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1 Introduction

Given the fundamental role of the S-matrix in connecting quantum field theory to experiment,
it is valuable to explore and develop its alternative formulations. The most popular
formulation is the LSZ prescription, in which S-matrix elements are extracted from the poles
of off-shell correlators of quantum fields. Among other virtues, one powerful property of
LSZ is that it applies equally well to the scattering of elementary particles and bound states.
To find an alternative prescription, it is useful to make an analogy with the computation
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of boundary correlators in the AdS/CFT correspondence. Working in the bulk, there
are two well known prescriptions. In the GKP/W prescription [1, 2] we are instructed
to compute the supergravity/string theory path integral as a functional of asymptotic
boundary conditions near the timelike boundary of AdS. These boundary data, J(x), are
then identified with sources in the dual CFT. For a CFT operator O of scaling dimension ∆
the corresponding bulk field behaves as ϕbulk ∼ r∆−dJ in AdSd+1. This leads to the basic
statement of the AdS/CFT correspondence

ZAdS[J ] =
∫

ϕbulk∼r∆−dJ
Dϕbulk e

−Ibulk[ϕbulk]

= ZCFT[J ] =
∫
DϕCFT e

−ICFT[ϕCFT]+
∫

J(x)OCFT(x)ddx . (1.1)

Thus Z[J ] serves as a generating functional for boundary correlators,

⟨O(x1) . . .O(xn)⟩CFT =
[

δ

δJ(x1) . . .
δ

δJ(xn)Z[J ]
]

J=0
. (1.2)

The second prescription, of BDHM [3], involves computing a bulk correlator and then
taking the bulk points to the boundary by a suitable limiting process,

⟨O(x1) . . .O(xn)⟩CFT = lim
r1,...rn→∞

r∆
1 . . . r∆

n ⟨ϕ(r1, x1) . . . ϕ(rn, xn)⟩bulk . (1.3)

Since the starting point is a bulk QFT correlator, the formulation (1.3) makes it clear
that boundary correlators may be computed perturbatively in terms of the usual Feynman
diagram expansion, here referred to as Witten diagrams, with the external lines replaced by
bulk-boundary propagators. On the other hand, the version (1.1) is more holographic in
spirit in the sense that it only makes reference to boundary data. For our purposes, another
feature of (1.1) is that it is well adapted to incorporating asymptotic symmetries, since
these are defined to act on asymptotic data. The two formulations are of course equivalent,
as we verify in appendix C using the same argument that we apply to the S-matrix.

Coming back to the Minkowski space S-matrix, it is apparent that version (1.3) of
the AdS/CFT dictionary is analogous to LSZ. On the other hand, the analog of (1.1) was
written down long ago by Arefeva, Faddeev, and Slavnov (AFS)1 but remains relatively
obscure. Our objective here is to further develop some aspects of this formalism, with an
eye towards application to asymptotic symmetries and related topics.

The idea is to consider the classical action, or more generally the path integral, as
a functional of asymptotic boundary data in the far past and future.2 For the S-matrix,
we are interested in field configurations that approach a superposition of plane waves in
the far past and future, representing the incoming and outgoing particles. The boundary
conditions we must impose then consist of fixing the positive(negative) frequency parts

1For a more expansive discussion we recommend Faddeev’s chapter in [4]. See also [5–9] for further
discussion, and [10–12] for recent applications of this or related methods to the study of tree level scattering
on curved backgrounds.

2More specifically, at timelike or null infinity, depending on whether we are considering massive or
massless particles.

– 2 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
6

of such field configurations in the far past(future). We denote these parts as ϕ+, and ϕ−
respectively, so that our boundary conditions on the field ϕ(x) are

ϕ−(x) ∼ ϕ−(x) , t→ +∞
ϕ+(x) ∼ ϕ+(x) , t→ −∞ . (1.4)

The observation of [13] is that the path integral, or at tree level the exponential of the
on-shell classical action, with these boundary conditions computes the matrix elements of
the S-matrix in a basis of suitably normalized coherent states |ϕ+⟩, defined below,

S[ϕ] ≡ ⟨ϕ−|Ŝ|ϕ+⟩ =
∫
Dϕ eiI[ϕ,ϕ] . (1.5)

The object S[ϕ] serves as a generating functional for S-matrix elements in the usual Fock
space basis, in analogy with (1.2). Alternatively, an expression for the S-matrix operator in
terms of Fock space creation and annihilation operators is given by

Ŝ = :e−iIbndy[ϕ̂,ϕ̂]S[ϕ̂]: (1.6)

where ϕ is now interpreted as the quantum field ϕ̂ with its usual free field mode expansion,
and Ibndy is a boundary contribution to the action that we will discuss in detail later.

In AdS/CFT, boundary terms in the action play an important role in establishing the
precise connection between the bulk and boundary partition functions, and the same is
true here. Note that in AdS the boundary terms in question live at spatial infinity, while
for the Minkowski S-matrix they are defined in the asymptotic past and future. These
boundary terms will be treated carefully and explicitly in the presentation that follows,
where we establish, in somewhat more detail than in previous literature, the equivalence of
this definition of the S-matrix with the LSZ definition, whenever both are applicable.3

Our perspective is that the direct path integral definition of the S-matrix proposed by
AFS is well suited to discussing matters related to asymptotic symmetries, because it is the
asymptotic data that figure directly in the construction. It is also advantageous to avoid
the appearance of non-gauge invariant local correlators at an intermediate stage.

To illustrate the general approach, we first work out the example of an interacting scalar
field in detail. The path integral with asymptotic boundary conditions is most efficiently
evaluated by shifting the field of integration from ϕ to ϕG by writing ϕ = ϕ+ ϕG where ϕ
is a solution of the free field equation obeying the boundary conditions, so that ϕG obeys
trivial asymptotic boundary conditions. After some manipulation this leads to the following
simple expression for the S-matrix operator

Ŝ = :
∫
DϕG e

i
∫

M
d4x

(
1
2 ϕG∇2ϕG−V (ϕ̂+ϕG)

)
: . (1.7)

3It would be interesting to consider the extension of the AFS approach to include bound states.
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The tree approximation to the S-matrix is obtained by applying the saddle point
approximation to the path integral, so that the tree level S-matrix is given directly by the
exponential of the on-shell classical action.

We next consider scalar QED and arrive at an expression analogous to (1.7), which
we use to illustrate the application of this formalism to asymptotic symmetries and soft
theorems, as has been the subject of much attention in recent years [14–20]. With the
correct boundary terms in place it is easy to see that the S-matrix4 is invariant under large
gauge transformations that act on the asymptotic boundary conditions. This feature leads
immediately to the Weinberg soft-photon theorem. We simply need to keep track of the
large gauge mode (i.e. Goldstone mode) as part of our asymptotic boundary conditions.
Although we do not work this out here, it is evident that the same approach will apply to
asymptotic symmetries and soft theorems in other contexts.

This formalism is also well suited to studying the S-matrix in curved spacetime. As an
example, we work out the case of a free scalar field defined on a general globally hyperbolic,
asymptotically flat spacetime. In the absence of a timelike Killing vector, particles will be
produced by the background geometry; the corresponding amplitudes are usually derived in
the framework of canonical quantization; see e.g. [21, 22]. We show that the full S-matrix,
expressed in terms of the Bogoliubov coefficients relating incoming and outgoing positive
frequency mode solutions, is rather simple to derive in the AFS approach.

In this work we often focus on massless fields for concreteness. Only the location of
the boundary terms, present at timelike infinity instead of null infinity, changes in the
presence of massive fields. But since we rewrite these boundary terms in the bulk, this only
changes details at intermediate steps. The ability to perform this rewriting is generic, as
demonstrated in a simplified example in appendix A.2.

The remainder of this paper is organized as follows. In section 2 we lay out the basic
formulas for the AFS S-matrix in the context of an interacting scalar field. In section 3 we
give a careful discussion of the equivalence, to all orders in perturbation theory, between
the AFS and LSZ prescriptions for the S-matrix. We turn to scalar QED in section 4,
and verify that the action is invariant under a class of large gauge transformations. In
section 5 we explain how this gauge invariance leads to a tidy derivation of the Weinberg soft
photon theorem, following the same general philosophy as in [14]. We generalize to curved
spacetime in section 6, and show how to efficiently compute the S-matrix for a free scalar
field in terms of the Bogoliubov coefficients. We conclude with some comments in section 7.
In appendix A we provide more pedagogical details on the AFS approach, and also present
some shortcuts for putting the action in a usable form. Appendix B gives a slightly different
approach to deriving the soft theorem, emphasizing the S-matrix generating functional
rather than the S-matrix operator. In appendix C we derive the equivalence between the
two forms of AdS boundary correlators by an argument that parallels our discussion of the
S-matrix. In appendix D we work out some details regarding the form of classical solutions
that govern the tree level S-matrix, emphasizing that they differ from classical solutions
that are relevant for ordinary classical physics.

4We deal here with the formal, IR divergent QED S-matrix.
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2 AFS S-matrix: S-matrix as a path integral

In this section we first review the basic setup of the AFS approach to the S-matrix. We
start from the operator definition of the S-matrix (see e.g. [23]),5

Ŝ = lim
ti→−∞
tf→+∞

eiĤ0tf e−iĤ(tf−ti)e−iĤ0ti , (2.1)

where Ĥ0 denotes the free part of the full Hamiltonian Ĥ. To proceed we consider matrix
elements of Ŝ in a coherent state basis, corresponding to eigenstates of annihilation operators.
For definiteness, consider a real scalar field in flat Minkowski space.6 The asymptotic
boundary conditions (1.4) can be captured conveniently by introducing an auxiliary free
field ϕ(x), whose mode expansion splits into positive and negative frequency components,

ϕ̂(x) =
∫

d3p

(2π)3
1

2ωp

(
b̂(p⃗)eip·x + b̂†(p⃗)e−ip·x

)
, p0 = ωp =

√
p⃗2 +m2 , (2.2)

so

ϕ̂+(x) =
∫

d3p

(2π)3
1

2ωp
b̂(p⃗)eip·x, ϕ̂−(x) =

∫
d3p

(2π)3
1

2ωp
b̂†(p⃗)e−ip·x . (2.3)

Throughout, we use overbars to denote free fields. Coherent states obey

ϕ̂+(x)|ϕ+(x)⟩ = ϕ+(x)|ϕ+(x)⟩

⟨ϕ−(x)|ϕ̂−(x) = ⟨ϕ−(x)|ϕ−(x) . (2.4)

The inner product is given by

⟨ϕ−(x)|ϕ+(x)⟩ = exp
[∫

d3p

(2π)3
1

2ωp
b†(p⃗)b(p⃗)

]

= exp
[
i

∫
Σ
d3x

√
htµ(ϕ−(x)∂µϕ+(x) − ∂µϕ−(x)ϕ+(x))

]
(2.5)

where tµ is the future directed timelike unit normal to Σ. Note that ϕ− and ϕ+ are
independent, not necessarily related by complex conjugation.

We now define

S[ϕ] = ⟨ϕ−(x⃗, t = 0)|Ŝ|ϕ+(x⃗, t = 0)⟩

= lim
ti→−∞
tf→+∞

⟨ϕ−(x⃗, tf )|e−iĤ(tf−ti)|ϕ+(x⃗, ti)⟩ . (2.6)

Here ϕ(x) = ϕ+(x) + ϕ−(x), but we allow ϕ±(x) to be independent, not related by complex
conjugation. The function ϕ(x) appearing in (2.6) thus represents a complex-valued free
field solution which encodes the boundary conditions of the scattering problem.

5Here we consider a time independent Hamiltonian, though in section 6 we will consider an example
where this condition is relaxed.

6Throughout, we use the mostly plus metric convention.
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As defined above, S[ϕ] admits a path integral representation in which the positive
(negative) part of ϕ agrees with the corresponding part of ϕ in the far past (future). For a
real scalar field with Hamiltonian

H =
∫

Σ
d3x

(1
2π

2
ϕ + 1

2(∇⃗ϕ)2 + V (ϕ)
)

(2.7)

we have

S[ϕ] = lim
ti→−∞
tf→+∞

∫ ϕ−(tf )=ϕ−(tf )

ϕ+(ti)=ϕ+(ti)
Dϕ eiI[ϕ,ϕ] (2.8)

where the integration is over field configurations satisfying the asymptotic boundary condi-
tions7

ϕ−(x) ∼ ϕ−(x) , t→ +∞
ϕ+(x) ∼ ϕ+(x) , t→ −∞ . (2.9)

The action appearing in this path integral is

I[ϕ, ϕ] =
∫
d4x

(1
2ϕ∇

2ϕ− V (ϕ)
)

+ Ibndy[ϕ, ϕ] (2.10)

where the boundary terms in the action play an important role due to the non-vanishing
boundary conditions on the fields.

The form of the required boundary terms follow from explicit construction of the phase
space path integral, but can also be deduced by demanding that the total action is stationary
under variations that preserve the boundary conditions,8 closely paralleling the situation in
AdS/CFT [24]. For this theory, the boundary terms are found to be

Ibndy[ϕ, ϕ] =
(
ϕ−, ϕ+

)
Σf

−
(
ϕ+, ϕ−

)
Σi

. (2.11)

Here Σi and Σf are Cauchy surfaces, which may be thought of as constant time slices, and
we have defined the scalar product

(ϕ, ψ)Σ = 1
2

∫
Σ
d3x

√
h tµ(ϕ∂µψ − ∂µϕψ) , (2.12)

where tµ is the future-directed unit normal, e.g. tµ∂µ = ∂t for equal time surfaces in Cartesian
coordinates. The scalar product (ϕ, ψ)Σ, closely related to the standard Klein-Gordon

7These boundary conditions are generated by the free evolution factors in (2.1). See appendix A.1 for a
more detailed discussion of this point.

8Of course, the variational principle does not fully fix the boundary terms since one can always add terms
that depend solely on the fixed boundary data. That no such terms should be present can be deduced in
various ways: directly from the path integral construction; by demanding a trivial S-matrix in the free limit;
by demanding equivalence with LSZ; or by requiring that b†(p⃗) to be the canonical conjugate of b(p⃗), as
reviewed in appendix A.1. A corresponding ambiguity regarding nonlocal boundary terms in AdS may be
fixed by demanding that the boundary correlators are compatible with the structure of a local CFT.
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inner product,9 vanishes between solutions which contain only the same frequency content:
(ϕ1,+, ϕ2,+) = (ϕ1,−, ϕ2,−) = 0.

To extract S-matrix elements in the standard Fock space basis involving particles with
definite momenta, one may take derivatives with respect to ϕ± or, more properly, the modes,
to generate insertions of creation/annihilation operators before setting ϕ = 0,

⟨q1, . . . , qM |Ŝ|p1, . . . , pN ⟩ =
[

N∏
k in

(
2ωpk

(2π)3 δ

δbk(p⃗k)

) M∏
ℓ out

(
2ωqℓ

(2π)3 δ

δb†ℓ(q⃗ℓ)

)
S[ϕ]

]
ϕ=0

.

(2.13)

Alternatively, standard coherent state formulas allow one to reconstruct an operator,
as a normal ordered expression in terms of creation and annihilation operators, from its
matrix elements in the coherent state basis [4],

Ŝ = :e−iIbndy[ϕ̂,ϕ̂]S[ϕ̂]: . (2.14)

In more detail, the object ϕ̂ is given by (2.2) and the full expression on the right hand
side of (2.14) is normal ordered with respect to the operators b̂(p⃗), b̂†(p⃗). Note that the
e−iIbndy[ϕ̂,ϕ̂] factor does not completely cancel the boundary term, but only the free part. In
this paper, we primarily work with the normal ordered form of the S-matrix rather than its
generating functional form, but in appendix A.1, we review both the generating functional
approach and the derivation of the identity leading to (2.14).

The above expressions are valid to all orders of perturbation theory (though if massless
particles are present the expressions may of course be infrared divergent). If we restrict
to tree level then (2.8) gives a direct relation between the S-matrix generating functional
and the classical action, Stree[ϕ] = eiI[ϕcl,ϕ], where ϕcl is the classical solution of the field
equations that obeys the boundary conditions ϕ, as we will see in more detail later.

As a final point in this section, since the boundary conditions allow b(p⃗) and b†(p⃗)
to be independent, not related by complex conjugation, the prescription for computing
the S-matrix will involve complex configurations of the real scalar field ϕ(x). This can be
understood as corresponding to the fact that off-diagonal matrix elements ⟨ψout|ϕ̂(x)|ψin⟩
are in general complex, even for a Hermitian field operator ϕ̂(x). The tree level classical
solutions also have different asymptotics than one might expect from purely classical
considerations; this is discussed in more detail in appendix D.

3 Equivalence with the LSZ prescription

It is instructive to verify in detail the perturbative equivalence of the AFS and LSZ
prescriptions for the S-matrix, which in particular involves keeping careful track of the
boundary terms, which were left largely implicit in much of the previous literature on this

9We use this definition because it is what appears most naturally in these boundary terms. We will
have occasion to use the standard definition of the Klein-Gordon inner product later in section 6 when we
consider particle production on a curved spacetime.
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topic. The strategy will be to consider the path integral in the presence of both bulk sources
and boundary conditions, allowing us to toggle back and forth between the AFS and LSZ
prescriptions.

Part of our procedure will involve using Stokes’ theorem to rewrite boundary terms as
bulk terms, which leads to some cancellation. We work through this very explicitly, but it
is useful to note that for the purpose of more efficient computation there is a quicker way
to arrive at the final result for the scattering action, as discussed in appendix A.

3.1 Action and boundary terms

As in the previous section, we consider the example of a real scalar field, but now take the
field to be massless for concreteness,10 and we now turn on a bulk source J(x). The action
is then11

I =
∫

M
d4x

(1
2ϕ∇

2ϕ− V (ϕ) + Jϕ

)
+ Ict + Ibndy

= Ibulk + Ict + Ibndy (3.1)

where we assume V (0) = V ′(0) = V ′′(0) = 0. Here Ict denotes the counterterms required to
cancel UV divergences; it will mostly be suppressed in what follows.

The integration region M is bounded in the past and future by initial and final surfaces
(Σi,Σf ). These surfaces are eventually taken to approach (I−, I+). To implement this
we introduce retarded and advanced coordinates, (r, u, xA) and (r, v, xA) where u = t− r,
v = t+ r, and xA are the coordinates on the unit 2-sphere. The Minkowski metric becomes

ds2 = −du2 − 2dudr + r2dΩ2

= −dv2 + 2dvdr + r2dΩ2 . (3.2)

For Σf we can then consider a 1-parameter family of spacelike hypersurfaces defined by
Fα

f (u, r, xA) = 0 such that, as α → 1 from below, solutions at fixed (u, xA) send r → ∞,
and such that the normal vector tµ = ∇µF

α
f approaches tµ∂µ = ∂u as α→ 1. The initial

surface Σi is treated analogously, now with tµ∂µ → ∂v as α→ −1. At intermediate values
of α the normal vector tµ is taken to be timelike and pointing towards the future.

We fix Ibndy by demanding a good variational principle compatible with the boundary
conditions (2.9) of the path integral. To that end we note that the variation of the action is

δI =
∫

M
d4xE[ϕ]δϕ− (ϕ−, δϕ+)Σf

+ (ϕ+, δϕ−)Σi + δIbndy . (3.3)

Here we are considering variations that preserve the boundary conditions, and the Euler-
Lagrange equations are

E[ϕ] = ∇2ϕ− V ′(ϕ) + J = 0 . (3.4)

Demanding that δI = 0 when E[ϕ] = 0 fixes the boundary term to be

Ibndy = (ϕ−, ϕ+)Σf
− (ϕ+, ϕ−)Σi . (3.5)

10As far as this section is concerned, including masses just means considering asymptotic data on i±

rather than I±.
11Here and in what follows we suppress the volume element

√
−g in all d4x integrals.
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3.2 Rewriting the action

Our next task is to rewrite the action in a form such that all dependence on the boundary
conditions ϕ and source J is via the function ϕJ(x), which is defined to obey

∇2ϕJ(x) + J(x) = 0 (3.6)

as well as the boundary conditions (2.9),

ϕJ,−(x) = ϕ−(x) on I+

ϕJ,+(x) = ϕ+(x) on I− (3.7)

This solution to the free, inhomogeneous equation of motion can be constructed from a
free solution to the homogeneous problem and the Feynman Green’s function (propagator)
GF (x), which obeys ∇2GF (x) = iδ(4)(x) and is purely positive (negative) frequency for x0

positive (negative). The inhomogeneous solution is then given by

ϕJ(x) = ϕ(x) + i

∫
d4yGF (x− y)J(y) . (3.8)

A general off-shell field configuration obeying the boundary conditions will then be written as

ϕ(x) = ϕJ(x) + ϕG(x) (3.9)

where ϕG obeys a falloff that respects the boundary condition (2.9) on ϕ.
To rewrite the action in terms of ϕJ , it will prove useful to reexpress Ibndy as a bulk

integral. We first of all use the stated boundary conditions to write

Ibndy = I free
bndy + IG

bndy (3.10)

where

I free
bndy = (ϕJ,−, ϕJ,+)Σf

− (ϕJ,+, ϕJ,−)Σi ,

IG
bndy = (ϕJ,−, ϕG)Σf

− (ϕJ,+, ϕG)Σi . (3.11)

Next, we note

∇µ(ϕJ∂µϕG − ∂µϕJϕG) = ϕJ∇2ϕG −∇2ϕJϕG (3.12)

which allows us to write

IG
bndy = −1

2

∫
M
d4x

(
ϕJ∇2ϕG −∇2ϕJϕG

)
. (3.13)

Turning now to Ibulk, writing ∇2ϕ = ∇2ϕJ + ∇2ϕG and J = −∇2ϕJ we have

Ibulk =
∫

M
d4x

(1
2ϕ∇

2ϕG − V (ϕ) − 1
2∇

2ϕJ ϕ

)
. (3.14)

This gives

Ibulk + IG
bndy =

∫
M
d4x

(1
2ϕG∇2ϕG − V (ϕJ + ϕG) − 1

2∇
2ϕJ ϕJ

)
. (3.15)
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3.3 Equivalent forms of the S-matrix

The total action separates into two pieces

I = I0[ϕJ ] + IG[ϕJ , ϕG] (3.16)

with

I0[ϕJ ] = I free
bndy[ϕJ ] − 1

2

∫
M
d4x∇2ϕJϕJ ,

IG[ϕJ , ϕG] =
∫

M
d4x

(1
2ϕG∇2ϕG − V (ϕJ + ϕG)

)
. (3.17)

Written in this form, the total action has two key properties. First, there is no explicit
dependence on ϕ or J ; all such dependence has been absorbed into the function ϕJ(x).
Second, in IG[ϕJ , ϕG] which contains all the dependence on interactions, ϕJ enters without
any derivatives.

We now consider the path integral in the presence of source J and boundary conditions
specified by ϕ,

Z[ϕ, J ] = eiI0[ϕJ ]
∫
DϕG e

iIG[ϕJ ,ϕG] . (3.18)

We first recall the LSZ prescription for the S-matrix. In this case we set ϕ = 0 and
expand Z[0, J ] as

Z[0, J ] = 1 +
∞∑

n=1

in

n!

∫ [ n∏
i=1

d4xid
4yi

]
G(n)

amp(xi)GF (x1 − y1)J(y1) . . . GF (xn − yn)J(yn)

(3.19)

where G
(n)
amp(xi) are the (generally disconnected) n-point amputated correlators. The

S-matrix generating functional S[ϕ] is obtained by stripping off the external sources and
propagators and replacing them by on-shell wavefunctions, an operation which amounts to12

iGFJ ≡
∫
d4y iGF (x− y)J(y) → ϕ(x) (3.20)

where ϕ(x) is given by the mode expansion (2.2). We thus write

SLSZ[ϕ] = Z[0, J ]|iGF J → ϕ . (3.21)

A specific S-matrix element is then obtained by differentiation, as in (2.13).
Turning now to the AFS prescription, we consider the path integral in the absence of

sources but with boundary condition specified by ϕ; this quantity is by definition Z[ϕ, 0], so

SAFS[ϕ] = Z[ϕ, 0] . (3.22)

12Here we assumed a renormalization prescription that sets the residue of the pole in the two-point
function to unity; see below.
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To prove that this is equal to the LSZ S-matrix generating functional, i.e that SAFS[ϕ] =
SLSZ[ϕ], we need to establish the relation

Z[ϕ, 0] = Z[0, J ]|iGF J → ϕ . (3.23)

A naive argument to this effect is that Z[ϕ, J ] in (3.18) only depends on (ϕ, J) via ϕJ , and
since ϕJ(x) = ϕ(x) + i

∫
d4yGF (x− y)J(y) it is apparent that the substitution in question

leaves ϕJ invariant. This is too quick: the combination ϕJ + iGF∇2ϕJ vanishes for any
J when ϕ = 0, so the ϕJ dependence of Z cannot be uniquely reconstructed, without
further input, just from the J dependence alone. The missing ingredient is obtained by
considering the diagrammatic computation of (3.18) with ϕ = 0 and J ̸= 0. The position
space Feynman diagrams will involve some combination of J ’s, ϕJ ’s and GF ’s integrated
against each other; importantly, since ϕJ appears in IG without derivatives, the Feynman
integrands involve no derivatives of ϕJ . On the other hand, the ambiguity involving the
addition of ϕJ + iGF∇2ϕJ does involve such derivatives. So once we stipulate that Z can be
written in such a non-derivative form then we see that the naive substitution rule iGFJ → ϕ

is indeed valid. From this we conclude that the LSZ S-matrix generating function is equal
to the path integral in the absence of sources, and thus that

SAFS[ϕ] = SLSZ[ϕ] . (3.24)

Focusing now on the AFS version, we note that with the sources turned off we can
simplify the action. Since ϕJ = ϕ and ∇2ϕ = 0 when J = 0 we have

I0[ϕ] = I free
bndy[ϕJ ] . (3.25)

We also note that from (3.11) when J = 0 the two terms in I free
bndy are equal because the

scalar inner product is preserved under free time evolution. We then have

S[ϕ] = Z[ϕ, 0] = eiI0[ϕ]
∫
DϕGe

i
∫

M
d4x( 1

2 ϕG∇2ϕG−V (ϕ+ϕG))+iIct , (3.26)

where we restored the counterterm action. Regarding the counterterms, the consistency of
the above discussion requires a renormalization prescription such that the sum of self-energy
diagrams obeys Σ(0) = Σ′(0) = 0, where the former implies that the physical particle mass
is m2 = 0 and the latter implies that the residue at the pole is unity.

To get the S-matrix operator we strip off the prefactor in (3.26), as explained in
appendix A, and interpret what remains as a normal ordered operator expression,

Ŝ = :
∫
DϕG e

i
∫

M
d4x

(
1
2 ϕG∇2ϕG−V (ϕ̂+ϕG)

)
+iIct : . (3.27)

The result (3.27) holds to all orders in perturbation theory. At tree level one should
solve ∇2ϕG = V ′(ϕ+ ϕG) and then evaluate Ŝ at this saddle point, yielding

Ŝtree = :e
i
∫

M
d4x

(
1
2 ϕGV ′(ϕ̂+ϕG)−V (ϕ̂+ϕG)

)
: , (3.28)
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where ϕG is computed order by order using the Feynman propagator, e.g.,

ϕG(x) = i

∫
d4y GF (x, y)V ′(ϕ(y)

)
+ O(V 2) . (3.29)

It is straightforward to verify that this reproduces the standard expansion in terms of
Feynman diagrams.

4 Scalar QED

We now consider a massless complex scalar field coupled to electromagnetism, with action

I =
∫
d4x

(1
2A

µ∇2Aµ + 1
2ϕ

∗D2ϕ+ 1
2(D2ϕ)∗ϕ+ J∗ϕ+ Jϕ∗ − JµAµ

)
+ Ict + Ighosts + Ibndy . (4.1)

The counterterm and ghost actions will be suppressed. The covariant derivative is

Dµϕ = (∂µ − ieAµ)ϕ (4.2)

corresponding to the gauge invariance

ϕ→ eieλϕ , Aµ → Aµ + ∂µλ . (4.3)

We work in Lorenz gauge,

∇µAµ = 0, (4.4)

and the gauge fixing term in (4.1) was chosen to make the gauge kinetic term take the form
1
2A

µ∇2Aµ. There are residual gauge transformations preserving Lorenz gauge which satisfy
∇2λ = 0; these will play an important role in the derivation of the soft theorem.

We now manipulate the action in a way that directly parallels what was done in the
scalar field example, so we will suppress some details. Boundary conditions on the positive
(negative) frequency components of (ϕ,Aµ) are imposed just as before, and the associated
boundary action is

Ibndy = (Aν
−, Aν+)Σf

+ (ϕ∗−, ϕ+)Σf
+ (ϕ−, ϕ∗+)Σf

− (Aν
+, Aν−)Σi − (ϕ∗+, ϕ−)Σi − (ϕ+, ϕ

∗
−)Σi . (4.5)

One point worth noting is that the “Cartesian components” of Aµ, meaning the components
in coordinates where the metric takes the form ds2 = −dt2 + dx⃗2, are taken to vanish as
r → ∞. We used this assumption, together with the corresponding fall-off of the scalar
field, to replace covariant derivatives in the boundary term by ordinary derivatives, since
the difference vanishes as r → ∞.

We now write

ϕ = ϕJ + ϕG

ϕ∗ = ϕ
∗
J + ϕ∗G

Aµ = A
µ
J +Aµ

G (4.6)
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with

ϕJ(x) = ϕ(x) + i

∫
dy GF (x, y)J(y)

ϕ
∗
J(x) = ϕ

∗(x) + i

∫
dy GF (x, y)J∗(y)

A
µ
J(x) = A

µ(x) − i

∫
dy GF (x, y)Jµ(y) (4.7)

where ∇2ϕ = ∇2ϕ
∗ = ∇2A

µ = 0. Inserting (4.6) into the boundary term, rewriting the
G-dependent part as a bulk integral, and trading away sources using J = −∇2ϕJ etc, we
arrive at

I = I0[ϕJ , ϕ
∗
J , A

µ
J ] + IG[ϕJ , ϕ

∗
J , A

µ
J ;ϕG, ϕ

∗
G, A

µ
G] (4.8)

with

I0 = (Aν
J−,∇µAJν+)Σf

+ (ϕ∗J−, ϕJ+)Σf
+ (ϕJ−, ϕ

∗
J+)Σf

− (Aν
J+,∇µAJν−)Σi − (ϕ∗J+, ϕJ−)Σi − (ϕJ+, ϕ

∗
J−)Σi

− 1
2

∫
d4x

(
ϕJ∇2ϕ

∗
J + ϕ

∗
J∇2ϕJ +AJµ∇2A

µ
J

)
(4.9)

and

IG = 1
2

∫
d4x

(
Aµ

G∇
2AG

µ − ϕ
∗
J∇2ϕG − ϕJ∇2ϕ∗G

)
+ 1

2

∫
d4x

(
ϕ∗[D2ϕ−∇2ϕJ ] + ϕ[(D2ϕ)∗ −∇2ϕ

∗
J ]
)
. (4.10)

At this point we can make essentially the same argument as in the scalar case to argue that
the LSZ prescription applied to the path integral with vanishing boundary conditions is
equivalent to computing the source free path integral with nontrivial boundary conditions.
The only slight subtlety comes from the fact that ∇2ϕJ appears in IG, so we need to revisit
the ambiguity under the addition of ϕJ + iGF∇2ϕJ when we try to reconstruct the full ϕJ

dependence from the ϕ = 0 result. However, we have written (4.10) to make explicit the
fact that no second derivatives acting on ϕJ appear, due to the cancellation between D2 and
∇2. This lack of second derivatives removes the ambiguity, just as in the pure scalar case.

Having established the equivalence with LSZ, to obtain the final expression for the
AFS S-matrix generating functional we turn off the sources, which implies ϕJ = ϕ so
∇2ϕJ = ∇2ϕ

∗
J = ∇2A

µ
J = 0, yielding

IG = 1
2

∫
d4x

(
Aµ

G∇
2AG

µ − ϕ
∗∇2ϕG − ϕ∇2ϕ∗G + ϕ∗D2ϕ+ (D2ϕ)∗ϕ

)
(4.11)

with ϕ = ϕ+ϕG, ϕ∗ = ϕ
∗ +ϕ∗G, Aµ = A

µ +Aµ
G. The S-matrix generating functional is then

S[ϕ, ϕ∗, Aµ] = eiI0[ϕ,ϕ
∗
,Aµ]

∫
DϕGDϕ∗GDA

µ
G eiIG (4.12)

and the S-matrix operator is

Ŝ = :
∫
DϕGDϕ∗GDA

µ
G eiIG : . (4.13)
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4.1 Gauge invariance

We now demonstrate invariance of the S-matrix under a class of large gauge transformations.
As a reminder, the sources are set to zero, J = J∗ = Jµ = 0, so that ϕJ = ϕ and AJ = A.

We take a gauge transformation to act as

ϕ→ eieλϕ , ϕG → eieλϕG,

ϕ
∗ → e−ieλϕ

∗
, ϕ∗G → e−ieλϕ∗G,

Aµ → Aµ + ∂µλ , AG
µ → AG

µ . (4.14)

The transformation of (ϕG, ϕ
∗
G) should be thought of as a change of integration variable.

Holding either u or v fixed, we allow for the residual transformations λ(x), obeying
∇2λ(x) = 0, to have nonzero large r limits, meaning λ(x) may be nonzero on I±; however,
we demand that the limiting value be independent of (u, v) in order that (Au, Av) vanish as
r → ∞. Under these conditions λ(x) obeys an antipodal relation [19] that equates its value
at a point on I+ to its value at the antipodal point on I−. To summarize,

lim
r→∞

λ(x) =
{
λ0(xA) on I+

λ0(x′A) on I− (4.15)

where xA → x′A is the antipodal map on S2. In (4.11) the only terms that are not manifestly
gauge invariant are ϕ∗∇2ϕG and ϕ∇2ϕ∗G. However, upon writing∫

M
d4x

√
gϕ

∗∇2ϕG =
∫
I+∪I−

dud2x
√
γr2nµ[ϕ∗∇µϕG −∇µϕ

∗
ϕG] (4.16)

and using that nµ∂µ is equal to −∂u on I+ and ∂v on I−, we see that the (u, v) independence
of λ0 implies invariance of this term, and likewise for ϕ∇2ϕ∗G. Similarly, I0 is also invariant
due to the (u, v) independence of λ0. We conclude that

S[eieλϕ, e−ieλϕ
∗
, Aµ + ∂µλ] = S[ϕ, ϕ∗, Aµ] , (4.17)

and similarly for Ŝ.

5 Large gauge transformations and soft theorems

We now rederive, in our language, the result of [14, 25, 26] (see also [27] for a nice pedagogical
review) that soft theorems follow from asymptotic symmetries. Following [14] we start by
explicitly separating out the pure gauge part of the boundary conditions on the vector
potential by writing

Aµ = Ãµ + 1
e
∂µΦ (5.1)

with ∇µÃµ = ∇2Φ = 0. The gauge mode Φ has leading r0 behavior near I±,

Φ(x) →
{

Φ0(xA) on I+

Φ0(x′A) on I− (5.2)
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where xA → x′A is the antipodal map on S2. Thus Φ0 encodes the constant modes (with
respect to (u, v)) of AA. Hence ÃA is taken to have no constant mode on I±, and as such
admits a well defined Fourier transform.

We now write the S-matrix functional as

S[ϕ, ϕ∗, Ãµ,Φ] , (5.3)

and the gauge invariance statement (4.17) now reads

S[eieλϕ, e−ieλϕ
∗
, Ãµ,Φ + eλ] = S[ϕ, ϕ∗, Ãµ,Φ] . (5.4)

Setting eλ = −Φ we rewrite this as

S[e−iΦϕ, eiΦϕ
∗
, Ãµ, 0] = S[ϕ, ϕ∗, Ãµ,Φ] . (5.5)

In order to work with asymptotic quantities we use the asymptotic expressions for the
fields, as obtained from a saddle point approximation. The mode expansion of the complex
scalar field is

ϕ(x) =
∫

d3p

(2π)3
1

2ωp

(
b(p⃗)eip·x + c†(p⃗)e−ip·x

)
,

ϕ
∗(x) =

∫
d3p

(2π)3
1

2ωp

(
c(p⃗)eip·x + b†(p⃗)e−ip·x

)
. (5.6)

The large r asymptotics are

ϕ(x) ≈


−i

8π2r

∫∞
0 dω

(
b(ωx̂)e−iωu − c†(ωx̂)eiωu

)
on I+

i
8π2r

∫∞
0 dω

(
b(−ωx̂)e−iωv − c†(−ωx̂)eiωv

)
on I−

(5.7)

and

ϕ
∗(x) ≈


−i

8π2r

∫∞
0 dω

(
c(ωx̂)e−iωu − b†(ωx̂)eiωu

)
on I+

i
8π2r

∫∞
0 dω

(
c(−ωx̂)e−iωv − b†(−ωx̂)eiωv

)
on I−

(5.8)

As in [14] it is useful to employ complex coordinates on the sphere,

x1 + ix2 = 2rz
1 + zz

, x3 = r
1 − zz

1 + zz
, (5.9)

so that the sphere metric in (3.2) becomes dΩ2 = 2γzzdzdz with

γzz = 2
(1 + zz)2 . (5.10)

Using this, the transformation appearing in (5.5), ϕ→ e−iΦϕ and ϕ
∗ → eiΦϕ

∗, implies the
following transformation of the modes,

b(p⃗) → e−iΦ0(z,z)b(p⃗) , b†(p⃗) → eiΦ0(z,z)b†(p⃗)

c(p⃗) → eiΦ0(z,z)c(p⃗) , c†(p⃗) → e−iΦ0(z,z)c†(p⃗) , (5.11)

– 15 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
6

where the vector p⃗ defines a point on the sphere via p⃗ = ωpx̂. So in terms of the modes, the
statement of invariance of the S-matrix under large gauge transformations implies

S
[
e−iΦ0(z,z)b(p⃗), eiΦ0(z,z)b†(p⃗), eiΦ0(z,z)c(p⃗), e−iΦ0(z,z)c†(p⃗), Ãµ, 0

]
= S

[
b(p⃗), b†(p⃗), c(p⃗), c†(p⃗), Ãµ,Φ0

]
(5.12)

where we have suppressed writing the mode expansion of the gauge field. This relation
holds equally well for the S-matrix generating functional or the S-matrix operator.

The dependence (5.12) on the large gauge transformations is exactly what is needed to
reproduce the soft photon theorem. To show this, we introduce the operator N̂(z, z), which
is conjugate to Φ̂0(z, z) in the sense that13

[
∂wN̂(w,w), Φ̂0(z, z)

]
= i

4π
1

w − z[
∂wN̂(w,w), Φ̂0(z, z)

]
= i

4π
1

w − z
. (5.13)

As discussed in [14], the N̂ operator is obtained by integrating the angular part of the field
strength over null infinity (at fixed angular location),

e∂zN̂(z, z) =
∫

I+
duF̂ uz (5.14)

and creates soft photons in the sense,

e∂zN̂ = − 1
8π2

√
2

1 + zz
lim

ω→0+

[
ωâout

+ (ωx̂) + ωâ†out
− (ωx̂)

]
, (5.15)

where we follow the notation of [26].
Of direct relevance here are the commutation relations[

∂wN̂(w,w), e−iQΦ̂0(z,z)
]

= 1
4π

Q

w − z
e−iQΦ̂0(z,z),[

∂wN̂(w,w), e−iQΦ̂0(z,z)
]

= 1
4π

Q

w − z
e−iQΦ̂0(z,z), (5.16)

while N̂ commutes with the other fields, (ϕ, ϕ∗, Ãµ). The soft theorem corresponds to
evaluating the commutator of ∂wN̂ with the S-matrix operator, which we identify with the
right hand side of (5.12),

Ŝ = Ŝ
[
b(p⃗), b†(p⃗), c(p⃗), c†(p⃗), Ãµ,Φ0

]
(5.17)

where all objects appearing are now operators. To compute the commutator [∂wN̂ , Ŝ] we
replace Ŝ by the left hand side of (5.12) and use (5.16). Generalizing to the case where
we have a collection of scalar fields with charges (Q1, Q2, . . .), we evaluate the commutator

13These commutators follow from the symplectic form of Maxwell theory. More complicated theories such
as gravity may contain a richer set of large gauge modes and a correspondingly richer boundary symplectic
form; the latter can be computed using the methods in [28], for example.
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between states of definite particle number. The contributing term in the S-matrix operator
then has a corresponding matched set of creation and annihilation operators upon which
the commutator acts as in (5.16). This gives

⟨out|[∂zN̂(z, z), Ŝ]|in⟩ = 1
4π

[∑
k in

Qin
k

z − zin
k

−
∑

k out

Qout
k

z − zout
k

]
⟨out|Ŝ|in⟩ , (5.18)

which agrees with the statement of the soft theorem in section 2.8.8 of [26].
In more detail, the celestial sphere locations (z, zin

k , z
out
k ) may be converted into the

momenta of the particles, along with the two transverse polarizations of the soft photon;
see [26]. After a bit of algebra this gives the standard form of the soft factor, according to

1 + zz√
2

[
m∑

k=1

Qout
k

z − zout
k

−
n∑

k=1

Qin
k

z − zin
k

]
=

m∑
k=1

[
ωQout

k pout
k · ϵ+

pout
k · q

−
n∑

k=1

ωQin
k p

in
k · ϵ+

pin
k · q

]
. (5.19)

6 S-matrix in curved spacetime

The AFS approach is well suited to studying the production of particles in a time dependent
background geometry. We consider a free, real, massless scalar field ϕ(x) propagating on
a fixed metric gµν(x) that is taken to approach the Minkowski metric asymptotically in
any direction. The spacetime is also taken to be globally hyperbolic without black holes,
although the latter could be incorporated with suitable modifications. The computation
that follows reproduces in an efficient way a result usually derived using the machinery of
canonical quantization, see e.g. [21, 22]. A detailed pedagogical treatment arriving at the
same exponentiated formula we derive here may be found in [29].

Some of our previous formulas need minor modification due to the fact that the
background geometry, and hence Hamiltonian, is time dependent. Equation (2.1) becomes

Ŝ = lim
ti→−∞
tf→+∞

eiĤ0tfTe
−i
∫ tf

ti
Ĥ(t)dt

e−iĤ0ti , (6.1)

with Ĥ0 = limt→±∞ Ĥ(t). Here Ĥ0 just corresponds to the Hamiltonian for a free field in
Minkowski space with fixed time slices that approach I± as the parameter t tends to ±∞.
For massive particles, the analysis that follows goes through without change except that
the early/late slices lie at fixed values of the ordinary Minkowski time coordinate t.

In [10–12], related methods are used to study the tree level S-matrix on classical
backgrounds.

6.1 Action and boundary conditions

In this section it will be convenient to use the conventionally defined Klein-Gordon scalar
product,

(ϕ1, ϕ2)KG = −i
∫

Σ
d3x

√
htµ(ϕ1∂µϕ

∗
2 − ∂µϕ1ϕ

∗
2)

= −2i(ϕ1, ϕ
∗
2)Σ (6.2)
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where tµ is the future directed normal to the Cauchy surface Σ. Setting the source to zero,
the free scalar field action is then

I = Ibulk + IG
bndy + I free

bndy

= 1
2

∫
d4x

√
−gϕG∇2ϕG + i

2(ϕf
−, ϕ

∗
+)Σf

KG − i

2(ϕi
+, ϕ

∗
−)Σi

KG . (6.3)

The path integral over ϕG can be absorbed into the overall normalization of the S-matrix,
which will later be fixed by unitarity. We henceforth drop the overbars on ϕ since this is
the only field that will appear, and we also suppress the KG subscript. The action is thus
written as

I = i

2(ϕf
−, ϕ

∗
+)Σf

− i

2(ϕi
+, ϕ

∗
−)Σi , (6.4)

with boundary conditions

ϕ−(x) = ϕf
−(x) on I+

ϕ+(x) = ϕi
+(x) on I− . (6.5)

Our task is then to compute the inner products in (6.4) for a solution of the wave equation
obeying the boundary conditions (6.5). As usual in problems of this type, it is useful to make
reference to two distinct complete sets of modes solutions, related by Bogoliubov coefficients.

6.2 Bogoliubov relations

For ease of notation it will be useful to work with a discrete set of basis functions; at the
end of the computation we will convert back to the continuous plane wave basis.

Let {ui, u
∗
i } and {vi, v

∗
i } be two complete sets of solutions of the wave equation,

normalized with respect to the Klein-Gordon inner product as

(ui, uj) = δij , (u∗i , u∗j ) = −δij , (ui, u
∗
j ) = 0,

(vi, vj) = δij , (v∗i , v∗j ) = −δij , (vi, v
∗
j ) = 0 . (6.6)

We will take ui to be positive frequency on I+, and vi to be positive frequency on I−. The
two sets are related as

ui =
∑

j

(αijvj + βijv
∗
j )

vi =
∑

j

(α∗
jiuj − βjiu

∗
j ) . (6.7)

In an obvious matrix notation, the Bogoliubov coefficients obey the relations

αα† − ββ† = 1,
αTα∗ − β†β = 1,
αβT − βαT = 0,
αTβ∗ − β†α = 0, (6.8)
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as obtained by substituting one line of (6.7) into the other and demanding consistency. The
solution ϕ(x) may be expanded in either set of modes,

ϕ =
∑

i

(
piui + p†iu

∗
i

)
,

=
∑

i

(
qivi + q†i v

∗
i

)
. (6.9)

The positive and negative frequency parts on I± are then identified to be

ϕf
+ =

∑
i

piui , ϕf
− =

∑
i

p†iu
∗
i

ϕi
+ =

∑
i

qivi , ϕi
− =

∑
i

q†i v
∗
i . (6.10)

The boundary conditions (6.5) then imply that the coefficients {p†i , qi} are the fixed data.
The problem to be solved is then the following: given {p†i , qi}, we need to compute

{pi, q
†
i }. This problem is straightforward to solve. For example, we get one equation by

writing pi = (ϕ, ui) and then expanding ϕ and ui in terms of {vi, v
∗
i }. Doing this also for q†i

we get a pair of equations,

p = α∗q − β∗q†

q† = α†p† + βT p (6.11)

which are easily solved with help from (6.8) to give

p = αT −1
q − αT −1

β†p†

q† = α−1p† + α−1βq . (6.12)

6.3 Evaluation of action

The inner products in the action are straightforward to evaluate using the mode expansions
of the previous section and (6.12). The two boundary terms are(

ϕf
−, ϕ

f
+
∗)

= −p†p
= −qα−1p† + p†β∗α−1p†(

ϕi
+, ϕ

i
−
∗) = qq†

= qα−1p† + qα−1βq . (6.13)

This gives the on-shell action

I = i

2(ϕf
−, ϕ

f∗
+ ) − i

2(ϕi
+, ϕ

i∗
−)

= −i
(
qα−1p† + 1

2qα
−1βq − 1

2p
†β∗α−1p†

)
. (6.14)

The S-matrix operator is therefore found to be

Ŝ = N : ei(I−I0) :

= N : e(q(α−1−1)p†+ 1
2 qα−1βq− 1

2 p†β∗α−1p†) : , (6.15)
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where we used that I0 just subtracts off the result for (α = 1, β = 0). The normalization
coefficient N should be chosen such that Ŝ†Ŝ = 1.

We finally convert to the plane wave basis used in the rest of this paper. The corre-
sponding mode solutions are written as

u(p⃗) = 1√
2ωp

eip·x on I+

v(p⃗) = 1√
2ωp

eip·x on I− . (6.16)

These obey (
u(p⃗), u(p⃗′)

)
= −

(
u∗(p⃗), u∗(p⃗′)

)
= (2π)3δ3(p⃗− p⃗′)(

v(p⃗), v(p⃗′)
)

= −
(
v∗(p⃗), v∗(p⃗′)

)
= (2π)3δ3(p⃗− p⃗′) . (6.17)

To convert to the continuum case we use
∑

i

→
∫

d3p

(2π)3 , (6.18)

and the mode coefficients are related as

p†i → b†(p⃗)√
2ωp

, qi → b(p⃗)√
2ωp

. (6.19)

We then have

I − I0 = −i
∫

d3p

(2π)3
d3p′

(2π)3
1√
2ωp

1√
2ωp′

[(
α−1(p⃗, p⃗′) − (2π)3δ3(p⃗− p⃗′)

)
b(p⃗)b†(p⃗′)

+ 1
2(α−1β)(p⃗, p⃗′)b(p⃗)b(p⃗′) − 1

2(β∗α−1)(p⃗, p⃗′)b†(p⃗)b†(p⃗′)
]
. (6.20)

The S-matrix is given as above by Ŝ = N : ei(I−I0) :. Unitarity fixes the value of N up to a
phase [22],

N = 1(
detα†α

)1/4 . (6.21)

Our result for the S-matrix agrees with [29].
It should be clear from our discussion in earlier sections that the extension of this result

to include other types of fields and their interactions is straightforward in principle.

7 Discussion

In this paper we have shown that the AFS approach to the S-matrix is well suited for a
variety of scattering problems, especially those in which asymptotic symmetries are relevant.
Here we only considered the simplest example of the latter, namely QED, but much work
in recent years has developed the story of asymptotic symmetries and soft theorems in
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the context of Yang-Mills theory and gravity, e.g. [25, 30, 31], as well as subleading soft
theorems, e.g. [18, 32]. We expect that the AFS approach is efficient in these contexts
as well. Other closely related topics include handling IR divergences by implementing
the Faddeev-Kulish approach, e.g. [17, 33–36], and the celestial holography program of
expressing S-matrix amplitudes as correlators of a putative CFT on the celestial sphere;
see [37–40] for reviews.
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A General boundary term analysis

A.1 The AFS generating functional in quantum mechanics

Here we briefly review the main points of the AFS approach to scattering using a quantum
mechanical example; few details change in field theory. The material here can be found
largely in Faddeev’s chapter in [4].

We consider a theory with Lagrangian

L = 1
2 ẋ

2 − 1
2ω

2x2 − V (t, x) (A.1)

where we assume that the potential turns off at early/late times. The canonical momentum
is p = ẋ and we define the creation/annihilation modes by

x = 1√
2ω

(a+ a†), p = −i
√
ω

2 (a− a†). (A.2)

Note that this definition holds even in the interacting theory; the modes a(t) and a†(t) will
simply not evolve in time by only phases.

Given these definitions we define the coherent states

â|α⟩ = α|α⟩, ⟨α†|â† = ⟨α†|α†. (A.3)

These states, taking α and α† to be independent, not necessarily related by conjugation,
are normalized as

⟨α†|α⟩ = eα†α. (A.4)

This choice of normalization is such that the free vacuum has unit norm, ⟨0|0⟩ = 1, and that
for any state |ψ⟩ we have ⟨ψ|â†|α⟩ = ∂

∂α⟨ψ|α⟩ and ⟨α†|â|ψ⟩ = ∂
∂α† ⟨α†|ψ⟩. Furthermore, the

procedure for converting between coherent matrix elements and normal ordered operators
follows immediately from this normalization. If Ô =

∑
n,m On,m(â†)nâm is any normal

ordered operator, then

O(α†, α) ≡ ⟨α†|Ô|α⟩ = eα†α
∑
n,m

On,m(α†)nαm. (A.5)
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So to reconstruct the normal ordered operator Ô from O(α†, α), we need only replace α† and
α by â† and â, normal ordered, and cancel off the normalization (A.4) of the coherent states.

Since Ĥ is not the free Hamiltonian, the time evolution of a coherent state will not
remain coherent. We do, however, have

e−iĤ0t|α⟩ = |αe−iωt⟩, ⟨α†|eiĤ0t = ⟨α†eiωt|. (A.6)

Now, our goal is to compute the matrix elements of the S-matrix operator between
coherent states:

S[α†, tf ;α, ti] = ⟨α†|eiĤ0tfTe
−i
∫ tf

ti
Ĥdt

e−iĤ0ti |α⟩

= ⟨α†eiωtf |Te−i
∫ tf

ti
Ĥdt|αe−iωti⟩. (A.7)

Here we are considering a finite time transition, but will have in mind taking tf → ∞ and
ti → −∞ at the end. We again stress that the states |α⟩ and ⟨α†| are independent, so α
and α† need not be related by conjugation.

The latter form of (A.7) is important for us because it allows us to compute the
transition amplitude using a path integral with modified boundary conditions, rather than
some complicated operator insertions:

S[α†, tf ;α, ti] =
∫ a†(tf )=α†e

iωtf

a(ti)=αe−iωti

[DxDp]eiI[x,p] (A.8)

where I[x, p] should be the phase space action

I[x, p] = −ia†a|tf
+
∫ tf

ti

(ia†ȧ−H)dt

= − i

2(a†a|tf
+ a†a|ti) +

∫ tf

ti

(1
2(pẋ− xṗ) −H

)
dt. (A.9)

This is the unique choice of kinetic and boundary terms such that I is compatible with the
scattering boundary conditions in (A.8) and also14

∂

∂α
iIshell = a†(ti)e−iωti ,

∂

∂α† iIshell = a(tf )eiωtf (A.10)

where Ishell is the on-shell action. This is also the boundary term obtained by Kähler quanti-
zation of the harmonic oscillator, and by the explicit slicing construction of the path integral.

The conditions to this point imply that

∂m

∂α†m

∂n

∂αn
S[α†, tf ;α, ti] = ⟨α†eiωtf |(âeiωtf )mTe

−i
∫ tf

ti
Ĥdt(â†e−iωti)n|αe−iωti⟩

= ⟨α†|âm
(
eiĤ0tfTe

−i
∫ tf

ti
Ĥdt

e−iĤ0ti

)
â†n|α⟩. (A.11)

14This latter condition excludes the possibility of adding to I a functional of only the boundary conditions,
which would not hamper the variational principle.
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Hence, using that |α = 0⟩ is the free vacuum, we see that the coherent state matrix elements
S[α†, tf ;α, ti] form the generating functional of standard “point particle” S-matrix elements.
Indeed, in [41] Schwinger obtained the S-matrix of electrodynamics by first constructing the
coherent state matrix elements. When generalized to field theory, the demonstration (A.11)
can be viewed as an operator-based argument for the equivalence of the AFS and LSZ
prescriptions.

A.2 Boundary term cancellation and efficient computation

In the main text, the boundary terms, which we understood systematically in the previous
section, were “evaluated” by explicitly rewriting them as bulk terms.15 The details of this
computation may seem special to the types of fields and theories that we have considered
in this paper, but the mechanism is completely generic.

In this appendix we describe how this mechanism occurs, using the quantum mechanical
example of the previous section to simplify expressions since few details change in field
theory. Understanding the general mechanism also yields a very efficient approach to dealing
with the boundary terms in perturbation theory, whereby one guarantees they are cancelled
without needing to write them down explicitly.

Starting with the action (A.9) as it appears in the path integral (A.8), we first shift
the integration variables to x = xcl + x̃ and p = pcl + p̃ where xcl, pcl are the solution to
classical equations of motion satisfying the scattering boundary conditions present in (A.8).
Hence x̃ and p̃ obey vanishing scattering boundary conditions: ã(ti) = 0 and ã†(tf ) = 0.

Expanding the action about the classical solution,

I[x, p] = I[xcl, pcl] +
∫
dt

[
δI

δx(t) |xcl,pcl
x̃(t) + δI

δp(t) |xcl,pcl
p̃(t)

]
+ O(x̃2, x̃p̃, p̃2). (A.12)

The I here includes the boundary terms in (A.9), which have the important property that
they are linear in the perturbations x̃, p̃. Explicitly,

Ibndy[x, p] = − i

2(a†clacl|tf
+ a†clacl|ti) −

i

2(a†clã|tf
+ ã†acl|ti). (A.13)

The second set of terms, linear in perturbations, were designed from the beginning to make
the linear terms in (A.12) vanish; this was the demand of a good variational principle.

Hence we find that16

I[x, p] = I[xcl, pcl] + O(x̃2, x̃p̃, p̃2) (A.14)

and the only boundary terms remaining are the ones evaluated on the classical solution, i.e.
the first pair of terms in (A.13). While we have argued here on general principles that the

15With the exception of the free boundary term, which yields the forward scattering portion of the
S-matrix, as we will see.

16In the path integral, we could have in principle shifted by any configuration which obeys the boundary
conditions, not just a classical solution. Here we see that if we had chosen any other configuration, the
fluctuating fields x̃, p̃ would acquire tadpoles in the loop computation. Removing the tadpoles shifts us back
over to a classical solution.
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boundary term cancellation must occur, it’s also simple to see this by direct computation
in the present quantum mechanical example.

If the action splits into free and interacting terms, as (A.1) does, we may also use
this same approach to efficiently compute the on-shell action in the first term of (A.14).
Write xcl = x+ xG and pcl = p+ pG where x, p are free solutions saturating the boundary
conditions, meaning aG(ti) = 0 and a†G(tf ) = 0. Then

I[xcl,pcl] = Iint[xcl,pcl]+I[x,p]+
∫
dt

[
δI

δx(t) |x,pxG(t)+ δI

δp(t) |x,ppG(t)
]

+O(x2
G,xGpG,p

2
G).

(A.15)

As before, the boundary terms are only linear in the perturbation around x, p, and so
completely cancel against the terms in the bulk linear in the perturbations.

Considering specifically (A.1), to evaluate the on-shell action we write (using pcl = ẋcl)

I[xcl] =−
∫
V (t,xcl)dt+Ibndy+

∫ [
−1

2xclẍcl−
1
2ω

2x2
cl

]
=−

∫
V (t,xcl)dt+Ibndy−

∫ [1
2(xGẍ+xẍG)+ω2xGx

]
dt− 1

2

∫
xG

[
ẍG+ω2xG

]
dt.

(A.16)

To use the free equations of motion to cancel the middle term, it’s necessary to integrate
the derivatives from xG onto x. This is what produces the boundary terms that cancel the
linear-in-perturbation terms of Ibndy, which we argued must happen on general principles,
but which is also easily checked explicitly in this example.

Practically, because this cancellation must occur, we can just drop the terms linear in
xG to find

I[xcl] = −iα†α+
∫ [1

2xG∂xV (t, xcl) − V (t, xcl)
]
dt. (A.17)

Here the remaining, free, boundary terms are completely determined by the boundary
conditions, and we have used the equations of motion to write ẍG + ω2xG = −∂xV

′(t, xcl).
Computing the S-matrix in normal ordered form via (A.5), we see that dividing out by the
coherent state norm just serves to cancel the free boundary term.

B Generating functional approach to the soft theorem

In section 5 we showed how the soft theorem could be obtained by considering the commu-
tator of the operator form of the S-matrix with the so-called soft photon creation operator
N̂z = ∂zN̂ . Here we show how the same result can be obtained without first converting to
the normal ordered form.

Before getting to the details, we can see the basic mechanism by which the soft theorem
will arise in the generating functional approach. Taking a Φ0 derivative of the S-matrix
will produce an insertion of its canonical conjugate, roughly N̂ , as a matter of definition.
On the other hand, we could use (5.12), which relates Φ0 derivatives to hard insertions.
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Conversely, any derivatives with respect to the hard particle sources are accompanied by an
eiQΦ0(z,z) factor on which the Φ0 derivatives can act.

To get the details correct, we need to be careful about what operators our derivatives
are inserting. As we will see, Φ0 does not source exactly the right hand side of the soft
theorem (5.18), so we first need to find the canonical conjugate to ∂zN and write Φ0 in
terms of it. For this purpose, we will require the portion of the symplectic form involving Φ0:

ΩI+ =
∫
d2zδ(2∂z∂zΦ0) ∧ δN. (B.1)

This is only the soft sector’s contribution to the symplectic form living on I+, but it
will be all we need since N and Φ0 commute with all bulk fields [14]. This symplectic
form tells us that a Φ0 derivative of the S-matrix (5.12) will produce an insertion17 of
i(−2∂z∂zN̂) = −i2∂z∂zN̂ , the extra i being the same imaginary unit multiplying the action
in the path integral — we can ground ourselves by noting that in quantum mechanics, the
symplectic form Ω = δp ∧ δx leads to ∂

∂p⟨p|ψ⟩ = ⟨p|(−ix̂)|ψ⟩.
From this symplectic form we see that πN = 2∂z∂zΦ0 is the conjugate to N . Inverting

this relation,18

Φ0 = 1
4π

∫
d2wπN (w,w) ln |z − w|2. (B.2)

So if we used this relation to replace Φ0 in favor of πN in the S-matrix, we could take πN

derivatives to produce insertions of −iN̂ .
To generate insertions of ∂zN̂ , we write (B.1) as

ΩI+ =
∫
d2zδ(−2∂zΦ0) ∧ δ∂zN, (B.3)

so the conjugate to ∂zN is πNz = −2∂zΦ0. But this also means that πN = −∂zπNz and
hence

Φ0 = 1
4π

∫
d2w

πNz (w,w)
w − z

. (B.4)

Now, since Φ0 is antipodally matched, we see that

i
δ

δπNz (z, z)S[b, b†, c, c†, Ã,Φ0[πNz ]]

= ⟨b†, c†, Ã−|∂zN̂ Ŝ − Ŝ∂zN̂ |b, c, Ã+⟩ = ⟨b†, c†, Ã−|[∂zN̂ , Ŝ]|b, c, Ã+⟩. (B.5)

While the content of the soft theorem in the generating function approach is contained
in (5.12), to obtain specifically the standard formula (5.18), it’s simplest to consider a

17Strictly, since Φ0 is forced to be antipodally matched at early and late times, this derivative produces
an antipodally matched pair of insertions, which will later lead to the commutator in (5.18) instead of a
single operator insertion.

18We use that shifting Φ0 by a constant on the celestial sphere is a null direction of the symplectic form,
and hence is non-physical, to fix the possibility of an additive constant in this inversion.
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specific process. On the one hand, by definition we have

A = i
δ

δπNz (z, z)

N∏
k in

(
2ωpk

(2π)3 δ

δbk(p⃗k)

) M∏
ℓ out

(
2ωqℓ

(2π)3 δ

δb†ℓ(q⃗ℓ)

)
S|0

= ⟨q1, . . . , qM |[∂zN̂(z, z), Ŝ]|p1, . . . , pN ⟩. (B.6)

On the other hand, using (5.12) and doing the mode derivatives first, we find

A= i
δ

δπNz (z,z)⟨q1, . . . , qM |Ŝ|p1, . . . ,pN ⟩exp
[
−i

N∑
k in

QkΦ0(zk, zk)+i
M∑

ℓ out
QℓΦ0(zℓ, zℓ)

]∣∣∣∣∣
Φ0=0

= 1
4π

[
N∑

k in

Qk

z−zk
−

M∑
ℓ out

Qℓ

z−zℓ

]
⟨q1, . . . , qM |Ŝ|p1, . . . ,pN ⟩. (B.7)

Equality of these two computations establishes the soft theorem in the form (5.18).

C Equivalence of the GKP/W and BDHM prescriptions for AdS
boundary correlators

As noted in the introduction, there are two prescriptions for computing boundary correlators
in asymptotically AdS spacetimes. The GKP/W prescription [1, 2], in which one views the
path integral with specified boundary conditions as a generating functional of boundary
correlators, and the BDHM [3] prescription in which boundary correlators are defined as the
limit of bulk correlators as the operator locations are taken to the boundary. As we show in
this appendix, their equivalence can be established in a manner parallel to how we demon-
strated equivalence of the LSZ and AFS prescriptions for the Minkowski space S-matrix.

For definiteness we consider a real scalar field in Euclidean signature,

I[ϕ] =
∫

M
dd+1x

√
g

[1
2∇

µϕ∇µϕ+ 1
2m

2ϕ2 + V (ϕ) − Jϕ

]
+ Ibndy . (C.1)

We write the coordinates as xµ = (z, yi) where z is the radial coordinate. The metric is
asymptotically AdSd+1 and takes the form

ds2 = dz2

z2 + hij(z, y)dyidyj , (C.2)

with

hij(z, y) = 1
z2 g

(0)
ij (y)dyidyj + . . . (C.3)

where the boundary is at z = 0, and . . . denote terms higher order in z. We proceed
by imposing a cutoff at z = ϵ, which is eventually taken to zero, and impose boundary
conditions on the scalar field as

ϕ(z, y)
∣∣
z=ϵ

= ϕ(y)ϵd−∆ , (C.4)
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where ∆ is the larger root of m2 = ∆(∆−d). Given this Dirichlet boundary condition, Ibndy
in (C.1) is taken to be some local expression built out of ϕ(y), and is partly determined
by the requirement that it cancel the local divergences that arise in the ϵ→ 0 limit. The
fact that Ibndy is local implies that it does not affect boundary correlation functions at
noncoincident points, and hence can be ignored for what follows.

Following our S-matrix discussion we focus on the path integral in the presence of
sources and nontrivial boundary conditions,

Z[ϕ, J ] =
∫
Dϕ e−I[ϕ] . (C.5)

We now define ϕJ as the solution of the sourced free field equation that obeys our boundary
condition,

(−∇2 +m2)ϕJ(x) = J(x) , ϕJ(z, y)
∣∣
z=ϵ

= ϕ(y)ϵd−∆ . (C.6)

To solve this we write ϕJ in the form

ϕJ(x) = ϕ(x) +
∫
dd+1x′

√
g G(x;x′)J(x′) , (C.7)

where ϕ(x) is defined as the solution of

(−∇2 +m2)ϕ(x) = 0 (C.8)

with boundary condition

ϕ(z, y)
∣∣
z=ϵ

= ϕ(y)ϵd−∆ . (C.9)

Here G(x, x′) is the AdS bulk-bulk propagator obeying

(−∇2 +m2)G(x, x′) = 1
√
g
δ(d+1)(x− x′) (C.10)

and which vanishes at the boundary. We further express ϕ(x) using the bulk-boundary
propagator K(x; y′) as

ϕ(x) =
∫

∂AdS
ddy′

√
hK(x; y′)ϕ(y′) , (C.11)

where K is defined via

(−∇2 +m2)K(x; y′) = 0 , K(x; y′)
∣∣
z=ϵ

= ϵd−∆
√
h
δ(d)(y − y′) . (C.12)

The general field configuration contributing to the path integral now takes the form

ϕ(x) = ϕJ(x) + ϕG(x) (C.13)
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where ϕG(x)
∣∣
z=ϵ

= 0. After some algebra and using the stated properties of ϕJ and ϕG the
action takes the form

I =
∫

AdS
dd+1x

√
g

[1
2∇

µϕJ∇µϕJ − 1
2m

2ϕ
2
J + ϕJ∇2ϕJ

+ 1
2∇

µϕG∇µϕG + 1
2m

2ϕ2
G + V (ϕJ + ϕG)

]
. (C.14)

We distinguish the contributions in the two lines by writing I = I0[ϕJ ] + IG[ϕJ , ϕG]. Now,
I0[ϕJ ] is independent of ϕG and so can be pulled out of the path integral,

Z[ϕ, J ] = e−I0[ϕJ ]
∫
DϕGe

−IG[ϕJ ,ϕG] . (C.15)

We note the two key properties of ZG[ϕJ ] =
∫
DϕGe

−IG[ϕJ ,ϕG]. First, it depends on ϕ and
J solely through ϕJ . Second, order by order in perturbation theory, ZG[ϕJ ] is a functional
of ϕJ without any derivatives acting on ϕJ .

We are now ready to compare the two forms of boundary correlators. In the BDHM
prescription we set ϕ(y) = 0, in which case Z[0, J ] becomes the generating functional for
bulk correlators,

Z[0, J ] =
∞∑

n=1

(−1)n

n!

[
n∏

i=1

∫
dd+1xi

√
g(xi)

]
Gn(x1, . . . , xn)J(x1) . . . J(xn) . (C.16)

The boundary correlators are then extracted as

⟨O(y1) . . .O(yn)⟩ = lim
zi→ϵ

z−∆
1 . . . z−∆

n Gn(x1, . . . , xn) . (C.17)

Now, the diagrams contributing to Gn(x1, . . . , xn) all have a bulk-bulk propagator emanating
from each bulk point xi. Furthermore, the bulk-bulk propagator is related to the bulk-
boundary propagator as

K(x; y′) = lim
z′→ϵ

z′−∆G(x, x′) . (C.18)

From this we see that if in (C.16) we make the replacement∫
dd+1xi

√
g(xi)G(x′i, xi)J(xi) →

∫
ddyi

√
h(yi)K(x′i; yi)ϕ(yi) (C.19)

then Z[0, J ] turns into the generating functional of boundary correlators,

Z[0, J ]
∣∣
GJ→Kϕ

=
∞∑

n=1

(−1)n

n!

[
n∏

i=1

∫
ddyi

√
h(xi)

]
⟨O(y1) . . .O(yn)⟩BDHMϕ(y1) . . . ϕ(yn) .

(C.20)

On the other hand, in the GKP/W prescription we set J = 0, compute Z[ϕ, 0], and identify
it as the generating functional of boundary correlators,

Z[ϕ, 0] =
∞∑

n=1

(−1)n

n!

[
n∏

i=1

∫
ddyi

√
h(yi)

]
⟨O(y1) . . .O(yn)⟩GKP/Wϕ(y1) . . . ϕ(yn) . (C.21)
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To establish that Z[0, J ]
∣∣
GJ→Kϕ

= Z[ϕ, 0], and hence that

⟨O(y1) . . .O(yn)⟩BDHM = ⟨O(y1) . . .O(yn)⟩GKP/W , (C.22)

we observe that ϕJ is the same whether we consider (ϕ, J = 0) or (ϕ = 0, J)
∣∣
GJ→Kϕ

.
This fact, together with the no derivative property of ZG[ϕJ ] is sufficient to establish
the equivalence of the two prescriptions for computing boundary correlators. The same
argument may be carried out for theories with more general matter content and other
boundary conditions.

D Classical scattering solutions

At tree level, the S-matrix is obtained by computing the classical action evaluated on a
classical solution of the equations of motion. However, the classical solution of interest
is not one that would be considered in a standard classical physics problem, because the
fields are subject to “in-out” boundary conditions. For instance, for a real scalar field the
classical solution that enters into the S-matrix is generically complex. Furthermore, the
large r asymptotics are nonstandard.

To illustrate this we consider computing the gauge field sourced by a charged particle
moving along a prescribed timelike trajectory Xµ(τ). Assuming Lorenz gauge, we need
to solve

∇2Aµ(x) = Jµ(x) (D.1)

for the appropriate conserved current,

Jµ(x) =
∫
dτ
dXµ(τ)
dτ

δ4(x−X(τ)) . (D.2)

If we integrate (D.1) using the retarded propagator we arrive at the standard Liénard-
Wiechert potentials, which have the property that the Cartesian components Aµ have 1/r
falloff near I±. The same falloff would arise from use of the advanced propagator. Such a
1/r falloff is part of the definition of the usual phase space for the electromagnetic field.19

However, in the S-matrix context we should instead use the Feynman propagator, which
unlike the retarded and advanced propagators, has support off of the light cone, and is also
complex valued. Defining (see [43])

G(x) = 1
4π|x⃗|

[
δ(|x⃗| − t) − δ(|x⃗| + t)

]
G1(x) = 1

4π2|x⃗|

(
P

1
|x⃗| − t

+ P
1

|x⃗| + t

)
(D.3)

the retarded and advanced propagators are

Gret(x) = G(x)Θ(t)
Gadv(x) = −G(x)Θ(−t) (D.4)

19Note that this assumes the absence of massless charged particles. In the presence of massless charged
particles that enter and exit through I± the falloff is weaker; see e.g. [42].
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while the Feynman propagator is

GF (x) = − i

2G1(x) + 1
2sgn(t)G(x) (D.5)

These obey −∇2Gret(x) = −∇2Gadv(x) = −∇2GF (x) = δ(4)(x).
As a simple illustrative example (see [44] for a more systematic study), consider a

particle which is at rest at the origin for t < 0, and then moves at constant velocity v⃗ = vẑ

for t > 0. The gauge field sourced by this current gets contributions from both the G1 and G
terms in (D.5); since the latter just gives the usual retarded plus advanced Liénard-Wiechert
potential we focus on the G1 contribution. A straightforward computation gives

AG1(x) = i

8π2
1
|x⃗|

ln
∣∣∣∣ t−|x⃗|
t+|x⃗|

∣∣∣∣dt
− i

8π2
1√

x2+y2+γ2(z−vt)2 ln
∣∣∣∣∣γ(t−vz)−

√
x2+y2+γ2(z−vt)2

γ(t−vz)+
√
x2+y2+γ2(z−vt)2

∣∣∣∣∣γ(dt−vdz) ,

(D.6)

with the top and bottom lines coming from the t < 0 and t > 0 parts of the current. Notice
that if we set v = 0 the two contributions cancel, and the full gauge field would just be the
usual stationary Coulomb field. To study the asymptotics near I+ we write

x2 + y2 = r2 sin2 θ

z = r cos θ
t = u+ r (D.7)

and take r → ∞ at fixed u. This gives the leading behavior

AG1(x) ≈ i

8π2
1
r

ln
∣∣∣∣ u2r

∣∣∣∣ (dr + du)

− i

8π2
1
v · q

1
r

ln
∣∣∣∣ u

2(v · q)2r

∣∣∣∣ (v · qdr + γ(du+ rv sin θdθ)
)

(D.8)

where v · q = γ(1 − v cos θ). We note in particular that this implies that the angular
component behaves as Aθ ∼ ln r rather than r0 as is usually assumed.

This asymptotic behavior is presumably representative of the generic solution involving
classical solutions obeying the S-matrix boundary conditions. As we have noted, the
nonstandard asymptotic behavior of these classical solutions is a reflection of the fact that
they correspond to in-out matrix elements of the field operator, as opposed to expectation
values. It does however imply that we need to exercise some care in taking the large r limit,
by taking the limit only after computing relevant quantities.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 30 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
2
3
)
0
3
6

References

[1] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[3] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal
field theory, hep-th/9808016 [INSPIRE].

[4] R. Balian and J. Zinn-Justin, Methods in Field Theory. Les Houches Summer School in
Theoretical Physics, Session 28, July 28–September 6, 1975 (1976) [INSPIRE].

[5] L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, vol. 50,
CRC Press (1993).

[6] P. Deligne et al., Quantum fields and strings: A course for mathematicians. Vol. 1, 2,
American Mathematical Society (1999) [INSPIRE].

[7] J.E. Shrauner, C.L. Hammer and B. DeFacio, Path Integral Representation of S Matrix, Phys.
Rev. D 18 (1978) 373 [INSPIRE].

[8] A. Jevicki and C.-K. Lee, The S Matrix Generating Functional and Effective Action, Phys.
Rev. D 37 (1988) 1485 [INSPIRE].

[9] T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07
(2018) 016 [arXiv:1805.00394] [INSPIRE].

[10] T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy,
Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].

[11] T. Adamo, A. Cristofoli and P. Tourkine, Eikonal amplitudes from curved backgrounds, SciPost
Phys. 13 (2022) 032 [arXiv:2112.09113] [INSPIRE].

[12] R. Gonzo, T. McLoughlin and A. Puhm, Celestial holography on Kerr-Schild backgrounds,
JHEP 10 (2022) 073 [arXiv:2207.13719] [INSPIRE].

[13] I.Y. Arefeva, L.D. Faddeev and A.A. Slavnov, Generating Functional for the s Matrix in
Gauge Theories, Teor. Mat. Fiz. 21 (1974) 311 [INSPIRE].

[14] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED,
JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

[15] M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon
theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

[16] D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys. 21
(2017) 1769 [arXiv:1506.02906] [INSPIRE].

[17] D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED,
Revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].

[18] M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP
11 (2016) 012 [arXiv:1605.09677] [INSPIRE].

[19] M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP 11 (2017)
168 [arXiv:1703.07884] [INSPIRE].

[20] M. Campiglia and A. Laddha, Asymptotic charges in massless QED revisited: A view from
Spatial Infinity, JHEP 05 (2019) 207 [arXiv:1810.04619] [INSPIRE].

– 31 –

https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/literature/467202
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://arxiv.org/abs/hep-th/9808016
https://inspirehep.net/literature/474214
https://inspirehep.net/literature/116350
https://inspirehep.net/literature/508870
https://doi.org/10.1103/PhysRevD.18.373
https://doi.org/10.1103/PhysRevD.18.373
https://inspirehep.net/literature/6014
https://doi.org/10.1103/PhysRevD.37.1485
https://doi.org/10.1103/PhysRevD.37.1485
https://inspirehep.net/literature/250197
https://doi.org/10.1007/JHEP07(2018)016
https://doi.org/10.1007/JHEP07(2018)016
https://arxiv.org/abs/1805.00394
https://inspirehep.net/literature/1670974
https://doi.org/10.1088/1361-6382/aa9961
https://arxiv.org/abs/1706.08925
https://inspirehep.net/literature/1607791
https://doi.org/10.21468/SciPostPhys.13.2.032
https://doi.org/10.21468/SciPostPhys.13.2.032
https://arxiv.org/abs/2112.09113
https://inspirehep.net/literature/1992045
https://doi.org/10.1007/JHEP10(2022)073
https://arxiv.org/abs/2207.13719
https://inspirehep.net/literature/2127383
https://doi.org/10.1007/BF01038094
https://inspirehep.net/literature/89995
https://doi.org/10.1007/JHEP10(2014)112
https://arxiv.org/abs/1407.3789
https://inspirehep.net/literature/1306476
https://doi.org/10.1007/JHEP07(2015)115
https://arxiv.org/abs/1505.05346
https://inspirehep.net/literature/1371880
https://doi.org/10.4310/ATMP.2017.v21.n7.a7
https://doi.org/10.4310/ATMP.2017.v21.n7.a7
https://arxiv.org/abs/1506.02906
https://inspirehep.net/literature/1375326
https://doi.org/10.1103/PhysRevD.96.085002
https://arxiv.org/abs/1705.04311
https://inspirehep.net/literature/1599089
https://doi.org/10.1007/JHEP11(2016)012
https://doi.org/10.1007/JHEP11(2016)012
https://arxiv.org/abs/1605.09677
https://inspirehep.net/literature/1466468
https://doi.org/10.1007/JHEP11(2017)168
https://doi.org/10.1007/JHEP11(2017)168
https://arxiv.org/abs/1703.07884
https://inspirehep.net/literature/1518920
https://doi.org/10.1007/JHEP05(2019)207
https://arxiv.org/abs/1810.04619
https://inspirehep.net/literature/1697697


J
H
E
P
1
0
(
2
0
2
3
)
0
3
6

[21] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University
Press, Cambridge, U.K. (1984) [DOI:10.1017/CBO9780511622632] [INSPIRE].

[22] B.S. DeWitt, Quantum Field Theory in Curved Space-Time, Phys. Rept. 19 (1975) 295
[INSPIRE].

[23] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press
(2005) [DOI:10.1017/CBO9781139644167] [INSPIRE].

[24] I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of
the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

[25] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft
graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

[26] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,
arXiv:1703.05448 [INSPIRE].

[27] N. Miller, From Noether’s Theorem to Bremsstrahlung: a pedagogical introduction to large
gauge transformations and classical soft theorems, arXiv:2112.05289 [INSPIRE].

[28] S. Kim, P. Kraus and R.M. Myers, Systematics of boundary actions in gauge theory and
gravity, JHEP 04 (2023) 121 [arXiv:2301.02964] [INSPIRE].

[29] J. Preskill, Quantum field theory in curved spacetime,
http://theory.caltech.edu/~preskill/notes.html (1990).

[30] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151
[arXiv:1308.0589] [INSPIRE].

[31] T. He and P. Mitra, Covariant Phase Space and Soft Factorization in Non-Abelian Gauge
Theories, JHEP 03 (2021) 015 [arXiv:2009.14334] [INSPIRE].

[32] A. Laddha and P. Mitra, Asymptotic Symmetries and Subleading Soft Photon Theorem in
Effective Field Theories, JHEP 05 (2018) 132 [arXiv:1709.03850] [INSPIRE].

[33] E. Himwich et al., The Soft S-Matrix in Gravity, JHEP 09 (2020) 129 [arXiv:2005.13433]
[INSPIRE].

[34] K. Nguyen, A. Rios Fukelman and C.D. White, Celestial soft dressings from generalised
Wilson lines, arXiv:2304.01250 [INSPIRE].

[35] S. Choi and R. Akhoury, BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes,
JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE].

[36] A. Nande, M. Pate and A. Strominger, Soft Factorization in QED from 2D Kac-Moody
Symmetry, JHEP 02 (2018) 079 [arXiv:1705.00608] [INSPIRE].

[37] A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].

[38] A.B. Prema et al., Celestial holography: Lectures on asymptotic symmetries, SciPost Phys.
Lect. Notes 47 (2022) 1 [arXiv:2109.00997] [INSPIRE].

[39] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the
Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE].

[40] T. McLoughlin, A. Puhm and A.-M. Raclariu, The SAGEX review on scattering amplitudes
chapter 11: soft theorems and celestial amplitudes, J. Phys. A 55 (2022) 443012
[arXiv:2203.13022] [INSPIRE].

[41] J. Schwinger, The Theory of Quantized Fields. III, Phys. Rev. 91 (1953) 728 [INSPIRE].

– 32 –

https://doi.org/10.1017/CBO9780511622632
https://inspirehep.net/literature/181166
https://doi.org/10.1016/0370-1573(75)90051-4
https://inspirehep.net/literature/103470
https://doi.org/10.1017/CBO9781139644167
https://inspirehep.net/literature/406190
https://doi.org/10.1088/1126-6708/2007/05/075
https://arxiv.org/abs/hep-th/0703152
https://inspirehep.net/literature/746658
https://doi.org/10.1007/JHEP05(2015)151
https://arxiv.org/abs/1401.7026
https://inspirehep.net/literature/1279003
https://arxiv.org/abs/1703.05448
https://inspirehep.net/literature/1517745
https://arxiv.org/abs/2112.05289
https://inspirehep.net/literature/1987836
https://doi.org/10.1007/JHEP04(2023)121
https://arxiv.org/abs/2301.02964
https://inspirehep.net/literature/2621514
http://theory.caltech.edu/~preskill/notes.html
https://doi.org/10.1007/JHEP07(2014)151
https://arxiv.org/abs/1308.0589
https://inspirehep.net/literature/1246139
https://doi.org/10.1007/JHEP03(2021)015
https://arxiv.org/abs/2009.14334
https://inspirehep.net/literature/1820344
https://doi.org/10.1007/JHEP05(2018)132
https://arxiv.org/abs/1709.03850
https://inspirehep.net/literature/1623045
https://doi.org/10.1007/JHEP09(2020)129
https://arxiv.org/abs/2005.13433
https://inspirehep.net/literature/1798077
https://arxiv.org/abs/2304.01250
https://inspirehep.net/literature/2648851
https://doi.org/10.1007/JHEP02(2018)171
https://arxiv.org/abs/1712.04551
https://inspirehep.net/literature/1643008
https://doi.org/10.1007/JHEP02(2018)079
https://arxiv.org/abs/1705.00608
https://inspirehep.net/literature/1597457
https://arxiv.org/abs/2107.02075
https://inspirehep.net/literature/1876687
https://doi.org/10.21468/SciPostPhysLectNotes.47
https://doi.org/10.21468/SciPostPhysLectNotes.47
https://arxiv.org/abs/2109.00997
https://inspirehep.net/literature/1915685
https://arxiv.org/abs/2111.11392
https://inspirehep.net/literature/1973246
https://doi.org/10.1088/1751-8121/ac9a40
https://arxiv.org/abs/2203.13022
https://inspirehep.net/literature/2057985
https://doi.org/10.1103/PhysRev.91.728
https://inspirehep.net/literature/46633


J
H
E
P
1
0
(
2
0
2
3
)
0
3
6

[42] K. Prabhu, G. Satishchandran and R.M. Wald, Infrared finite scattering theory in quantum
field theory and quantum gravity, Phys. Rev. D 106 (2022) 066005 [arXiv:2203.14334]
[INSPIRE].

[43] J.D. Bjorken and S.D. Drell, Relativistic quantum fields [INSPIRE].

[44] S. Atul Bhatkar, Asymptotic conservation law with Feynman boundary condition, Phys. Rev. D
103 (2021) 125026 [arXiv:2101.09734] [INSPIRE].

– 33 –

https://doi.org/10.1103/PhysRevD.106.066005
https://arxiv.org/abs/2203.14334
https://inspirehep.net/literature/2148559
https://inspirehep.net/literature/873163
https://doi.org/10.1103/PhysRevD.103.125026
https://doi.org/10.1103/PhysRevD.103.125026
https://arxiv.org/abs/2101.09734
https://inspirehep.net/literature/1842655

	Introduction
	AFS S-matrix: S-matrix as a path integral
	Equivalence with the LSZ prescription
	Action and boundary terms
	Rewriting the action
	Equivalent forms of the S-matrix

	Scalar QED
	Gauge invariance

	Large gauge transformations and soft theorems
	S-matrix in curved spacetime
	Action and boundary conditions
	Bogoliubov relations
	Evaluation of action

	Discussion
	General boundary term analysis
	The AFS generating functional in quantum mechanics
	Boundary term cancellation and efficient computation

	Generating functional approach to the soft theorem
	Equivalence of the GKP/W and BDHM prescriptions for AdS boundary correlators
	Classical scattering solutions

