p2
2 + k0

(
x2

1 + x2
2

)
+ k1 (x1 − x2)2

]
. (3.1)

In terms of the canonical coordinates

x± = 1√
2

(x1 ± x2) (3.2)

the Hamiltonian assumes the form

H = 1
2
(
p2

+ + p2
− + ω2

+x
2
+ + ω2

−x
2
−

)
, (3.3)

where ω+ =
√
k0 and ω− =

√
k0 + 2k1. As expected, the normal modes are decoupled.
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3.1 The reduced density matrix

We consider the overall system lying in a squeezed state; by that we mean that each normal
mode is described by a wavefunction of the form of equation (2.9). It follows that, at any
given time, the state of the two-oscillator system can be written as

Ψ(x+,x−) =
(Re(w+)Re(w−)

π2

) 1
4

exp
[
− 1

2
(
w+ (x+−x0+)2+w− (x−−x0−)2

)
+ip0+ (x+−x0+)+ip0− (x−−x0−)−iϕs+−iϕs−

]
.

(3.4)

Obviously, we demand that Re (w+) > 0 and Re (w−) > 0, so that the wavefunction is
normalizable. The system’s density matrix is given by

ρ
(
x+,x−;x′+,x′−

)
=
(Re(w+)Re(w−)

π2

) 1
2

×exp
[
− 1

2
(
w+ (x+−x0+)2+w− (x−−x0−)2+w∗+

(
x′+−x0+

)2+w∗−
(
x′−−x0−

)2)
+ip0+

(
x+−x′+

)
+ip0−

(
x−−x′−

)]
.

(3.5)

We would like to trace out the second oscillator and find the reduced density matrix of the
first one. In order to do so, we need to express the density matrix in terms of the original
coordinates x1 and x2. It is convenient to define

x0± = 1√
2

(x01 ± x02) , p0± = 1√
2

(p01 ± p02) (3.6)

in a similar manner to (3.2).
The reduced density matrix assumes the form

ρ
(
x1,x2;x′1,x′2

)
=
(Re(w+)Re(w−)

π2

) 1
2

×exp
[
− 1

4
(
(w++w−)

(
y2

1 +y2
2

)
+(w++w−)∗

(
y′21 +y′22

)
+2(w+−w−)y1y2+2(w+−w−)∗ y′1y′2

)
+ip01

(
y1−y′1

)
+ip02

(
y2−y′2

)]
,

(3.7)
where we defined

yi ≡ xi − x0i, y′i ≡ x′i − x0i, i = 1, 2. (3.8)

The reduced density matrix for the first oscillator, ρ1 (x1;x′1) =
∫
dx2ρ (x1, x2;x′1, x2),

can be easily calculated via Gaussian integrals. We only need to complete the square for
the coordinate that is integrated. After some simple algebra we find

ρ1
(
x1;x′1

)
=
(Re (γ)− β

π

) 1
2

exp
[
−1

2
(
γy2

1 + γ∗y′21

)
+ βy1y

′
1 + ip01

(
y1 − y′1

)]
, (3.9)
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where

γ = 4w+w− + |w+ + w−|2

4Re (w+ + w−) , (3.10)

β = |w+ − w−|2

4Re (w+ + w−) . (3.11)

The reduced density matrix is appropriately normalized, i.e. Trρ1 = 1. Notice that it does
not depend on the parameter p02 at all.

It is easy to show that

Re (γ)− β = 2Re (w+) Re (w−)
Re (w+ + w−) , (3.12)

Re (γ) + β =
∣∣w+ + w∗−

∣∣2
2Re (w+ + w−) . (3.13)

As a result, for any w+ and w−, as long as their real parts are positive, which is required
for the normalizability of the wavefunction of the overall system, Re (γ) is always positive
and larger than |β|.

3.2 The spectrum of the reduced density matrix

The coefficient β is real, similarly to the ground or coherent state case. This is enforced by
the fact that the reduced density matrix is Hermitian, i.e. ρ1 (x1;x′1) = ρ∗1 (x′1;x1). Even
though this property of the reduced density matrix is sufficient in order to set the parameter
β real in the case of a reduced system with a single degree of freedom, it is not sufficient in
the general case. In other words, this is a special property of systems where all oscillators
but one are traced out.

However, the simple example of the two oscillators exposes an interesting difference
to the ground state case or the more general coherent state case: the coefficient γ is
complex, namely

γ = 4Re (w+w−) + |w+ + w−|2

4Re (w+ + w−) + i
4Im (w+w−)

4Re (w+ + w−) . (3.14)

This is a direct consequence of the fact that the coefficient of the quadratic term w in the
exponent of a squeezed state is complex.

Nevertheless, the eigenvalues of the reduced density matrix do not depend on the
imaginary part of the coefficient γ. Moreover, they do not depend on the parameter p01.
We may write the reduced density matrix ρ1 as

ρ1
(
x1;x′1

)
= ρ̃1

(
x1;x′1

)
exp

[
− i2Im (γ)

(
y2

1 − y′21
)

+ ip01
(
y1 − y′1

)]
, (3.15)

where

ρ̃1
(
x1;x′1

)
=
(Re (γ)− β

π

) 1
2

exp
[
−1

2Re (γ)
(
y2

1 + y′21

)
+ βy1y

′
1

]
, (3.16)
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i.e. ρ̃1 is the same as ρ1, where we have set the imaginary part of the coefficient γ and the
coefficient p01 equal to zero by hand. Let f̃ (x1) be an eigenstate of ρ̃1 with eigenvalue
λ, namely ∫

dx′1ρ̃1
(
x1;x′1

)
f̃
(
x′1
)

= λf̃ (x1) . (3.17)

Then, the function f (x1) = exp
(
−iIm (γ) y2

1/2 + ip01x1
)
f̃ (x1) is an eigenfunction of the

reduced density matrix ρ1 with the same eigenvalue. Therefore, the spectrum of the reduced
density matrix does not depend on the imaginary part of γ and the parameter p01. In order
to specify its spectrum, it suffices to specify the spectrum of the matrix ρ̃1.

The matrix ρ̃1 (x1;x′1) is of the same form as the reduced density matrix in the case of
the ground [7] or coherent states [15]. It is well known that its normalized eigenstates are

f̃n (x) = 1√
2nn!

(
α

π

)1/4
Hn

(√
α (x− x01)

)
e−

1
2α(x−x01)2

, (3.18)

where
α :=

√
Re (γ)2 − β2 (3.19)

and Hn is the Hermite polynomial of order n. Notice that the parameter α is always real,
since Re (γ) > |β|. The corresponding eigenvalues are

pn = (1− ξ) ξn, (3.20)

where
ξ := β

Re (γ) + α
. (3.21)

The eigenvalues are properly normalized, since obviously
∞∑
n=0

pn = 1. It directly follows that

the normalized eigenstates of the reduced density matrix ρ1 (x1;x′1) are

fn (x) = 1√
2nn!

(
α

π

)1/4
Hn

(√
α (x− x01)

)
e−

1
2 (α+iIm(γ))(x−x01)2+ip01(x−x01), (3.22)

with corresponding eigenvalues given by equation (3.20). The above imply that the reduced
density matrix assumes the form

ρ1
(
x1;x′1

)
= (1− ξ)

∞∑
n=0

ξnfn(x1)fn(x′1)∗. (3.23)

As in the case of the ground state, the entanglement entropy is given by

S = − ln (1− ξ)− ξ

1− ξ ln ξ. (3.24)

The parameter ξ and the spectrum of the reduced density matrix depend on time,
unlike the case of the ground state or a coherent state. This implies that the time evolution
of the reduced density matrix is non-unitary.
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t
Smin

S0

Smax

SEE

T+/8 5T+/8 9T+/8 13T+/8

Figure 1. The entanglement entropy as a function of time when only the symmetric mode is squeezed.
S0 is the entanglement entropy at the ground state of the system.

3.3 Squeezing and entanglement

We have obtained the spectrum of the reduced density matrix, as well as the entanglement
entropy, for a system of two degrees of freedom in a squeezed state. This state is in some
sense “less classical” than a coherent state (see discussion in section 2), so it is natural to ask
how the entanglement entropy is altered by squeezing. For the case of two simple coupled
harmonic oscillators, we study some representative examples. The details are presented in
appendix A, while here we only summarize the conclusions.

When the overall system is described by a squeezed state, the entanglement entropy
depends on time. When only one mode is squeezed, while the other lies in the ground or a
coherent state, this dependence results in a periodic oscillation between a maximal and a
minimal value, as shown in figure 1.

The contribution of the squeezed mode to entanglement grows as the squeezing param-
eter increases. However, this contribution may act constructively or destructively on the
contribution of the mode that lies in its ground state. As a result, the maximal value of
entanglement entropy always increases as the squeezing parameter increases, whereas the
minimal value in not monotonous with the squeezing parameter. As the latter increases,
the minimal value decreases, up to a critical value of the squeezing parameter z0 = ln ω−

ω+
,

where it vanishes. Further increase of the squeezing parameter results in an increase of the
minimal value of the entanglement entropy. These features are depicted in figure 2. The
contribution of the squeezed mode is constructive at the instants when the squeezed state
is a minimal uncertainty state with maximal position uncertainty, and destructive at the
instants when it is a minimal uncertainty state with minimal position uncertainty.

The dependence of the minimal and maximal entanglement entropy on the squeezing
parameter is such that the mean entanglement entropy always increases with the squeezing
parameter. After some tedious algebra that is included in appendix A.1, it turns out that
the mean entanglement entropy is given by equation (A.34). For small squeezing the mean
entanglement entropy is quadratic in the squeezing parameter, whereas for large squeezing
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t

SEE

S0

0
T+/8 5T+/8 9T+/8 13T+/8

z = 5z0/2
z = 2z0

z = 3z0/2
z = z0

z = z0/2
z = 0

Figure 2. The entanglement entropy as a function of time for various values of the squeezing
parameter z. S0 is the entanglement entropy at the ground state of the system.

z

S0

S̄

−zvac−z0 z0 zvac

Figure 3. The mean entanglement entropy as a function of the squeezing parameter z. The dashed
line shows the approximation of the mean entanglement entropy for small squeezing, whereas the
dotted line the approximation for large squeezing, both provided by equation (3.25).

it becomes a linear function:

S̄ =


S0 − z2

16

(
1 + 1+4ξ0+ξ2

0
1−ξ2

0
ln ξ0

)
, z � 1,

z
2 + ln

(√
ω+
ω−

+
√

ω−
ω+

)
+ 1− 3 ln 2, z � 1,

(3.25)

where ξ0 and S0 are the parameter ξ and the entanglement entropy when the system lies
in its ground state, respectively. The mean entanglement entropy as a function of the
squeezing parameter is depicted in figure 3.

This wave-like addition of the contributions of the two modes to the entanglement
entropy persists when both modes are squeezed. As a result, even when both squeezing
parameters are large, the minimal entanglement entropy may be small or even vanishing,
when the difference of the two squeezing parameters is small. This is depicted in figure 4.

On general grounds, the contribution to entanglement by the two modes is the maximal
possible at instants when both modes are minimal uncertainty states, but one of those has
maximal position uncertainty and the other has minimal position uncertainty. When they
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z+

ln ω−
ω+

2 ln ω−
ω+

z−

ln ω−
ω+

2 ln ω−
ω+

00

Smin
=

0

0 <
Smin

<
S 0

Smin
>
S 0

Figure 4. The minimal entanglement entropy relatively to S0 as a function of the squeezing param-
eters.

t

Smin

Smax

SEE

Figure 5. The entanglement entropy as a function of time for ω+ = 1, ω− =
√

2, z+ = 1
and z− = 5/4.

are both minimal uncertainty states and have both either maximal or minimal position
uncertainty, squeezing acts competitively and their contribution to entanglement is the
minimal possible. When both modes are squeezed, the dependence of the entanglement
entropy on time is in general not periodic, as the ratio of the eigenfrequencies of the
two modes may be irrational. However, the constructive and destructive addition of the
contributions of the two modes sets an upper and a lower bound for the entanglement
entropy, as shown in figure 5.

Unlike the case where a single mode is squeezed, it is not possible to derive an analytic
formula for the mean value of entanglement entropy. However, it appears that the latter is
an increasing function of both z±, as shown in the numerical calculation depicted in figure 6.
Indicatively, the small and large squeezing parameter expansions of the mean entanglement
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z+

z−

S̄

ln ω−
ω+

Figure 6. The mean entanglement entropy as a function of the squeezing parameters for ω+ = 1,
ω− =

√
2.

entropy are

S̄ =


S0 −

z2
++z2

−
16

(
1 + 1+4ξ0+ξ2

0
1−ξ2

0
ln ξ0

)
+O

(
z3) , z± � 1,

z++z−
2 +O

(
z0) , z± � 1,

(3.26)

in line with the above statement.

4 General harmonic system at a squeezed state

Having studied the system of two coupled harmonic oscillators in the previous section, we
can now proceed to study a more general harmonic system with an arbitrary number of
degrees of freedom. We consider a system of N coupled quantum harmonic oscillators
described by the Hamiltonian

H = 1
2

N∑
i=1

p2
i + 1

2

N∑
i,j=1

xiKijxj = 1
2pTp + 1

2xTKx, (4.1)

where we use the vector notation

x =


x1
x2
...
xN

 , p =


p1
p2
...
pN

 . (4.2)

Similarly to section 3 and without loss of generality, we have assumed that all oscillators
have unit mass. The matrix K is symmetric and positive definite, so that it describes an
oscillatory system with N degrees of freedom around a stable equilibrium position.

There is an orthogonal transformation O, relating the coordinates xi to the normal
coordinates x̃i, which diagonalizes the matrix K, reducing the system to a set of decoupled
harmonic oscillators, one for each normal mode.1 In other words,

H = 1
2

N∑
j=1

p̃2
j + 1

2

N∑
j=1

ω2
j x̃

2
j = 1

2 p̃T p̃ + 1
2 x̃T K̃x̃, (4.3)

1Throughout this work, the tilded symbols refer to quantities related to the normal coordinates.
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where
x̃ = Ox, p̃ = Op. (4.4)

The diagonal matrix K̃ contains the squares of the eigenfrequencies of the normal modes

K̃ij = ω2
i δij . (4.5)

It is obviously related to the initial matrix K as

K = OT K̃O. (4.6)

We consider states of the system where all normal modes lie in a squeezed state

Ψ (x̃) =

 N∏
j=1

(Re (wj)
π

) 1
4

 exp

 N∑
j=1

(
−1

2wj (x̃j − x̃0j)2 + ip̃0j (x̃j − x̃0j)− iϕsj

)

=

det Re
(
W̃
)

πN


1
4

exp

−1
2 (x̃− x̃0)T W̃ (x̃− x̃0) + ip̃T0 (x̃− x̃0)− i

N∑
j=1

ϕsj

 ,
(4.7)

where W̃ is the diagonal matrix whose diagonal elements are the complex values wi, i.e.

W̃ij = wiδij , (4.8)

with wi given by the application of formula (2.10) for each normal mode.
We define as subsystem 1 the set of n oscillators described by the coordinates xj , where

j ≤ n. The N − n oscillators described by coordinates xj , where j > n, comprise the
complementary subsystem, which we call subsystem 2. We would like to trace out subsystem
1 in order to find the reduced density matrix for subsystem 2 and the corresponding
entanglement entropy.

The bulk of this section is quite technical. For this reason we would like to provide first
the reader with the summary of the results and point out the basic differences with respect
to the case of the ground state, which has been extensively studied in the literature.

4.1 Summary

The reduced density matrix, which describes a subsystem of the overall harmonic system,
turns out to be of the form

ρ2
(
x2; x′2

)
=
(det Re (γ − β)

πN−n

) 1
2

exp
[
− 1

2
(
yT2 γy2 + y′T2 γ∗y′2

)
+ y′T2 βy2 + ipT02

(
y2 − y′2

) ]
,

(4.9)

where γ is a complex symmetric matrix, β is a Hermitian matrix and y2 = x2 − x02. The
vector x2 contains the coordinates of the degrees of freedom that have not been traced out,
while the vectors x02 and p02 contain the corresponding parameters x0i and p0i.
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The imaginary part of the matrix γ does not affect the eigenvalues of the reduced
density matrix and can be set to zero by hand. The same holds for the parameters in the
vectors x02 and p02. Therefore, we are left with the problem of the specification of the
eigenvalues of a matrix of the form

ρ̃2
(
x2; x′2

)
=
(det Re (γ − β)

πN−n

) 1
2

exp
[
−1

2
(
xT2 γx2 + x′T2 γx′2

)
+ x′T2 βx2

]
, (4.10)

where γ is a real symmetric matrix and β is a Hermitian matrix. This is very similar to the
reduced density matrix in the case that the overall harmonic system lies in its ground state.
However, there is one important difference: for the ground state, the matrix β is not just
Hermitian, but real and symmetric.

In the case of the ground state, the fact that both matrices γ and β are real and
symmetric allows the specification of the spectrum of the reduced density matrix in a
trivial manner. One has to perform three coordinate transformations. The first one is
an orthogonal transformation that diagonalizes the matrix γ. The second is a coordinate
rescaling that sets the matrix γ equal to the identity matrix. The last one is an orthogonal
transformation that diagonalizes the matrix β. After these transformations, the density
matrix is written as the tensor product of N − n matrices of the form

ρ
(
x̂i; x̂′i

)
=
(

1− β̂i
π

) 1
2

exp
[
−1

2
(
x̂2
i + x̂′2i

)
+ β̂ix̂ix̂

′
i

]
, (4.11)

describing one degree of freedom each. The coordinates x̂i are the coordinates describing
the reduced system after the three linear transformations that we performed above, i.e. real
linear combinations of the original coordinates. Namely, they equal x̂i = vTi x2, where vi
are the normalized eigenvectors of the real symmetric matrix

β̂ = γ−
1
2βγ−

1
2 . (4.12)

The parameters β̂i are the corresponding eigenvalues of the matrix β̂.
The above density matrix is of the form of equation (3.16), i.e. of the form that we met

in the simple case of two coupled harmonic oscillators. We know that its eigenfunctions
are given by equation (3.22) and its eigenvalues by equation (3.20). The eigenfunctions are
identical to the eigenstates of an effective simple harmonic oscillator with eigenfrequency
equal to αi =

√
1− β̂2

i . This fact, combined with the form of the eigenvalues, implies that
the above reduced density matrix is identical to a thermal density matrix describing the
effective harmonic oscillator at a temperature

e
−αi
Ti = β̂i

1 + αi
≡ ξi. (4.13)

Returning to the reduced system, the fact that the reduced density matrix can be
factored to matrices of the above form, describing one degree of freedom each, implies that it
is identical to the density matrix describing an effective harmonic system in a quasi-thermal
state. The coordinates x̂i are the “canonical” coordinates of this harmonic system, whereas
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the values αi are the corresponding eigenfrequencies. The eigenstates of the system are
trivially given by

f̃{m1,m2,...,mN−n} (x2) =
N−n∏
i=1

1√
2mimi!

(
αi
π

)1/4
Hmi (√αi (x̂i)) e−

1
2αi(x̂i)

2
. (4.14)

The state is quasi-thermal is the sense that each normal mode is in a thermal state, but has
its own temperature. Such a state is not unexpected, considering that the normal modes
do not interact. In an obvious manner, the spectrum of the reduced density matrix is of
the form

p{m1,m2,...,mN−n} =
N−n∏
i=1

(1− ξi) ξmii . (4.15)

In our case, the overall system does not lie in its ground state, but rather in a squeezed
state. The matrix β is not real; it is Hermitian. We may diagonalize the matrix γ via an
orthogonal transformation and even rescale the coordinates in order to set γ equal to the
identity matrix. Nevertheless it is not possible to diagonalize the matrix β through another
orthogonal transformation.

It follows that the reduced density matrix cannot be factored to the tensor product of
matrices, each describing a single degree of freedom. However, we can still perform the first
two coordinate transformations and express the reduced density matrix in the form2

ρ̃2
(
x2; x′2

)
=

√√√√det
(
I − Re

(
β̂
))

πN−n
exp

[
−1

2
(
x̂T2 x̂2 + x̂′T2 x̂′2

)
+ x̂′T2 β̂x̂2

]
, (4.16)

where β̂ = Re (γ)−
1
2 βRe (γ)−

1
2 . Rather surprisingly, it turns out that the general properties

of the eigenstates and eigenvalues of the reduced density matrix remain the same as when
β is real and symmetric.

Even though we cannot factor the system, we may search for eigenfunctions of the
reduced density matrix that are of similar form to those in the case of the ground state.
First, there is a Gaussian “ground” eigenstate

Ψ0 (x) ∼ exp
(
−1

2xTAx
)
, (4.17)

where the matrix A satisfies the quadratic equation

A = I − β̂T (I +A)−1 β̂. (4.18)

This equation has many solutions, but only one gives rise to a normalizable Gaussian
eigenstate.

Second, there are N − n “first excited” eigenstates

Ψ1i (x) ∼ vTi x exp
(
−1

2xTAx
)
, (4.19)

2Throughout this work, the hatted symbols refer to quantities defined in the coordinates of the reduced
system where the matrix Re (γ) has been set to the identity matrix.
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where A satisfies (4.18) and the vectors vi are the right eigenvectors of the matrix

Ξ = β̂T (I +A)−1 . (4.20)

Let us call ξi the eigenvalue of the matrix Ξ that corresponds to the eigenvector vi. Then,
it turns out that the eigenvalue of the eigenstate Ψ1i of the reduced density matrix is λ0ξi,
where λ0 is the eigenvalue of the “ground” eigenstate (4.17). The vectors vi are in general
complex. The matrix Ξ has no specific symmetry property, nevertheless, its eigenvalues
are real.

If the overall system lay in its ground state, we would upgrade the linear combinations
of the coordinates vTi x to Hermite polynomials of those and construct the whole tower of
states. In our case, this is not possible. However, testing the function

ψ{m1,m2,...,mn} (x) ∼
(
vT1 x

)m1 (vT2 x
)m2

. . .
(
vTN−nx

)mN−n exp
(
−1

2xTAx
)
, (4.21)

it can be shown that, although it is not an eigenstate, there is always a unique way to add
terms of lower order to the polynomial

(
vT1 x

)m1 (vT2 x
)m2

. . .
(
vTN−nx

)mN−n , so that we
obtain an eigenstate of the reduced density matrix. The corresponding eigenvalue is

λ{m1,m2,...,mn} = λ0ξ
m1
1 ξm2

2 . . . ξ
mN−n
N−n . (4.22)

It follows that the spectrum of the reduced density matrix in the case of squeezed states
has the same form as in the case of the ground state, namely (4.15). The difference is the
following: in the case of the ground state, the values of the parameters ξi are determined by
the eigevalues of the matrix β̂, defined in equation (4.12), via the formula (4.13). In the case
of the squeezed state, the ξi are the eigenvalues of the matrix Ξ, defined in equation (4.20).
In the coherent limit of the squeezed states the two definitions become equivalent.

The matrix Ξ is defined via the matrix A. This introduces an extra difficulty: in order
to calculate the matrix A one needs to solve the non-linear matrix equation (4.18) and
specify which solution gives rise to normalizable eigenstates of the reduced density matrix.
It turns out that there is only a single admissible solution for A and thus for the matrix Ξ.
The eigenvalues of the admissible matrix Ξ can be specified as the solutions of the equation

det
(

2I − λβ̂ − 1
λ
β̂T
)

= 0 (4.23)

that are smaller than 1. The above equation has in general 2 (N − n) solutions that come
in pairs of the form (λ, 1/λ). Therefore N − n of its solutions are smaller than 1 and the
other N − n are larger than 1.

The next four subsections contain all the technical details of the calculation of the
eigenfunctions and eigenvalues of the reduced density matrix. The reader who is not
interested in these details may skip them and move to the next section. In appendix B
we present a systematic iterative method to construct the eigenfunctions of the reduced
density matrix based on creation and annihilation operators. In appendix D we present
an explicit realization of this calculational process in a toy example. We confirm that the
result is in agreement with that obtained through an alternative method using the Rényi
entropies, which is not applicable to the general case, but is feasible in this simple example.
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4.2 The reduced density matrix

In order to trace out the degrees of freedom of subsystem 1, we need to express the state (4.7)
in terms of the original coordinates x,

Ψ (x) =
(det Re (W )

πN

) 1
4

exp

−1
2 (x− x0)T W (x− x0) + ipT0 (x− x0)− i

N∑
j=1

ϕsj

 ,
(4.24)

where obviously W = OT W̃O, x̃0 = Ox0 and p̃0 = Op0. The matrix W is a complex
symmetric matrix. The density matrix describing the overall system assumes the form

ρ
(
x; x′

)
=
(det Re (W )

πN

) 1
2

exp
[
− 1

2
(

(x− x0)T W (x− x0)

+
(
x′ − x0

)T
W ∗

(
x′ − x0

) )]
exp

[
ipT0

(
x− x′

)]
.

(4.25)

We use the block form notation

W =
(
A B

BT C

)
, x =

(
x1
x2

)
, x0 =

(
x01
x02

)
, p0 =

(
p01
p02

)
, (4.26)

where the matrix A is an n× n matrix, the matrix C is an (N − n)× (N − n) matrix and
so on. Notice that the matrices A and C are complex symmetric matrices, whereas the
matrix B is not even a square matrix.

Using this block form notation, the reduced density matrix describing subsystem 2,
ρ2 (x2; x′2) =

∫
dnx1ρ (x1,x2; x1,x′2), can be easily found via the application of multidimen-

sional Gaussian integrals. It is a matter of simple algebra to show that

ρ2
(
x2; x′2

)
=
(det Re (γ − β)

πN−n

) 1
2

exp
[
− 1

2
(
yT2 γy2 + y′T2 γ∗y′2

)
+ y′T2 βy2 + ipT02

(
y2 − y′2

) ]
,

(4.27)

where

γ = C − 1
2B

TRe (A)−1B, (4.28)

β = 1
2B
†Re (A)−1B, (4.29)

and yi = xi − x0i.
Notice that the matrix γ is by definition a complex symmetric matrix; it obeys γT = γ.

On the contrary, the matrix β is by definition a Hermitian matrix; it obeys β† = β. For
this reason, in the case of the two oscillators, where the matrices γ and β were numbers,
the coefficient γ was complex, whereas the coefficient β was forced to be real, as we saw
in section 3.
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4.3 The eigenproblem for the reduced density matrix

Similarly to the case of the two oscillators of section 3, the imaginary part of the matrix γ
does not affect the eigenvalues of the reduced density matrix. We may write this matrix as

ρ2
(
x2; x′2

)
=
(det Re (γ − β)

πN−n

) 1
2

exp
[
−1

2
(
yT2 Re (γ) y2 + y′T2 Re (γ) y′2

)
+ y′T2 βy2

− i2
(
yT2 Im (γ) y2 − y′T2 Im (γ) y′2

)
+ ipT02

(
y2 − y′2

)]
.

(4.30)
Consider the matrix ρ̃2 which is identical to the reduced density matrix ρ2, where we have
set by hand the imaginary part of γ and the shifts x02 and p02 to zero, i.e.

ρ̃2
(
x2; x′2

)
=
(det Re (γ − β)

πN−n

) 1
2

× exp
[
−1

2
(
xT2 Re (γ) x2 + x′T2 Re (γ) x′2

)
+ x′T2 βx2

]
.

(4.31)

Furthermore, consider that f̃ (x2) is an eigenfunction of ρ̃2 with eigenvalue λ, i.e.∫
dN−nx′2ρ̃2

(
x2; x′2

)
f̃
(
x′2
)

= λf̃ (x2) . (4.32)

Then, the function

f (x2) = exp
[
− i2 (x2−x02)T Im(γ)(x2−x02)+ipT02 (x2−x02)

]
f̃ (x2−x02) (4.33)

is trivially an eigenfunction of the reduced density matrix ρ2 with the same eigenvalue.
Therefore, it is sufficient to find the spectrum of the simpler matrix ρ̃2. We may further

simplify ρ̃2 via the following linear transformations of the coordinates:

1. A real orthogonal transformation of the coordinates x2, which diagonalizes the matrix
γ.

2. A rescaling of the coordinates x2, so that the matrix Re (γ) becomes the identity
matrix.

Let us denote the coordinates after these two transformations as x̂2. In an obvious manner
x̂2 = Re (γ)−

1
2 x2. Then, the matrix ρ̃2 assumes the form

ρ̃2
(
x̂2; x̂′2

)
=

√√√√det
(
I − Re

(
β̂
))

πN−n
exp

[
−1

2
(
x̂T2 x̂2 + x̂′T2 x̂′2

)
+ x̂′T2 β̂x̂2

]
, (4.34)

where
β̂ = Re (γ)−

1
2 βRe (γ)−

1
2 . (4.35)

The calculation of its spectrum cannot continue along the same path as in the case of
the ground or coherent state. In such a case, the matrices γ and β would be both real
and symmetric and so would be the matrix β̂. So, we would apply a final real orthogonal
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transformation, which would diagonalize β̂ and effectively factorize the problem to problems
of a single degree of freedom, rendering the calculation of the density matrix eigenstates
and eigenvalues trivial. This is not possible in our case. The matrix β̂ is not real and
symmetric, but rather it is a Hermitian matrix, and thus it cannot be diagonalized via a
real orthogonal transformation.

In the following, we drop the index 2 from the coordinates that describe the degrees of
freedom of subsystem 2.

4.4 The eigenstates of the reduced density matrix

In the case that the matrix β̂ is real and symmetric, we know the form of the eigenstates
of the reduced density matrix. They are the Fock space states of an effective system of
coupled harmonic oscillators.

This is not the case when the matrix β̂ is Hermitian and not real. The structure of the
eigenstates is deformed. However, there are several characteristics that remain invariant
and allow the specification of the spectrum of the reduced density matrix.

4.4.1 The “Ground” eigenstate of the reduced density matrix

First, let us investigate whether there is a “ground” state similar to the case of real β̂, i.e. a
Gaussian state. Its existence is supported by the fact that the reduced density matrix is
also Gaussian. Consider the normalized wavefunction

Ψ0 (x) = c0 exp
(
−1

2xTAx
)
, c0 =

(det (Re (A))
πN−n

)1/4
. (4.36)

The matrix A is in general a complex symmetric matrix, which needs to be specified so that
Ψ0 is an eigenstate of the reduced density matrix. It is a matter of algebra to show that

ρ̃2Ψ0 (x) =
∫
dnx′ρ̃2

(
x; x′

)
Ψ0
(
x′
)

= cc0

∫
dnx′ exp

[
−1

2
(
xTx + x′T (I +A) x′

)
+ x′T β̂x

]
,

(4.37)

where

c =

√√√√det
(
I − Re

(
β̂
))

πN−n
. (4.38)

Performing this integral yields

ρ̃2Ψ0 (x) = cc0cint exp
[
−1

2xT
(
I − β̂T (I +A)−1 β̂

)
x
]
, (4.39)

where

cint =

√√√√ (2π)N−n

det (I +A) . (4.40)

It follows that the Gaussian state (4.36) is indeed an eigenstate of the reduced density
matrix, if

A = I − β̂T (I +A)−1 β̂. (4.41)
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Then, the corresponding eigenvalue is

λ0 = ccint =

√√√√2N−n det
(
I − Re

(
β̂
))

det (I +A) . (4.42)

Since the reduced density matrix is Hermitian, and thus, it has real eigenvalues, the above
implies that the matrix I +A has a real determinant, although in general it is a complex
symmetric matrix.

4.4.2 The “First Excited” eigenstates of the reduced density matrix

In the case that the matrix β̂ is real, there exist eigenstates that are the first excited states
of the effective harmonic system. These states are the product of a Gaussian with a linear
combination of the coordinates that is the corresponding normal coordinate of the mode
that is excited. So let us investigate whether there are eigenstates of the form

ψ1 (x) = c1vTx exp
(
−1

2xTAx
)
, (4.43)

where v is a constant vector. The algebra is similar to the case of the Gaussian eigenstate:

ρ̃2ψ1 (x) =
∫
dnx′ρ̃2

(
x; x′

)
ψ1
(
x′
)

= cc1

∫
dnx′v′Tx exp

[
−1

2
(
xTx + x′T (I +A) x′

)
+ x′T β̂x

]
.

(4.44)

In order to perform this integral, we complete the square in the exponent, as in the case of
the “ground” eigenstate. This yields

ρ̃2ψ1 (x) = cc1cintvT (I +A)−1 βx exp
[
−1

2xT
(
I − β̂T (I +A)−1 β̂

)
x
]
. (4.45)

It follows that the state (4.43) is indeed an eigenstate of the reduced density matrix,
as long as it has the same matrix A as the Gaussian eigenstate, i.e. the solution of
equation (4.41), and furthermore the vector v is a right eigenvector of the matrix

Ξ := β̂T (I +A)−1 . (4.46)

Notice that the matrix Ξ in general is not symmetric or real or Hermitian. Let vi be the
eigenvectors of the matrix Ξ and ξi the corresponding eigenvalues, i.e.

Ξvi = ξivi. (4.47)

Then, we have found N − n “first excited” eigenstates of the reduced density matrix.
They read

Ψ1i (x) = c1ivTi x exp
(
−1

2xTAx
)

(4.48)

and the corresponding eigenvalues are

λ1i = ccintξi = λ0ξi. (4.49)
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The fact that the density matrix is Hermitian implies that its eigenvalues are real;
therefore the eigenvalues ξi of the matrix Ξ are real, although this matrix has no particular
symmetry property. The fact that the density matrix is Hermitian further implies that these
eigenstates are orthogonal, although the eigenvectors of the matrix Ξ are not necessarily
orthogonal either in the real or the complex sense. It is a matter of simple algebra to show
that demanding that the states Ψ1i are not only orthogonal, but also normalized, yields

δij = c1ic
∗
1j

∫
dnx

(
vTi x

) (
vTj x

)∗
exp

(
−xTRe (A) x

)
=
c1ic

∗
1j

2c2
0

v†jRe (A)−1 vi. (4.50)

This implies that the eigenvectors of the matrix Ξ are orthogonal in the complex sense upon
the introduction of a real metric, which is equal to the inverse of the real part of the matrix
A. In what follows we always choose the eigenvectors of the matrix Ξ to be orthonormal in
this sense, i.e.

v†jRe (A)−1 vi = δij . (4.51)

Obviously, this definition of the vectors vi, combined with the equation (4.50), implies
that the appropriate choice for the normalization constant of the “first excited” eigen-
states (4.48) is

c1i =
√

2c0. (4.52)

The above also imply that the matrix

Ξ′ = Re (A)−
1
2 Ξ Re (A)

1
2 (4.53)

has the same eigenvalues as Ξ, and its eigenvectors, which are simply v′i = Re (A)−
1
2 vi, are

orthogonal is the usual complex sense, i.e.

v′†j v′i = δij . (4.54)

It follows that the matrix Ξ′ is Hermitian.

4.4.3 The tower of eigenstates of the reduced density matrix

In the case of real β̂ the construction of the rest of the tower of eigenstates is trivial, since
they constitute the Fock space of an effective harmonic system. In our case of interest,
namely that of complex β̂, the construction of the whole tower of states is not that simple.
Let as consider the “second excited” state

ψ2ij (x) = c2ijvTi xvTj x exp
(
−1

2xTAx
)
. (4.55)

The indices i and j may coincide or not. In the case of real β̂, we would expect that this
is an eigenstate if i 6= j, whereas, if i = j, the square

(
vTi x

)2
should be corrected to the

second order Hermite polynomial of vTi x. In the case of complex β̂, the above do not hold.
Let us study the action of the density matrix on this state:

ρ̃2ψ2ij (x) =
∫
dnx′ρ̃2

(
x; x′

)
ψ2ij

(
x′
)

= cc2ij

∫
dnx′vTi x′vTj x′ exp

[
−1

2
(
xTx + x′T (I +A) x′

)
+ x′T β̂x

]
.

(4.56)
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We complete the square in the exponent as in the case of the Gaussian eigenstate. This yields

ρ̃2ψ2ij (x) = λ0ξiξjc2ijvTi xvTj x exp
(
−1

2xTAx
)

+ cc2ijc
2ij
int exp

(
−1

2xTAx
)

= λ0ξiξjψ2ij + cc2ijc
2ij
int

c0
Ψ0,

(4.57)

where

c2ij
int =

∫
dnx′vTi x′vTj x′ exp

[
−1

2x′T (I+A)x′
]

=

√√√√ (2π)N−n

det(I+A)v
T
i (I+A)−1 vj . (4.58)

The above integral does not vanish either when i = j or when i 6= j, unlike the case of
real β̂. Therefore, the state ψ2ij is not an eigenstate of the reduced density matrix, as the
action of the latter on ψ2ij gives a linear combination of ψ2ij and the Gaussian “ground”
eigenstate Ψ0. Nevertheless, it follows that it is trivial to construct an eigenstate of the
reduced density matrix by taking an appropriate linear combination of ψ2ij and Ψ0, namely

Ψ2ij = ψ2ij + c0ijΨ0, (4.59)

where
c0ij = c2ijc

2ij
int

c0cint

1
ξiξj − 1 . (4.60)

More interestingly though, we do not need to explicitly calculate the coefficient c0ij in order
to specify the eigenvalue of Ψ2ij . This is the coefficient of ψ2ij in ρ̃2ψ2ij . The addition of
c0ijΨ0 cannot alter this term; it only corrects the subleading terms. Therefore, there is a
set of “second excited” eigenstates, the states Ψ2ij , with corresponding eigenvalues

λ2ij = λ0ξiξj . (4.61)

It is not difficult to show that this argument holds inductively. It is always possible to
build an eigenstate Ψ{m1,m2,...,mn} (x), whose higher-order term is

ψ{m1,m2,...,mn} (x)

= c{m1,m2,...,mn}
(
vT1 x

)m1 (vT2 x
)m2

. . .
(
vTnx

)mn exp
(
−1

2xTAx
)
,

(4.62)

with eigenvalue
λ{m1,m2,...,mn} = λ0ξ

m1
1 ξm2

2 . . . ξmnn . (4.63)

The definition of the matrix Ξ (4.46), combined with the defining equation of the matrix
A (4.41), implies that

I −A = Ξ (I +A) ΞT . (4.64)

Using the definition of the matrix Ξ, the trick I = 1
2 (I +A) + 1

2 (I −A) and the above
relation, yields

I − Re
(
β̂
)

= 1
2 (I − Ξ) (I +A)

(
I − ΞT

)
. (4.65)
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This, combined with equation (4.42), implies that

λ0 =
√

det (I − Ξ) det (I − ΞT ) (4.66)

or
λ0 = (1− ξ1) (1− ξ2) . . . (1− ξn) . (4.67)

Thus, the eigenvalues of the eigenfunctions that we have already discovered are equal to

λ{m1,m2,...,mn} = (1− ξ1) (1− ξ2) . . . (1− ξn) ξm1
1 ξm2

2 . . . ξmnn . (4.68)

It follows that ∑
{m1,m2,...,mn}

λ{m1,m2,...,mn} = 1. (4.69)

Therefore, we have discovered all the eigenfunctions of the reduced density matrix, or at
least all the eigenfunctions with non-vanishing eigenvalues.

Finally, equation (4.68) implies that the entanglement entropy is given by the same
formula as in the case of the ground or coherent states, namely

SEE = −
∑
i

(
ln (1− ξi) + ξi

1− ξi
ln ξi

)
. (4.70)

As in the simple case of the two oscillators, the parameters ξi are time-dependent, implying
that the time evolution of the reduced density matrix includes a non-unitary part.

The eigenfunctions of the matrix ρ2 can also be constructed algebraically with the use
of appropriate creation and annihilation operators. The details of this construction are
presented in appendix B. The structure of the eigenvalues of the reduced density matrix
implies that this matrix assumes the form

ρ2 ∼ exp
[∑

i

−µiNi

]
, (4.71)

where Ni are the occupation numbers resulting from the creation and annihilation operators
that construct algebraically the eigenfunctions, while µi = − ln ξi. This structure corre-
sponds to a generalized Gibbs ensemble (GGE). However, there are several subtle features:

1. The creation and annihilation operators are linear functions of the local positions and
momenta. However, the linear combination of positions is not conjugate to the linear
combination of momenta appearing in the same operator.

2. The overall system does not lie in an equilibrium state. The squeezed states are
time-dependent and they display an oscillatory behaviour. However, the reduced
density matrix corresponds to a generalized Gibbs ensemble with time-dependent
chemical potentials. It is interesting that the subsystem can be described by notions
of equilibrium thermodynamics, such as the GGE.

3. If we wanted to use the form of this distribution in order to estimate scaling properties
of the entanglement entropy, we would need to know the spectrum of the matrix Ξ
analytically. Unfortunately, this is a task that can only be performed numerically.
However, in section 5, we show that an analytical treatment is possible in the limit
that the squeezing parameter is large.
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4.5 A comment on the symmetry property of entanglement entropy

We found above that the spectrum of the reduced density matrix is given by equation (4.68),
where ξi are the eigenvalues of the square matrix Ξ, defined in (4.46), whose dimension
is equal to the number of degrees of freedom of the reduced system. It follows that the
entanglement entropy is given by the formula (4.70).

It is well known that, when the overall system lies in a pure state, which is the case for
the system we study in this work, the entanglement entropy has a symmetry property: the
entanglement entropy calculated by the reduced density matrix of subsystem A is identical
to the entanglement entropy calculated by the reduced density matrix of the complementary
subsystem AC ,

SEE (ρA) = SEE (ρAC ) . (4.72)

Within the framework that we performed our calculation of the spectrum of the reduced
density matrix, this property may appear peculiar, since the larger of the two subsystems
would be characterized by a larger number of parameters ξi. Actually, the symmetry
property does not only require equality of the two entanglement entropies. The two reduced
density matrices have identical spectra; the one with the larger dimension has the same
eigenvalues as the one with the smaller dimension, plus vanishing eigenvalues.

Given that the spectrum of the reduced density matrix in our case is given by (4.68),
these facts imply the following: the matrix Ξ of the subsystem with the larger number
of degrees of freedom, namely max (n,N − n), has min (n,N − n) eigenvalues, which are
identical to the min (n,N − n) eigenvalues of the matrix Ξ of the subsystem with the smaller
number of degrees of freedom. The remaining max (n,N − n)−min (n,N − n) eigenvalues
are vanishing.

As long as we are interested in the entanglement entropy or even the spectrum of the
reduced density matrix, it is simpler to consider the reduced density matrix of the smaller
of the two subsystems. This simplifies numerical calculations, since these are performed
with matrices of smaller dimension. More importantly, considering the reduced density
matrix for the smaller subsystem eliminates the presence of vanishing eigenvalues in the
spectrum of matrices such as β or Ξ, which would render them non-invertible.

4.6 The eigenvalues of the reduced density matrix

The problem of the specification of the spectrum of the matrix ρ̃2, and, thus, of the reduced
density matrix, has been reduced to the problem of the specification of the eigenvalues of
the matrix Ξ, defined in equation (4.46). The matrix Ξ has no specific symmetry property,
but nevertheless it has real eigenvalues; we have shown that it is similar to a Hermitian
matrix (see equation (4.53)). A problem that appears in this task is that the matrix Ξ is
defined in terms of the matrix A, which is a solution of the quadratic equation (4.41). As
such, there are many matrices A, and thus matrices Ξ. However, not all of them correspond
to normalizable eigenstates of the reduced density matrix. We need to find a systematic
way to distinguish which A corresponds to normalizable eigenstates and then calculate the
eigenvalues of the matrix Ξ that corresponds to this specific choice.
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We write (4.41) in the form of a matrix Riccati equation as

I − 2ΞT β̂−1 + ΞT β̂−1β̂TΞT = 0. (4.73)

The solutions of equations of the form

M21 +M22W −WM11 −WM12W = 0 (4.74)

are constructed as follows: we define the matrix

M =
(
M11 M12
M21 M22

)
. (4.75)

Then the original equation is equivalent to the “eigenvalue” problem(
M11 M12
M21 M22

)(
I

W

)
=
(
I

W

)
Z, (4.76)

where Z is a matrix. The first line of this equation implies that Z = M11 +M12W and thus
the second line is equivalent to the original Riccati equation (4.74). Given the solutions of
the ordinary eigenvalue problem(

M11 M12
M21 M22

)(
χj
ψj

)
= λj

(
χj
ψj

)
, (4.77)

the solutions of (4.74) are
W = ψχ−1, (4.78)

where the matrices χ and ψ are constructed using some of the χj and ψj as columns, i.e.

χij = (χj)i ψij = (ψj)i . (4.79)

In particular when all matrices of (4.74) are square d × d matrices, there are (2d)!/(d!)2

combinations. Of course not all combinations correspond to valid solutions, since the matrix
χ should be invertible.

In our case, the matrix M is 2 min (n,N − n)× 2 min (n,N − n) and reads

M =
(

2β̂−1 −β̂−1β̂T

I 0

)
. (4.80)

Notice that
detM = det

(
β̂−1

)
det

(
β̂T
)

= 1. (4.81)

The eigenvalues of the matrix M are specified by the equation

det
(

2I − λβ̂ − 1
λ
β̂T
)

= 0. (4.82)

Since the determinant is invariant under transposition, the eigenvalues of M come in pairs
of the form (λ, 1/λ).
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In order to identify admissible solutions for Ξ we have to understand the relation
between the eigenvalues of the matrix Ξ and the eigenvalues of the matrix M . It turns out
that this relation is quite simple. Recall that the spectrum of the reduced density matrix is
given by (4.68). It follows that the eigenvalues of Ξ (and thus the eigenvalues of ΞT ) should
all be not only real and positive, but also smaller than 1.

The eigenvalue problem (4.77) implies that the matrices χ and ψ obey

2χ− β̂Tψ = β̂χλD, (4.83)
χλ−1

D = ψ, (4.84)

where λD is a diagonal matrix containing the eigenvalues of M which correspond to the
eigenvectors that we used in order to construct the matrices χ and ψ. Equation (4.78) along
with (4.84) implies that the matrix ΞT reads

ΞT = χλ−1
D χ−1. (4.85)

As a direct consequence, the eigenvalues of Ξ coincide with the inverse of the eigenvalues of
M which correspond to the eigenvectors that we used in order to construct the matrices χ
and ψ. This implies that M has at least min (n,N − n) eigenvalues that are real and larger
than 1. Since the eigenvalues of the matrix M come in pairs of the form (λ, 1/λ), it follows
that exactly min (n,N − n) eigenvalues of the matrix M are real and larger than 1 and the
other min (n,N − n) are real, positive and smaller than 1. This also implies that:

• There is a single admissible matrix Ξ. It is constructed using the min (n,N − n)
eigenvectors of M which correspond to its eigenvalues that are larger than 1.

• The matrix A, which corresponds to this admissible Ξ, is the only one which gives
rise to normalizable eigenstates of the reduced density matrix.

• The eigenvalues of the admissible matrix Ξ are simply the min (n,N − n) solutions of
the equation (4.82) that are smaller than 1.

A solvable example that demonstrates the structure of the eigenvalues of the matrix
M is presented in appendix C. In this example, although the system lies in a squeezed
state, the phases of the modes are selected in a very particular way (they are all equal to
zero) and as a result the matrix β is real. Another example, where the matrix β is complex
is presented in appendix D, where it is verified that the calculated entanglement entropy
is in agreement with a calculation based on the Rényi extension of entanglement entropy.
Finally, in appendix E we relate our calculation to the calculation of the spectrum of the
reduced density matrix using the correlation matrix method. There, we also show that we
can relate the eigenvalues λ of the matrix M to the eigenvalues λ̃, of the N ×N matrix M̃ ,
defined as

M̃ = Re (W )−1
(
−Re (A) iIm (B)
−iIm (B)T Re (C)

)
. (4.86)

Their relation is
λ = λ̃− 1

λ̃+ 1
. (4.87)
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The matrix M̃ is well defined independently of whether we trace out the larger or the
smaller subsystem. It turns out that the admissible spectrum of M̃ , which satisfies λ̃ > 1,
is equivalent to the spectrum deduced from the correlation matrix.

The numerical analysis in the following sections has been performed with three equivalent
approaches, namely the method based on the matrix M , the correlation matrix method,
and the method based on the matrix M̃ , discussed in appendix E. All three methods give
results that are identical up to at least ten significant digits.

5 Large-squeezing expansion

In section 3 we studied the system of two coupled oscillators, where we traced out one of
them. We showed that in general entanglement entropy increases with squeezing. For small
squeezings, the entanglement entropy is a quadratic function of the squeezing parameters,
whereas for large squeezings, the entanglement entropy becomes a linear function of the
squeezing parameters, see e.g. equation (3.26).

Although it is very difficult to find exact formulae for the case of a general harmonic
system with an arbitrary number of degrees of freedom, we would like to find asymptotic
expressions in order to check whether the form of dependence of entanglement entropy on
squeezing in the system of two oscillators persists in the general harmonic system. In the
following we discuss this expansion for large squeezing parameters, which will be relevant for
the interpretation of the numerical results of section 6. The expansion for small squeezing
parameters is presented in appendix F.

The most important parameter that defines the state of the overall system and con-
sequently the entanglement between subsystems is the coefficient w of the quadratic part
of the exponent of the wavefunction of a squeezed mode. We remind the reader that, in
the case of the ground state or a coherent state, this coefficient is trivially real and equal
to the eigenfrequency of the mode, whereas in the case of a squeezed state, it is complex,
depends on the squeezing parameter and is not constant in time, as shown in equation (2.10).
Defining ε = exp(−z), we may rewrite this equation as

w = ω

1 + sin [2ω (t− t0)]
2ε− i

(
1− ε2

)
cos [2ω (t− t0)]

1 + ε2 1−sin[2ω(t−t0)]
1+sin[2ω(t−t0)]

. (5.1)

This can be written as a series in powers of ε as,

w = 2ω
1 + sin [2ω (t− t0)]

∞∑
k=0

(−1)k
(1− sin [2ω (t− t0)]

1 + sin [2ω (t− t0)]

)k
ε2k+1

+ iω cos [2ω (t− t0)]
1− sin [2ω (t− t0)] −

2iω
cos [2ω (t− t0)]

∞∑
k=0

(−1)k
(1− sin [2ω (t− t0)]

1 + sin [2ω (t− t0)]

)k
ε2k,

(5.2)

i.e. a series forming a large-squeezing expansion for the parameter w.
Notice that this series is convergent only when

1− sin [2ω (t− t0)]
1 + sin [2ω (t− t0)]ε

2 < 1 (5.3)
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or
sin [2ω (t− t0)] > − tanh z. (5.4)

When taking the limit z → ∞, the above inequality is satisfied for all times except a
very small time period centred around the specific instant that the mode in question is a
minimal uncertainty state with minimal position uncertainty. For a system containing a
large number of modes, the dominant effect to the mean entanglement entropy arises from
the bulk of modes, for which this inequality is satisfied.

When we study an arbitrary harmonic system with N degrees of freedom, the coefficient
w is upgraded to the N ×N matrix W , see equation (4.24). The reduced density matrix is
expressed directly in terms of the blocks of the matrix W defined in (4.26). We assume that
all modes are characterized by large squeezing, i.e. zi � 1, and write the mode squeezing
parameters as zi = z + ζi, where z is the mean squeezing parameter. We focus on the case
that the parameters ζi are subleading to the mean parameter z, i.e. ζi � z. We may now
define a single parameter ε = exp(−z), so that the matrix W , as well as its blocks, have an
expansion of the form

W = i
∞∑
i=0

ε2iW
(2i)
I +

∞∑
i=0

ε2i+1W
(2i+1)
R . (5.5)

Notice that the imaginary part of W contains only even powers of ε, whereas the real part
of W contains only odd powers of ε. The leading contribution in ε is imaginary. In the
following, we use the same notation for the expansions of the blocks of W and the matrices
A, B and C.

The reduced density matrix is expressed in terms of the matrices γ and β defined in
equations (4.28) and (4.29). The above expansion implies that γ and β are given by

γ = 1
2ε
(
B

(0)
I

)T (
A

(1)
R

)−1
B

(0)
I

+ i

[
C

(0)
I −

1
2

((
B

(1)
R

)T (
A

(1)
R

)−1
B

(0)
I +

(
B

(0)
I

)T (
A

(1)
R

)−1
B

(1)
R

)]
+O (ε) , (5.6)

β = 1
2ε
(
B

(0)
I

)T (
A

(1)
R

)−1
B

(0)
I

+ i

2

((
B

(1)
R

)T (
A

(1)
R

)−1
B

(0)
I −

(
B

(0)
I

)T (
A

(1)
R

)−1
B

(1)
R

)
+O (ε) . (5.7)

In the following, we use the notation

γ = γ(−1)

ε
+ iγ(0) + . . . , (5.8)

β = β(−1)

ε
+ iβ(0) + . . . (5.9)

The important property of the expansions of the matrices γ and β is the fact that the
leading contributions are identical, i.e. β(−1) = γ(−1).

Recall that the entanglement entropy is determined by the eigenvalues of the matrix Ξ
that correspond to the normalizable eigenstates of the reduced density matrix. These are
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identical to the eigenvalues of the matrix M , defined in equation (4.80), which are smaller
than 1. This matrix can be written as

M =
(

2β̂−1 −β̂−1β̂T

I 0

)
=

Re (γ)
1
2 0

0 Re (γ)
1
2

M ′
Re (γ)−

1
2 0

0 Re (γ)−
1
2

 , (5.10)

where
M ′ =

(
2β−1Re (γ) −β−1βT

I 0

)
. (5.11)

The matrix M ′ is similar to M and thus, it has the same eigenvalues. It has the expansion

M ′ =

2I − 2iε
(
β(−1)

)−1
β(0) + ε2M

(2)
11 −I + 2iε

(
β(−1)

)−1
β(0) + ε2M

(2)
12

I 0

+O
(
ε3
)
.

(5.12)
It is a matter of algebra to show that

det
(
M ′ − λI

)
= det

[
(1− λ)2 I − 2iε (1− λ)

(
β(−1)

)−1
β(0)

− ε2
(
λM

(2)
11 +M

(2)
12

)
+O

(
ε3
) ]
.

(5.13)

It follows that the eigenvalues of the matrix M ′, and thus of M , are of the form

λ = 1− ελ(1) +O
(
ε2
)
, (5.14)

where λ(1) solves the equation

det
[(
λ(1)

)2
I − 2iλ(1)

(
β(−1)

)−1
β(0) −

(
M

(2)
11 +M

(2)
12

)]
= 0. (5.15)

Bear in mind that the non-vanishing eigenvalues of the matrix Ξ are as many as the number
of degrees of freedom of the smaller subsystem, namely min (n,N − n). The above equation
is of order 2 min (n,N − n). We know that the eigenvalues of M come in pairs of the
form (λ, 1/λ). It can be shown that the solutions of the above equation also come in
pairs of the form

(
λ(1),−λ(1)

)
. It follows that exactly min (n,N − n) of these solutions are

positive. Therefore, the eigenvalues of the matrix Ξ that corresponds to the normalizable
eigenstates of the reduced density matrix are ξi = 1−ελ(1)

i , where i = 1, 2, . . . ,min (n,N − n)
and λ(1)

i > 0.
In appendix C, the example of a squeezed state with all modes having the same

squeezing parameter and vanishing phases is presented. This case is exactly solvable as
this specific selection leads to a real matrix β. In this solvable example, the eigenvalues of
the matrix Ξ for large squeezing parameters have indeed the form of equation (5.14). This
provides a consistency check for our large-squeezing expansion.

To leading order in ε, the entanglement entropy reads

S = min (n,N − n) (− ln ε+ 1)−
min(n,N−n)∑

i=1
ln λ(1)

i +O (ε)

= min (n,N − n) (z + 1)−
min(n,N−n)∑

i=1
ln λ(1)

i +O (ε) .

(5.16)
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This formula shows that, for large squeezing, the entanglement entropy has a linear de-
pendence on the squeezing parameter. It also shows that the leading term, which depends
linearly on the squeezing parameter, is time-independent. The formula is in agreement
with (3.26). In that case, z = z++z−

2 and N − n = 1.
Formula (5.16) suggests something very interesting. The leading contribution to

the entanglement entropy is proportional to min (n,N − n), i.e. the number of degrees
of freedom of the smaller subsystem. It follows that in a continuous harmonic system,
like free scalar field theory, in the large squeezing limit, the leading contribution to the
entanglement entropy is proportional to the volume of the smaller subsystem. In other
words, squeezing generates a violation of the famous area-law property of entanglement
entropy. This property apparently holds only when the system lies in a coherent state,
which is a closest-to-classical state.

6 A field theory example

We are particularly interested in the application of the method that we developed in section 4
to the harmonic system of scalar quantum field theory. Our interest is enhanced by the
fact that the large squeezing expansion, which we developed in section 5, suggests that
the area-law property of entanglement entropy may not persist when the theory lies in a
squeezed state.

The calculation of entanglement entropy in scalar field theory in 3+1 dimensions
presents several technical difficulties. The usual discretization of the degrees of freedom,
which is also employed in the original calculation at the ground state [7], relies on the
expansion of the field in spherical harmonic moments. This is obviously a suitable choice
when we desire to introduce a spherical entangling surface. However, such a choice makes
it difficult to preserve a uniform density of the degrees of freedom. Therefore, an elegant
regularization scheme is required, so that both area and volume terms are detectable. On
the other hand, a uniform square lattice would solve this problem, but then the entangling
surface would not be smooth, giving rise to additional universal terms in the entanglement
entropy. For these reasons, we restrict here our attention to scalar field theory in 1+1
dimensions, where these problems do not appear, and leave the study of the 3+1 dimensional
system for future work.

The Hamiltonian of a free scalar field in 1+1 dimensions reads

H = 1
2

∫
dx

[
π2(x) +

(
∂

∂x
ϕ(x)

)2
+ µ2ϕ2(x)

]
. (6.1)

We discretize the degrees of freedom, introducing a uniform lattice in space as

x→ ja,

ϕ(x)→ ϕj ,

∂ϕ(x)
∂x

∣∣∣∣
r=ja

→ ϕj+1 − ϕj
a

,
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π(x)→ πj
a
,

∫ (N+1)a

0
dx→ a

N∑
j=0

. (6.2)

The discretized Hamiltonian that we obtain reads

H = 1
2a

N∑
j=0

[
π2
j + (ϕj+1 − ϕj)2 + µ2a2ϕ2

j

]
, (6.3)

where we set the boundary conditions ϕ0 = ϕN+1 = 0. We introduce this kind of boundary
conditions in order to avoid the existence of a zero-frequency mode. This Hamiltonian
describes N coupled harmonic oscillators, exactly as studied in section 4. Their Hamiltonian
is of the form (4.1), where the couplings matrix K is given by

Kij = 1
a

[(
2 + µ2a2

)
δi,j − δi+1,j − δi,j+1

]
. (6.4)

In the following we use a lattice with N = 60. We furthermore consider the case of free
massless scalar field theory in 1+1 dimensions, i.e. we assume that µ = 0. In all cases we
divide the system in two complementary subsystems; the first one contains the degrees of
freedom ϕj with 1 ≤ j ≤ n, and the second one those with n + 1 ≤ j ≤ N . We indicate
the division of the degrees of freedom in these two subsystems by the number n. In our
calculations we set a = 1, which is equivalent to measuring time in units of the UV cutoff
set by the lattice spacing.

We take advantage of the symmetry property of the entanglement entropy and we
always trace out the larger subsystem. This is required in order to apply the method
of section 4.6. Furthermore, this speeds up the numerical calculation, since the matrices
involved have the smallest possible dimension. Additionally, the required precision of the
numerical calculations is achieved more easily when making this choice. The required
precision can be high because the local nature of the couplings generates a hierarchy in the
eigenvalues of the matrix β̂ [11]. As a result, an increase in the dimension of the related
matrices, not only increases the volume of the required calculations, but also the required
precision of them. Indicatively, our calculation, which includes at most 30×30 matrices,
requires about 300 significant digits in order to estimate all eigenvalues accurately.

The overall system has N normal modes. The classical motion of the system when the
i-th mode is excited is given by

ϕ
(i)
j (t) = A

(i)
j sinωi (t− t0) = A(i) sin ijπ

(N + 1) sinωi (t− t0) , (6.5)

where ωi is the frequency of the i-th mode. In the following, we squeeze one or more of
these modes and study the entanglement entropy.

6.1 Squeezing a single mode

Following the example of the toy model of the two coupled oscillators, which we presented
in section 3, we first study the system lying in a state where only one normal mode is
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squeezed; the rest are put in their ground states. In this way, the time evolution of the
system is periodic, with period equal to half the period of the corresponding mode, and
thus its study is more transparent.

Figure 7 shows the entanglement entropy as a function of n for various times. Several
cases are presented, which differ with respect to the mode that has been squeezed. The
squeezing parameter is always the same. We observe the following:

• Squeezing generally increases the entanglement entropy in comparison to that in the
ground state. However, there are instants when the entanglement entropy is smaller
than that of the ground state for specific values of n. This is more easily visible in
the case that the first mode has been squeezed (top left panel of figure 7).

• The increase of the entanglement entropy by squeezing a single mode does not depend
strongly on which mode is squeezed, as long as the squeezing parameter is the same.

• The entanglement entropy is oscillating in time with a period half that of the corre-
sponding mode, as expected.

• The oscillation of entanglement entropy with time is generally more intense when a
mode with a smaller index has been squeezed.

• The pattern of the amplitude of the oscillation of the entanglement entropy as n
varies is interesting. It appears that this pattern is strongly related to the form of the
squeezed normal mode.

– The pattern has the form of a stationary wave with several nodes. There are
specific values of n, where the amplitude of the oscillation of the entanglement
entropy vanishes.

– The nodes of the entanglement entropy oscillation are twice as many as the nodes
of the squeezed mode.

– The nodes appear at n where

cos 2inπ
(N + 1) = 0, (6.6)

where i is the index of the squeezed mode. The nodes appear at locations where
the classical amplitude squared of the oscillation due to the squeezed mode is
half of the maximum. Nodes appear at all such locations except for the first and
last one. In other words, the k-th node is located at position

nk = N + 1
4i (2k + 1) , k = 1, 2, . . . , 2 (i− 1) . (6.7)

– The existence of the nodes justifies why the time dependence of the entanglement
entropy is suppressed when the squeezed mode is higher.
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Figure 7. The entanglement entropy as a function of n for various times when only a single mode
has been squeezed with squeezing parameter z = 3. The black dots correspond to the entanglement
entropy at the ground state of the system.
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Figure 8. The mean entanglement entropy as a function of n when squeezing a single mode with
squeezing parameter z = 3.

The dependence of the entanglement entropy on the shape of the squeezed mode is
visible on the mean entanglement entropy as well. Figure 8 depicts the mean entanglement
entropy as a function of n for various squeezed modes with the same squeezing parameter.
The mean entanglement entropy is always larger than that in the ground state of the
system, unlike the entanglement entropy at a given time. We also observe that the mean
entanglement entropy is about the same for the vast majority of the modes. Significant
differences appear only for the first and last modes. Notice that the curves corresponding
to the 11th mode, as well as the 51st mode are almost identical. All intermediate ones are
also almost identical, like the one corresponding to the 31st mode, which is also depicted.
This can be attributed to the relation between the pattern of entanglement entropy and the
shape of the squeezed normal mode that we pointed out above. The classical amplitudes of
oscillation of the first and last modes have a strong pattern: there are regions with large
and regions with small amplitudes. On the contrary, the classical amplitudes of oscillations
for most intermediate modes are more dispersed; thus the similar pattern of the mean
entanglement entropy.

The relation between entanglement entropy and the shape of the squeezed mode is also
supported by figure 9, which depicts the mean entanglement entropy as a function of the
index of the squeezed mode for several divisions of the system in two subsystems, indicated
by the integer n. Indeed the curves vary slowly, especially in the intermediate region. The
mean entanglement entropy does not depend strongly on which mode has been squeezed.

The mean entanglement entropy as a function of the order of the squeezed mode i for
given n presents as many maxima as n. These maxima are almost equidistant. For example,
the mean entanglement entropy for n = 1 has a single maximum around i = 30. This may
be attributed to the fact that the amplitude of oscillation A(i)

1 of the first degree of freedom
has this kind of dependence on i. Equation (6.5) implies that(

A
(i)
1

)2
∼ sin2 iπ

(N + 1) , (6.8)
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Figure 9. The mean entanglement entropy as a function of the index of the squeezed mode for
various divisions of the system to two subsystems indicated by the integer n. The squeezed mode
has always squeezing parameter z = 3.

i.e. indeed A(i)
1 has a single maximum around i = N/2. Similarly we can show that the

amplitude of oscillation of the n-th degree of freedom has n almost equidistant maxima, since
(
A(i)
n

)2
∼ sin2 inπ

(N + 1) , (6.9)

which are as many as the maxima of the mean entanglement entropy.
We studied the dependence of the entanglement entropy on time and on the shape

of the squeezed mode. It remains to study its dependence on the squeezing parameter z.
Figure 10 depicts the mean entanglement entropy as a function of n for various values of
z and for a specific choice of the squeezed mode. We generally observe an increase of the
mean entanglement entropy as z increases. For small values of z, this increase changes the
shape of the curve as a function of n. Above some critical value of z, a further increase
appears to move the curve as a whole. Furthermore, the increase of entanglement entropy
appears to be proportional to the increase of z.

In order to clarify this behaviour, we depict in figure 11 the mean entanglement entropy
as a function of z for fixed values of n. For small z values, the increase of entanglement
entropy is quadratic in z and depends on n. However, after some critical z, this dependence
becomes linear and independent of n; all curves have the same slope asymptotically for
large z. Furthermore, this slope does not depend on which normal mode is squeezed. In
other words, for large z, when only one mode is squeezed

SEE = cz +O
(
z0
)
, (6.10)

where c depends neither on n nor on the order of the squeezed mode.
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Figure 10. The mean entanglement entropy as a function of n for various values of the squeezing
parameter z when a single mode has been squeezed.
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Our discretized version of 1+1 scalar field theory differs from the continuum field
theory in three ways: we have introduced a UV cutoff, an IR cutoff and Dirichlet boundary
conditions for the normal modes. As we discussed above, it appears that the dependence of
the mean entanglement entropy on which mode is squeezed is due to fact that modes are
stationary waves, and thus each mode excites the various degrees of freedom with different
amplitudes. We expect that this also happens in the continuum limit if we preserve Dirichlet
boundary conditions at some specific point, i.e. if we continue defining the theory in a finite
segment or in the infinite half-line. If Dirichlet conditions are abandoned, the normal modes
would correspond to travelling waves, which are characterized by identical amplitude of
oscillation for all degrees of freedom. Therefore, in free scalar field theory defined on the
continuous infinite line we expect that the mean entanglement entropy would not depend
at all on which mode is squeezed. This should also be a property of the discretized system
if periodic boundary conditions are adopted. In this case a mass should be introduced so
that a zero-frequency mode is avoided. This investigation is beyond the scope of this work.

6.2 Squeezing all modes

The large squeezing expansion that we presented in section 5 suggests that for large squeezing
we should expect that entanglement entropy is dominated by a volume term proportional
to the mean squeezing parameter. In the previous subsection, we studied the system
of discretized scalar field theory in 1+1 dimensions in a state where only a single mode
lies in a squeezed state, whereas all others lie in their ground state. For large squeezing
the entanglement entropy is dominated by a term that is proportional to the squeezing
parameter. However, this is not a volume term, but rather a constant term. This is not
contradictory to the large-squeezing expansion, which requires that the deviation of the
squeezing parameter of each mode from the mean is small, while we assumed that only one
mode is squeezed.

In order to understand the effect of strong squeezing, in this subsection we study a
system in which all modes lie in a squeezed state with the same squeezing parameter. The
time evolution of the overall system is much more complicated than in the case when only
a single mode has been squeezed. In general, the evolution is not periodic. In figure 12 we
show the entanglement entropy at random instants, as a function of the number n that
determines the division of the system in two subsystems. We present several cases, which
differ in the value of the common squeezing parameter. The initial phases for each normal
mode are unimportant. As they change at different rates, even if they are selected to be
initially equal, in due time they are more or less random. For this reason, the instants
displayed in figure 12 are completely random.

In this figure the black dots depict the entanglement entropy when all modes lie in
their ground state. The coloured dots depict the entanglement entropy at the state under
study, i.e. when all modes lie in a squeezed state with the same squeezing parameter.
Different colors correspond to different instants. Finally, the continuous black line depicts
the leading term of the large-squeezing approximation for the entanglement entropy, given
by equation (5.16), i.e.

SEE ' zmin (n,N − n) . (6.11)
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Figure 12. The entanglement entropy as a function of n for various random instants when all modes
have been squeezed with the same squeezing parameter. The continuous black line corresponds to
the large squeezing approximation given by equation (6.11).
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Notice that the latter is time-independent and proportional to the volume of the smaller
subsystem.

We observe the following:

• The entanglement entropy generally increases as the squeezing parameter increases.

• The entanglement entropy approaches the large-squeezing approximation formula as
the squeezing parameter increases.

• The variations of entanglement entropy with time decrease in comparison to the mean
entanglement entropy as the squeezing parameter increases. This is in line with the
fact that the leading term of the large-squeezing approximation is time-independent.

Figure 13 depicts the mean entanglement entropy as a function of n for various squeezing
parameters. The mean has been calculated as the average of 200 random times. The blue
dots depict the mean entanglement entropy. The black dots and the black continuous
line depict the entanglement entropy in the ground state and the leading term of the
large-squeezing expansion, as in figure 12. It is evident that the mean entanglement entropy
is dominated by a time-independent volume term when the squeezing parameter z is large.
This volume term is proportional to z.

In the continuum limit a→ 0, Na→ L, i.e. the continuum limit with an IR cutoff equal
to 1/L, the large-squeezing expansion suggests that the dominant term of entanglement
entropy is

SEE = min (r, L− r)
a

z +O
(
z0
)
, (6.12)

where r is the limit of the product na, i.e. the length of the first subsystem. The leading
volume term is UV divergent. If we remove the IR cutoff, defining the theory on the infinite
half-line, then

SEE = r

a
z +O

(
z0
)
. (6.13)

In this scenario the one subsystem has length r and is attached to the end of the infinite
half-line.

The dominant term is not only proportional to the volume of the subsystem, but also
time-independent, even though the state of the system has non-trivial time dependence.
In order to clarify that the variations of entanglement entropy with time are reduced in
comparison to the mean entanglement entropy as the squeezing parameter increases, we
calculated the standard deviation of the entanglement entropy at n = 30 for 200 random
times, as a function of z. We found that the standard deviation approaches a finite limit as
z increases, whereas the mean entanglement entropy increases linearly with z.

7 Discussion

In this work we studied entanglement in coupled harmonic systems lying in squeezed states.
We managed to reduce the problem of the specification of the eigenvalues of the reduced
density matrix to a linear eigenproblem, in exactly the same fashion as in the case of a
harmonic system lying in its ground state [7] or a coherent state [15].
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Figure 13. The mean entanglement entropy as a function of n when all modes have been squeezed
with the same squeezing parameter. The continuous black line corresponds to the large squeezing
approximation given by equation (6.11).
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In an interesting way, the spectrum of the reduced density matrix conserves the same
structure as for the ground state or a coherent state. Let the number of degrees of freedom
of the considered subsystem be n. Then, the spectrum of the reduced density matrix
describing the subsystem is indistinguishable from the spectrum of an effective harmonic
system with n degrees of freedom, if each of its normal modes is lying in a thermal state at
an appropriate temperature. Notice that this is not a thermal state of the whole effective
system; each of its normal modes has a different temperature.

However, there are several important differences compared to the ground or coherent
state cases. First, the eigenstates of the reduced density matrix have suffered a non-trivial
deformation. Although they can be organized in a similar fashion to the Fock space of
an effective harmonic system, there is no real linear combination of the physical degrees
of freedom of the considered subsystem which can be identified as a normal coordinate.
This is due to the fact that the creation operators associated with this Fock space are
a linear combination of positions and momenta which are not conjugate to each other
(see appendix B). As a matter of fact it is quite difficult to derive explicit expressions in
coordinate representation for the whole set of eigenstates of the reduced density matrix,
although it is clear how to construct them iteratively. In other words, in the case of the
ground or coherent state of the overall system, the reduced density matrix is separable
and it can be written as the tensor product of density matrices that describe a linear
combination of the original degrees of freedom each. In the case of the squeezed state, the
reduced density matrix is separable, but it is written as a tensor product of matrices that
cannot be assigned to any real combination of the original degrees of freedom.

Second, the time evolution of the reduced density matrix, unlike the ground or coherent
state case, is non-unitary.

Finally, the spectrum of the reduced density matrix, and, thus, the entanglement entropy
is in general time-dependent. Although at a given instant the entanglement entropy may be
smaller than that at the ground state or a coherent state of the system, the examples that we
have investigated suggest that the mean entanglement entropy increases with squeezing. For
states in which all the modes are strongly squeezed, the mean entanglement entropy appears
to be time-independent and proportional to the absolute value of the squeezing parameter
and the number of degrees of freedom of the smaller subsystem (see equation (6.11)). A
large-squeezing expansion supports this conclusion (see section 5).

Page has shown that the entanglement entropy of an arbitrary quantum state is close
to the maximal possible entanglement entropy [16]. For systems where the local degrees of
freedom have a finite-dimensional Hilbert space, this bound on entanglement entropy as a
function of the number of degrees of freedom of the considered subsystem has a characteristic
concave form. It vanishes when the subsystem is null or coincides with the whole system,
while it is maximal when the subsystem contains half of the degrees of freedom of the
overall system. In the limit that the total system contains an infinite number of degrees of
freedom, this function tends to the union of two linear segments. If n and N denote the
number of degrees of freedom of the subsystem and overall system respectively, this curve
is approximately

Smax ∼ min (n,N − n) , (7.1)
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where the proportionality constant depends on the dimensionality of the Hilbert space of
the local degrees of freedom. This curve is of great importance. It has been connected to
the Page curve followed by the entropy of black hole radiation [17], which is a critical piece
of the information paradox. This relation has also been established within the framework
of holographic duality [22, 23].

Applying Page’s argument to the system of a scalar quantum field theory implies that
the entanglement entropy in an arbitrary quantum state should be proportional to the
number of degrees of freedom of the smaller subsystem, i.e. proportional to the volume of
this subsystem. One has to keep in mind that the Hilbert space of a local degree of freedom
in this case is infinite-dimensional, rendering the application of Page’s argument in scalar
field theory a little hazy. However, assuming that the scaling properties are preserved as we
take the limit of the dimension of the Hilbert space to infinity, Page’s argument contradicts
the seminal results of Bombelli and Srednicki [6, 7], which apply to the ground state, as
well as their generalizations to coherent states [14, 15]. These studies demonstrate that
entanglement entropy scales with the area of the subsystem and not its volume. In this
sense, the area-law property of entanglement entropy should be considered as a special
property of the most classical states of scalar field theory, i.e. of the coherent states.

In order to understand this issue, we applied our method to the system of free massless
scalar field theory in 1+1 dimensions. In agreement with the large-squeezing expansion that
we developed for an arbitrary harmonic system, we found that states where all modes have
been squeezed with large squeezing parameters give rise to entanglement entropy which is
dominated by a term proportional to the volume of the smaller subsystem, in agreement
with Page’s arguments. Furthermore, this volume term is time-independent, although the
state of the system has non-trivial time-dependence. This is consistent with a maximal
entanglement entropy bound in line with Page. We expect this behaviour to hold for scalar
field theory in higher dimensions, which will be the subject of future work.

We can speculate on the consequences of our results for the interpretation of gravity as
an entropic force attributed to quantum entanglement statistics. Such an interpretation is
supported by holographic calculations [4, 5]. However, there are more general arguments
that suggest how such an entropic force operates. In 1995 Jacobson argued that the dynamic
metric of a theory with two specific properties is subject to Einstein dynamics [1]. The
first property is the validity of a first law of thermodynamics. The second one is that
the entropies of the horizons are proportional to their area. In other words, the scaling
properties of entropy determine the gravitational dynamics. Entanglement is fertile ground
in which to realize such a mechanism. The entanglement entropy scales with area (at least
when the overall system lies in a coherent state) and also obeys a first law of entanglement
thermodynamics with the expectation value of the modular Hamiltonian.

Our investigation suggests that the only Gaussian states that give rise to entanglement
entropy dominated by an area law are the minimal uncertainty states, i.e. the coherent
states. There is no indication that this property extends beyond the Gaussian states. In
this spirit, our results imply that Einstein gravity emerges as a quantum entropic force only
when the overall system lies in a closest-to-classical state, i.e. in the ground or a coherent
state. When a more “arbitrary” quantum state is considered, the emergent dynamics will
be more complicated than Einstein gravity.
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As a final comment we point out that the squeezing of quantum states plays an
important role in early cosmology. During inflation, a momentum mode of a massless field
gets stretched by the rapid expansion. When the mode wavelength becomes larger than
the horizon, the scalar fluctuation loses its oscillatory form (it freezes) [24]. After horizon
crossing, the field can be viewed as a classical stochastic field, and its quantum expectation
value can be replaced by the classical stochastic average. The quantum properties of
the field are considered invisible in late-time observations, which focus on classical local
quantities [25, 26]. However, from a quantum mechanical point of view, the modes of the
scalar field evolve from a simple oscillator ground state to an increasingly squeezed state [27].
Quantum entanglement is a purely quantum non-local phenomenon that cannot be encoded
in the classical probability distributions. The squeezing of canonical modes increases the
entanglement between local degrees of freedom and is expected to increase the entanglement
entropy [28–35]. The techniques we presented in this work were employed in [36] in order
to compute the entanglement entropy resulting from tracing out local degrees of freedom
of a quantum scalar field in an expanding universe. It was shown that the entanglement
entropy grows continuously during inflation, as successive modes cross the horizon. The
resulting entropy is proportional to the total duration of inflation, and is preserved during
a subsequent era of radiation or matter domination. The emergence of a volume term in
the entanglement entropy as a result of squeezing was observed in [36] in the context of a
toy model in 1+1 dimensions, in agreement with our findings here.
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A The dependence of entanglement on squeezing in the case of two os-
cillators

In the case of two oscillators, we have found simple formulae describing the entanglement
entropy as a function of the squeezing parameters and time. We can study them in order
to gain an intuition on how squeezing affects entanglement. In this appendix we present all
the details of this analysis, whose summary was presented in subsection 3.3.

Instead of searching for extrema of the entanglement entropy, it is easier to search for
extrema of the ratio r, which is defined as

r := Re (γ) + β

Re (γ)− β , (A.1)

where γ and β are given by equations (3.10) and (3.11). The entanglement entropy is a
strictly increasing function of r. It follows that extrema of r correspond to extrema of the
entanglement entropy.
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The ratio r is by definition always larger than 1. Using its definition, we can express
the entanglement entropy in a symmetric form, namely

S =
√
r + 1
2 ln

(√
r + 1
2

)
−
√
r − 1
2 ln

(√
r − 1
2

)
. (A.2)

This expression is related to the calculation of entanglement entropy in terms of correlation
functions (see e.g. [38]).

Before presenting our analysis, let us first briefly review the case of the ground/coherent
state of the overall system, so we can use it as a basis for comparison. In this case the ratio
r is given by

r0 = 1
4

(√
ω+
ω−

+
√
ω−
ω+

)2

. (A.3)

It is evident that r0 and consequently the entanglement entropy depend only on the ratio
of the two eigenfrequencies ω+ and ω−. Furthermore, it is invariant under the interchange
ω+ ↔ ω−. Let

ρ0 := ω−
ω+

. (A.4)

Considering that ρ0 > 1, the ratio r and thus the entanglement entropy are strictly increasing
functions of ρ0. The symmetry ω+ ↔ ω− obviously implies that, when ρ0 < 1, ξ0 is a
strictly decreasing function of ρ0.

A.1 Squeezing a single mode

For simplicity let us first consider the case z− = 0, i.e. we “squeeze” only the symmetric
mode. This is a more transparent case, since the time evolution of the parameter ξ, and
thus of the entanglement entropy, is periodic with period T+/2 = π/ω+.

In this case, the ratio r assumes the simple form

r = 1
2 + ω2

− + ω2
+

4ω+ω−
cosh z+ + ω2

− − ω2
+

4ω+ω−
sinh z+ sin 2ω+t, (A.5)

which is manifestly positive and larger than 1, as required. This equation directly implies
that r is bounded between two values, r±,

r± = 1
4

(√
ω+
ω−

e±
z+
2 +

√
ω−
ω+

e∓
z+
2

)2

. (A.6)

It directly follows that the entanglement entropy is bounded between two values S± that
are determined by r± and equation (A.2). The value r+ is obtained at the instants when
sin 2ω+t = 1, whereas the value r− is obtained at the instants when sin 2ω+t = −1. At
these instants the squeezed state is a minimal uncertainty state, i.e. ∆x+∆p+ = ~/2 (see
equation (2.12)). It follows that, at these instants, the symmetric mode is described by a
wavefunction that is indistinguishable from an appropriate coherent state of an effective
oscillator with eigenfrequency ω+e

±z+ . Recall that the spectrum of the reduced density
matrix when the system lies in a coherent state is identical to that when it lies in the

– 44 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
9

ground state. Therefore, at these instants, the symmetric mode is effectively described by
the ground state wavefunction of this effective oscillator, at least as long as entanglement
is concerned.

As is evident from the above discussion, as well as the comparison of equations (A.3)
and (A.6), the two bounds on the entanglement entropy in the case of a squeezed symmetric
mode are identical to the entanglement entropies of two equivalent effective systems of
coupled oscillators at their ground state. The ratios of eigenfrequencies of each of these two
equivalent systems are

ρ± = ρ0e
±z+ . (A.7)

We assume that ρ0 > 1 and z+ > 0. It directly follows from equation (A.5) that r+ > r−.
Therefore, the value of r+ determines the maximal value of entanglement entropy, whereas
the value of r− determines the minimal value of entanglement entropy.

Recalling the monotonicity of the relation between r and the ratio of eigenfrequencies
ρ for a system at its ground state that we analysed above, since ρ0 > 1 and ρ+ > ρ0,
the maximal entanglement entropy is larger than that at the ground state of the system,
S0. As long as the minimal entanglement entropy is concerned, there is a change of the
qualitative behaviour as the squeezing parameter z+ increases. As z+ increases from zero
to positive values, the ratio ρ− gets smaller, but it remains larger than 1 until the critical
squeezing parameter

z0 = ln ω−
ω+

. (A.8)

As a result, the minimal entanglement entropy is smaller than S0 and a decreasing function
of the squeezing parameter. For z+ = z0 the minimum entanglement entropy vanishes,
i.e. there are instants when the wavefunction of the system is separable. As the squeezing
parameter further increases, the ratio ρ− further decreases and it is smaller than 1. As a
result, the minimal entanglement entropy becomes an increasing function of the squeezing
parameter z+. There is a critical value of the squeezing parameter z+, which results in
ρ− = 1/ρ0, namely

zvac = 2 ln ω−
ω+

= 2z0, (A.9)

where the minimal entanglement entropy coincides with S0.
For small values of the squeezing parameter, it is not difficult to show that the ratio r

and the entanglement entropy perform a sinusoidal oscillation around a mean value, and
also calculate this mean value. In particular, one can show that for z+ � 1 the ratio r
assumes the form

r = r0

(
1 + z+

ω− − ω+
ω− + ω+

sin 2ω+t+ z2
+
2
ω2
− + ω2

+
ω− + ω+

)
+O

(
z3
)
. (A.10)

For z+ � 1 we obtain

r = ω2
− + ω2

+ +
(
ω2
− − ω2

+
)

sin 2ω+t

8ω+ω−
ez+ + 1

2 +O
(
e−z+

)
. (A.11)
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Substituting these expressions in (3.24) one can obtain the following expressions for the
mean entanglement entropy3,,4

S̄ =

S0 −
z2

+
16

(
1 + 1+4ξ0+ξ2

0
1−ξ2

0
ln ξ0

)
, z+ � 1,

z+
2 + 1

2 ln r0 + 1− 2 ln 2, z+ � 1.
(A.13)

Using the inequality x ≥ ln (1 + x) one can show that the coefficient of z2
+ in the

small z+ expansion of the mean entanglement entropy is manifestly positive. Its minimal
value is equal to 1/8, and it is obtained in the limit ξ0 → 1. This implies that the mean
entanglement entropy is increasing with squeezing for small squeezing parameters.

A.1.1 The mean entanglement entropy

In the special case we are studying, i.e. only the symmetric mode has been squeezed, it is
possible to derive an analytic formula for the mean entanglement entropy for an arbitrary
value of the squeezing parameter.

We begin by rewriting the entanglement entropy, which is given by (A.2), as

S = 1
2 ln

(
r − 1

4

)
+
√
r tanh−1

( 1√
r

)
. (A.14)

We use the relatively simple expression (A.5) for r and we split the entanglement entropy
into three terms as

S1 = − ln 2 + 1
2 ln

(
−1

2 + ω2
+ + ω2

−
4ω+ω−

cosh z+

)
, (A.15)

S2 = 1
2 ln

1 +
ω2

−−ω2
+

4ω+ω−
sinh z+

−1
2 + ω2

−+ω2
+

4ω+ω−
cosh z+

sin 2ω+t

 , (A.16)

S3 =
√
r tanh−1

( 1√
r

)
. (A.17)

3In order to perform this calculation the formula

1
2π

∫ 2π

0
dt ln (1 + a sin t) = ln

√
1− a2 + 1

2 , |a| < 1 (A.12)

is required.
4Notice that the coefficient diverges in the ω+ = ω− limit. This is an artefact of the order of the limits,

i.e. the small z+ limit and the degenerate limit do not commute. To see why this is the case, we turn to
the degenerate limit. For ω+ = ω− the parameter ξ and the entanglement entropy simplify a lot. It is
straightforward to show that they read

ξdegenerate = tanh2 z+

4

and
Sdegenerate = cosh2 z+

4 ln cosh2 z+

4 − sinh2 z+

4 ln sinh2 z+

4 .

So, the entanglement spectrum of the reduced density matrix and the entanglement entropy change at will.
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The first term is constant, so S̄1 = S1. We are left with the calculation of S̄2 and S̄3.
To proceed, notice that

− 1
2 + ω2

− + ω2
+

4ω+ω−
cosh z+ ±

ω2
− − ω2

+
4ω+ω−

sinh z+ =
(
ω−e

±z/2 − ω+e
∓z/2

2√ω+ω−

)2

. (A.18)

Thus the absolute value of the coefficient of sin 2ω+t in (A.16) in smaller than one. Therefore,
S̄2 can be calculated directly by equation (A.12):

S̄2 = 1
2 ln

1
2

∣∣∣(ω+ + ω−)2 sinh2 z+
2 − (ω+ − ω−)2 cosh2 z+

2

∣∣∣
(ω+ + ω−)2 sinh2 z+

2 + (ω+ − ω−)2 cosh2 z+
2

+ 1
2

 . (A.19)

We are left with the calculation of S̄3. We expand
√
r tanh−1(1/

√
r) and get

S3 =
∞∑
k=0

1
2k + 1

1
bk

1
(1 + c sin 2ω+t)k

, (A.20)

where

b = 1
2 + ω2

− + ω2
+

4ω+ω−
cosh z+ and c =

ω2
−−ω2

+
4ω+ω−

sinh z+

1
2 + ω2

−+ω2
+

4ω+ω−
cosh z+

. (A.21)

The integration can be performed using the formula

1
2π

∫ 2π

0
dt

1
(1 + c sin t)k

= 1
(1− c2)k/2

Pk−1
(
1/
√

1− c2
)
, (A.22)

where Pk is the Legendre polynomial of order k, to obtain

S̄3 =
∞∑
k=0

1
2k + 1y

kPk−1 (x) , (A.23)

where x and y are given by

x = 1√
1− c2

= 2ω+ω− +
(
ω2

+ + ω2
−
)

cosh z+
ω2

+ + ω2
− + 2ω+ω− cosh z+

, (A.24)

y = 1
b
√

1− c2
= 4ω+ω−

2ω+ω− +
(
ω2

+ + ω2
−
)

cosh z+
. (A.25)

We separate the k = 0 term, which is constant, to write

S̄3 = 1 +
∞∑
k=0

1
2k + 3y

k+1Pk (x) . (A.26)

We are unable to perform this summation directly. So we introduce a Schwinger parameter
and interchange the summation and integration, to obtain

S̄3 = 1 + y

∫ 1

0
dw

∞∑
k=0

w2
(
w2y

)k
Pk (x) . (A.27)
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The summation can be performed using the generating function of Legendre polynomials to
arrive at

S̄3 = 1 + y

∫ 1

0
dw

w2√
w4y2 − 2yw2x+ 1

, (A.28)

or with a trivial change of variable

S̄3 = 1 + 1
√
y

∫ √y
0

dw
w2

√
w4 − 2w2x+ 1

. (A.29)

Since we are calculating a physical quantity, the result should be real for all values of the
parameters. To verify this fact, recall that x > 1 and 1 > y > 0. The quantity under the
square root gets its minimum value for w = √y, while we have

y2 − 2xy + 1 =
[
ω2

+ + ω2
− − 2ω+ω− cosh z+

ω2
+ + ω2

− − 2ω+ω− cosh z+

]2

. (A.30)

Thus, the result is manifestly real for any value of the parameters. Setting x = cosh u
we obtain

S̄3 = 1 + 1
√
y

∫ √y
0

dw
w2

√
w2 − e−u

√
w2 − eu

. (A.31)

We perform another change of the integration variable to obtain

S̄3 = 1 + eu/2
√
y

∫ √yeu/2

0
dw

e−2uw2
√

1− w2
√

1− e−2uw2

= 1 + eu/2
√
y

∫ √yeu/2

0
dw

[
1√

1− w2
√

1− e−2uw2
−
√

1− e−2uw2
√

1− w2

]

= 1 + eu/2
√
y

[
F
(
sin−1√yeu/2; e−2u

)
− E

(
sin−1√yeu/2; e−2u

)]
(A.32)

where F and E are the incomplete elliptic integrals of first and second kind respectively,
and e−2u is their elliptic modulus. The careful reader would have noticed that initially
the sign of u was irrelevant, but we have treated eu and e−u differently. Had we made the
opposite choice, we would have ended up with a symmetric formula. Of course, this result
can also be obtained using the transformations of the elliptic integrals under the inversion
of the elliptic modulus, which is required for consistency. In order to substitute the original
parameters we use

u = ln e
z+/2ω− + e−z+/2ω+
e−z+/2ω− + ez+/2ω+

. (A.33)

Gathering all the terms, i.e. the above result, along with (A.15) and (A.19), we obtain

S̄ = −2 ln 2 + 1
2 ln


∣∣∣ω2

1 sinh2 z+
2 − ω

2
2 cosh2 z+

2

∣∣∣+ ω2
1 sinh2 z+

2 + ω2
2 cosh2 z+

2

2ω+ω−


+ 1 + ez+/2ω− + e−z+/2ω+

2√ω+ω−

[
F
(
φ; k2

)
− E

(
φ; k2

)]
,

(A.34)
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where ω2
1 = (ω+ + ω−)2, ω2

2 = (ω+ − ω−)2 and

φ = sin−1 2√ω+ω−

e−z+/2ω− + ez+/2ω+
, k2 = e−z+/2ω− + ez+/2ω+

ez+/2ω− + e−z+/2ω+
. (A.35)

This expression for the mean entanglement entropy is an increasing function of the squeezing
parameter.

Notice that (A.34) is manifestly invariant under the interchange ω+ ↔ ω− along with
z+ → −z+. Had we performed only one of these transformations, it would require the
transformation of the elliptic integrals under the inversion of the elliptic modulus to show
that (A.34) is indeed invariant. Equation (A.34) also explains why the small z+ and the
degenerate ω+ = ω− limits do not commute. For ω+ 6= ω− in the small z+ limit the quantity
inside the absolute value is negative, whereas for finite z+ this quantity is positive in the
ω+ − ω− → 0 limit. On the contrary, in the large |z+| limit this quantity is positive, just
like in the ω+ − ω− → 0 limit, thus these limits commute. Finally, the elliptic modulus
takes any positive value, but it is equal to 1 either for z+ = 0 or ω+ = ω−.

A.2 Squeezing both modes

When both the symmetric and antisymmetric modes are squeezed, the parameter r equals

r = 1
2−

1
2 cos Φ− cos Φ+ sinh z− sinh z+

+ (cosh z+ + sin Φ+ sinh z+) (cosh z− − sin Φ− sinh z−) ω−
4ω+

+ (cosh z− + sin Φ− sinh z−) (cosh z+ − sin Φ+ sinh z+) ω+
4ω−

,

(A.36)

where Φ± are the phases of the two modes, namely, Φ± = 2ω± (t− t0±). Without loss of
generality, in the following we consider that z+ and z− are both positive. The introduction
of a negative squeezing parameter is equivalent to a shift of the corresponding phase Φ± by
π. Furthermore, we assume that ω− > ω+.

It is a matter of algebra to show that

r = 1 + 1
4

[√
cosh z+ + sin Φ+ sinh z+√
cosh z− + sin Φ− sinh z−

√
ω−√
ω+
− (+↔ −)

]2

+ 1
4

[√
cosh z+ + sin Φ+ sinh z+√
cosh z− + sin Φ− sinh z−

√
ω−√
ω+

cos Φ− sinh z− − (+↔ −)
]2

,

(A.37)

which implies that r is manifestly greater or equal to 1, as required.
Unlike the case where we had squeezed only the symmetric mode, the ratio r and

thus the entanglement entropy is not necessarily a periodic function of time. Actually it is
periodic if and only if the ratio of the eigenfrequencies of the two normal modes is rational.
In such a case, the phases Φ± follow a one-dimensional closed path in the Φ+Φ− plane.
Otherwise, they follow an open trajectory, which in infinite time will cover the whole region
of possible (Φ+,Φ−) pairs, i.e. the two phases get arbitrarily close to any given pair of
admissible values at some instant. In this spirit, we search for the extrema of the ratio
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r, and thus of entanglement entropy, treating the two phases as independent, although
actually they are not; they are both given functions of time.

There are stationary points of the ratio r when the phases Φ± satisfy the equations5

sin Φ± sinh z± =
(
ω2

+ + ω2
−
)

cosh z± − 2ω+ω− cosh z∓
ω2
± − ω2

∓
, (A.38)

cos Φ− sinh z− = cos Φ+ sinh z+, (A.39)

or

cos Φ+ = cos Φ− = 0. (A.40)

Notice that the square of equation (A.39) is automatically satisfied if the two equations (A.38)
are satisfied. Equation (A.39) only specifies the relative sign of cos Φ±.

Equations (A.38) and (A.39) do not always have a real solution. This depends on the
values of the squeezing parameters. Demanding that |sin Φ±| ≤ 1 leads to

cosh
(
z± + ln ω−

ω+

)
≥ cosh z∓ ≥ cosh

(
z± − ln ω−

ω+

)
, (A.41)

i.e.

z± + ln ω−
ω+
≥ z∓ ≥

∣∣∣∣z± − ln ω−
ω+

∣∣∣∣ (A.42)

or
z+ + z− ≥ ln ω−

ω+
≥ |z+ − z−| . (A.43)

Whenever the above condition holds, equations (A.38) and (A.39) do have two solutions, both
corresponding to the ratio r being equal to 1. Actually, it is evident from equation (A.37)
that these are the only values of the phases Φ± where the ratio r can be equal to 1. Since
this is the minimal possible value of r, whenever these solutions exist, they provide the
global minimum of the ratio r.

Equations (A.40) have always 4 solutions in a trivial manner, namely

Φ+ = ±π2 , Φ− = ±π2 . (A.44)

They correspond to the following values of the ratio r

r

(
Φ+ = s+

π

2 ,Φ− = s−
π

2

)
≡ rs+s− = cosh2

[1
2

(
s+z+ − s−z− + ln ω−

ω+

)]
, (A.45)

where the symbols s± take the values ±1.
5Notice that there is another mathematical solution, namely

sin Φ± sinh z± =
(
ω2

+ + ω2
−
)

cosh z± + 2ω+ω− cosh z∓

ω2
± − ω2

∓
,

cos Φ− sinh z− = − cos Φ+ sinh z+.

However, it is unphysical, since for any values of the parameters it does not correspond to real Φ+ and Φ−.
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In an obvious manner r+− is larger than r++, r−+ and r−−. Therefore, Φ+ = π
2 and

Φ− = −π
2 is the position of the global maximum of the ratio r,

rmax = r+−. (A.46)

When z+ < ln ω−
ω+

and z− < ln ω−
ω+

the smallest of the four rs+s− is r−+. When the above
does not hold and z+ > z− the smallest is r−−, whereas when z+ < z− the smallest
is r++. The smallest of the four rs+s− is the global minimum of the ratio r, whenever
condition (A.43) does not hold, i.e.

rmin =



1, z+ + z− ≥ ln ω−
ω+
≥ |z+ − z−| ,

r−+, z+ + z− < ln ω−
ω+
,

r−−, z+ − z− > ln ω−
ω+
,

r++, z− − z+ > ln ω−
ω+
.

(A.47)

Since the value of the ratio r for the vacuum state of the two oscillators can be written
as r0 = cosh2

(
1
2 ln ω−

ω+

)
, it turns out that the globally minimal value of the ratio r and thus

of the entanglement entropy coincides with that of the vacuum state if

|z+ − z−| = 2 ln ω−
ω+

. (A.48)

The values of the phases Φ± that correspond to the extrema r±±, namely Φ± = ±π/2,
are not arbitrary. When a phase takes one of these two values, the wavefunction that
describes the corresponding mode is a minimal uncertainty state with maximal or minimal
position uncertainty, respectively.

The fact that the ratio r is stationary when the two modes are both minimal uncertainty
states suggests that these are the times that contributions of squeezed modes to entanglement
are maximal. However, these contributions add when the two modes are in opposite phases.
When the two phases are equal, the contributions cancel each other, resulting in weak
entanglement. The quantity that receives negative or positive contributions directly equal
to the squeezing parameter of each mode at these instants is arccosh

√
r.

In the above we dealt with the two phases as independent variables. Actually, they
are not; they are both functions of time. As time flows, the system follows a specific one
dimensional trajectory within the two-dimensional space of the phases of the two modes.
The trajectory depends on the ratio of the frequencies of the two modes. Because of this
fact, the ratio r may present local minima or maxima with time, which do not coincide
with the theoretical minima and maxima rmin and rmax that we specified above. However,
the ratio r is always bound by these values.

B Algebraic construction of the reduced density matrix eigenstates

In section 4.4, we showed that the eigenfunctions of the matrix ρ̃2, and thus those of the
reduced density matrix, form a tower of states, in many aspects similar to the tower of
eigenstates of a coupled harmonic system. Actually, we know that when the matrix β is real,
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the above statement is exact [7, 15]. It would be nice to construct creation and annihilation
operators which would relate the eigenstates of ρ̃2 in the same sense that they relate the
eigenstates of a coupled harmonic system.

However, we know that this cannot be that simple. For example, we know that the
“second excited” eigenstate of the reduced density matrix, which corresponds to different
eigenvectors of the matrix Ξ, cannot be produced by the action of two “ordinary” creation
operators on the ground state, as we showed in section 4.4.3. In general, the required
operators have to be linear combinations of positions and momenta. They differ though
from the “ordinary” ones, as the combination of momenta that appears in one of them
cannot be the conjugate momentum of the combination of positions that appears.

Therefore, we search for annihilation operators of the form

Ai = Cik (∂k +Akjxj) , (B.1)

so that they annihilate the “ground” eigenstate Ψ0 of ρ̃2 (4.36). These operators should act
on the “first excited” eigenstates Ψ1`, which are given by equation (4.48), as

AiΨ1` = δi`Ψ0. (B.2)

Introducing the notation (v`)k = v`k, equation (B.2) yields

Cikv
`
k = 1√

2
δi`. (B.3)

Bearing in mind that the eigenvectors of the matrix Ξ are normalized so that

v†iRe (A)−1 vj = vi∗k

(
Re (A)−1

)
k`
vj` = δij , (B.4)

the above equation implies that

Cik = 1√
2
vi∗n

(
Re (A)−1

)
nk
. (B.5)

Therefore, the annihilation operators Ai and their Hermitian conjugates, the creation
operators A†i , read

Ai = 1√
2
vi∗n

(
Re (A)−1

)
nk

(∂k +Akmxm) , (B.6)

A†i = 1√
2
vin

(
Re (A)−1

)
nk

(−∂k +A∗kmxm) . (B.7)

One can trivially show that A†iΨ0 = Ψ1i.
Let us study the commutation relations of the creation and annihilation operators. It

is a matter of algebra to show that[
Ai, A

†
j

]
= vi∗n

(
Re (A)−1

)
nk
vjk = δij , (B.8)

[Ai, Aj ] = 1
2v

i∗
n

(
Re (A)−1

)
nk
vj∗`

(
Re (A)−1

)
`r

[Ark −Akr] = 0. (B.9)
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Let us assume that Ψ (x) is an eigenfunction of the matrix ρ̃2 with eigenvalue λ, i.e.

ρ̃2Ψ (x) =
∫
dnx′ρ̃2

(
x; x′

)
Ψ
(
x′
)

= c

∫
dnx′ exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
Ψ
(
x′
)

= λΨ (x) .
(B.10)

Differentiating this relation with respect to xk yields∫
dnx′ exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
x′mΨ

(
x′
)

= λ

c

(
β̂−1

)
km

[∂kΨ (x) + xkΨ (x)] .
(B.11)

The question that we would like to answer is whether the state A†iΨ (x) is an eigen-
function of the matrix ρ̃2. If the answer is yes, then what is the corresponding eigenvalue?
It is a matter of algebra to show that

ρ̃2A
†
iΨ (x) = c√

2
vin

(
Re (A)−1

)
nk

×
∫
dnx′ exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

] (
−∂′k +A∗kmx′m

)
Ψ
(
x′
)
. (B.12)

The right hand side contains two terms. We can perform by parts integration to the term
containing the derivative of Ψ (x),∫

dnx′ exp
[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
∂′kΨ

(
x′
)

=
∫
dnx′Ψ

(
x′
) (
x′k − β̂k`x`

)
exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
= −λ

c
β̂k`x`Ψ (x) +

∫
dnx′ exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
x′kΨ

(
x′
)
.

(B.13)

This implies that

ρ̃2A
†
iΨ (x) = c√

2
vin

(
Re (A)−1

)
nk

[
β̂k`x`λΨ (x)

− (δkm −A∗km)
∫
dnx′ exp

[
−1

2
(
xTx + x′Tx′

)
+ x′T β̂x

]
x′mΨ

(
x′
) ]
.

(B.14)

Finally, using equation (B.11) we obtain

ρ̃2A
†
iΨ (x) = λ√

2
vin

(
Re (A)−1

)
nk

×
[
β̂k`x`Ψ (x)− (δkm −A∗km)

(
β̂−1

)
`m

[∂`Ψ (x) + x`Ψ (x)]
]
.

(B.15)

The defining property of the matrix A (4.41) and the definition of the matrix Ξ (4.46)
imply that (I −A∗)

(
β̂T
)−1

= β̂ (I +A∗)−1 = Ξ∗. Furthermore, we have shown that the
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matrix Ξ′, defined in (4.53) is Hermitian. This implies that Re (A)−1 Ξ∗ = ΞTRe (A)−1. As
a direct consequence, it follows that(

Re (A)−1
)
nk

(δkm −A∗km)
(
β̂−1

)
`m

=
(
ΞTRe (A)−1

)
n`
. (B.16)

Recalling that the vector vi is an eigenvector of the matrix Ξ with eigenvalue ξi, the above
relation allows the re-writing of equation (B.15) as

ρ̃2A
†
iΨ(x) = λ√

2
vin

(
Re(A)−1

)
nk

[(
β̂k`−ξiδk`

)
x`Ψ(x)−ξi∂kΨ(x)

]
=λξiA

†
iΨ(x)+ λ√

2
vin

(
Re(A)−1

)
nk

[
δkm−ξi (δkr+A∗kr)

(
β̂−1

)
rm

]
β̂m`x`Ψ(x) .

(B.17)
Similarly to the algebra that we used in the previous step, the definition of the matrix
Ξ (4.46) implies that (I +A∗) β̂−1 = (Ξ∗)−1. Furthermore, the fact that the matrix Ξ′,
defined in (4.53), is Hermitian implies that Re (A)−1 (Ξ∗)−1 =

(
ΞT
)−1

Re (A)−1. As a
direct consequence, it follows that(

Re (A)−1
)
nk

(δkr +A∗kr)
(
β̂−1

)
rm

=
((

ΞT
)−1

Re (A)−1
)
nm

. (B.18)

Once again, recalling that the vector vi is an eigenvector of the matrix Ξ with eigenvalue
ξi, we get

vin

(
Re (A)−1

)
nk

[
δkm − ξi (δkr +A∗kr)

(
β̂−1

)
rm

]
= vin

((
Re (A)−1

)
nm
− ξi

((
ΞT
)−1

)
nk

(
Re (A)−1

)
km

]
= 0.

(B.19)

This implies that equation (B.17) assumes the form

ρ̃2A
†
iΨ (x) = λξiA

†
iΨ (x) . (B.20)

We proved that if the state Ψ (x) is an eigenstate of the matrix ρ̃2 with eigenvalue λ,
then the state A†iΨ (x) is also an eigenstate with eigenvalue λξi. Inductively, this means
that the states

Ψ{m1,m2,...,mn} (x) =

(
A†1

)m1

√
m1!

(
A†2

)m2

√
m2!

. . .

(
A†N−n

)mN−n√
mN−n!

Ψ0 (x) (B.21)

are normalized eigenstates of the matrix ρ̃2 with eigenvalues given by equation (4.68). The
eigenstates of the reduced density matrix ρ2 can be trivially found, recalling their relation
to the eigenstates of ρ̃2, which is given by equation (4.33).

C A solvable example

In this appendix we analyse a solvable example, in order to clarify the properties of the
spectrum of the matrix M that we introduced in section 4.6, and furthermore to verify that
the asymptotic form of the eigenvalues of the matrix Ξ for large squeezing parameters are
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indeed of the form that is predicted by the large squeezing expansion developed in section 5.
Let us consider the case that all modes lie in a squeezed state with the same squeezing
parameter z, and further assume that we study the system at a instant when the phase of
the oscillation of all modes is the same and equal to 0. In this case, we have

W =
( 1

cosh z − i tanh z
)

Ω . (C.1)

Naturally, when z = 0, W = Ω, as in the usual ground state calculation.
It follows that the matrices γ and β assume the form

γ =
( 1

cosh z − i tanh z
)

(γ0 + i sinh zβ0) , (C.2)

β = cosh zβ0, (C.3)

where γ0 and β0 are the matrices γ and β in the case of the ground state. The first of the
two equations implies that

Re (γ) = γ0 + β0 sinh2 z

cosh z . (C.4)

Finally, the above imply that the matrix M ′, which defined in equation (5.11) and is
similar to the matrix M , assumes the form

M ′ =
(

2β−1Re (γ) −β−1βT

I 0

)
=
(

2
cosh2 z

(
β−1

0 γ0 + tanh2 zI
)
−I

I 0

)
. (C.5)

The eigenvalues of this matrix are

λi± = β̂i cosh2 z

1 + β̂i sinh2 z ±
√

(1− β̂i)(1 + β̂i cosh 2z)
, (C.6)

where β̂i are the eigenvalues of the matrix γ−1
0 β0. These eigenvalues come in pairs of the

form (λ, 1/λ), since λi+λi− = 1. The eigenvalues which are smaller than 1 are the λi+,
and, thus,

ξi = β̂i cosh2 z

1 + β̂i sinh2 z +
√

(1− β̂i)(1 + β̂i cosh 2z)
=

√
1+β̂i cosh 2z

1−β̂i
− 1√

1+β̂i cosh 2z
1−β̃i

+ 1
. (C.7)

For |z| � 1 we have

ξi = 1− 2(1− ξ0
i )√

ξ0
i

e−|z| +O
(
e−2|z|

)
. (C.8)

This formula is in agreement with the large-squeezing expansion developed in section 5.
Similarly, for |z| � 1 we obtain

ξi = ξ0
i

(
1 + 1− ξ0

i

1 + ξ0
i

z2
)

+O
(
z4
)
. (C.9)

The correction to ξ0
i is always non-negative.
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D Entanglement entropy through Rényi entropies — a toy case

In section 4 we developed a method to calculate the entanglement entropy in harmonic
systems with an arbitrary number of degrees of freedom that lie in a squeezed state. It would
be nice if we could verify this method via an independent calculation in a non-trivial case.

There is an alternative method to calculate entanglement entropy via the so called
entanglement Rényi entropies. In this appendix we use this alternative method as a verifying
example in a special case that the reduced system contains two degrees of freedom and the
reduced density matrix is complex, but has a specific form.

Rényi entropies constitute a family of entropies which extend the notion of Shannon’s
entropy. For a probability distribution pi, the Rényi entropy of order a is defined as

Sa := 1
1− a ln

(∑
i

pai

)
. (D.1)

Shannon’s entropy is the limit a→ 1 of Rényi entropies, i.e.

S = lim
a→1

Sa. (D.2)

As a direct generalization, we may define the entanglement Rényi entropies of order
a as

SEE
a := 1

1− a ln Trρa2 (D.3)

and recover the entanglement entropy as the limit

SEE = lim
a→1

SEE
a . (D.4)

In the case we study, namely when the overall oscillatory system lies in a squeezed
state, we know that the reduced density matrix is of the form

ρ2
(
x; x′

)
= c exp

[
−1

2
(
xTγx + x′Tγ∗x′

)
+ xTβx′

]
, (D.5)

where γ is a complex symmetric matrix, β is a Hermitian matrix. The normalization
constant is given by c =

(
det Re (γ − β)/πd

) 1
2 , where d is the number of degrees of freedom

of the reduced system.
It is not difficult to show that the powers of the reduced density matrix are of the

same form
ρn2
(
x; x′

)
= cn exp

[
−1

2
(
xTγnx + x′Tγ∗nx′

)
+ xTβnx′

]
, (D.6)

where the matrices γn are complex symmetric and the matrices βn are Hermitian. Obviously,
γ1 = γ, β1 = β and c1 = c.

The matrices γn, βn and the coefficients cn obey some recursion relations. It holds that

ρn+1
2

(
x; x′′

)
=
∫
ddx′ρn2

(
x; x′

)
ρ2
(
x′; x′′

)
. (D.7)

– 56 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
9

But,

ρn2
(
x; x′

)
ρ2
(
x′; x′′

)
= cnc exp

[
−1

2
(
xTγnx + x′′Tγ∗x′′

)
+ 1

2vT (γ∗n + γ) v
]

× exp
[
−1

2
(
x′ + v

)T (γ∗n + γ)
(
x′ + v

)]
,

(D.8)

where
v = (γ∗n + γ)−1 (β∗nx + βx′′

)
. (D.9)

It directly follows that

ρn+1
2

(
x; x′′

)
= cnc

(
2dπd

det (γ∗n + γ)

) 1
2

exp
[
− 1

2

(
xT
(
γn − βn (γ∗n + γ)−1 β∗n

)
x

+ x′′T
(
γ∗ − β∗ (γ∗n + γ)−1 β

)
x′′
)

+ xTβn (γ∗n + γ)−1 βx′′
]
.

(D.10)

The fact that ρn+1
2 is Hermitian implies that

γn − βn (γ∗n + γ)−1 β∗n = γ − β (γn + γ∗)−1 β∗, (D.11)
βn (γ∗n + γ)−1 β = β (γn + γ∗)−1 βn. (D.12)

The recursive relations for γn, βn and cn can be directly read from the expression of the
matrix ρn+1

2 (D.10). They read

γn+1 = γ − β (γn + γ∗)−1 β∗, (D.13)

βn+1 = β (γn + γ∗)−1 βn, (D.14)

cn+1 = cnc

(
2dπd

det (γ∗n + γ)

) 1
2

. (D.15)

We have shown that the imaginary part of the matrix γ does not affect the eigenvalues
of the reduced density matrix. It only alters its eigenstates in a trivial way. Therefore,
without loss of generality we may assume that the matrix γ is a real symmetric matrix. Of
course, the matrices γn, n > 1 may still be complex symmetric matrices. This assumption
simplifies the recursive formulae,

γn+1 = γ − β (γn + γ)−1 β∗, (D.16)

βn+1 = β (γn + γ)−1 βn, (D.17)

cn+1 = cnc

(
2dπd

det (γ∗n + γ)

) 1
2

. (D.18)

We define

β̂ ≡ γ−
1
2βγ−

1
2 , (D.19)

γ̂n ≡ γ−
1
2 γnγ

− 1
2 , (D.20)

β̂n ≡ γ−
1
2βnγ

− 1
2 . (D.21)
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Using these definitions, the recursive formula (D.16) assumes the form

γ̂n+1 = I − β̂ (I + γ̂n)−1 β̂∗. (D.22)

The initial condition for this recursive relation is obviously γ1 = γ, which implies γ̂1 = I.
Similarly, the recursive formula (D.17) assumes the form

β̂n+1 = β̂ (I + γ̂n)−1 β̂n. (D.23)

The initial condition for this is simply β1 = β, which implies that β̂1 = β̂. Finally, the
recursive relation (D.18) can be written as

cn+1 = cnc

(
2dπd

det γ det (I + γ̂∗n)

) 1
2

= cn

2d det
(
1− Reβ̂

)
det (I + γ̂∗n)


1
2

. (D.24)

In the case that the matrix β̂ is real, e.g. when the overall system lies in the ground
state, all matrices γ̂n and β̂n are functions of a single matrix, namely of β̂, and these
recursion relations can be solved as recursion relations for numbers. Their solution leads to
simple explicit formulas for the entanglement Rényi entropies and the exact same formula
for entanglement entropy found in [7]. However, in our case of study the recursion relation
for γ̂n contains the two matrices β̂ and β̂∗, which in general do not commute.

However, the above formulae can be solved in a special case, where the matrix β̂ is
complex. Assume the case where the reduced system contains two degrees of freedom and

β̂ = β0I + β2σ2. (D.25)

Let us define the eigenvalues of the matrix β̂ as

λ1 = β0 + β2, λ2 = β0 − β2. (D.26)

In an obvious manner,

β̂β̂∗ =
(
β2

0 − β2
2

)
I = λ1λ2I = det β̂I. (D.27)

Since the initial condition for the recursion relation for γ̂n (D.22) is γ̂1 = I, it follows
that this recursion relation has the trivial solution

γ̂n = anI, (D.28)

where the coefficients an obey

an+1 = an + det β̂
1 + an

. (D.29)

This recursion relation has the solution

an =
√

1− det β̂ 1 + ξn

1− ξn , (D.30)
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which implies that
γ̂n =

√
1− det β̂ 1 + ξn

1− ξn I, (D.31)

where

ξ =
1−

√
1− det β̂

1 +
√

1− det β̂
. (D.32)

The above form of the matrices γ̂n implies that

(I + γ̂n)−1 = 1

1 +
√

1− det β̂

1− ξn
1− ξn+1 I. (D.33)

The recursion relation for β̂n (D.21), combined with equation (D.33), implies that

β̂n = 1(
1 +

√
1− det β̂

)n−1
1− ξ
1− ξn β̂

n. (D.34)

It is not difficult to show that

β̂n = 1
2 (λn1 + λn2 ) I + 1

2 (λn1 − λn2 )σ2. (D.35)

We may define a sequence of matrices Γ̂n, so that

cn = c
(
det Γ̂n

) 1
2 . (D.36)

In an obvious manner, the determinants of these matrices should obey the recursion relation

det Γ̂n+1 = det Γ̂n

2d det
(
1− Reβ̂

)
det (I + γ̂n)


1
2

(D.37)

and the initial condition det Γ̂1 = 1. A simple way to satisfy this is to find the sequence of
matrices that obey the recursion relation

Γ̂n+1 = 2
(
I − Reβ̂

)
(I + γ̂n)−1 Γ̂n (D.38)

and the initial condition Γ̂1 = I. This equation combined with (D.33) directly implies that

Γ̂n = 1− β0
π

2 (1− β0)(
1 +

√
1− det β̂

)n−1
1− ξ
1− ξn I (D.39)

The trace of ρn2 is simply

Trρn2 =
∫
ddxρn2 (x; x) = cn

(
πd

det (γn − Reβn)

) 1
2

. (D.40)
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Using the definitions (D.19), (D.20) and (D.21), as well as the definition (D.36), we find

Trρn2 =

det
(
I − Reβ̂

)
det Γ̂n

det
(
γ̂n − Reβ̂n

)


1
2

. (D.41)

Using the form of the matrices γ̂n, β̂n and Γ̂n from equations (D.31), (D.34) and (D.39)
and putting everything together yields

Trρn2 = (2− λ1 − λ2)n(
1 +
√

1− λ1λ2
)n +

(
1−
√

1− λ1λ2
)n − λn1 − λn2 (D.42)

The Renyi entanglement entropy is defined by equation (D.3). It reads

SEE
a = 1

1− a ln (2− λ1 − λ2)a(
1 +
√

1− λ1λ2
)a +

(
1−
√

1− λ1λ2
)a − λa1 − λa2 . (D.43)

The form of the trace Trρa2 clearly implies that limn→1 Trρn2 = 1, as expected. It follows that

SEE = − lim
n→1

Tr∂Trρn2
∂n

(D.44)

It is a matter of algebra to show that

SEE = ln (2− λ1 − λ2)− 1
2− λ1 − λ2

[
− λ1 ln λ1 − λ2 ln λ2

+
(
1−

√
1− λ1λ2

)
ln
(
1−

√
1− λ1λ2

)
+
(
1 +

√
1− λ1λ2

)
ln
(
1 +

√
1− λ1λ2

) ] (D.45)

or

SEE = ln (2− λ1 − λ2)− 1
2− λ1 − λ2

[
− λ1 ln λ1 − λ2 ln λ2

+ ln (λ1λ2) +
√

1− λ1λ2 ln 1 +
√

1− λ1λ2

1−
√

1− λ1λ2

]
.

(D.46)
In order to verify that this result is consistent with the general method that we developed

in section 4, we need to solve the non-linear eigenvalue equation of the eigenvalues of the
matrix M , namely

det
(
ξ2β̂T − 2ξI + β̂

)
= 0. (D.47)

In our example, the matrix β̂ is given by equation (D.25). The above equation gives

det
((
ξ2β0 − 2ξ + β0

)
I + β2

(
−ξ2 + 1

)
σ2
)

= 0. (D.48)

This reads (
ξ2β0 − 2ξ + β0

)2
− β2

2

(
−ξ2 + 1

)2
= 0 (D.49)
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or (
ξ2λ1 − 2ξ + λ2

) (
ξ2λ2 − 2ξ + λ1

)
= 0. (D.50)

The last equation has four solutions,

ξ = 1±
√

1− λ1λ2
λ1

≡ ξ1±, or ξ = 1±
√

1− λ1λ2
λ2

≡ ξ2±. (D.51)

These indeed form two pairs of solutions that are inverse to each other. Namely ξ1+ = 1/ξ2−
and ξ2+ = 1/ξ1−. The solutions that are smaller than 1 are the solutions ξ1− and ξ2−. It
follows that the entanglement entropy reads

SEE = − ln (1− ξ1−)− ξ1−
1− ξ1−

ln ξ1− − ln (1− ξ2−)− ξ2−
1− ξ2−

ln ξ2−. (D.52)

It is a matter of tedious algebra to show that the above expression is identical to equa-
tion (D.46).

E Entanglement in terms of correlation functions

For Gaussian states there exist an alternative method for the calculation of entanglement
entropy based on correlation functions [38], see also [9]. This method is based on the fact
that for Gaussian states the correlation functions are expressed as products of 2-point
functions. Therefore, specifying a modular Hamiltonian that reproduces the correct 2-point
functions guaranties that this is indeed the modular Hamiltonian corresponding to the
particular density matrix. Via this process the spectrum of the modular Hamiltonian is
related to the eigenvalues of the correlation functions. In the case of the vacuum, the matrix
W appearing in (4.24) (in which case W = Ω, where Ω is the frequency matrix) is real. The
matrices γ and β are real as well. One can show that6

γ−1β =
(
Ω−1)

C ΩC − I
(Ω−1)C ΩC + I

. (E.1)

To derive this relation one has to observe that

γ + β = ΩC , γ − β = ΩC − ΩT
BΩ−1

A ΩB =
((

Ω−1
)
C

)−1
, (E.2)

where the last equation is a property of the Schur complement ΩC − ΩT
BΩ−1

A ΩB. This
property enables us to use directly blocks of the matrix Ω−1, such as

(
Ω−1)

C , rather than
the inverses of blocks of Ω, such as Ω−1

A . Using the fact that Ω and Ω−1 are the momentum

6In this section we use a slightly different notation for the blocks of a matrix Q, namely

Q =
(
QA QB
QTB QC

)
.
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and position 2-point functions respectively, more specifically

Xij = 〈xixj〉 = Tr [xixjρ] = 1
2
(
Ω−1

)
ij
, (E.3)

Πij = 〈πiπj〉 = −Tr [∂i∂jρ] = 1
2Ωij , (E.4)

〈xiπj〉 = −iTr [xi∂jρ] = i

2δij , (E.5)

we relate the spectrum of the reduced density matrix to the spectrum of the matrix XCΠC .
In particular, the eigenvalues of the matrix Ξ are given by

ξi =
Λi − 1

2
Λi + 1

2
, (E.6)

where Λi are the eigenvalues of
√
XCΠC . As a final remark, in order to be on the same

page, we remind the reader that one may calculate the correlation functions for the overall
system and then restrict the indices to the subsystem under consideration. This is denoted
by the index C.

After this short introduction let us turn to the case of interest. The vacuum state is
characterized by the fact that 〈xiπj + πjxi〉 = 0, which of course is equivalent to Re 〈xiπj〉 =
0. The method based on the correlation functions can be generalized appropriately for
Re 〈xiπj〉 6= 0. One considers the matrices

M =
(
〈xixj〉 〈xiπj〉
〈xiπj〉T 〈πiπj〉

)
, J =

(
0 I

−I 0

)
(E.7)

and calculates the eigenvalues of iJRe(M), see for instance [20, 39–41].
It is easy to show that

〈xixj〉 = Tr [xixjρ] = 1
2
(
Re (W )−1

)
ij
. (E.8)

In a similar manner, one can show that

〈πiπj〉 = −Tr [∂i∂jρ] = 1
2
[
Re (W ) + Im (W ) Re (W )−1 Im (W )

]
ij

(E.9)

and

〈xiπj〉 = −iTr [xi∂jρ] = 1
2
[
iI − Re (W )−1 Im (W )

]
ij
, (E.10)

〈πjxi〉 = −iTr [∂jxiρ] = −1
2
[
iI + Re (W )−1 Im (W )

]
ij
. (E.11)

Using these correlation functions the matrix iJRe(M) reads

iJ Re(M) = i

2

(
−Im (W ) Re (W )−1 Re (W ) + Im (W ) Re (W )−1 Im (W )
−Re (W )−1 Re (W )−1 Im (W )

)
. (E.12)

Unfortunately, we are not able to find a direct relation between the matrix M , defined
in (4.80), and the matrix iJ Re(M) or its blocks. So, the best we can do is to show that
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we obtain the same spectrum, by relating the characteristic polynomials of the matrices.
The characteristic polynomial of the matrix iJRe(M) is

det(iJRe(M)−ΛI) = det
((

Re(W )−1
)

C

)
det
[
Λ2
((

Re(W )−1
)

C

)−1
− 1

4

(
Re(W )C +Im(W )T

B (Re(W )A)−1 Im(W )B

)
− i

2Λ
(((

Re(W )−1
)

C

)−1(
Re(W )−1

)T

B
Im(W )B

− Im(W )T
B

(
Re(W )−1

)
B

((
Re(W )−1

)
C

)−1
)]

,

(E.13)
where we used the fact that

(Re (W )A)−1 =
(
Re (W )−1

)
A
−
(
Re (W )−1

)T
B

((
Re (W )−1

)
C

)−1 (
Re (W )−1

)
B
. (E.14)

Similarly, it also holds true that((
Re (W )−1

)
C

)−1
= Re (W )C − Re (W )TB (Re (W )A)−1 Re (W )B . (E.15)

Defining Λ = 1
2

1+λ
1−λ we obtain

det (iJ Re(M)− ΛI) = 0⇒ det
(
M2 −

λ

4M0 −
1

4λM
T
0

)
= 0, (E.16)

where
M2 = Re (W )C −

1
2Re (W )TB (Re (W )A)−1 Re (W )B

+ 1
2Im (W )TB (Re (W )A)−1 Im (W )B = Re (γ)

(E.17)

and

M0 = Ω†B (Re (W )A)−1 ΩB + i
(
M′0 −M′T0

)
= 2β + i

(
M′0 −M′T0

)
, (E.18)

with

M′0 = Im (Ω)TB
[(
I −

(
Re (Ω)−1

)
B

Re (Ω)TB
)

(Re (Ω)A)−1 Re (Ω)TB
+
(
Re (Ω)−1

)
B

Re (Ω)C
]
. (E.19)

The trivial relation Re (Ω)−1 Re (Ω) = I implies that(
Re (Ω)−1

)
A

Re (Ω)A +
(
Re (Ω)−1

)
B

Re (Ω)TB = I, (E.20)(
Re (Ω)−1

)
A

Re (Ω)TB +
(
Re (Ω)−1

)
B

Re (Ω)C = 0. (E.21)

Thus,M′0 vanishes and we arrive at

det (iJ Re(M)− ΛI) = 0⇒ det
(

2Re (γ)− λβ − 1
λ
βT
)

= 0, (E.22)
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where λ = Λ− 1
2

Λ+ 1
2
. As a result, we have shown that the method based on the correlation

functions and the direct calculation, see (4.82), result in the same spectrum. Also, notice
that the eigenvalues of the matrices used in these methods are related in the same way as
in the case of the vacuum, see (E.6).

Interestingly enough, we can relate the admissible eigenvalues of M to the eigenvalues
of another matrix. It can be shown that the matrix M is similar to another matrix with
the same structure, namely

M ′ =
(

2β−1Re (γ) −β−1βT

I 0

)
. (E.23)

Since M and M ′ are related by a similarity transformation, they share the same spectrum.
The eigenvalues we are interested in are the solutions of the equation

det
(
M ′ − λI

)
= 1

det (−β/2) det
(
λRe (γ)− λ2

2 β −
1
2β

T

)
= 0. (E.24)

It is a matter of algebra to show that

det
(
λRe(γ)−λ

2

2 β−
1
2β

T

)
=

det
[
λRe(C)−

(1+λ
2 Re(B)+i1−λ2 Im(B)

)T
Re(A)−1

(1+λ
2 Re(B)−i1−λ2 Im(B)

)]
.

(E.25)
As a result, we obtain

det
(
M ′ − λI

)
∝ det

(
Re (A) 1+λ

2 Re (B)− i1−λ
2 Im (B)

1+λ
2 Re (B)T + i1−λ

2 Im (B)T λRe (C)

)
(E.26)

or
det

(
M ′ − λI

)
∝ det

[
1 + λ

2 Re (W )− 1− λ
2

(
−Re (A) iIm (B)
−iIm (B)T Re (C)

)]
. (E.27)

Thus, the eigenvalues of the matrix M , denoted by λ, are related to the eigenvalues λ̃ of
the matrix M̃ , where

M̃ = Re (W )−1
(
−Re (A) iIm (B)
−iIm (B)T Re (C)

)
, (E.28)

via the equation

λ = λ̃− 1
λ̃+ 1

. (E.29)

Notice that the matrix M̃ is N ×N , thus we have introduced spurious eigenvalues. However,
there is also an advantage. Recall that the approach based on the matrix M works only
when we trace out the larger subsystem and we have to rely on the fact that entanglement
entropy satisfies SA = SAC for pure states. The calculation based on M̃ works in both
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cases: either when we trace out the larger subsystem or the smaller one. One has to pick
out the admissible eigenvalues, i.e. the ones that are larger than 1.

In the vacuum case, in which case Im (B) = 0, the structure of the eigenvalues is as
follows: for n < N/2 the eigenvalues have the structure λ̃i = ±1

2Λi, which gives in total
2n eigenvalues, along with N − 2n eigenvalues which are equal to 1. When n > N/2 the
eigenvalues have the structure λ̃i = ±1

2Λi, which gives in total 2(N − n) eigenvalues, along
with 2n−N eigenvalues which are equal to −1. This structure implies that the full spectrum
of M̃ contains the eigenvalues of both −

√
Ω−1
A ΩA and

√
Ω−1
C ΩC . Of course this is expected

by comparing (E.29) and (E.6).

F Small-squeezing expansion

Similarly to the large squeezing expansion that we presented in section 5, we expand the
parameter w as a series in the squeezing parameter. This reads

w = ω − iωze−2iωt +O
(
z2
)
. (F.1)

The zeroth order term is real, time-independent and equal to the eigenfrequency of the
mode. Unlike the case of the large squeezing expansion, all terms in the expansion of w
(apart the zeroth order one) contain both a real and an imaginary part. We will use a
similar notation to that we used in section 5.

Equation (F.1) implies that the matrix W has an expansion of the form

W =
∞∑
i=0

ziW (i), (F.2)

where W (i) are in general complex. It follows that its blocks have a similar expansion and
the same holds for the matrices γ and β,

γ =
∞∑
i=0

ziγ(i), (F.3)

β =
∞∑
i=0

ziβ(i). (F.4)

In all these expansions, the small squeezing parameter z may be the squeezing parameter of
a single mode or even a small parameter in terms of which the small squeezing parameters
of all modes can be expressed.

We would like to perform textbook first order perturbation theory to the spectrum of
the matrix M . This would be simpler if the matrix M were Hermitian, at least at zeroth
order, so that its eigenvectors are orthogonal. Actually, we can find a matrix M̂ , which is
similar to M and Hermitian. This reads

M̂ =
(
I Ξ̂+

Ξ̂+ I

)−1

(
γ(0)

)1/2
0

0
(
γ(0)

)1/2

M ′

(
γ(0)

)1/2
0

0
(
γ(0)

)1/2


−1(

I Ξ̂+
Ξ̂+ I

)
, (F.5)
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where β̂ =
(
γ(0)

)−1/2 (
β(0)

) (
γ(0)

)−1/2
and Ξ̂± = β̂

I±
√
I−β̂2

. Trivially M̂ shares the same
eigenvalues with M ′, which is similar to M and is defined in (5.11). Given that(

I Ξ̂+
Ξ̂+ I

)−1

= β̂

2
√
I − β̂2

(
Ξ̂− −I
−I Ξ̂−

)
, (F.6)

we obtain
M̂ (0) =

(
Ξ̂− 0
0 Ξ̂+.

)
(F.7)

The matrix M̂ (0) is not only Hermitian but also block-diagonal and its eigenvectors are
trivially constructed from the eigenvectors of β̂. Let xi be the eigenvectors of the matrix β̂
with corresponding eigenvalues equal to β̂i, i.e.

β̂xi = β̂ixi. (F.8)

Then, there are two kinds of eigenvalues and eigenvectors of the matrix M̂ (0), namely

v̂i =
(

0
xi

)
, with eigenvalues λi = β̂i

1 +
√

1− β̂2
i

, (F.9)

v̂′i =
(
xi
0

)
, with eigenvalues λ′i = β̂i

1−
√

1− β̂2
i

. (F.10)

As expected the eigenvalues come in pairs of the form (λ, 1/λ). Indeed, λiλ′i = 1. The
eigenvalues that are smaller than 1 are the ones corresponding to eigenvectors of the first
kind, namely the λi. Indeed, they coincide with the values of the parameters ξ in the
original calculation by Srednicki [7]. Notice also that the matrix β̂ is real and symmetric,
and thus its eigenvectors xi are real.

It is a matter of algebra to show that

M̂ (1) = β̂

2
√
I − β̂2

Ξ̂−
(
M̂

(1)
11 + M̂

(1)
12 Ξ̂+

)
Ξ̂−

(
M̂

(1)
11 Ξ̂+ + M̂

(1)
12

)
,

−
(
M̂

(1)
11 + M̂

(1)
12 Ξ̂+

)
−
(
M̂

(1)
11 Ξ̂+ + M̂

(1)
12

)  , (F.11)

where

M̂
(1)
11 = 2β̂−1

(
Re
(
γ̂(1)

)
− β̂(1)β̂−1

)
, (F.12)

M̂
(1)
12 = 2iβ̂−1Im

(
β̂(1)

)
(F.13)

and

γ̂(1) =
(
γ(0)

)−1/2
γ(1)

(
γ(0)

)−1/2
, (F.14)

β̂(1) =
(
γ(0)

)−1/2
β(1)

(
γ(0)

)−1/2
. (F.15)

Now we can apply perturbation theory to find the eigenvalues of the matrix M at first
order. Considering that ξi = ξ

(0)
i + zξ

(1)
i + O

(
z2), and assuming that the zeroth order
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eigenvectors of the matrix M̂ have been defined so that they are normalized, the ξ(1)
i are

given by the usual first order perturbation theory formula ξ(1)
i = v̂Ti M̂

(1)v̂i, which yields

ξ
(1)
i = 1√

I − β̂2
i

xTi

(
Re
(
γ̂(1)

)
− β̂(1)β̂−1

i + i Im
(
β̂(1)

))
xi. (F.16)

Since Im
(
β̂(1)

)
is antisymmetric, the above expression simplifies to

ξ
(1)
i = 1√

I − β̂2
i

xTi

(
Re
(
γ̂(1)

)
− Re

(
β̂(1)

)
β̂−1
i

)
xi. (F.17)

This implies that the entanglement entropy at a given time contains corrections which are
first order in z, namely

SEE = S
(0)
EE +

∑
i

(
∂SEE
∂ξi

∣∣∣∣
ξi=ξ(0)

i

ξ
(1)
i

)
z +O

(
z2
)
. (F.18)

However, this is not the case for the mean entanglement entropy. The quantities ξ(1)
i depend

linearly on iωe−2iωt, as it results from equation (F.1). However, they are real, therefore
they depend linearly on a combination of cos (2ωt) and sin (2ωt). As a result, the mean
value of ξ(1)

i vanishes and so does the correction of the mean entanglement entropy at first
order. It follows that the ground state is a stationary point for the mean entanglement
entropy within the space of squeezed states.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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